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Flaxseed oil ameliorates alcoholic liver
disease via anti-inflammation and
modulating gut microbiota in mice
Xiaoxia Zhang1,2, Hao Wang2, Peipei Yin1, Hang Fan1, Liwei Sun1 and Yujun Liu1*

Abstract

Background: Alcoholic liver disease (ALD) represents a chronic wide-spectrum of liver injury caused by

consistently excessive alcohol intake. Few satisfactory advances have been made in management of ALD. Thus,

novel and more practical treatment options are urgently needed. Flaxseed oil (FO) is rich in α-linolenic acid (ALA),

a plant-derived n-3 polyunsaturated fatty acids (PUFAs). However, the impact of dietary FO on chronic alcohol

consumption remains unknown.

Methods: In this study, we assessed possible effects of dietary FO on attenuation of ALD and associated

mechanisms in mice. Firstly, mice were randomly allocated into four groups: pair-fed (PF) with corn oil (CO)

group (PF/CO); alcohol-fed (AF) with CO group (AF/CO); PF with FO group (PF/FO); AF with FO group (AF/FO).

Each group was fed modified Lieber-DeCarli liquid diets containing isocaloric maltose dextrin a control or alcohol

with corn oil and flaxseed oil, respectively. After 6 weeks feeding, mice were euthanized and associated

indications were investigated.

Results: Body weight (BW) was significantly elevated in AF/FO group compared with AF/CO group. Dietary

FO reduced the abnormal elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels

in chronic ethanol consumption. Amelioration of these parameters as well as liver injury via HE staining in

dietary FO supplementation in ALD demonstrated that dietary FO can effectively benefit for the protection

against ALD. To further understand the underlying mechanisms, we investigated the inflammatory cytokine

levels and gut microbiota. A series of inflammatory cytokines, including TNF-α, IL-1β, IL-6 and IL-10, were

determined. As a result, TNF-α, IL-1β and IL-6 were decreased in AF/FO group compared with control group;

IL-10 showed no significant alteration between AF/CO and AF/FO groups (p > 0.05). Sequencing and analysis

of gut microbiota gene indicated that a reduction of Porphyromonadaceae and Parasutterella, as well as an

increase in Firmicutes and Parabacteroides, were seen in AF group compared with PF control. Furthermore,

dietary FO in ethanol consumption group induced a significant reduction in Proteobacteria and

Porphyromonadaceae compared with AF/CO group.

Conclusion: Dietary FO ameliorates alcoholic liver disease via anti-inflammation and modulating gut microbiota, thus

can potentially serve as an inexpensive interventions for the prevention and treatment of ALD.
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Background
Alcoholic liver disease (ALD) represents a chronic wide-

spectrum of liver injury caused by consistently excessive

alcohol intake, ranking major causes of morbidity and

mortality worldwide among people who abuse alcohol [1].

ALD includes a histological spectrum of liver injure ran-

ging from simple steatosis to hepatitis characterized by in-

flammation, with potential progression to fibrosis and

cirrhosis. Hepatitis, with an occurrence of approximately

10 to 35% in chronic drinkers and responsible for more

than 1/3 significant morbidity and mortality, has been

thought to play a crucial role in reversible pathological

process of ALD [2–4]. Up to now, few satisfactory ad-

vances have been made in management of ALD, except

abstinence from alcohol [4, 5]. Thus, novel and more

practical treatment options are urgently needed.

Gut microbiota play a crucial role in progression and

pathogenesis of ALD. Accumulating evidence has re-

vealed that gut microbiota is closely associated with liver

in ALD as the gut-liver axis [6, 7]. Impairment of gut

microbiota homeostasis in ALD induces proliferation of

gram negative pathogenic bacteria, which generate lipo-

polysaccharide (LPS) and translocate to liver tissue as a

trigger for hepatitis by binding to TLR-4 (Toll-like

receptor-4) on macrophages and neutrophils. Moreover,

Campos Canesso et al. showed that the administration

of alcohol to germ-free mice is associated to the absence

of liver inflammation and injury, indicating that alcohol

alone is not sufficient for the development of liver dis-

ease, and that the presence of microbiota alterations is

also necessary [8]. Thus, modulation of gut microbiota

dysbiosis could attenuate hepatic injury in ALD [3, 9].

Flaxseed oil (FO) is rich in plant-derived omega-3 (n-3)

polyunsaturated fatty acids (PUFAs), mainly α-linolenic acid

(ALA, 18:3 n-3). Clinical studies reported that a low levels

of n-3PUFAs in serum and liver tissue is a common charac-

teristic of ALD patients [10, 11]. Dietary FO prevented

against acute alcoholic hepatic steatosis via ameliorating

lipid homeostasis at adipose tissue-liver axis in mice [11].

However, the impact of dietary FO on inflammation and

gut micorbiota in chronic ALD remains unknown.

In the present study, we assessed effects of dietary FO

on attenuation of ALD and associated mechanisms in

mice. Results of the study may contribute to understand-

ing the role played by FO in ALD and the complexity of

the interplay among the diet, gut microbiota, inflamma-

tion and ALD.

Methods

Animals and diet

Sixty male C57BL/6 J mice (8 weeks old) were obtained

from Vital River Laboratory Animal Technology Co. Ltd.,

Beijing, China. The animals were housed in individual

cages in a temperature-controlled (22 ± 1 °C), light-cycled

(12-h light/dark cycle) room.

All liquid diets for mice feeding were purchased

from TROPHIC Animal Feed High-tech Co., Ltd.,

Nantong, China.

Experimental design

After an 1-week period of acclimation to the control liquid

diet, maleC57BL/6 J mice (n = 60, 8 weeks old) were fed

the modified Lieber-DeCarli liquid diets as previously de-

scribed [11]. Briefly, mice were randomly allocated into

four groups (15 animals/group): (a) pair-fed (PF) with corn

oil (CO) group (PF/CO), mice were fed modified Lieber-

DeCarli CO liquid diets containing isocaloric maltose dex-

trin as CO control; (b) alcohol-fed (AF) with CO group

(AF/CO), mice were fed ethanol-containing modified

Lieber-DeCarli CO liquid diets; (c) PF with flaxseed oil

(FO) group (PF/FO), mice were fed modified Lieber-

DeCarli FO liquid diets containing isocaloric maltose dex-

trin as FO control; (d) AF with FO group (AF/FO), mice

were fed ethanol-containing modified Lieber-DeCarli FO

liquid diets. Mice in AF groups were fed the modified

Lieber-DeCarli liquid diets containing ethanol with an en-

ergy composition of 18% protein, 19% carbohydrate, 35%

fat and 28% ethanol, whereas animals in the PF groups

were fed the modified Lieber-DeCarli liquid diets, in

which, isocaloric maltose dextrin (carbohydrate) replaced

ethanol, and 35% of the total calories were provided by ei-

ther corn oil (rich in n-6 PUFAs) or flaxseed oil (rich in n-

3 PUFAs). Components of the liquid diets and the fatty

acid composition of dietary fats are shown in Add-

itional file 1 (Table S1) and Additional file 2 (Table S2),

respectively. Groups (a) and (c) were the pair-fed con-

trols for groups (b) and (d), respectively. Liquid diets

were freshly prepared from powder daily according to

the manufacturer’s instruction. Average daily volume of

liquid intake per mouse was monitored and calculated

in AF groups. Mice in PF groups consume equal

amounts of diets. After 6 weeks of feeding, mice were

then euthanized and associated indications were inves-

tigated. Blood samples were collected in ethylene di-

amine tetraacetic acid (EDTA)-containing tubes and

centrifuged (1200 × g for 15 min) to obtain plasma sam-

ples. All plasma samples were stored at −80 °C for fur-

ther analysis.

Determination of plasma AST and ALT levels

As biochemical indicators of liver function, plasma aspar-

tate aminotransferase (AST) and alanine aminotransferase

(ALT) activities in each group were respectively deter-

mined using AU400 automatic biochemical analyzer

(Olympus, Japan).
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Determination of plasma endotoxin

Plasma LPS levels in each mouse/group were measured

with limulus amebocyte lysate kit (Xiamen Bioendo

Technology Co.Ltd, Xiamen, China) according to the

manufacturer’s instructions.

HE staining

After mice sacrifice, liver tissues were immediately fixed

with formalin and processed with hematoxylin-eosin (HE)

staining to evaluate liver damage including hepatocyte fatty

change, inflammatory cells, degeneration and necrosis.

ELISA assays

Liver tissues (0.5 g) were homogenized in 1.5 ml ice-cold

50 mM Tris buffer (pH7.2, Tris with 1% Triton-X 100 and

0.1% protease inhibitor) and shaken on ice for 90 min.

Then the homogenates were centrifuged at 3,000 × g for

15 min. Supernatants were collected for determination of

tumor necrosis factor (TNF)-α, IL (interleukin)-1β, IL-6

and IL-10 concentrations. Measurements of each cytokine

level in plasma or the supernatants of liver tissues were

performed by enzyme linked immunosorbent assay

(ELISA) according to the manufacturer’s instructions

(e-Bioscience, CA, USA).

Gut microbiota analysis

The fecal microbial 16S rRNA gene sequencing and ana-

lysis were investigated as previously described [12]. After

6 weeks feeding, five mice per group were randomly se-

lected and transferred to fresh sterilized cages. The fresh

feces of each mouse was respectively collected, immedi-

ately frozen in liquid nitrogen, and then stored at −80 °C

until DNA extraction.

Microbial DNA was extracted from 200 mg feces sam-

ples as previously described [13]. Briefly, this sample

(200 mg) was resuspended in 4 ml of 4 M guanidine

thiocyanate–0.1 M Tris (pH7.5) and 600 μl of 10% N-

lauroyl sarcosine. The feces was ground with a mortar

on ice, 250 μg of the ground material was transferred to

a 2-ml screw-cap polypropylene microcentrifuge tube,

and the remaining material was frozen. After addition of

500 μl of 5% N-lauroyl sarcosine 0.1 M phosphate buffer

(pH8.0), the 2 ml tube was incubated at 70 °C for 1 h.

One volume (750 μl) of 0.1 mm diameter silica beads

(Sigma) previously sterilized by autoclaving was added,

and the tube was shakenat maximum speed for 10 min

in a Vibro shaker (Retsch). Polyvinylpolypyrrolidone

(15 mg) was added to the tube, which was vortexed and

centrifuged for 3 min at 12,000 × g. After recovery of the

supernatant, the pellet was washed with 500 μl of TENP

(50 mM Tris [pH8], 20 mM EDTA [pH8], 100 mM

NaCl, 1% polyvinylpolypyrrolidone) and centrifuged for

3 min at 12,000 × g, and the new supernatant was added

to the first supernatant. The washing step was repeated

three times. Pooled supernatants (about 2 ml) were

briefly centrifuged to remove particles and then split

into two 2 ml tubes. Nucleic acids were precipitated by

the addition of 1 volume of isopropanol for 10 min at

room temperature and centrifuged for 15 min at

20,000 × g. Pellets were resuspended and pooled in

450 μl of 100 mM phosphate buffer (pH8) and 50 μl of

5 M potassium acetate. The tube was placed on ice for

90 min and centrifuged at 16,000× g for 30 min. The

supernatant was transferred to a new tube containing

20 μl of RNase (1 mg/ml) and incubated at 37 °C for

30 min. Nucleic acids were precipitated by addition of

50 μl of 3 M sodium acetate and 1 ml of absolute ethanol.

The tube was incubated for 10 min at room temperature,

and nucleic acids were recovered by centrifugation at

20,000 × g for 15 min. The DNA pellet was finally

washed with 70% ethanol, dried, and resuspended in

400 μl TE buffer. DNA concentration and purity were

analyzed by Nanodrop (Thermo). Size distribution

(predominantly around 20 kb) were estimated by elec-

trophoresis (Additional file 3: Figure S1). Extracted

DNA was stored at −20 °C until use.

Sequences involving V3 and V4 16S rDNA hypervari-

able regions were amplified by TranStart FastPfu DNA

Polymerase (TransGen Biotech, China) using the follow-

ing primers (5’ to 3’): 341 F-CCTACGGGNGGCWGCAG,

805R-GACTACHVGGGTATCTAATCC. PCR products

were analyzed and separated by electrophoresis on 2%

agarose gel (containing SYB green), then purified with

Qiagen Gel Extraction Kit (Qiagen, Germany). Sequencing

libraries were generated using TruSeq DNA PCR manu-

facturer’s instructions and index codes were added. The li-

brary was sequenced and analyzed using an Illumina

HisSeq2500 platform by Shanghai Tai Chang gene tech-

nology co., LTD., China

Statistical analysis

All data were analyzed using Prism 5.0 (GraphPad Soft-

ware Inc., CA, USA). Results were represented as mean ±

SEM. Two-way analysis of variance (ANOVA) followed by

the Turkey multiple-comparison test was used to deter-

mine statistical difference between experimental groups.

Results were considered significant at P < 0.05.

Results

Routine parameters of mice in diverse dietary groups

There was no significant difference in initial body weight

(BW) among four groups. However, after 6 weeks feeding,

the final BW in AF/CO group was significantly decreased,

compared with that in paired PF/CO group (P < 0.01) or

AF/FO group (P < 0.01). The final BW in AF/FO showed

no change compared with PF/FO. These results demon-

strated that flaxseed oil maintained the BW during

chronic ethanol feeding. Liver weight in AF group (AF/
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CO group and AF/FO group) was significantly elevated

comparing to that in PF group (PF/CO group and PF/FO

group) (Table 1). Similarly, the ratio of liver-to-body

weight in alcohol exposure group regardless of dietary fat

was significantly increased compared with that in no etha-

nol pair-fed group. In addition, the plasma AST and ALT

levels in AF/CO group were significantly elevated by 2.5-

fold (185.9 ± 13.3 vs. 74.8 ± 8.6) and 2-fold (104.8 ± 11.4

vs. 52.6 ± 5.9) compared with that in pair-fed PO/CO

group, respectively. However, these AST and ALT eleva-

tions in AF/CO group were effectively suppressed by diet-

ary FO administration in AF/FO group (185.9 ± 13.3 vs.

109.7 ± 7.2, 104.8 ± 11.4 vs. 75.2 ± 6.1) (Table 1).

Dietary FO attenuated hepatic histopathological injury

and reduced plasma LPS levels

According to HE staining for liver in diverse groups, hep-

atic fatty change, necrosis and inflammation were serious

in chronic alcohol feeding group (AF/CO), whereas long-

term dietary FO distinctly alleviated the alcohol-induced

hepatic histopathological injury (Fig. 1a).

Plasma LPS in AF/FO group was significantly de-

creased compared with AF/CO group (P < 0.0001), but

still higher than PF/CO or PF/FO group (Fig. 1b), dem-

onstrating that dietary FO possessed ability to attenuated

LPS generation from Gram-negative pathogenic bacteria.

Dietary FO reduced plasma inflammatory cytokine levels

in ALD

After chronic ethanol feeding, we found obvious elevated

plasma TNF-α, IL-1β, IL-6 and IL-10 in AF/CO and AF/

FO groups compared with these cytokines in pair-fed group

(Fig. 2). However, dietary FO attenuated ethanol-inducing

abnormal elevated TNF-α concentration, compared with

that in PF control group (P = 0.0095, Fig. 2a). Similarly,

plasma IL-1β (P = 0.007, Fig. 2b) and IL-6 (P < 0.0001,

Fig. 2c) levels in AF/FO were also significantly reduced in

comparison with those two cytokines in AF/CO group. It

showed no significant difference in plasma IL-10 level be-

tween AF/CO and AF/FO groups (P = 0.3229, Fig. 2d).

Dietary FO reduced liver inflammatory cytokine levels in

ALD

We detected the cytokine production in liver tissue

and also found elevated TNF-α, IL-1β, IL-6 and IL-10

in AF group compared with PF group. Similarly, TNF-

α (p < 0.001, Fig. 3a), IL-1β (P = 0.0021, Fig. 3b) and

IL-6 (P = 0.0022, Fig. 3c) levels in AF/FO group were sig-

nificantly decreased compared with those three cytokines

in AF/CO group. It showed also no significant difference

in IL-10 level in supplementary FO group during chronic

ethanol feeding (P = 0.1635, Fig. 3d).

Dietary FO modulated gut microbiota in ALD

Gut microbiota have been increasingly thought to play a

critical role in ALD development in mice and humans

[3, 14–18]. To investigate whether the observed differ-

ences in liver inflammation among AF/CO, AF/FO and

those PF groups were associated with the difference in

the intestinal microbiota, we performed fecal metage-

nomic analysis. Rationality of sequencing data was evalu-

ated by rarefaction curve (Additional file 4: Figure S2). It

was observed that the rarefaction curve tended to be flat

when the sequence number increased to 20,000, indicat-

ing that the amount of sequencing data was reasonable.

The overall bacterial community structure was analyzed

using unweighted UniFrac (Pcoa) (Fig. 4) and weighted dis-

tance matrices (NMDS) (Additional file 5: Figure S3). Pcoa

showed that chronic alcohol consumption induced an obvi-

ous difference in terms of species in fecal samples com-

pared with pair-fed control feeding (Fig. 4a and b). There’s

no obvious change in terms of species between AF/CO

group and AF/FO group (Fig. 4c). Interestingly, during nor-

mal liquid feeding, supplementary FO seemingly altered the

fecal species compared with CO feeding (Fig. 4d).

Similar results from NMDS analysis were obtained

(Additional file 5: Figure S3).

At phylum level, the proportion of Firmicutes was not-

ably increased in alcohol feeding groups compared with

those in the PF groups (P = 0.0159, Fig. 5a). Meanwhile,

there’s no change between AF/FO and AF/CO groups

(P = 0.8385, Fig. 5a). Bacteroidetes accounted for more

than half of proportion in diverse administration groups

Table 1 Routine parameters of mice in diverse dietary groups in ALD

Measurements PF/CO AF/CO PF/FO AF/FO Two-way ANOVA

Ethanol Oil Interaction

Body weight, g 26.15 ± 0.27 23.99 ± 0.29 26.34 ± 0.33 26.57 ± 0.28 <0.0001 0.0019 0.0002

Liver weight, g 0.89 ± 0.03 1.25 ± 0.04 1.00 ± 0.02 1.44 ± 0.04 <0.0001 <0.0001 0.2722

LW/BW, % 3.40 ± 0.11 5.21 ± 0.14 3.80 ± 0.06 5.42 ± 0.14 <0.0001 <0.0001 0.0027

AST, U/L 74.8 ± 8.6 185.9 ± 13.3 68.4 ± 6.7 109.7 ± 7.2 <0.0001 <0.0001 <0.0001

ALT, U/L 52.6 ± 5.9 104.8 ± 11.4 47.6 ± 8.2 75.2 ± 6.1 <0.0001 <0.0001 <0.0001
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and decreased in AF/CO group in comparison with

other three groups but with no significant difference.

The proportion of Proteobacteria showed no alteration

in chronic consumption of alcohol compared with non-

ethanol controls. The proportion of Proteobacteria in AF/

FO group was significantly lower than that in AF/CO

group (0.074 ± 0.009 vs. 0.117 ± 0.003, P < 0.0001) or PF/

FO group (0.074 ± 0.009 vs. 0.124 ± 0.009, P < 0.0001).

Taken together, our data revealed that under this experi-

mental condition a combination of ethanol and dietary FO

(AF/FO) had a major effect on Proteobacteria but with

limited effects on Bacteriodetes and Firmicutes.

At genus level, we found Porphyromonadaceae was

the most prevalent genus in the control groups (PF/CO

and PF/FO) and obviously reduced in dietary alcohol ad-

ministration groups (P < 0.0001, Fig. 5b). Moreover, the

proportion of Porphyromonadaceae in AF/FO group

showed lower than that in AF/CO group but without

significance (0.176 ± 0.026 vs. 0.146 ± 0.013, P = 0.0503).

In contrast, Parabacteroides was sharply elevated in the

AF) groups (AF/CO and AF/FO) compared with the

control groups (P = 0.0211, Fig. 5b). Additionally, Para-

sutterella was the second prevalent genus in each group.

Alcohol administration induced a significant reduction

of Parasutterella in comparison to that in the control

groups (P = 0.0005). Collectively, our genus results indi-

cating that chronic alcohol consumption obviously al-

tered the initial proportion of genus components, mainly

including Porphyromonadaceae, Parabacteroides and

Parasutterella.

Furthermore, heatmap also showed that dietary FO

(AF/FO) had a major effect on Proteobacteria, with

Fig. 2 Detection of plasma inflammatory cytokine levels from diverse groups in mice. Plasma of mice from diverse groups were collected respectively for

detection of TNF-α (a), IL-1β (b), IL-6 (c) and IL-10 (d) concentrations using ELISA kit. Data are expressed as mean ± SEM.*P< 0.05, **P< 0.001, ***P< 0.0001

Fig. 1 Effects of different dietary oil profile on liver injury and endotoxemia

in ALD. a: Representative images of hepatic hemaatoxylin and eosin (H&E)

staining. b: Plasma lipopolysaccharide (LPS) levels. Data are expressed as

mean± SEM. *P<0.05, **P<0.001, ***P<0.0001. Original magnification,

×200 (A). CV, central vein; F, fatty change; IC, inflammatory cells
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Fig. 4 PcoA analysis showing difference in terms of species in fecal samples. Beta diversity was on weighted UniFrac. a: PF/CO vs. AF/CO; b: PF/

CO vs. PF/FO; c: AF/CO vs. AF/FO; d: PF/FO vs. AF/FO

Fig. 3 Detection of hepatic inflammatory cytokine levels from diverse groups in mice. Liver tissue of mice from diverse groups were collected

respectively for detection of TNF-α (a), IL-1β (b), IL-6 (c) and IL-10 (d) concentrations using ELISA kit. Data are expressed as mean ± SEM.*P < 0.05,

**P < 0.001, ***P < 0.0001
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limited effects on Bacteriodetes and Firmicutes. More-

over, many other tiny bacteria showed obvious difference

between AF and PF groups, such as Barnesiella, Psychro-

bacter, Deltaproteobacteria, Acinetobacter, Flavonifractor,

and Lactococcus (Fig. 6a). However, diverse dietary oil had

a less effect of on the influence of these seldom bacteria

proportion (Fig. 6b).

Discussion

In the present study, we investigated the efficacy of

long-term dietary FO for chronic ALD. By in vivo 6-

weeks treatment of ALD in mice, our study demon-

strated that supplementary FO showed more effective in

reduction of hepatic damage, suggesting that this inex-

pensive interventions exhibited preventive and thera-

peutic potential. Our further study revealed that this

effective treatment may associated with altered gut

microbiota and the decrease of liver inflammation.

Numerous studies indicated that alcohol exposure sig-

nificantly reduced final BW in chronic ALD [3, 9, 11, 19].

In this study, we also found that BW was lower in AF/CO

group, although the caloric intake was identical among all

groups. Dietary FO efficiently improved the final BW in

ALD compared with AF/CO, indicating that FO may

positively affect nutrients absorption and efficiency of

calorie utilization in gastrointestinal tract in ALD. Liver

weight and relative liver weights in AF group regardless

of dietary oil significantly increased, which was consist-

ent with previous reports [9], suggesting that substitut-

ing FO for CO in chronic ethanol intake had no effect

on liver weight.

In this study, we found abnormal elevated plasma ALT

and AST levels in AF/CO group, indicating alcohol

induced liver injury [9]. Significant reductions of plasma

ALT and AST in AF/FO group revealed that supplemen-

tary FO alleviated liver damage caused by chronic etha-

nol feeding. Similarly, dietary fish oil, rich in long-chain

n-3 polyunsaturated fatty acids, mainly eicosapentaenoic

acid (EPA) and docosahexaenoic acid (DHA), has

showed also the ability to attenuate liver injury by redu-

cing ALT and AST levels in ALD [9, 17]. Inexpensive

dietary FO-derived ALA, served as a precursor for the

synthesis of EPA and DHA, can converse to EPA and

DHA in the blood and tissues [20].

LPS, a trigger for hepatic inflammation in ALD, translo-

cates to liver via portal vein and binds to TLR-4 of antigen

presenting cells (APCs) to induce inflammatory immune

response and finally cause chronic hepatitis [21, 22]. In

this study, plasma LPS in AF/FO group was obviously de-

creased, demonstrating that dietary FO may decrease gut

permeability and reduce LPS translocation from intestines

to the liver and systematic circulation in ALD, which con-

tributed to the reduction of inflammatory response in the

liver. This attenuation may be associated with intestinal

innate immune system and the underlying mechanism

needs to be further researched [23].

Activation of Kupffer cells and neutrophils induces oxi-

dative stress and produces inflammatory cytokines, such

as TNF-α, IL-1β and IL-6 that cause apoptosis and necro-

sis of hepatocytes and consequently result in liver injury

[9, 24, 25]. Our results showed that TNF-α, IL-1β and IL-

6 levels of plasma and liver tissue in AF/FO group were

significantly decreased, demonstrating that dietary FO al-

leviated hepatic inflammation via anti-inflammatory cyto-

kines. IL-10 is an anti-inflammatory cytokine released by

Kupffer cells and monocytes [26, 27]. But in this study, we

Fig. 5 Relative abundance of microbial species at the phylum and genus levels in the feces of mice. a: The phylum analysis; b: The genus analysis
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found IL-10 showed no difference among all groups,

which was not paralleled with previous study [9]. We spec-

ulated that IL-10 maybe play a complicated role in imbal-

ance between regulation of pro- and anti- inflammatory

mediators during chronic ethanol exposure. Additionally,

regulatory immune cells especially regulatory T lympho-

cytes (Tregs) [28], which play a critical role in regulation of

proinflammation to keep maintain immune balance in

ALD [29, 30], need to be investigated in our further study.

Gut micobiota dysbiosis is thought to play a crucial

role in the pathogenesis of ALD [6, 31, 32]. In this study,

at phylum level, Bacteriodetes and Firmicutes were the

most dominant in all four groups, which were paralleled

with previous studies [12, 33]. The proportion of Firmi-

cutes was notably increased in alcohol feeding groups com-

pared with the PF groups, which were in agreement with

previous studies [3, 32]. Our results showed decreased Bac-

teriodetesand higher Proteobacteriain alcohol intake group

(AF/CO), which were responsible for gut dysbiosis as re-

cently described in human and animal studies [3, 18]. Im-

portantly, dietary FO notably reduced the proportion of

Proteobacteria in chronic alcohol consumption, revealing

that dietary FO may attenuate gut dysbiosis presumably by

modulating gut Proteobacteria. Exact mechanism(s) under-

lying these effects remain to be determined.

At the genus level, decreased gut Porphyromonadaceae

and inversely elevated Parabacteroides were found in

chronic alcohol administration. Porphyromonadaceae was

negatively correlated with TNF-α expression in the liver in

ALD [34], which was paralleled with our result and the de-

crease of gut Porphyromonadaceae may benefit for aggrava-

tion of the liver inflammation. Elevated Parabacteroidesin

AF/FO group was also involved in the prevention of hepatic

inflammation in ALD as previously described [34]. Our re-

sults showed that alcohol administration induced a signifi-

cant reduction of Parasutterella in comparison to the

control groups. The physiological role of Parasutterella is

much less understood. Taken together, the exact role of

microbiota is complicated and still largely unknown.

Conclusions
This study highlighted that dietary FO ameliorates alco-

holic liver disease via anti-inflammation and modulating

gut microbiota in mice, suggesting that it can potentially

serve as inexpensive interventions for the prevention

and treatment of ALD.

Fig. 6 Heatmap analysis of microbial community composition in the feces of mice. a: alcohol-fed (AF) vs. pair-fed (PF); b: flaxseed oil

(FO) vs. corn oil (CO)
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oil (DOCX 12 kb)
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Additional file 3: Figure S1. Size distribution (predominantly around

20 kb) was estimated by electrophoresis. (DOCX 62 kb)

Additional file 4: Figure S2. Rationality of sequencing data was evaluated

by rarefaction curve. It was observed that the rarefaction curve tended to be

flat when the sequence number increased to 20,000, indicating that the

amount of sequencing data was reasonable. (DOCX 115 kb)

Additional file 5: Figure S3. NMDS analysis showed the difference in

terms of species in fecal samples. Beta diversity was analyzed on

unweighted Unifrac. A: PF/CO vs. AF/CO; B: PF/CO vs. AF/FO; C: AF/CO vs.

AF/FO; D: PF/CO vs. PF/FO. (DOCX 136 kb)
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