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FlavorGraph: a large‑scale 
food‑chemical graph for generating 
food representations 
and recommending food pairings
Donghyeon Park1, Keonwoo Kim1, Seoyoon Kim1, Michael Spranger2 & Jaewoo Kang1*

Food pairing has not yet been fully pioneered, despite our everyday experience with food and the 
large amount of food data available on the web. The complementary food pairings discovered thus 
far created by the intuition of talented chefs, not by scientific knowledge or statistical learning. We 
introduce FlavorGraph which is a large‑scale food graph by relations extracted from million food 
recipes and information of 1,561 flavor molecules from food databases. We analyze the chemical and 
statistical relations of FlavorGraph and apply our graph embedding method to better represent foods 
in dense vectors. Our graph embedding method is a modification of metapath2vec with an additional 
chemical property learning layer and quantitatively outperforms other baseline methods in food 
clustering. Food pairing suggestions made based on the food representations of FlavorGraph help 
achieve better results than previous works, and the suggestions can also be used to predict relations 
between compounds and foods. Our research offers a new perspective on not only food pairing 
techniques but also food science in general.

Food pairing has been one of the key topics in food science and is currently an essential task in culinary practice. 
Despite the efforts of chefs, gourmets, and researchers to discover new food pairings, there are still pairings 
that have yet to be revealed in the culinary world. To master food pairings, one must have a clear understand-
ing of food itself. However, understanding food is a difficult task as it has many descriptive features such as 
flavor, color, texture, and so on. Many researchers sought to tackle this problem by making the most of their 
data such as millions of food recipes. Finding the best representations of foods will be helpful in discovering 
better food pairings. Here, we aim to answer the following two questions: How can we utilize the available data 
and meaningful descriptive features to obtain better food representations? How can we apply improved food 
representations to food pairing? To address these questions, we introduce FlavorGraph which is a large-scale 
network of food ingredients and chemical compounds. A graph embedding method called metapath2vec with 
an additional chemical learning layer is applied to construct embedded representations of food, which are used 
in our food pairing task. The results show that the food representations are applicable to food pairing and can 
help in suggesting novel pairings.

Previous works have proposed various chemical-based approaches to help improve food pairing. Ahn et al.1,2 
introduced a flavor network where the edges in the network are created based on the number of flavor compounds 
shared by culinary ingredients.  FlavorDB3 combines existing food repositories to provide a larger database with 
a user-interactive page. Food-bridging4 improves the flavor network  of1 by adding additional bridges between 
two ingredients through a chain of pairwise affinities even though the chemical compound similarity of the two 
ingredients is low. However, one critical limitation of the chemical-based approaches is that the number of foods 
and flavor molecules investigated in previous studies is very limited. Performing food-chemistry experiments 
(e.g., Gas Chromatography) is very expensive. In addition, it is difficult to accurately represent the chemical 
compounds of foods in a form that can be stored digitally because there are various features (e.g., flavor, color, 
texture, smell) and different varieties of the same food. Incorporating flavor compound information is indeed 
fundamental in food pairing. However, the lack of available chemical information of food makes it difficult for 
chemical-based approaches to construct accurate food representations in food pairing tasks.

Several recipe-based approaches which involve using recipe collections have also been previously proposed 
for food pairing tasks. Teng et al.5 proposed a recipe recommendation approach that uses ingredient networks 
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to determine whether a food ingredient is essential in a recipe. This approach uses two different recipe networks 
to find which ingredients go well together or can be used as substitutes for better recipes. There have been also 
studies on the analysis of food preference and food pairing according to regional characteristics each in  China6 
and  India7. Researches on food preferences done by Wagner et al.8, Abbar et al.9 focused on studying personal 
food preferences using online user data. On top of that, Zhang et al.10 proposed the restaurant recommendation 
to guide dining preferences based on the user’s food history. Other  approaches11,12 that combine case-based rea-
soning and deep learning for automatic recipe generation have been introduced.  KitcheNette13 uses deep Siamese 
neural networks trained on a large recipe dataset to predict food pairing scores. The hidden representations from 
the shared embedding layer of KitcheNette are used for predicting the co-occurrence of food ingredients in 
recipes and contribute to discovering novel food pairings by referencing similar food representations. However, 
as these approaches are solely based on statistical co-occurrence among many recipes, chemical compound 
information is not taken account in constructing food representations and recommending food pairing.

Many studies have been made to construct different types of representations using data-driven approaches and 
semantic concepts employed in other research fields. Semantic concepts are coherent ideas that come from words 
in language, people nodes in social networks, entities in databases, and so on.  Word2vec14,15 is a neural network 
that learns distributed representations of word vectors trained on textual data (sentences). In food research, 
 Im2recipe16 utilized word2vec to create food representations based on a large corpus of recipes. These food 
representations were extensively used for inferring food  images16 and generating novel food  recipes17.  Reciptor18 
most recently proposed a set transformer-based model to obtain recipe embeddings and uses a knowledge graph 
(KG)19 derived triplet sampling approach to optimize the learned embeddings.

In graph-based embedding approches,  node2vec20 has been employed for building node representations from 
network data. Node2vec has also been used in network analysis and graph mining tasks. Node2vec generates 
random walks according to the relations of its network where the walks are analogous to sentences in word2vec. 
The nodes of the network are trained on each walk where the neighboring nodes serve as contextual informa-
tion.  Metapath2vec21 which generates heterogeneous node representations using large-scale networks has been 
recently introduced. The random walks called metapaths generated by  metapath2vec21 are used for constructing 
similar representations of heterogeneous nodes based on commonly linked nodes. These data-driven and graph-
based approaches that embed conceptual representations with rich domain-specific information may improve 
food pairing recommendations as the approaches can be used to construct food representations based on the 
relations between different foods and chemical compounds.

Using the approaches of previous studies, we built FlavorGraph (Fig. 1) which is a large-scale graph network 
of food and chemical compound nodes. FlavorGraph (Fig. 1) contains 6653 food ingredient nodes and 1561 
food-related chemical compound nodes, 84 drug-like chemical compound nodes, and two relations among 
them. First, the relations between ingredients and ingredients (111,355 edges) are based on their probability of 
being used together (NPMI, Normalized Point-wise Mutual Information) in 1 million recipes (Fig. 1A). The rela-
tions between ingredients and chemical compounds (35,440 edges) were obtained from food-related academic 
resources that specify such food-compound relationships (Fig. 1B).

Then we adopted the graph node embedding method of  metapath2vec21 with an additional chemical structure 
learning layer to make conceptual representations of food. A metapath is a predefined sequence of node types 

Figure 1.  FlavorGraph. (A) Ingredient-ingredient relation. The relations between ingredients are shown; two 
ingredients are a “good pair” if they are used together in a large number of food recipes. The relations were 
obtained from  Recipe1M22. (B) Ingredient-compound relation. The relations between ingredients and chemical 
compounds are shown. These relations were obtained from  FlavorDB3 and  HyperFoods23. (C) A partial view 
of FlavorGraph. Only 160 out of 6653 ingredients, 154 out of 1646 compounds, and their relations are shown in 
Fig. 1 for better illustration. Note that the whole graph was used for model training.
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which are connected as edges according to the graph. Sub-graphs that satisfy the metapath condition were ran-
domly selected from FlavorGraph. The embedded node vectors of FlavorGraph, which are food representations, 
were trained in a skip-gram fashion based on their sub-graph connectivity. Food ingredient nodes are further 
divided into two types: ‘chemical-hub ingredient nodes’ and ‘non-hub ingredient nodes’. Among the ingredient 
nodes, we refer to the nodes that have a relation with the chemical compound nodes as ‘chemical-hub ingredient 
nodes’. We found that only 416 food ingredient nodes (chemical-hub ingredient nodes) of the 6653 food ingredi-
ent nodes have chemical information, but the remaining 6237 nodes (non-hub ingredient nodes) do not. A small 
portion of food ingredients having such chemical information can lead to several model optimization issues. To 
overcome this issue, we employ two methods in this study. First, we created food-specific  metapaths21 where all 
three types of nodes are involved. Our intuition is to enforce the embedding model to pass the information from 
chemical compound nodes to non-hub ingredient nodes via chemical-hub ingredients nodes in a single metapath. 
Second, upon food pairing relations regarding the chemical information of food ingredients (35,440 edges), we 
also utilized the statistical co-occurrence of two food ingredients (111,355 edges). Therefore, we designed a model 
that considers not only the chemical aspects of food pairing but also the statistical aspects as well.

To further elaborate on food-specified metapaths, we created multiple to ensure that chemical information 
from compound nodes is passed to non-hub ingredient nodes via chemical-hub ingredient nodes. The chemical-
hub ingredients nodes act as important intermediary nodes between two disjoint heterogeneous nodes (e.g., 
flavor compounds to chemical-hub ingredients to non-hub ingredients) and learn as much chemical as possible. 
Likewise, the created metapaths help food representation vectors simultaneously train on complex relations such 
as food–food (e.g., red_wine&steak) and food-chemistry (e.g., red_wine&ractone) relations. The final number 
of metapaths was 1,114,285 and the average length of them was 46.4. We then trained these metapaths in skip-
gram fashion to obtain meaningful food representations. The food representations were further used in many 
downstream tasks including food pairing. The results of food representations are shown in Fig. 3.

We conducted quantitative experiments and a qualitative analysis to evaluate whether the food representations 
constructed using the metapath-based graph embedding method of FlavorGraph provide meaningful informa-
tion and help improve performance in food pairing tasks. Compared with other food embedding methods, our 
metapath-based graph embedding method with a chemical structure learning layer achieved the highest score in a 
node clustering task of correctly categorizing each food. We also performed a similarity search based on the cosine 
similarity ranking of the food representation vectors. We assumed that our method would yield food pairings 
that are chemically similar and/or used in the same recipe context. In practice, for a given query, our embedding 
method provides ranked results of recommended parings of ingredients that are chemically similar and used in 
the same recipe. The trained food and chemical representations can be further used with simple mathematical 
operations to suggest food pairings. In addition, the ranked results of recommended pairings can be used to pro-
vide a list of foods related to a particular food molecule or drug compound. In summary, our food representations 
are meaningful as they helped to improve performance in food clustering and food pairing recommendation.

The major contributions of this work are summarized as follows.

• We introduce FlavorGraph which is a large-scale network graph built from recipe and chemical relations 
(147,179 edges) of food ingredients (6653 nodes) and chemical compounds (1646 nodes).

• We propose a food-specialized graph embedding method that constructs meaningful food representations 
for FlavorGraph, and demonstrate that our method outperforms other methods in a node clustering task 
which involves categorizing features of food.

• We demonstrate the effectiveness of our food representations in the tasks of food pairing recommendation 
and food-compound relation prediction.

Results and discussion
Preliminary analysis on food pairings with chemical compound information and recipe 
co‑occurrence. We performed preliminary analysis on the large amount of recipe data from  Recipe1M22 
and chemical information in foods from  FlavorDB3 as both datasets are involved in this study. We first examined 
the relevancy between chemical compound information in foods and their category labels. Next, we looked 
into the correlation between pairwise ingredient co-occurrence probability in 1 million recipes and pairwise 
chemical similarity based on the number of overlapping chemical compounds in two ingredients. We denote the 
number of overlapping chemical compounds as chemical overlaps.

Relation between chemical information and category labels of food ingredients Referring to Fig. 2, we found the 
food ingredients in same categories tend to have similar chemical structures. The scores in each box in Fig. 2 refer 
to the mean value of all Jaccard similarity scores of two ingredient chemical vectors within their categories. Each 
position in the ingredient chemical vectors represents the presence of a chemical compound (0 or 1). We observed 
that the similarity scores within same categories are largely high except for few corner cases. The mean value of 
similarity scores between same categories are 0.324 while different categories yielded the mean value of 0.167.

Relation between recipe co-occurrence and chemical similarity of two food ingredients In Table 1, we examined 
the following two hypotheses regarding our FlavorGraph data: (1) Whether the co-occurrence probability of 
two ingredients in a large corpus indicate good pairings. (2) Whether the high number of overlapping chemical 
compounds indicate good pairings.

For the first hypothesis, we actively selected 10 ingredient pairs among the top-ranked pairs with high recipe 
co-occurrence probability (NPMI). Some pairs have large chemical overlaps (e.g., bamboo_shoot&water_chest-
nut, oregano&basil, raspberry&blackberry and so on). These two ingredients are well-known “Congruent Pair-
ings”24, where they share many chemical compounds and have high co-occurrence in many recipes. On the other 
hand, some frequently co-occurring pairs have small chemical overlaps. For example, miso&sake, anchovy&caper 
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and saffron&basmati_rice are ingredients pairs that are chemically dissimilar as they have few shared compounds, 
but are well-known good pairings. For these cases, these types of pairings are called as “Complementary Pair-
ings”24. For the second hypothesis, we ranked the 10 samples of ingredient pairings by their chemical overlaps. 
The top ranked pairings are mostly similar types of foods (e.g., fruit–fruit and bean–bean), but with quite low 
co-occurrence probabilities (− 0.178 0.117). We found that high chemical overlaps lead to chemically related 
foods in similar categories but do not necessarily mean good pairings.

To wrap up our preliminary analysis, we confirmed again that it is important to incorporate both recipe co-
occurrence information and chemical information for building FlavorGraph. For improved food representations, 
our approach for building the metapaths focuses on propagating both types of information to the embedded 
nodes in our constructed FlavorGraph.

Figure 2.  Chemical structure similarity between two categories. The scores in each box refer to the mean of all 
the Jaccard similarity scores of two ingredient chemical vectors within their categories. The ingredient chemical 
vectors are in one-hot vector fashion, which represents the presence of chemical compound in each ingredient.

Table 1.  Relation between recipe co-occurrence based pairing ranking and chemical overlap based ranking. 
Co-occurrence probability is normalized point-wise mutual information (NPMI) between pairs of ingredients. 
NPMI ranges from − 1 to 1, with − 1 (never occurred together), 0 (independent of each other), and 1 
(co-occurred perfectly).

Ingredient 1 Ingredient 2 Co-occur Prob. Chemical overlap

Recipe co-occur. ranking

bamboo_shoot water_chestnut 0.532 94

Parsnip Turnip 0.524 101

Oregano Basil 0.515 159

Raspberry Blackberry 0.503 116

Nutmeg Cinnamon 0.472 139

Miso Sake 0.507 4

Anchovy Caper 0.415 2

Saffron basmati_rice 0.394 6

ham swiss_cheese 0.349 2

tortilla_chip Avocado 0.317 5

Chemical overlap ranking

Apple Strawberry 0.021 189

Bean green_bean 0.117 178

Banana Apple 0.090 173

Pineapple Apple 0.081 169

Apricot Apple 0.069 169

Cocoa Apple − 0.178 167

Orange mandarin_orange 0.054 166

Papaya Apple − 0.049 165

Ginger Pepper − 0.026 164

Lemon mandarin_orange − 0.066 164



5

Vol.:(0123456789)

Scientific Reports |          (2021) 11:931  | https://doi.org/10.1038/s41598-020-79422-8

www.nature.com/scientificreports/

Representing food ingredients and chemical compounds in a vector space. Figure 3A shows 
the results of applying the graph embedding to FlavorGraph. Using  metapath2vec21, we generated user-specified 
metapaths to learn the chemical relations between foods and chemical compounds, and how foods have been 
used together in recipes. A metapath is a path where heterogeneous nodes (food, compound, and drug) are con-
nected to each other based on their relations in FlavorGraph. The <Food-Compound> relations are from two 
distinguished food  databases3,23. The <Food-Food> relations are identified by the statistical co-occurrence of 
food ingredients in one million  recipes4. Further details on generating and learning metapaths are provided in 
the Methods section.

Figure 3A shows the 2D t-SNE projection of heterogeneous node representations (food ingredient nodes 
[chemical hub or non hub nodes], flavor compound nodes, and drug compound nodes). Food nodes are further 
divided into chemical hub ingredient nodes (indicated by orange diamonds, 6% of total ingredients) that have 
relations to chemical compounds, and the remaining ingredient nodes (indicated by yellow squares, 94% of 
total ingredients). Certain clusters of nodes are formed around these chemical hub ingredient nodes according 
to the nodes food category (e.g. fruit, dairy and so on). In each cluster, the chemical hub ingredient nodes are 
located closely to the chemical compound nodes (indicated by green and pink dots) which are included in the 
chemical hub ingredient nodes. Also, there are many food ingredient nodes with chemical information (indi-
cated by yellow squares) near the chemical hub ingredient nodes, which indicates that the food ingredients are 
likely to be used together in recipes. Figure 3B shows that the wine and citrus fruit nodes are located closely to 
each other and that the wines and fruits share flavor compounds that are actually part of their composition (e.g., 
red_wine&genaric_acid and red_wine&ethyl_lactate). Figure 3C shows what kinds of food would go well with 
wines and citrus fruits (e.g., red_wine&steak and red_wine&marzano_tomato). The results show that if two 
food ingredient nodes are close to each other in the vector space, they may be a good pair as they share similar 
chemical structures and have a high possibility of being used in the same recipe.

Node clustering by food category. To illustrate how well our food representations align with their cat-
egorical distribution, we conducted a node clustering task. We measured the clustering accuracy with Normal-
ized Mutual Information (NMI) as done in the work by  Dong21. Originally, the Mutual Information (MI) is a 
measure of the similarity between two labels of the same data. Here, the two labels are predicted clustering labels 
and actual clustering labels. The Normalized Mutual Information (NMI) is a normalization of the Mutual Infor-
mation (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). The results 
of the node clustering task are shown in Table 2.

For the clustering categories, we then collected the cuisine categories of 416 chemical hub ingredients from 
 FlavorDB3. Originally, the total number of categories in FlavorDB is 34. Instead of using all the information, we 
chose to merge them into the following representative nine food categories: Bakery/Dessert/Snack, Beverage 
Alcoholic, Cereal/Crop/Bean, Dairy, Fruit, Meat/Animal Product, Plant/Vegetable, Seafood, and Others. The 
statistics of each cuisine category is shown in Table 3. Note that we only used 416 chemical hub ingredients for 
fair comparison since they were commonly used in all other models.

We compared the performance of the our modified version of metapath2vec on FlavorGraph with that of 
five different food vector embedding methods in clustering food ingredient nodes. To create food vectors for 
FlavorDB, we used the occurrence of chemical compounds in each food to represent a position of a binary vec-
tor (1645-D). For food vectors of Im2recipe, we utilized the word  embedding14 results of one million recipes 

Figure 3.  FlavorGraph node representation results. (A) 2D t-SNE projection of whole food ingredient nodes 
(6653) and chemical compound nodes (flavor compounds: 1561, drug compounds: 84) from FlavorGraph. (B) 
<chemical hub ingredient-compound relation>. This figure shows the chemical compounds shared by wines 
and citrus fruits (orange, pineapple, grape, cranberry) and how they affect their overall taste. (C) <chemical hub 
ingredient-non hub ingredient>. This figure shows which common foods go well with certain wines and citrus 
fruits.
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on which a simple skip-gram model was trained. For the food vectors of node2vec and metapath2vec, and the 
FlavorGraph, we used different graph node embedding methods for each. Node2vec uses a simple random 
walk and metapath2vec uses probabilistic metapath walks. The graph embedding applied to FlavorGraph also 
uses metapath2vec but has an additional chemical embedding layer for better representing ingredient nodes. 
The flavor representations of FlavorGraph showed the best result (NMI score of 0.309) in node clustering. The 
hyperparameter setting of this experiments is further discussed in M1 of Supplementary Information.

Figure 4 shows the 2D t-SNE projection of FlavorDB node representations (A) and that of FlavorGraph node 
representations (B). As shown in Fig. 4A, clustering result seems to be effective, but similar categories slightly 

Table 2.  Node clustering results. The scores indicate for normalized mutual information (NMI). In the case 
of FlavorDB, since there is no continuous and dense vector, 1645 binary vectors representing the presence or 
absence of each chemical compound were used. *We found significant differences among all the results where 
p < .05 and the number of sampled results ( n = 1000).

Model Random FlavorDB Im2Recipe node2vec/DeepWalk metapath2vec metapath2vec+CSP

Method –
Number of shared flavor 
molecules

Text embedding
Heterogeneous random walk 
paths

Probabilistic meta-paths
Probabilistic meta-paths + 
Chemical learning

Dimension – 1645 (binary) 300 (dense) 300 (dense) 300 (dense) 300 (dense)

Node Clustering (NMI) 0.111 0.272 0.079 0.286 0.286 *0.309

Table 3.  Cuisine category statistics of over FlavorGraph. We collected the 416 chemical hub node ingredients, 
which co-exist in FlavorDB and other baselines models where they contain chemical compound information 
for category clustering.

Category # of ingredients

Bakery/dessert/snack 44 (10.3%)

Beveraage alcoholic 24 (5.8%)

Creal/crop/bean 38 (15.4%)

Dairy 6 (7.2%)

Fruit 15 (13.5%)

Meat/animal product 19 (4.6%)

Plant/vegetable 128 (30.8%)

Seafood 31 (7.45%)

Others 21 (5.05%)

Total 416

Figure 4.  2D t-SNE projection of the 300-D embeddings of 40 food ingredients, five from each of the eight 
food categories. (A) FlavorDB (B) FlavorGraph.
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overlap. Moreover, the chemical properties of foods in the vegetable and fruit categories are different from those 
of foods in the other categories. On the other hand, as the clustering result in Fig. 4B shows, all food nodes of 
each food category are distributed evenly according to their category.

Case Study 1: using the flavor representations of FlavorGraph for food pairing. In Table 4, as 
done in  KitcheNette13, we selected four popular food ingredients (tomato, onion, pepper, cinnamon) and per-
formed a similarity search based on the query ingredient. The similarity search results of the flavor representa-
tions of FlavorGraph can be used to provide two different food pairing recommendations. The chemical recom-
mendation of food pairings (left table in Table 4) demonstrates that FlavorGraph representations can be used 
to recommend food pairings if foods are chemically complementary. FlavorDB’s ranking of four foods (e.g., 
FlavorDB ranking of tomato: https ://cosyl ab.iiitd .edu.in/flavo rdb/entit y_detai ls?id=364) in ascending order is 
based on the number of chemical molecules shared by a pair of food ingredients. Most food ingredients in 
both ranking results of FlavorGraph and FlavorDB share many chemical molecules with the four given food 
ingredients. However, some food ingredients in the FlavorGraph ranking results share extremely few chemical 
molecules (e.g., jalapeno (0), and red_bell_pepper (0)). The graph embedding method of FlavorGraph learns not 
only the food-chemical molecule relations, but also the relations between food ingredients in a large number of 
recipes. The recipe&novelty recommendation of food pairings (right table in Table 4) shows that FlavorGraph 
representations can be used to recommend complementary and novel pairings of foods in cooking. In this case, 
we only retrieved non hub ingredient nodes from FlavorGraph. This was to compare it with KitcheNette model, 
which has no chemical information. The results of KitcheNette, which predicts the recipe co-occurrence prob-
ability of food ingredient pairs, are ranked using Siamese neural networks. FlavorGraph can be used to recom-

Table 4.  2-way food pairings based on the similarity search of food representations generated by FlavorGraph. 
The number of chemical compounds shared by two food ingredients is in parentheses.

Chemical recommendation of food pairings Recipe&novelty recommendation of food pairings

FlavorGraph (All 
nodes) FlavorDB

FlavorGraph (All 
nodes) FlavorDB

FlavorGraph (Non 
hub nodes only) KicheNette

FlavorGraph (Non 
hub nodes only) KicheNette

Graph embedding
# of shared 
molecules Graph embedding

# of shared 
molecules Graph embedding

Siamese neural 
network prediction Graph embedding

Siamese neural 
network prediction

Tomato Onion Tomato Onion

lettuce(119) tea(186) garlic(120) cocoa(120)
whole_wheat_ham-
burger_bun(0)

lettuce(119)
frozen_lima_
bean(0)

bay_leaf(0)

cucumber(115) potato(161) potato(119) garlic(120)
miracle_whip_
light(0)

avocado(122)
sweet_green_pep-
per(0)

celery(103)

avocado(122) mango(160) celery(103) peanut(120)
sweet_green_pep-
per(0)

cucumber(115)
smoked_ched-
dar_cheese(0)

ground_beef(0)

onion(118) guava(158) chive(118) potato(119)
serrano_chili_pep-
per(0)

bean_dip(0)
lean_ground_
beef(0)

potato(119)

potato(161) apple(158) tomato(118) tomato(118)
yellow_sweet_pep-
per(0)

eggplant(109) beef_stew_meat(0) carrot(106)

cheese(59) grape(152) pepper(96) chive(118) spam(0) turmeric_powder(0) canned_tomato(0) tomato_paste(0)

jalapeno(0) soybean(151) cabbage(112) soybean(117) ears_of_corn(0) garam_masala(0) serrano_ham(0) beef_broth(0)

cumin(105) strawberry(149) carrot(106) green_beans(115) bacon_piece(0) red_chili_powder(0) stewed_tomato(0) beef_stock(0)

cheddar_cheese(67) cocoa(149) mushroom(111) tea(115)
ranch_salad_dress-
ing(0)

tostada(2) green_pepper(0) green_pepper(0)

red_bell_pepper(0) mushroom(149) green_bean(115) leek(114) taco_shell(0) taco_shell(0) anaheim_chilies(0) stewing_beef(0)

Pepper Cinnamon Pepper Cinnamon

green_bell_pep-
per(3)

ginger(160) nutmeg(138) pepper(144) round_steak(0) oregano(149) apple_pie_filling(0) allspice(124)

sweet_basil(5) laurel(159) vanilla(104) ginger(141) garlic_salt(0) ground_beef(0)
real_vanilla_
extract(0)

clove(129)

red_bell_pepper(3) rosemary(154) allspice(124) laurel(141)
frozen_corn_ker-
nel(0)

potato(114)
canned_pump-
kin_puree(0)

raisin(6)

cumin(136) basil(151) clove(129) basil(139) corn_flake_crumb(0) thyme(130) light_margarine(0) baking_soda(0)

orange_bell_pep-
per(3)

spearmint(149) walnut(102) rosemary(138) sweet_onion(0) elbow_macaroni(0) pumpkin_puree(0) apple(113)

oregano(149) oregano(149) mace(18) nutmeg(138) browning_sauce(0) basil(151) canned_pumpkin(0) nutmeg(138)

yellow_bell_pep-
per(3)

nutmeg(149) raisin(6) oregano(134) dark_sesame_oil(0) celery(146) sour_milk(0) applesauce(0)

basil(151) orange(148) pecan(105) cassia(133) soft_breadcrumb(0) onion(96)
solid_pack_pump-
kin(0)

brown_sugar(0)

parsley(140) celery(146) shortening(2) tea(131)
frozen_hash_brown_
potato(0)

hamburger(4)
mashed_sweet_
potato(0)

pumpkin_puree(0)

carrot(141) dill(145) sugar(4) celery(130) crushed_tomato(0) marjoram(145) quick_oat(0) canned_pumpkin(0)

https://cosylab.iiitd.edu.in/flavordb/entity_details?id=364
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mend ingredients that are highly likely to be used together in recipes. For example, whole_wheat_hamburger_
bun(0), bacon_piece(0), ranch_salad_dressing(0), and so on are highly ranked food ingredients that go well with 
tomato. In summary, FlavorGraph can be used to recommend pairings of food ingredients that are similar in 
chemical structure and most likely to be used together in recipes.

Recommending pairings of various foods In Table 5, we demonstrated that our learned food representation 
vectors can also be used to provide pairing recommendations based on the combination of multiple learned food 
representation vectors. First, we made pairing recommendations for a single food ingredient (e.g. ice_cream, 
white_wine). We showed that FlavorGraph can recommend complementary ingredients (e.g., caramel_sauce, 
cookie, cake, candy for ice_cream and sole_fillet, tomato, chicken for white_wine) that would generally go well 
with given food ingredients. Also, we added two or more ingredient representation vectors, and used them as a 
pairing query vector. For example, strawberry and chocolate were added to ice_cream, and shrimp was added 
to white_wine. We simply summed the two vectors, and performed the similarity search on the summed result. 
For the ranking of the summed vector of [ice_cream+strawberry], strawberry-related desserts (e.g. strawberry_
jello_o, strawberry_gelatin), or other desserts (e.g., brownie, whipped_topping, hot_fudge) that pair well with ice 
cream and strawberries were recommended. For the ranking of the summed vector of [ice_cream+chocolate], 
the recommendation results include additional desserts that go well together. White_wine is generally known 
to go well with seafood, vegetables, and chicken. For the ranking of summed vector of [white_wine+shrimp], 
different types of seafood that go well with the combination of white_wine and shrimp are recommend.

Case study 2: Can we also predict compound‑food relations? Predicting compound-food relations 
When our modified version of metapath2vec is trained on all the nodes of FlavorGraph, the method trains not 
only the relations between foods but also the relations between foods and chemical compounds. Therefore, we 
believe that it is possible to predict pre-existing compound-food relations and undiscovered ones through a 
similarity search of our learned food representation vectors. We demonstrated a toy example task to predict 
relationship between compounds and foods. Figure 5) shows the prediction results of <Flavor profile-Flavor 
compound-Food> network. To build this relation network, we first picked the 5 most frequently appeared flavor 
profiles (out of 582) in  FlavorDB3. We then randomly sampled ten of each corresponding random flavor com-
pounds (out of 1561) upon the picked flavor profiles. Lastly, we randomly sampled 20 food ingredients (out of 
6653) for each of the flavor compounds.

The relation edges (grey lines) on <Flavor profile-Flavor compound> were defined based on already known 
connections found in FlavorDB. The relation edges (grey, blue, red lines) on <Flavor compound-Food> were 
defined based on whether the similarity search score of two nodes exceeds a certain threshold. This threshold 
is further discussed in M2 of Supplementary Information. In Table 6, we illustrated the evaluation results on 
similarity search between food nodes and flavor compound nodes. The grey (straight) lines are the relation 
edges that were correctly predicted to be connected. The red lines (dotted) are the relations edges that were 
predicted to be not connected but actually are connected according to the dataset. The blue (dashed) lines are 
the relations that were predicted to be connected but are unknown up to recent discoveries. In summary, not 
only did the similarity search predict the existing relations with a fairly high accuracy, but also discover six new 
<Flavor compound-Food> relations that have not been found before. These newly discovered relations can be 
used to discover new compound-food relations that have not been previously identified due to cost limitations 
or limited access to natural food sources.

What are the flavor profiles related to food? As shown in Fig. 5, we added flavor profiles related to existing <Fla-
vor compound-Food> relations. Here, flavors such as fruity, bitter, fatty, floral, and so on are flavor compounds. 
Knowing and finding Food-Flavor compound-Flavor profile> relations can help in better understanding the 
chemical effects of food ingredients on to other food ingredients. For example, we can find foods with fruity flavor 

Table 5.  Pairing recommendations for various food ingredients using simple vector arithmetic.

Pairing query Result description Top 20 pairing recommendations

ice_cream general pairing for ice_cream

ice_cream, caramel_sauce, chocolate_fudge_topping, cookie, cake, candy, chocolate_syrup, 
chocolate_frosting, candy_sprinkle, oreo_cookie, jello_gelatin, licorice, caramel_ice_
cream_topping, baileys_irish_cream, dream_whip, chocolate_wafer_cookie, heath_candy_
bar, food_coloring, angel_flake_coconut, amaretto

ice_cream + strawberry = ? additional dessert pairing for ice_cream and strawberry

brownie, fresh_rhubarb, ice_cream, strawberry_jell_o_gelatin_dessert, non_dairy_
whipped_topping, strawberry_gelatin, hot_fudge, cake, strawberry_preserve, gelatin, short-
bread_cookie, chocolate_hazelnut_spread, digestive_biscuit, jello_gelatin, caramel_sauce, 
cookie, butter_flavored_cooking_spray, amaretto, vanilla_bean_paste, pie_crust

ice_cream + chocolate = ? additional dessert pairing for ice_cream and chocolate

ice_cream, instant_malted_milk_powder, baileys_irish_cream, espresso_powder, cookie, 
chocolate_liqueur, bittersweet_chocolate, creme_de_menthe, mint_extract, caramel_sauce, 
chocolate_sprinkle, chocolate_frosting, chocolate_syrup, chocolate_chip_cookie, licorice, 
chocolate_fudge_topping, green_food_coloring, graham_cracker_crumb_crust, cake, 
food_coloring

white_wine general pairing for white_wine

white_wine, sole_fillet, linguine, san_marzano_tomato, chicken_cutlet, red_wine, center_
cut_pork_chop, tagliatelle_pasta_noodle, chicken_breast_tender, cream_sherry, capellini, 
salt_cod_fish, angel_hair_pasta, lemon_slice, lemons,_zest_of, sea_bass, condensed_
golden_mushroom_soup, flounder_fillet, steak, baby_portabella_mushroom

white_wine + shrimp = ? additional seafood pairing for white_wine
white_wine, sole_fillet, linguine, cod_fish_fillet, angel_hair_pasta, lobster_tail, capellini, 
clam_juice, scallop, cod, flounder_fillet, bottled_clam_juice, octopus, lobster_meat, red_
snapper, littleneck_clam, sea_bass, jumbo_shrimp, tartar_sauce, halibut
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compounds based on the predicted relations between Fruity (flavor profile) and Hexyl_acetate (flavor compound). 
According to reference  search25, Hexyl_acetate is known to be used as a flavoring because of its fruity odor, and 
it is naturally present in many fruits (such as apples and plums) as well as alcoholic beverages. We found that 
small quantities of Hexyl_acetate are found in a wide variety of fruits and foods including rose_wine, red_wine, 
champagne, apple, and parmesan_cheese. While the example results we provided here are toy examples of <Flavor 
profile-Food> relations, we expect to provide hints for future food researches such as flavor-specific searches.

Conclusion
We collected food recipes and chemical information of food to build a large-scale food-compound network graph 
called FlavorGraph. We used the food-specific metapath graph embedding method with an chemical structure 
learning layer to generate elaborate food representation vectors for FlavorGraph. Then we demonstrated that the 
food representation vectors can be used for making food pairing recommendations and predicting new food-
compound relations. However, our work has some limitations; first, more food-related information is needed to 
better understand food. This work combines only recipe co-occurrence information and chemical information. 
Second, since the metapath-based graph embedding method uses unsupervised learning, it is difficult to evalu-
ate the food repre sentations. Last, the food pairing recommendations and food-compound relation predictions 
made in this study have not yet been scientifically evaluated because there is no single correct answer set that 
can be used for verifying such results. Nevertheless, we believe that FlavorGraph can be employed for better 
understanding the cooking and medicinal uses of food. Also, the deep learning strategies outlined in this paper 
can serve as the cornerstone for food pairing and food-relation prediction tasks.

Methods
Building FlavorGraph. We combined various datasets used in several food-related studies for building 
FlavorGraph which is a very large graph containing food–food and food-chemical compound relations (Fig. 1). 
FlavorGraph is comprised of three different types of nodes (e.g., food ingredients, flavor compounds, and drug 
compounds), and three different types of edges (e.g., food ingredient-food ingredient relations, food ingredient-
flavor compound relations, and food ingredient-drug compound relations). Further details of our constructed 
graph are provided in Table 7.

Food-food relations. We extracted the ingredient nodes (I) and ingredient–ingredient relations (I–I) from 
 Recipe1M16,22 which is a large-scale dataset of human-written cooking recipes. 16,857 unique candidate ingre-
dients were selected from the recipes and co-occurring probabilities of all ingredient pairing combinations were 
calculated. The pairing scores were calculated based on the co-occurring probabilities. The higher the co-occur-

Figure 5.  <Flavor profile-Flavor compound-Food> relation network.

Table 6.  Evaluation on <Flavor compound-Food> relation prediction.

# of relation 53 Accuracy 0.895

# of prediction 44 Precision 0.864

Predicted (known) 38 Recall 0.717

Predicted (unknown) 6 F1 0.784

Not predicted (missed) 15 MCC 0.720
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ring probability of two ingredients, the higher their pairing score. This scoring approach was first introduced 
in the work by Teng et al.5 where Pointwise Mutual Information (PMI) (Eq.(1)) was used to create a simple 
ingredient network. Similarly, a normalized version of PMI (NPMI)26 was utilized for training the pairing score 
prediction model  KitcheNette13.

As done in the work by  Park13, we used  NPMI26 scores to construct edges between every two ingredient nodes 
in FlavorGraph. Among all the possible candidate ingredient pairs from the list of extracted ingredients, we 
included only highly complementary candidates in our network. Candidate ingredient pairs satisfying one of 
the following conditions were selected as network edges: (1) Each ingredient appears more than 20 times in 
Recipe1M and both of them appear more than 5 times in the same recipe. (2) The calculated NPMI score is at 
least 0.25. Ingredient pairs whose NPMI score is less than 0.25 but ranked in the top 20 below the 0.25 threshold 
were also included as edges in FlavorGraph. A total of 7199 ingredient nodes and 164,531 ingredient-ingredient 
edges were included in FlavorGraph.

Food-chemical compound relations. For flavor compounds (F) and ingredient–flavor compound relations (I-F), 
we used  FlavorDB3 to create chemical edges in FlavorGraph. FlavorDB collates information from several dif-
ferent food-related databases (e.g.,  FooDB27,  Flavornet28) which contain a list of flavor molecules from natural 
food ingredients. It also gathers chemical information on flavor molecules such as bitter substances  (BitterDB29), 
sweet substances  (SuperSweet30), scents  (SuperScent31), nutritional factors  (NutriChem32), polyphenols (Phenol-
Explorer33), and so on. FlavorDB contains 2254 flavor compounds found in 936 natural food ingredients. 400 
of the 2254 flavor compounds were selected as they are included in the ingredient nodes built from Recipe1M. 
We found that the 400 ingredients (e.g., chicken, rice, banana) are popularly used in cooking while the rest of 
them (e.g., hyacinth_bean, mammee_apple, drumstick_leaf) are rarely used. Based on the 400 selected ingredi-
ent nodes that have flavor compound information, there is a total of 1561 flavor compound nodes and 164,531 
ingredient-flavor compound edges.

For drug compounds (D) and ingredient–drug compound (I–D) relations, we used  HyperFoods23 to create 
chemical edges in graph. HyperFoods exploits machine learning to map cancer-beating drug compounds to 
natural food ingredients. HyperFoods is trained on drug-gene relations to infer food-gene relations by means 
as suggesting remedial foods for cancer treatment/prevention. 206 natural food ingredients are provided in 
a dataset used in HyperFoods but we used only 104 of them for constructing FlavorGraph. Based on the 104 
ingredient nodes that have drug compound information, there are 84 drug compound nodes and 386 ingredient-
drug compound edges.

Graph node embedding in FlavorGraph. We employed  metapath2vec21 which can learn representa-
tions of ingredient, flavor compound, and drug compound nodes, and the relations between the nodes. In meta-
path2vec, the nodes of FlavorGraph are trained to learn relations between ingredients in food recipes and the 
chemical information of ingredients.

Generating metapaths from FlavorGraph. The scientific approach to food pairing focuses on the number of 
shared compounds as explained in Ahn’s  work1; however, this approach suffers from the limited availability of 
chemical information on food ingredients (H—chemical-hub ingredients in FlavorGraph). To overcome this 
problem, we aim to design to learn chemical information (F, D) and even information on non-hub ingredient 
nodes (N). Food-specific metapaths are generated from FlavorGraph so that the chemical compound nodes (C) 
can pass information to non-hub ingredient nodes (N) through chemical-hub ingredient nodes (H). To do so, 
we first set up metapaths (e.g. C–H–N–H’–C’) starting from compounds (C) and ending at compound nodes 
(C) so that the ingredient nodes (H, N, H) in the path can share the same context. For the nodes of the same 
type shared in a path are set to have different elements meaning that C and C’ are different compounds. In the 
same way, we added metapaths (e.g. N–H–C–H’–N’) starting at non-hub ingredients (N) and ending at N. These 

(1)pmi(x; y) = log
p(x, y)

p(x)p(y)
, p(x, y) =

# of recipes where x and y occur together

# of recipes

Table 7.  FlavorGraph—nodes and edges.

Data source Nodes 8298 Edges 147,179

Im2recipe
I
Ingredient
6653

H
Chemical-hub Ingredient
416 I–I

Ingredient–Ingredient
111,355N

Non-hub Ingredient
6237

FlavorDB
C
Compound
1645

F
Flavor compound
1561

H–F
Chemical-hub ngredient-Flavor Compound
35,440

HyperFoods
D
Drug compound
84

H–D
Chemical-hub Ingredient–drug compound
386
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metapaths were added so that every non-hub ingredient node (N) is trained at least once and learns chemical 
information. Last, to reflect all nodes in a balanced way,  node2vec20 based on completely random walks was 
added. The number of walks of each starting node was set to 100 and the maximum length of each metapath was 
set to 50. A total of 1,114,285 metapaths whose average length is 46.36 were used for final learning.

metapath2vec. As done in the work of  Dong21, we applied the skip-gram model to the generated metapaths in 
order to generate node representations. For each metapath, we maximized the likelihood of each node u to its 
heterogeneous context (C–H–N–H’–C’ or N–H–C–H’–N’) W(u) where W(u) denotes the other nodes within a 
fixed window size of the metapath:

where log p(cu|u; θ) is defined as a softmax function e
Xcu ·Xu

∑
v∈V

eXv ·Xu
 , where Xi is the ith embedding vector in X.

We also employed negative sampling where a set of M words is sampled from FlavorGraph. Therefore, the 
above equation is updated as

where σ(x) is 1

1+e(−x) and Q is a distribution from where um is drawn M times. The graph embedding method was 
used to learn various contexts from different types of nodes in generated food-specific metapaths of FlavorGraph.

metapath2vec with chemical structure prediction (CSP) layer. As shown in Fig.  6, we implemented upgrade 
version of metapath2vec with chemical structure prediction (CSP) layer. As the food-specific metapaths in Fla-
vorGraph have not only non-hub ingredient nodes (N), chemical-hub ingredient nodes (H) but also flavor com-
pound nodes (F) and drug compound nodes (D), we included chemical knowledge in our flavor representations. 
However, even though the flavor and drug compound nodes have chemical structure information represented 
as CACTVS fingerprints. More information is available from PubChem Fingerprints), their valuable chemi-
cal information is not taken into account in learning. CACTVS fingerprints are expressed as 881-dimensional 
binary vectors where each element of the binary vectors indicates whether a particular molecular substruc-
ture exists in a certain chemical compound. Each bit of a fingerprint represents the presence or absence of one 
of the 881 chemical substructures. A chemical structure prediction (CSP) layer which is designed to use the 
more detailed information on chemical compounds was added to the original skip-gram model. We expect the 

(2)
argmax

θ

∑

u∈P

∑

cu∈W(u)

log p(cu|u; θ)

(3)log σ(Xcu · Xu) +

M∑

m=1

Eum∼Q(u)[log σ(−Xum · Xcu)]

Figure 6.  Graph Embedding with metapath2vec+CSP on FlavorGraph.
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skip-gram model to learn the available chemical structure information on flavor&drug compounds and use 
compound-ingredient relations to generate more significant node representations.

With the encoded vectors from the CSP layer, the graph embedding method was trained to accurately predict 
the underlying chemical structure of flavor and drug compounds exclusively. The loss function for the CSP layer is 
the binary cross entropy between the encoded vectors from the CSP layer and the binary fingerprint vectors cor-
responding to chemical compounds. The CSP loss function is added to the graph embedding method as follows:

where fd is the chemical encoder function for the dth dimension of the D-dimensional encoded vector from the 
CSP layer, yd is the binary label for dth chemical substructure in the actual CACTVS vector and � is the weighting 
factor ranging from 0.0 to 1.0. Note that D is 881 which is the actual number of chemical substructures in our 
CACTVS/PubChem fingerprints. As the gradient backpropagates through both the CSP layer and the skip-gram 
model, we expect our updated embedding ingredient vectors to contain chemical information. However, not all 
ingredient vectors have such information due to the limited coverage of available databases. While the skip-gram 
model will make predictions for all ingredients, only those with 881-dimensional binary vectors as labels were 
included in the additional cross entropy loss. Therefore, the CSP task is trained in a semi-supervised learning 
setting. In sum, the skip-gram model is used for learning contextual information in pairing paths, and the CSP 
layer is used for learning chemical structure information.

Data availability
We set up a public repository for running our model and obtaining results. Data and trained food representa-
tions are available at https ://githu b.com/lamyp ark/Flavo rGrap h. The repository contains graph data with node 
information on food ingredients and chemical compounds and edge information on their relations. Our graph 
embedding model is implemented and tested on Python 3.5.2, PyTorch 1.0.0, and CUDA 9.0. The hardware speci-
fications of our server are as follows: Intel Xeon(R) E5-2630 v4@2.2GHz CPU with 128GB memory, GTX Titan 
X GPU with 12GB memory. The time for training our graph embedding model per epoch is about 180 seconds.
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