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Abstract We survey results on the problem of covering the space R
n , or a convex

body in it, by translates of a convex body. Our main goal is to present a diverse set of
methods. A theorem of Rogers is a central result, according to which, for any convex
body K , the space R

n can be covered by translates of K with density around n ln n.
We outline four approaches to proving this result. Then, we discuss the illumination
conjecture, decomposability of multiple coverings, Sudakov’s inequality and some
problems concerning coverings by sequences of sets.
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1 Introduction

The problem of covering a set by few translates of another appears naturally in
several contexts. In computational applications it may be used for divide and conquer
algorithms, in analysis, it yields ε–nets, in functional analysis, it is used to quantify
how compact an operator between Banach spaces is. In geometry, it is simply an
interesting question on its own.

Our primary focus is to describe a representative family of methods, rather than
giving a complete account of the state of the art. In particular, we highlight some
combinatorial ideas, and sketch some instructive probabilistic computations.
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We minimize overlap with the fundamental works of L. Fejes Tóth [30] and Rogers
[83]. Böröczky’s book [18] is the most recent source on finite coverings. Some of
the topics covered here are discussed in more detail in the books [8, 21, 61, 68].
Many of the topics omitted, or only touched upon here (most notably, planar and
three–dimensional results, lattice coverings and density) are discussed in the surveys
[31, 32, 34–36].

In Sect. 3, we state Rogers’ result, and a few of its relatives, on the existence of an
economical covering of the whole space by translates of an arbitrary convex body. In
Sect. 4, we outline three probabilistic proofs of these results. In Sect. 5, we describe
a fourth approach, which is based on an algorithmic (non–probabilistic) result from
combinatorics. Then, in Sect. 6, we discuss the problem of illumination. There, we
sketch the proof of a result of Schramm, which is currently the best general upper
bound for Borsuk’s problem. In Sect. 7, we state some of the most recent results on
the problem of decomposability of multiple coverings. Section 8 provides a window
to how the asymptotic theory of convex bodies views translative coverings. Finally,
in Sect. 9, we consider coverings by sequences of convex bodies.

We use the following notations, and terminology. For two Borel measurable sets
K and L in R

n , let N (K , L) denote the translative covering number of K by L , that
is, the minimum number of translates of L that cover K .

The Euclidean ball of radius one centered at the origin is Bn
2 = {x ∈ R

n :
|x |2 =< x, x >≤ 1}, where < ., . > denotes the standard scalar product on R

n . We
denote the Haar probability measure on the sphere S

n−1 = {x ∈ R
n : |x | = 1} by

σ.
A symmetric convex body is a convex body (that is, a compact convex set with

non–empty interior) that is centrally symmetric about some point. A hyperplane H
supports a convex set K , if H intersects the boundary of K , and K is contained in
one of the closed half–spaces bounded by H . The support function hK of a convex
set K is defined as hK (x) = sup{< x, k > : k ∈ K } for any x ∈ R

n . We denote the
polar of a convex body K by

K ∗ = {x ∈ R
n : < x, k >≤ 1 for all k ∈ K }.

The cardinality of a set X is denoted by |X |.

2 Basics

We list a number of simple properties of covering numbers, their proofs are quite
straight forward, cf. [3].

Fact 2.1 Let K , L , M be convex sets in R
n , T : R

n → R
n an invertible linear trans-

formation. Then we have



Flavors of Translative Coverings 337

N (K , L) = N (T (K ), T (L)), (1)

N (K , L) ≤ N (K , M)N (M, L), (2)

N (K + M, L + M) ≤ N (K , L), (3)

N (K , 2(K ∩ L)) ≤ N (K , L), if K = −K . (4)

We note a special property of the Euclidean ball as a covering set.

Fact 2.2 Let K be a convex set in R
n . If K is covered by t Euclidean balls, then K

is covered by t Euclidean balls with centers in K .

This fact follows from the observation that the intersection of Bn
2 with a half-space

not containing the origin is contained in the unit ball centered at the orthogonal
projection of the origin to the bounding hyperplane of the half-space.

The following obvious lower bound is often sufficient:

N (K , L) ≥
vol(L)

vol(K )
. (5)

Next, we assume that L is symmetric, and find an upper bound on N (K , L).
Let X + (L/2) be a saturated packing of translates of L/2 in K + (L/2), that is
a maximal family of translates of L/2 with pairwise disjoint interiors. Then K ⊆
X + L , that is, we have a covering of K by |X | translates of L . Thus,

N (K , L) ≤ |X | ≤ 2n vol(K + (L/2))

vol(L)
, if L = −L . (6)

Section 3, and a large part of this paper discuss how this bound can be improved.

3 Covering the Whole Space

Let K be a convex body, � a lattice, and T a finite set in R
n . We call the family F =

K + � + T = {K + v + t : v ∈ �, t ∈ T } a periodic arrangement of translates
of K . The density of F is defined as δ(F) = |T | vol(K )/ det �. We say that F is
a covering of R

n if ∪F = R
n . The translative covering density θ(K ) of K is the

infimum of the densities of periodic coverings of R
n by translates of K . We note

that one can define the density of a non-periodic arrangement, too (cf. [18, 30, 68,
83]), and – as is easy to see – we obtain the same density infimum if we allow also
non-periodic coverings of R

n .
The first milestone in the theory of translative coverings is the following theorem

of Rogers.

Theorem 3.1 (Rogers, [80]) Let K be a bounded convex set in R
n with non-empty

interior. Then the translative covering density of K is at most
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θ(K ) ≤ n ln n + n ln ln n + 5n. (7)

Earlier, exponential upper bounds for the covering density were obtained by
Rogers, Bambah and Roth, and for the special case of the Euclidean ball by Daven-
port and Watson (cf. [80] for references). The last summand, 5n may be replaced by
3n, if n is sufficiently large. The current best bound on θ(K ) is due to G. Fejes Tóth
[29], who replaced 5n by n + o(n) (see Theorem 3.4). It is an open problem whether
one can improve the bound by a multiplicative factor below 1, or, very ambitiously,
if Cn is an upper bound, for some universal C > 0.

It is natural to ask what happens if the density is replaced by the maximum
multiplicity.

Theorem 3.2 (Erdös, Rogers, [28]) For any convex body K in R
n there is a periodic

covering of R
n by translates of K such that no point is covered by more than

e(n ln n + n ln ln n + 4n) translates, and the density is below n ln n + n ln ln n + 4n,
provided n is large enough.

A good candidate for a “bad” convex body, that is, one that cannot cover the space
economically is the Euclidean ball, Bn

2 .

Theorem 3.3 (Coxeter, Few, Rogers, [22]) θ(Bn
2) ≥ Cn with a universal constant

C > 0.

If we restrict ourselves to lattice coverings, that is, coverings of R
n by translates

of a convex body K where the translation vectors form a lattice in R
n (and denote

the infimum of the densities by θL ), we have a much weaker bound. Rogers [82] (see
also [83]) showed that for any convex body K , we have θL(K ) ≤ nlog2 ln n+c. If K has
an affine image symmetric about at least log2 ln n + 4 coordinate hyperplanes then,
by a result of Gritzmann [41] (see also [68]), we have θL(K ) ≤ cn(ln n)1+log2 e. For
the Euclidean ball, Rogers’ estimate is the best known: θL(Bn

2) ≤ cn(ln n)2.047.
The original proofs of Theorems 3.1 and 3.2 yield periodic coverings without any

further structure. G. Fejes Tóth gave a proof of Theorem 3.1 that yields a covering
with more of a lattice–like structure, and a slightly better density bound.

Theorem 3.4 (G. Fejes Tóth, [29]) For any convex body K in R
n there is a lattice

� and a set T ⊂ R
n of O(ln n) translation vectors such that K + � + T covers R

n

with density at most n ln n + n ln ln n + n + o(n).

We give an outline of the proof of this result in Sect. 4.3.
The following is a simple corollary to Theorem 3.1 (or the better bound, Theo-

rem 3.4), which was first spelled out in [85].

Corollary 3.5 (Rogers and Zong [85]) Let K and L be convex bodies in R
n . Then

N (K , L) ≤
vol(K − L)

vol(L)
(n ln n + n ln ln n + n + o(n)). (8)
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Indeed, consider a covering L + G of a large cube C by translates of L with density
close to n ln n + n ln ln n + n + o(n). For any t ∈ R

n , let m(t) = |{g ∈ G : K ∩
(g + t + L) �= ∅}| = |G ∩ (K − L − t)|. By averaging m(t) over t in C , we obtain
that for some t ∈ C , we have m(t) ≤ vol(K−L)

vol(L)
(n ln ln n + n ln n + n + o(n) + ε).

In [24], Dumer showed that R
n can be covered with Euclidean unit balls of density

around 1
2 n ln n. A minor error in the proof was corrected in [25].

4 Proofs of Theorems 3.1, 3.2 and 3.4

4.1 A Probabilistic Proof: Cover Randomly and then Mind

the Gap

We give an outline of Rogers’ proof of Theorem 3.1.
We may assume that K has volume one, and that the centroid (that is, the center

of mass with respect to the Lebesgue measure) of K is the origin. It follows that
K ⊂ −nK . (Bonnesen and Fenchel in §34. of [17] give several references to this
fact: Minkowski [63] p. 105, Radon [79], Estermann [98] and Süss [94].)

Let C be the cube C = [0, R]n , where R is large. Set η = 1
n ln n , and choose N =

Rnn ln 1
η

random translation vectors x1, . . . , xN in C uniformly and independently.
Let � be the lattice � = RZ

n . Thus, we obtain the family K + � + {x1, . . . , xN }
of translates of K . The expected density of the union of this family is close to one,
and hence, one can choose the N translation vectors in such a way that the volume
of the uncovered part of C is small (at most Rn(1 − R−n)N ).

Next, we take a saturated (that is, maximal) packing y1 − 1
n K , . . . yM − 1

n K of
translates of − 1

n K inside this uncovered part of C . By the previous volume compu-
tation, we have few (M ≤ η−n Rn(1 − R−n)N ) such translates. We replace each of
these copies of − 1

n K by the same translate of K , make it a periodic arrangement by
�, and we obtain K + � + {y1, . . . , yM }.

Now, we have two families of translates of K . We enlarge each member of these
two families by a factor 1 + η, and –as it is easy to see– obtain a covering of R

n . The
omitted computations yield the density bound, finishing the proof of Theorem 3.1.

This method (first, picking random copies, and then, filling the gap, which is
small, in a greedy way), developed by Rogers can be applied for obtaining upper
bounds in other situations as well. The proof of Theorem 3.2 given by Erdös and
Rogers is an example of the use of this random covering technique combined with
a sophisticated way of keeping track of multiply covered points using an inclusion–
exclusion formula. Other examples include bounds on covering the sphere S

n−1 with
spherical caps.
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4.2 Another Probabilistic Proof: Using the Lovász Local

Lemma

Füredi and Kang [39] gave a proof of Theorem 3.2 that is essentially different from
the original. Their method yields a slightly worse bound (instead of the order en ln n,
they obtain 10n ln n), but it is very elegant.

First, by considering an affine image of K , we may assume that vol(K ) = 1,
and 1

e Bn
2 ⊂ K (cf. [6], see also [7] for the symmetric case). Let h = 1/(4en

√
n), and

consider the lattice � = hZ
n . The goal is to cover R

n with translates of K of the form
K + z with z ∈ �. Let Q = [0, h)n be the half closed, half open fundamental cube of
�. We define a hypergraph with base set �. The hypergraph has two types of edges.
For any z ∈ �, we define a “small edge” as A−(z) := {y ∈ � : y + Q ⊂ z + K },
and a “big edge” as A+(z) := {y ∈ � : (y + Q) ∩ (z + K ) �= ∅}. Clearly, all big
edges are of the same size (say α), and so are all small edges. One can verify that
the size of a small edge is at least α/2.

Next, to make the problem finite, let ℓ ∈ Z
+ be an arbitrarily large integer. Our goal

is to select vectors z1, . . . , zt ∈ � in such a way that every point of [−ℓ, ℓ]n ∩ �

is covered by a small edge A−(zi ), and no point of [−ℓ, ℓ]n ∩ � is covered by
more than 10n ln n large edges of the form A+(zi ). Clearly, that would suffice for
proving the theorem. We will pick these vectors randomly: select each vector in
{z ∈ � : A−(z) ∩ [−ℓ, ℓ]n �= ∅} with probability p, where p = e−6/510n ln n/α.

For every point of [−ℓ, ℓ]n ∩ �, we have two kinds of bad events. One is if it is
not covered by a small edge, and second, if it is covered by too many big edges. Now,
we state the main tool of the proof, the Lovász Local Lemma (see Alon and Spencer
[1] for a good introduction of it).

Lemma 4.1 (Lovász Local Lemma, [27, 91]) Let A1, A2, . . . , AN be events in an
arbitrary probability space. A directed graph D = (V, E) on the set of vertices V =
{1, 2, . . . , N } is called a dependency digraph for the events A1, A2, . . . , AN , if for
each 1 ≤ i ≤ N, the event Ai is mutually independent of all the events {A j : (i, j) /∈
E}. Suppose that the maximum degree of D is at most d, and that the probability of
each Ai is at most p. If ep(d + 1) ≤ 1, then with positive probability no Ai holds.

Finally, with a geometric argument, one can bound the maximum degree in a
dependency digraph of the bad events, and Lemma 4.1 yields the existence of a good
covering.

4.3 Covering Using Few Lattices

G. Fejes Tóth’s proof of Theorem 3.4 relies on a deep result, Theorem 10* in [86]
of Schmidt. A consequence of this result is

Lemma 4.2 Let c0 = 0.278 . . . be the root of the equation 1 + x + ln x = 0. Then,
for any 0 < c < c0, and ε > 0, and any sufficiently large n, for any Borel set S ⊂ R

n ,
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there is a lattice–arrangement of S with density cn covering R
n with the exception

of a set whose density is at most (1 + ε)e−cn for some universal constant c > 0.

By this lemma, for a given K there is a lattice � such that (1 + ⌊n ln n⌋−1)−1 K +
� covers R

n with the exception of a set whose density is at most e−cn+1.

Lemma 4.3 If, for some finite set T , K + � + T is an arrangement of K with
density 1 − δ, then there is a vector t ∈ R

n such that the arrangement K + � + T ′

has density at least 1 − δ2, where T ′ = T ∪ (T + t).

The proof of Lemma 4.3 relies on considering the density of R
n \ (K + � + T ′)

as a function of t , and averaging it over the fundamental domain of �.
To prove Theorem 3.4, we pick an appropriate c for Lemma 4.2, and using

Lemma 4.3 roughly log2(c
−1 ln n) times, we obtain a finite set T of size about

c−1 ln n such that (1 + ⌊n ln n⌋−1)−1 K + � + T has density about n ln n with the
uncovered part being of density at most of order (n ln n)−n . Finally, one can verify
that K + � + T is a covering of space with the desired density.

So far, we presented three probabilistic methods that yield economical coverings.
In the next section, we present a fourth method, which is not random. Instead, it
relies on an algorithmic combinatorial result.

5 A Fractional Approach

5.1 A Few Words of Combinatorics

We recall some notions from the theory of hypergraphs.

Definition 5.1 Let � be a set, H a family of subsets of �. A covering of � by H

is a subset of H whose union is �. The covering number τ (�,H) of � by H is the
minimum cardinality of its coverings by H.

A fractional covering of � by H is a measure µ on H with

µ({H ∈ H : p ∈ H}) ≥ 1 for all p ∈ �.

The fractional covering number of H is

τ ∗(�,H) = inf {µ(H) : µ is a fractional covering of � by H} .

When � is a finite set, finding the value of τ (�,H) is an integer programming
problem. Indeed, we assign a variable xH to each member H of H, and set xH to 1
if H is in the covering, and 0 otherwise. Each element p of � yields an inequality:
∑

p∈H∈H
xH ≥ 1.
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Computing τ ∗(�,H) is the linear relaxation of the above integer programming
problem. For more on (fractional) coverings, cf. [38] in the abstract (combinatorial)
setting and [61, 68] in the geometric setting.

The gap between τ and τ ∗ is bounded in the case of finite set families (hypergraphs)
by the following result.

Lemma 5.2 (Lovász [57], Stein [92]) For any finite � and H ⊆ 2� we have

τ (�,H) < (1 + ln(max
H∈H

|H |))τ ∗(�,H). (9)

Furthermore, the greedy algorithm (always picking the set that covers the largest
number of uncovered points) yields a covering of cardinality less than the right hand
side in (9).

We note that a probabilistic argument yields a slightly different bound on the
covering number:

τ (�,H) ≤
⌊

1 +
ln |�|

− ln
(

1 − 1
τ ∗

)

⌋

, (10)

with the notation τ ∗ = τ ∗(�,H). When we do not have an upper bound on
maxH∈H |H | better than |�|, then (10) is a bit better than (9).

To prove (10), let µ be a fractional covering of � by H such that µ(H) = τ ∗ + ε,
where ε > 0 is very small. We normalize µ to obtain the probability measure ν =
µ/µ(H) on H. Let m denote the right hand side in (10), and pick m members of H

randomly according to ν. Then we have

P (∃u ∈ � : u is not covered) ≤ |�|
(

1 −
1

τ ∗ + ε

)m

< 1.

Thus, with positive probability, we have a covering.
We will need the duals of these notions as well. Let � be a set and H be a family

of subsets of �. The dual of this set family is another set family, whose base set is
H, and the set family on H is H∗ =

{

{H ∈ H : p ∈ H} : p ∈ �
}

.
We call a set T ⊂ � a transversal to the set family H, if T intersects each member

of H. One may define fractional transversals in the obvious way, and then define the
(fractional) transversal number.

Clearly G ⊂ H is a covering of � if and only if, G is a transversal to H∗. Fractional
coverings and fractional transversals are dual notions in the same manner. We leave
it as an exercise (which will be needed later) to formulate the dual of Lemma 5.2 and
of (10).
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5.2 The Fractional Covering Number

Motivated by the above combinatorial notions, the fractional version of N (K , int K )

(which is the illuminaton number of K , see Sect. 6) first appeared in [65], and in
general for N (K , L) in [4] and [5].

Definition 5.3 Let K and L be bounded Borel measurable sets in R
n . A fractional

covering of K by translates of L is a Borel measure µ on R
n with µ(x − L) ≥ 1 for

all x ∈ K . The fractional covering number of K by translates of L is

N ∗(K , L) =

inf
{

µ(Rn) : µ is a fractional covering of K by translates of L
}

.

Clearly,
N ∗(K , L) ≤ N (K , L). (11)

In Definition 5.3 we may assume that a fractional cover µ is supported on cl(K −
L). According to Theorem 1.7 of [5], we have

max

{

vol(K )

vol(L)
, 1

}

≤ N ∗(K , L) ≤
vol(K − L)

vol(L)
. (12)

The second inequality is easy to see: the Lebesgue measure restricted to K − L
with the following scaling µ = vol / vol(L) is a fractional covering of K by translates
of L . To prove the first inequality, assume that µ is a fractional covering of K by
translates of L . Then

vol(L)µ(Rn) =
∫

Rn

vol(L)dµ(x) =
∫

Rn

∫

Rn

χL(y − x)dydµ(x) =

∫

Rn

∫

Rn

χL(y − x)dµ(x)dy =
∫

Rn

µ(y − L)dy ≥
∫

Rn

χK (y)dy = vol(K ).

We recall from Sect. 5.1 that computing N means solving an integer programming
problem (though, in this situation, with infinitely many variables), and computing
N ∗ is its linear relaxation. The linear relaxation is usually easier to solve, so having
an inequality bounding N from above by some function of N ∗ is desirable. It is open
whether such inequality exists in general for convex sets. More precisely, we do not
know if there is a function f such that for any dimension n, and any convex bodies
K and L in R

n , we have N (K , L) ≤ f (n, N ∗(K , L)).
Using a probabilistic argument, Artstein–Avidan and Slomka [5] found a bound

of N (K , L) in terms of N ∗(K ′, L ′), where K ′ and L ′ are very close (but not identical)
to K and L . A somewhat stronger bound was obtained in [78] by a non-probabilistic
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proof. For two sets K , T ⊂ R
n , we denote their Minkowski difference by K ∼ T =

{x ∈ R
n : T + x ⊆ K }.

Theorem 5.4 (Artstein–Avidan and Slomka [5], Naszódi [78]) Let K , L and T be
bounded Borel measurable sets in R

n and let � ⊂ R
n be a finite set with K ⊆ � + T .

Then
N (K , L) ≤ (13)

(1 + ln( max
x∈K−L

|(x + (L ∼ T )) ∩ �|)) · N ∗(K − T, L ∼ T ).

If � ⊂ K , then we have
N (K , L) ≤ (14)

(1 + ln( max
x∈K−L

|(x + (L ∼ T )) ∩ �|)) · N ∗(K , L ∼ T ).

We sketch a proof of Theorem 5.4 in 5.3.
For a set K ⊂ R

n and δ > 0, we denote the δ-inner parallel body of K by
K−δ := K ∼ δBn

2 = {x ∈ K : x + δBn
2 ⊆ K }. As an application of Theorem 5.4,

one quickly obtains the following result which, in turn, may be used to give a simple
proof of Rogers’ result, Theorem 3.1.

Theorem 5.5 (Naszódi [78]) Let K ⊆ R
n be a bounded measurable set. Then there

is a covering of R
n by translated copies of K of density at most

inf
δ>0

[

vol(K )

vol(K−δ)

(

1 + ln
vol

(

K−δ/2
)

vol
(

δ
2 Bn

2

)

)]

.

A similar theorem holds if, in the definition of the δ-inner parallel body, the Euclidean
ball is replaced by some other convex body.

5.3 Proof of Theorem 5.4

The proofs outlined so far were all probabilistic in nature. In this one, the role that
probability plays elsewhere is played by the following straightforward corollary to
Lemma 5.2.

Observation 5.6 Let Y be a set, F a family of subsets of Y , and X ⊆ Y . Let � be
a finite subset of Y and � ⊆ U ⊆ Y . Assume that for another family F ′ of subsets
of Y we have τ (X,F) ≤ τ (�,F ′). Then

τ (X,F) ≤ τ (�,F ′) ≤ (1 + ln(max
F ′∈F ′

∣

∣� ∩ F ′∣
∣)) · τ ∗(U,F ′). (15)
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The proof is simply a substitution into (15). We set Y = R
n , X = K , F = {L +

x : x ∈ K − L}, F ′ = {L ∼ T + x : x ∈ K − L}. One can use U = K − T , as
any member of � not in K − T could be dropped from � and � would still have
the property that � + T ⊇ K . That proves (13). To prove (14), we notice that in the
case when � ⊂ K , one can take U = K .

5.4 Detour: Covering the Sphere by Caps

To illustrate the applicability of the method that yields Theorem 5.4, we turn to
coverings on the sphere. We denote the closed spherical cap of spherical radius φ

centered at u ∈ S
n−1 by C(u,φ) = {v ∈ S

n−1 : < u, v >≥ cos φ}, and its probabil-
ity measure by �(φ) = σ(C(u,φ)). For a set K ⊂ S

n−1 and δ > 0, we denote the
δ–inner parallel body of K by K−δ = {u ∈ K : C(u, δ) ⊆ K }.

A set K ⊂ S
n−1 is called spherically convex, if it is contained in an open hemi-

sphere and for any two of its points, it contains the shorter great circular arc connecting
them.

The spherical circumradius of a subset of an open hemisphere of S
n−1 is the

spherical radius of the smallest spherical cap (the circum-cap) that contains the set.
A proof mimicking the proof of Theorem 5.4 yields

Theorem 5.7 (Naszódi [78]) Let K ⊆ S
n−1 be a measurable set. Then there is a

covering of S
n−1 by rotated copies of K of density at most

inf
δ>0

[

σ(K )

σ(K−δ)

(

1 + ln
σ

(

K−δ/2
)

�
(

δ
2

)

)]

.

Improving an earlier result of Rogers [81], Böröczky and Wintsche [19] showed
that for any 0 < ϕ < π/2 and dimension n there is a covering of S

n by spherical
caps of radius φ with density at most n ln n + n ln ln n + 5n. This result follows from
Theorem 5.7. Other bounds on covering the sphere by caps (or, a ball by smaller equal
balls) can be found in [100] by Verger–Gaugry.

6 The Illumination Conjecture

We fix a convex body K in R
n . Once the covering number is defined, it is fairly

natural to ask what Levi [56] asked: how large may N (K , int K ) be. We will call this
quantity the illumination number of K , and denote it by i(K ) = N (K , int K ). The
naming will become obvious in the next paragraphs.

Following Hadwiger [46], we say that a point p ∈ R
n \ K illuminates a boundary

point b ∈ bd K , if the ray {p + λ(b − p) : λ > 0} emanating from p and passing
through b intersects the interior of K . Boltyanski [16] gave the following slightly
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different definition. A direction u ∈ S
n−1 is said to illuminate K at a boundary point

b ∈ bd K , if the ray {b + λu : λ > 0} intersects the interior of K . It is easy to see
that the minimum number of directions that illuminate each boundary point of K is
equal to the minimum number of points that illuminate each boundary point of K ,
which in turn is equal to the illumination number of K (as defined in the paragraph
above).

Gohberg and Markus [40] asked how large inf{N (K ,λK ) : 0 < λ < 1} can be.
It also follows easily that this number is equal to i(K ).

The following dual formulation of the definition of the illumination number was
found independently by P. Soltan, V. Soltan [90] and by Bezdek [11]. First, recall
that an exposed face of a convex body K is the intersection of K with a supporting
hyperplane. Now, let K be a convex body in R

n containing the origin in its interior.
Then i(K ) is the minimum size of a family of hyperplanes in R

n such that each
exposed face of the polar K ∗ of K is strictly separated from the origin by at least
one of the hyperplanes in the family (for the definition of K ∗, see the introduction).

Any smooth convex body (ie., a convex body with a unique support hyperplane at
each boundary point) in R

n is illuminated by n + 1 directions. Indeed, for a smooth
convex body, the set of directions illuminating a given boundary point is an open
hemisphere of S

n−1, and one can find n + 1 points (eg., the vertices of a regular
simplex) in S

n−1 with the property that every open hemisphere contains at least one
of the points. Thus, these n + 1 points in S

n−1 (ie., directions) illuminate any smooth
convex body in R

n . It is easy to see that no convex body is illuminated by less than
n + 1 directions.

On the other hand, the illumination number of the cube is 2n , since no two ver-
tices of the cube share an illumination direction. An important unsolved problem in
Discrete Geometry is the Gohberg–Markus–Levi–Boltyanski–Hadwiger Conjecture
(or, Illumination Conjecture), according to which for any convex body K in R

n , we
have i(K ) = 2n , where equality is attained only when K is an affine image of the
cube.

In this section, we mention some results on illumination. For a more complete
account of the current state of the problem, see [8, 10, 21, 59, 95]. In Chap. VI. of
[15], among many other facts on illumination, one can find a proof of the equivalence
of the first four definitions of i(K ) given at the beginning of this section. Quantitative
versions of the illumination number are discussed in the article of Bezdek and Khan
in this volume [13]. Connections of the illumination number to other quantities are
discussed in [102, 103].

One detail of the history of the conjecture may tell a lot about it. It was asked
several times in different formulations (see the different definitions of i(K ) above),
first in 1960 (though, Levi’s study of N (K , int K ) on the plane is from 1955). Several
partial results appeared solving the conjecture for special families of convex bodies.
Yet, the best general bound is an immediate consequence of Rogers’ Theorem 3.1
(more precisely, Corollary 3.5) dating 1957 combined with the Rogers–Shepard
inequality [84], according to which vol(K − K ) ≤

(2n
n

)

vol(K ) for any convex body
K in R

n .
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Theorem 6.1 (Rogers [80]) Let K be a convex body in R
n . Then

i(K ) ≤
{

2n(n ln n + n ln ln n + 5n) if K = −K ,
(2n

n

)

(n ln n + n ln ln n + 5n) otherwise.

By [56], the Illumination Conjecture holds on the plane. Papadoperakis [75]
proved i(K ) ≤ 16 in dimension three. The upper bound in the conjecture (that is,
not the equality case) was verified in the following cases: if K = −K ⊂ R

3 (Lassak
[54]), if K ⊂ R

3 is a convex polyhedron with at least one non-trivial affine symmetry
(Bezdek [11]), if K ⊂ R

3 is symmetric about a plane (Dekster [23]).

6.1 Borsuk’s Problem and Illuminating Sets of Constant

Width

The problem of illumination is closely related to another classical question in geom-
etry. Borsuk’s problem [20] (or, Borsuk’s Conjecture, though, he formulated it as a
question) asks whether every bounded set X in R

n can be partitioned into n + 1 sets
of diameter less than the diameter of X (cf. [60] for a comprehensive survey). The
minimum number of such parts is the Borsuk number of X , and clearly, it is at most
the illumination number of conv(X). Since any bounded set in R

n is contained in a
set of constant width of the same diameter, it follows that any upper bound on the
illumination number of sets of constant width in a certain dimension is also a bound
on the maximum Borsuk number in the same dimension.

The affirmative answer to Borsuk’s problem in the plane was proved by Borsuk,
then, in three–space by Perkal [76] and Eggleston [26] (in the case of finite, three-
dimensional sets, see Grünbaum [45], Heppes–Révész [48] and Heppes [47]). It was
first shown by Lassak [53] (see also [14, 101]) that sets of constant width in R

3 can be
illuminated by three pairs of opposite directions. It would be a nice alternative proof
of the bound 4 on the Borsuk number in three–space, if one could show that three–
dimensional sets of constant width have illumination number 4 (see Conjecture 3.3.5.
in [8]).

In 1993 by an ingenious proof, Kahn and Kalai [52] (based on a deep combinatorial
result of Frankl and Wilson [37]) showed that if n is large enough, then there is a finite
set in R

n whose Borsuk number is greater than (1.2)
√

n , thus answering Borsuk’s
question in the negative. That result made the following bound on the illumination
number by Schramm [87] all the more relevant. Currently, this is also the best general
bound for the Borsuk number.

Theorem 6.2 (Schramm [87]) In any dimension n for any set W of constant width
in R

n , we have

i(W ) ≤ 5n
√

n(4 + ln n)

(

3

2

)n/2

.
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By a fine analysis of Schramm’s method, Bezdek (Theorem 6.8.3. of [8]) extended
Theorem 6.2 to the class of those convex bodies W that can be obtained as W =
∩x∈X (x + Bn

2) for some X ⊂ R
n compact set with diam X ≤ 1. Note that a set W is

of constant width one if and only if, W = ∩x∈W (x + Bn
2).

We sketch the proof. First, we give yet another way to compute the illumina-
tion number of a convex body K . Let b be a boundary point of K , and consider
its Gauss image β(b) ⊂ S

n−1 consisting of the inner unit normal vectors of all hy-
perplanes supporting K at b. It is a closed, spherically convex set. We denote the
open polar of a subset of the sphere F ⊂ S

n−1 by F+ = {u ∈ S
n−1 : < u, f >>

0 for all f ∈ F}. Consider the set family F = {(β(b))+ : b ∈ bd K }. Clearly, the
directions u1, . . . , um ∈ S

n−1 illuminate K if and only if, each member of F contains
at least one ui . In other words, we are looking for a small cardinality transversal to
the set family F (for definitions, see Sect. 5.1). We note that the idea of considering
the Gauss image and F to bound the illumination number also appears in [9, 11, 14].

Now, consider a set W = ∩x∈X (x + Bn
2) with a compact set X ⊂ R

n of diameter
at most one. To make the problem of bounding i(W ) finite, we take a covering of S

n−1

by spherical caps of Euclidean diameter ε :=
√

2n
2n−1 − 1, say C1 ∪ . . . ∪ CN = S

n−1.

Such covering exists with N ≤ (1 + 4
ε
)n by the simple bound (6). We could use a

better bound, but that would not yield any visible improvement on the bound on
i(W ). Let

Ui :=
⋃

β(b)∩Ci �=∅

β(b),

and consider the set family G = {U+
i : i = 1, . . . , N }. Clearly, any transversal to

the finite set family G is a transversal to F , and hence, is a set that illuminates K .
One can show that

diam(Ui ) ≤ 1 + ε. (16)

Let V (t) := inf{σ(F+) : F ⊂ S
n−1, diam S ≤ t}. A key element of the proof is the

highly non-trivial claim that

V (t) ≥
1

√
8πn

(

3

2
+

(

2 − 1
n

)

t2 − 2

4 −
(

2 − 2
n

)

t2

)− n−1
2

(17)

for all 0 < t <

√

2n
n−1 and n ≥ 3.

We notice that by (16), σ
V (1+ε)

is a fractional transversal to G. Now, the original

proof is completed by applying the dual of (10) to get i(W ) ≤
⌊

1 + ln N
− ln(1−V (1+ε))

⌋

.

Substituting the bound on N and (17), the theorem follows. Another way to complete
the proof is to use the dual of Lemma 5.2, which yields the slightly worse bound
i(W ) < 1+ln N

V (1+ε)
.
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6.2 Fractional Illumination

The notion of fractional illumination was defined in [65], and then further studied in
[4].

Definition 6.3 The fractional illumination number of a convex body K in R
n is

i∗(K ) = N ∗(K , int K ).

It was observed in [65] that by (12) and the Rogers–Shepard inequality (vol(K −
K ) ≤

(2n
n

)

vol(K )) we have

i∗(K ) ≤
{

2n if K = −K ,
(2n

n

)

otherwise.
(18)

The fractional form of the Illumination Conjecture (weaker than the original) reads:
i∗(K ) ≤ 2n , and equality is attained by parallelotopes only. When K is symmetric,
the case of equality was settled by Artstein–Avidan and Slomka [5] using a lemma
by Schneider.

Interestingly, no better bound is known, so the fractional form of the Illumination
Conjecture does not seem much easier than the original. On the other hand, just as
in general, for N (K , L) and N ∗(K , L), we do not have an upper bound of i(K ) in
terms of i∗(K ).

The fractional version of Borsuk’s problem can be stated in a natural way, and
was investigated in [49] using the language of multiple Borsuk coverings. We note
that the example of a set in R

n with high Borsuk number given by Kahn and Kalai
(see Sect. 6.1) is a set with high fractional Borsuk number as well.

7 Decomposability of Multiple Coverings

An m–fold covering of R
n by translates of a set K is a family F of translates of

K such that each point is contained in at least m members. It is a natural question
whether, for a particular K , if m is large enough (say, at least m(K )), then all m–fold
coverings of R

n by translates of K can be decomposed into two coverings. That is,
can F be colored with two colors such that each color class of F is a covering of
R

n?
It was proved in [66] that if K is a centrally symmetric convex polygon then such

m(K ) exists. This was generalized to all convex polygons in [74, 97].
Arguably the most natural special case was asked by Pach [67]: consider the open

unit disk. The un–published manuscript [58] was cited several times as having given
a positive answer in this case, though, Pach [71] warned that the result “has not been
independently verified.” The following result of Mani–Levitska and Pach (see [1])
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also suggested that such m(K ) should exist for unit disks. For every n ≥ 2, there
is a positive constant cn with the following property. For every positive integer m,
any m–fold covering of R

n with unit balls can be decomposed into two coverings,
provided that no point of the space belongs to more than cn2m/n balls. This result
was one of the first geometric applications of the Lovász local lemma.

Pach and Pálvölgyi [69] recently showed that, very surprisingly, there is no such
m(K ) for the open unit disk.

Their proof consists of a combinatorial part followed by an intricate geometric
argument. First, based on [73], they construct a finite abstract hypergraph, with a
non-decomposable multiple covering. Then, the hypergraph is given a geometric
realization, that is, the vertex set is mapped to a set of points on the plane, and the
edges are mapped to open unit disks in an incidence–preserving manner. Finally, this
m–fold covering by disks of this finite planar set is extended to an m–fold covering
of the whole plane without adding any disk that contains any of the points in the
finite set.

For more on decomposability of coverings, see [70], and the more recent paper
[69].

8 An Asymptotic View

In this section, we present two topics to illustrate the point of view taken in the
asymptotic theory of convex bodies on the problem of translative coverings.

8.1 Sudakov’s Inequality

Sudakov’s Inequality relates the minimum number of Euclidean balls that cover a
symmetric convex body to the mean width of the body, where the latter is defined as

w(K ) =
∫

Sn−1

hK (u) + hK (−u) dσ(u). (19)

(See the definition of σ and hK in the introduction.)

Theorem 8.1 (Sudakov’s inequality, [93]) For any symmetric convex body K in R
n

and any t > 0, we have

log N (K , tBn
2) ≤ cn

(

w(K )

t

)2

with an absolute constant c > 0.
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It was observed by Tomczak–Jaegermann [99], that this inequality can be obtained
from a dual form proved by Pajor and Tomczak–Jaegermann [72].

Theorem 8.2 (Dual Sudakov inequality) For any symmetric convex body K in R
n

and any t > 0, we have

log N (Bn
2, t K ) ≤ cn

(

w(K ∗)

t

)2

with an absolute constant c > 0.

First, we sketch a proof of Theorem 8.2 due to Talagrand [96], [55], and later turn
to the proof of Theorem 8.1. The main idea is to apply a volumetric argument, but,
instead of using the Lebesgue measure, one uses the Gaussian measure. Recall, that
the Gaussian measure γn is an absolutely continuous probability measure on R

n ,
with density

dγn(x) =
e−|x |2/2

(2π)n/2
dx .

First, by computation one obtains that for any origin–symmetric convex body K in
R

n and any translation vector z ∈ R
n , we have

γn(K + z) ≥ e−|z|2/2γn(K ). (20)

Next, we consider a maximal set {x1, . . . , xN } in Bn
2 with the property that ‖xi −

x j‖K ≥ t for all i, j pairs. Now, for any rescaling factor λ > 0, we have that {λxi +
λt
2 K : i = 1, . . . , N } is a packing in λBn

2 , and thus, the total γn–measure of these
sets is at most one. Integration in polar coordinates yields that

γn

(

λt

2
K

)

≥ 1 −
2c

√
n

λt
w(K ∗)

for an absolute constant c > 0. With the choice λ = 4c
√

nw(K ∗)/t , we have
γn(K ) ≥ 1

2 . Finally, using (20), we obtain the bound in Theorem 8.2.
We note that this proof yields a little more than stated in the Theorem. We obtain

an upper bound on the minimum size of a covering of Bn
2 by translates of t K with

the constraint that the translation vectors are in Bn
2 .

The following Lemma is the key to reducing Theorem 8.1 to Theorem 8.2.

Lemma 8.3 (Tomczak–Jaegermann [99]) For any origin–symmetric convex body K
in R

n , and any t > 0, we have

N (K , tBn
2) ≤ N (K , 2tBn

2)N

(

Bn
2,

t

8
K ∗

)

.
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Proof of Lemma 8.3 Observe that 2K ∩
(

t2

2 K ∗
)

⊆ tBn
2 . Thus, by (4),

N (K , tBn
2) ≤ N

(

K , 2K ∩
t2

2
K ∗

)

≤ N

(

K ,
t2

4
K ∗

)

≤

N (K , 2tBn
2)N

(

Bn
2,

t

8
K ∗

)

.

Proof of Theorem 8.1 Combining Lemma 8.3 and Theorem 8.2, we have

t2 log N (K , tBn
2) ≤

1

4
(2t)2 log N (K , 2tBn

2) + 64(t/8)2 log N

(

Bn
2,

t

8
K ∗

)

Taking supremum over all t > 0, we get

3

4
sup
t>0

{

t2 log N (K , tBn
2)

}

≤ 64 sup
t>0

{

t2 log N
(

Bn
2, t K ∗)} ≤ 64cn (w(K ))2 .

8.2 Duality of Covering Numbers

We briefly mention the following open problem in geometric analysis, for a compre-
hensive discussion, cf. Chap. 4 of [3].

Conjecture 8.4 There are universal constants c, C > 0 such that for any dimension
n and any two symmetric convex bodies K and L in R

n , we have

N (K , L) ≤ N (L∗, cK ∗)C .

The problem is known as the Duality of entropy, and was posed by Pietsch [77].
An important special case, when K or L is a Euclidean ball (or, equivalently, an
ellipsoid) was confirmed by Artstein–Avidan, Milman and Szarek [2].

9 Covering by Sequences of Sets

So far, we considered problems where a set was to be covered by translates of another
fixed set. Now, we turn to problems where a family F of sets is given, and we need
to find a translation for each set in F to obtain a covering of a given set C . If such
translations exist, we say that F permits a translative covering of C . We call F a
bounded family, if the set of diameters of members of F is a bounded set.

For a comprehensive account of coverings by sequences of convex sets, see the
surveys [32, 43].
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9.1 Covering (Almost) the Whole Space.

Clearly, for F to permit a translative covering of R
n , it is necessary that the total

volume of the members of F be infinite. It is not sufficient, though. Indeed, consider
rectangles of side lengths i by 1/ i2 for i = 1, 2, . . . on the plane. Their total area
is infinite, and yet, according to Bang’s theorem, they do not permit a translative
covering of R

2 [32]. On the other hand, if a family of planar convex sets is bounded
and has infinite total area, then it permits a translative covering of R

2 [42, 51]. It is
an open problem whether the same holds for n > 2.

A covering of almost all of some set C is a covering of a subset of C whose
complement in C is of measure zero.

Theorem 9.1 (Groemer, [44]) Let F be a bounded family of Lebesgue measur-
able sets. Then F permits a translative covering of almost all of R

n if and only if,
∑

F∈F
vol(F) = ∞.

Indeed, let F = {F1, F2, . . .} be a bounded family with infinite total volume.
Clearly, it is sufficient to cover almost all of the cube C = [−1/2, 1/2]n . We may
assume that F ⊂ C for all F ∈ F .

We find the translation vectors inductively. Let x1 = 0. If xk is defined, we denote

the uncovered part by Ek = C \
(

k
∪

j=1
(F j + x j )

)

. We choose xk+1 in such a way that

vol
(

(Fk+1 + xk+1) ∩ Ek

)

vol(Fk+1)
≥

1

2n
vol(Ek). (21)

It is possible, since

1

2n

∫

2C
vol

(

(Fk+1 + x) ∩ Ek

)

dx =
1

2n

∫

2C

∫

C
χFk+1(y − x)χEk (y)dydx

=
1

2n

∫

C
χEk (y)

∫

2C
χFk+1(y − x)dxdy =

1

2n
vol(Fk+1) vol(Ek).

It is easy to see that (21) implies that limk→∞ vol(Ek) = 0.
We note that the condition that F is bounded may be replaced by the condition

that F contains only convex sets, see [43].

9.2 A Sufficient Condition for a Family of Homothets

For convex bodies K and L , we define f (K , L) as the infimum of those t > 0, such
that for any family F of homothets of L with coefficients 0 < λ1,λ2, · · · < 1, the
following holds:
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If
∑

i

λd
i ≥ t then F permits a translative covering of K .

We set f (n) := sup{ f (K , K ) : K ⊂ R
n a convex body}.

The question of bounding f (2) was originally posed by L. Fejes Tóth [33] (cf.
Sect. 3.2 in [21]). He conjectured that f (2) ≤ 3. Januszewski [50] showed that
f (2) ≤ 6.5. In higher dimensions Meir and Moser [62], and later, A. Bezdek and K.
Bezdek [12] considered the cube and proved that f ([0, 1]d) = 2d − 1. Using a sim-
ple argument based on saturated packings by half-sized copies (see (6)), the author
[64] showed

f (K , L) ≤ 2n
vol

(

K + L∩(−L)

2

)

vol(L ∩ (−L))
,

from which the bound

f (K , K ) ≤
{

3n, if K = −K ,

6n, in general.

follows.
On the other hand, clearly, f (K , K ) ≥ n since we may consider n homothetic

copies of K with homothety ratios slightly below one, and use the lower bound on
the illumination number of K (see Sect. 6).

9.3 A Necessary Condition for a Family of Homothets

A converse to the problem discussed above was formulated by V. Soltan [89] (cf.
Sect. 3.2 in [21]). Let

g(K ) := inf

{

∑

i

λi : K ⊆
⋃

i

λi K + xi , 0 < λi < 1

}

,

and g(n) := inf{g(K ) : K ⊂ R
n a convex body}. V. Soltan conjectured g(n) ≥ n.

Since the n-dimensional simplex � can be covered by n + 1 translates of n
n+1�,

we have that g(n) ≤ g(�) ≤ n. V. Soltan and É. Vásárhelyi [88] showed g(2) ≥ 2,
and also proved that the conjecture holds when only n + 1 homothets are allowed.

Soltan’s conjecture was confirmed in an asymptotic sense in [64]: lim
n→∞

g(n)

n = 1.
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