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    Introduction 

 Lipid droplets (LDs) are intracellular lipid inclusions consisting 

primarily of triacylglycerols (TAGs) and sterol esters (SEs; 

 Murphy and Vance, 1999 ). Recent studies have proven that LDs 

are dynamic intracellular organelles that are functionally con-

nected with other cellular compartments (for review see  Martin 

and Parton, 2006 ). LDs from different cell types are bounded by 

a monolayer of phospholipids and characterized by unique sur-

face proteins, which may contribute to the biogenesis, matura-

tion, and stability of LDs ( Martin and Parton 2006 ;  Wolins et al., 

2006 ). LDs are believed to originate from microdomains of the 

ER, where enzymes for the synthesis of neutral lipids reside. 

Newly synthesized neutral lipids are thought to accumulate 

between two lea� ets of the ER bilayer before budding into the 

cytosol ( Martin and Parton 2006 ;  Wolins et al., 2006 ). With the 

assistance of microtubules, nascent LDs appear to fuse with 

each other until a certain size is reached ( Bostrom et al., 2005 ). 

A recent study identi� ed SNARE proteins as part of the core 

machinery for the fusion of LDs ( Bostrom et al., 2007 ). Despite 

recent progress, many fundamental questions remain. For in-

stance, how is the fusion process regulated, and what factors 

determine the � nal size of a mature LD? 

 Results and discussion 

 In an effort to identify novel gene products that may play a role 

in LD formation, Nile red, a vital dye speci� c for intracellular 

LDs, was used to visually screen the entire collection of viable 

single-gene deletion mutants of the budding yeast  Saccharomyces 

cerevisiae  for abnormalities in the number and morphology of 

LDs ( Greenspan et al., 1985 ). Because the number and mor-

phology of LDs may vary depending on growth phases, wild-

type cells and all mutants were grown overnight to stationary 

phase (OD 600  =  � 5) in this study immediately followed by Nile 

red staining and � uorescence microcopy. Wild-type cells at sta-

tionary phase showed 5.16  ±  2.18 LDs per cell on average ( ± SD; 

 n  = 200), and  � 80% of the cells displayed three to seven LDs 

( Fig. 1 A , a).  To simplify the screening process, we arbitrarily 

categorized deletion strains with the majority ( > 80%) of cells 

accumulating on average less than three LDs as  � d  ( few LDs ) 

mutants and strains accumulating more than seven LDs as  mld  

( many LDs ) mutants. Among the  mld  mutants, strains containing 

 > 11 LDs were classi� ed as strong  mld  mutants. We isolated 
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 Figure 1.    The  fl d1 �  (ylr404w � )  cells synthesize morphologically distinct LDs.  (A) Both wild-type and  fl d1 �   cells were grown in YPD medium until stationary 
phase or until log phase. Cells were stained with 20  � g/ml Nile red and immediately observed for LDs under a fl uorescence microscope. Micrographs of 
the wild-type cells (a and a � ) and  fl d1 �   cells (b – e, b ’ , and c ’ ) are shown. Supersized LDs (b, c, and b ’ ) are indicated by arrows, and aggregation of LDs 
(c, d, and c ’ ) is indicated by arrowheads. DIC, differential interference contrast. (B) Conventional TEM of wild-type and  fl d1 �   cells. Cells were grown in YPD 
to stationary phase, fi xed with 2.5% (vol/vol) glutaraldehyde and 2% (wt/vol) osmium tetroxide, and subjected to EM. LDs are seen as electron-transparent 
droplets. TEM of wild-type (a) and  fl d1 �   (b – i) cells. (C) Culture media affect LD morphology in  fl d1 �   cells. Wild-type and  fl d1 �   cells were grown until 
stationary phase in YPD medium (a and d), SC medium (b and e), YPO (oleate) medium (c and f), or YPDO medium (g). The preparation of media was 
described in Materials and methods. Nile red staining of wild-type (a – c) and  fl d1 �   (d – g) cells. Arrows indicate supersized LDs, and arrowheads indicate 
aggregated LDs. Bars: (A and C) 5  � m; (B) 1  � m.   
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cultured in YPD media were only observed in about 10% of 

the cells grown in SC. Interestingly, when  � d1 �   cells were 

cultured in YPO medium,  > 95% (191/200 cells examined) of 

the cells displayed amorphous aggregations of LDs without the 

supersized LDs ( Fig. 1 C , f). However, when  � d1 �   cells were 

cultured in YPDO medium (YPD + oleate), the large LDs ap-

peared again together with the aggregation of smaller LDs 

( Fig. 1 C , g). Thus, we identi� ed a commonly used growth medium 

(SC) that allowed us to easily distinguish wild-type and  � d1 �   

cells based on the presence or absence of supersized LDs 

( Fig. 1 C , compare b with e). 

 We measured the steady-state levels of TAG and SE as 

well as the rate of oleate incorporation into TAG and SE ( Oelkers 

et al., 2002 ). For cells grown in YPD to log phase, the deletion 

of  FLD1  caused about a doubling in the steady-state levels of 

both TAG and SE (Fig. S1 A, available at http://www.jcb.org/

cgi/content/full/jcb.200711136/DC1). The rate of SE synthesis 

was also upregulated by 70% in  � d1 �   deletion cells, but little 

difference in the rate of oleate incorporation into TAG was ob-

served (Fig. S1 B). Similar patterns of changes were detected 

for cells grown in YPD to stationary phase or in SC to either log 

or stationary phase (unpublished data). 

 The expression of  FLD1-GFP  in  � d1 �   cells restored the 

normal morphology of LDs ( Fig. 2, A and B ).  We performed 

a series of subcellular fractionation experiments to analyze the cel-

lular distribution of Fld1p. Cell extracts prepared from the  � d1 �   

strain expressing Fld1-GFP were fractionated by centrifugation 

at 13,000  g  for 10 min, resulting in P13 pellet and S13 super-

natant fractions that were probed with antibodies against GFP and 

Dpm1p, an ER marker. Both Fld1p and Dpm1p were found in 

the P13 fraction, which contains large membranous structures 

such as the vacuole, ER, and plasma membrane ( Fig. 2 C ). The 

same cell extracts were subjected to continuous sucrose density 

gradient analysis. 13 fractions were collected from top to bottom 

(1 – 13) and were probed for the presence of GFP and Dpm1p by 

immunoblotting. Dpm1p and Fld1p appeared to exist in the 

same density fractions ( Fig. 2 D ). Localization of Fld1-GFP 

was also examined in live cells by � uorescent microscopy, and 

Fld1-GFP was found in both perinuclear and peripheral ER 

( Fig. 2 E ). Finally, immuno-EM was used to pinpoint the exact 

location of Fld1p. Fld1p-GFP was found to be associated with 

the cortical ER and the nuclear envelope, which is consistent 

with the putative ER localization observed by light microscopy. 

In addition, labeling was observed throughout the ER, including 

regions in contact with LDs ( Fig. 2 F ). 

 The existence of morphologically distinct LDs within  � d1 �   

suggests enhanced fusion activities of LDs: the small, discrete LDs 

may represent the newly synthesized LDs, which tend to aggre-

gate before eventually fusing into a supersized LD. To test this 

hypothesis, wild-type and  � d1 �   cells were cultured in SC me-

dium until midlog phase (OD 600  =  � 1.0), stained with Nile red, 

and observed for the fusion of LDs by � uorescent microscopy. 

Cells in which two or several LDs lay close together were targeted. 

We examined 200 cases of adjacent LDs each for mutant and wild-

type cells and monitored every case for 1 min. The criteria we 

used to de� ne fusion were described previously ( Bostrom et al., 

2007 ). No fusion events were observed in wild-type cells, but 

17  � d  mutants and 116  mld  mutants (Tables S1 and S2, available 

at http://www.jcb.org/cgi/content/full/jcb.200711136/DC1). 

 We focused on  FLD1 , which corresponds to a previously 

uncharacterized ORF,  YLR404W , because its deletion not only 

affected the number of LDs but also gave rise to strikingly en-

larged or aggregated LDs ( Fig. 1 ). When grown in rich medium 

until stationary phase, wild-type cells usually display three to 

seven LDs under the microscope. The LDs were between 0.2 

and 0.4  � m in diameter and were almost spherical in shape 

( Fig. 1 A , a). In contrast, LDs observed in  � d1 �   cells were very ir -

regular in terms of quantity, shape, and size. Up to 30% of the total 

population of  � d1 �   cells contained one or a few supersized LDs 

that were spherical in shape and were about 0.5 – 1.5  � m in 

diameter ( Fig. 1 A , b; arrow), which means that the volume of the 

largest LD of the  � d1 �   cells was about 50 times that of the largest 

LD found in wild-type cells. About 60% of the  � d1 �   popula -

tion contained an amorphous aggregation of neutral lipids in 

addition to several small LDs ( Fig. 1 A , c and d; arrowheads). 

The remaining  � 10% of the  � d1 �   cells contained scattered and 

weakly stained LDs, which had diameters of  < 0.1  � m ( Fig. 1 A , e). 

The phenotypic characteristics of  � d1 �   were also observed in 

log-phase cells. When grown to log phase (OD 600  = 0.8), most 

of the wild-type cells contained two or three LDs that were slightly 

smaller than those of stationary-phase cells ( Fig. 1 A , a � ). The 

LDs in  � d1 �   at log phase show similar morphology to cells grown 

to stationary phase except that the supersized LDs and the ag-

gregation of neutral lipids were smaller and more weakly stained 

( Fig. 1 A , b �  and c � ; arrow and arrowhead, respectively). 

 To examine the ultrastructure of  � d1 �   cells, we performed 

transmission EM (TEM) of the wild-type and  � d1 �   strains. 

Cells were grown in rich medium until stationary phase and were 

subjected to TEM analysis. One typical cross section of a wild-

type cell contained � ve LD pro� les, which were round and 

about 0.2 – 0.4  � m in diameter ( Fig. 1 B , a). The cross sections 

of  � d1 �   mutant cells again showed three classes of LDs with 

distinct morphologies. Up to 30% of cells displayed one or a 

few supersized LDs per section, which were either round or oval 

( Fig. 1 B , b – d). Consistent with the result of � uorescence micros-

copy, the diameters of some LDs were up to 1.5  � m ( Fig. 1 B , d). 

Aggregated LDs were found in  � 60% of the mutant popula-

tion ( Fig. 1 B , d – g). These aggregations were reminiscent of 

the amorphous neutral lipid clump observed under � uorescence 

microscopy ( Fig. 1 A , c and d). The rest of the  � d1 �   cells 

( � 10% of the total population) contained many tiny LDs, most 

of which had a diameter of  < 0.1  � m and were loosely scattered 

( Fig. 1 B , h and i). 

 Yeast cells undergo marked proliferation of LDs when 

they are grown in de� ned medium (synthetic complete [SC]) or 

in an oleate-based medium (YPO [YP plus oleate, no glucose]; 

 Binns et al., 2006 ). As shown in  Fig. 1 C  (a – c), a great increase 

in the number of LDs was observed in wild-type cells grown in 

SC or YPO media. When  � d1 �   cells were grown in YPD, the 

majority ( � 70%) of the cells showed amorphous aggregations 

of many intermediate-sized LDs ( Fig. 1 B , f and g). In contrast, 

 > 70% of the  � d1 �   cells displayed only one or two supersized 

LDs when cultured in SC media ( Fig. 1 C , e). Moreover, amor-

phous aggregation of many small LDs that were common in cells 
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 Figure 2.    Fld1p localizes predominantly to the ER.  (A) The expression of  FLD1-GFP  complements the  fl d1 �   phenotype. Cells were transformed either with 
 YCplac111  vector alone or with  YCplac111-FLD1-GFP  and grown in SC media without leucine. (B)  fl d1 �   cells transformed either with  YCplac111  vector 
alone or with  YCplac111-FLD1-GFP  were lysed and immunoblotted with anti-GFP or Dpm1p antisera. (C) Cells expressing Fld1-GFP were spheroplasted 
and subjected to differential centrifugation as described in Materials and methods. The 13,000- g  pellet (P13) and soluble fraction (S13) were analyzed 
by SDS-PAGE and immunoblotting. (D) Cell lysates were loaded on the top of a continuous sucrose gradient (10 – 53%) and centrifuged at 100,000  g  for 
15 h. Fractions were collected from the top, separated by SDS-PAGE, and immunoblotted with antisera against GFP or Dpm1. (E) Fluorescence microscopy 
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and motorneuron disorders, was identi� ed ( Agarwal and Garg, 

2004 ). Seipin shows weak sequence conservations to Fld1p, but 

they both contain two predicted transmembrane domains, and their 

predicted secondary structures are also very similar ( Fig. 4 A ).  

Human seipin is encoded by the  BSCL2  gene, which gives rise 

to at least three different mRNAs and two peptides with 398 or 

462 amino acids ( Lundin et al., 2006 ). The region that covers 

the first 280 amino acids of human seipin is 88% identical 

among rat, mouse, chimpanzee, and human homologues ( Agarwal 

and Garg, 2004 ). This is interesting because all of the sequence 

conservations between yeast Fld1p (285 amino acids) and seipin 

fall within this region. To test whether seipin is a functional 

homologue of Fld1p, full-length human and mouse seipin 

homologues were expressed in  � d1 �   cells grown in SC media. 

The average diameter of the LDs is 1.27  ±  0.19  � m ( n  = 117) 

without human seipin and 0.43  ±  0.05  � m ( n  = 106) with seipin 

( Fig. 4 B ). We also examined the effects of point mutations in seipin 

that are implicated in lipodystrophy (A212P) and motoneuron 

disorders (N88S and S90L). The expression of N88S and S90L 

but not A212P rescued the defects in LD morphology ( Fig. 4 C ). 

fusion was detectable for about 10% (19/200) of all mutant cases. 

As shown in  Fig. 3 A , two closely positioned LDs appeared to 

completely fuse within a span of 2 s.  The size of the newly formed 

LD appeared to be the combined size of the two parent LDs. 

 To further demonstrate enhanced LD fusion in  � d1 �   cells, 

we isolated LDs from wild-type and mutant cells both carrying 

Tgl3p-GFP. Tgl3p is a triglyceride lipase that localizes to the 

surface of LDs ( Fig. 3 B ;  Athenstaedt and Daum, 2003 ). Puri� ed 

LDs from both wild-type and  � d1 �   cells were left in PBS 

buffer and examined by microscopy before and after 60 min. 

Whereas LDs from wild-type cells remained scattered and un-

changed in size, LDs from  � d1 �   cells formed aggregates or 

fused into huge lipid inclusions reminiscent of the supersized 

LDs observed in live  � d1 �   cells ( Fig. 3, C and D ). The lipid 

inclusions observed in vitro are much larger than the supersized 

LDs in live cells ( � 5  � m vs.  � 1  � m in diameter), suggesting 

that additional fusion events occurred in vitro. 

 Remote homology detection techniques were used to look 

for a mammalian homologue to Fld1p. Human seipin, a protein 

associated with Berardinelli-Seip congenital lipodystrophy (BSCL) 

of cells expressing Fld1-GFP. DIC, differential interference contrast. (F) Localization of Fld1p by immuno-EM. Cells were grown in SC media to late log 
phase, fi xed, and processed for immuno-EM with antisera against GFP. (a) An overview of a representative cell. (b) High magnifi cation image depicting 
immunoreactivity at the cortical ER. (c and d) High magnifi cation images depicting immunoreactivity at the cortical ER (arrowheads) and in close proximity 
to LDs (arrows). Vac, vacuole; ld, lipid droplet. Bars: (A and E) 5  � m; (F, a) 1  � m; (F, b – d) 200 nm.   

 

 Figure 3.    LDs from  fl d1 �   cells demonstrate enhanced fusion activity in vivo and in vitro.  (A)  fl d1 �   cells were grown in SC medium until midlog phase 
(OD 600  =  � 1) and were stained with Nile red. Cells in which two or several LDs lay close together were targeted. Images were collected at 2-s intervals. 
(B) Tgl3p-GFP localizes to LDs both in wild-type (WT) and  fl d1 �   strains. DIC, differential interference contrast. (C) Tgl3p-GFP – tagged LDs were isolated 
from  fl d1 �   cells grown in SC media, resuspended in PBS, and left for gentle shaking at 30 ° C for 1 h. The images were taken before (0 min) and after 
incubation (60 min; a – c). (a – c) Three typical results. (D) LDs isolated from wild-type cells grown in SC media do not fuse under the same conditions as 
described in C. Bars, 5  � m.   
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 Congenital generalized lipodystrophy (CGL; or BSCL) 

is an autosomal recessive disorder that is characterized by the 

almost complete absence of adipose tissue and severe insulin resis-

tance ( Agarwal and Garg, 2004 ). Genome-wide linkage analysis 

identi� ed two loci for CGL: CGL type 1 (CGL1) is caused by 

mutations in the AGPAT2 (1-acylglycerol-3-phosphate- O -acyl 

transferase 2) gene, and CGL2 is caused by mutations in  BSCL2 , 

This is not surprising because A212P is considered a loss-

of-function mutation, whereas N88S and S90L may represent 

gain-of-function mutations ( Windpassinger et al., 2004 ). Lastly, 

expression of the highly conserved 280 – amino acid region of 

seipin rescued the defects in LD morphology ( Fig. 4 C ). Together, 

these results strongly suggest that human seipin represents the 

functional homologue of Fld1p. 

 Figure 4.    Expression of human and mouse 
 BSCL2  (seipin) rescues defects in LD morphol-
ogy in  fl d1 �   cells.  (A) Sequence alignment of 
seipin homologues with gene identifi cation 
numbers. The alignment was created using 
the PRALINE server ( Simossis and Heringa, 
2005 ). Identical amino acids among seipin 
homologues are shaded in black, and similar 
residues are shaded in gray. The second  ary 
structures predicted by PSIPRED (position-
specifi c iterated predication of protein secondary 
structure) through the Ali2D server (http://
toolkit.tuebingen.mpg.de/ali2d) are indicated 
below the sequences. The boxed regions are 
the two transmembrane domains predicted 
through the PSIPRED server ( McGuffi n et al., 
2000 ). (B and C) The expression of seipin 
in yeast.  fl d1 �   strains transformed with  YC-
plac111-MET3-BSCL2  – expressing full-length 
seipins (human BC012140 and AF052149 and 
mouse BC061689), human seipin (BC012140) 
amino acid residues 1 – 280, seipin mutants, 
or the vector alone were grown in SC media 
minus leucine to stationary phase followed by 
Nile red staining and fl uorescence microscopy. 
Bars, 5  � m.   
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and lipodystrophy. Because mutations in AGPAT2 and BSCL2 

cause similar clinical manifestations, we wondered whether ab-

errant phospholipid metabolism may underlie the cellular 

defects for both conditions. Lipid species from wild-type and 

 � d1 �   whole cell extracts were analyzed by electrospray ionization 

tandem mass spectrometry. The level of PA increased slightly in 

 � d1 �   cells (unpublished data). Interestingly, there is a shift from 

long-chain (18:1) to medium/short-chain (16:0, 14:0, and 12:0) 

which encodes seipin ( Magre et al., 2001 ;  Agarwal et al., 2002 ). 

AGPAT2 catalyzes the formation of phosphatidic acid (PA), but 

knocking down AGPAT2 led to elevated levels of several phospho -

lipid species, including PA, and to a delay in the activation of 

key transcription factors for adipogenesis such as C/EBP �  and 

PPAR �  ( Gale et al., 2006 ). Therefore, AGPAT2 controls adipo-

genesis through modulation of the synthesis of phospholipids. 

In contrast, little is known about the role of seipin in adipogenesis 

 Figure 5.    Mass spectrometry analysis of 
glycerophospholipids.  (A and B) Wild-type and 
 fl d1  �  cells were grown to stationary phase in 
SC media. Total lipids were extracted and 
analyzed by high performance liquid chro-
matography/mass spectrometry. The results for 
phosphatidylinositol (PI) and phosphatidyl-
serine (PS) are shown in A and B, respectively. 
Data for phosphatidylethanolamine and phos-
phatidylcholine are shown in Fig. S3 (available 
at http://www.jcb.org/cgi/content/full/jcb
.200711136/DC1). Data are represented as 
normalized intensities based on a formula 
described in Materials and methods. (C) Fatty 
acyl (FA) profi les of polar lipids. The y axis 
represents the normalized values of each fatty 
acyl to the sum of intensities of all fatty acyls. 
 n  = 4; values are means  ±  SD (error bars).   
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 Fluorescence microscopy 
 Fluorescence imaging was performed on a microscope (DMLB; Leica) with 
a fl uorescent lamp (ebq 100; Curtis). Samples were viewed using a 100 ×  
NA 1.30 oil immersion objective lens (Leica). Images were taken with a 
digital camera (DFC480; Leica) and FW4000 software (Leica). 

 LD staining 
 Nile red (Sigma-Aldrich) is a specifi c and excellent vital dye for intracellular 
LDs. A 450 – 490-nm bandpass excitation fi lter, a 510-nm dichromatic 
mirror, and a 515-nm longpass emission fi lter (fi lter cube I3; Leica) were 
chosen to view LDs. 

 Visualization of LD fusion 
 To record the process of LD fusion in the  fl d1 �   mutant, 3  � l of late log-phase 
cells (OD 600  =  � 1) stained with Nile red were spotted on a slide and covered 
with a coverslip. Under the microscope, cells in which two or several LDs 
lay close together were targeted. Images were collected at 2-s intervals. 

 GFP 
 GFP signal was visualized with a 470/40-nm bandpass excitation fi lter, 
a 500-nm dichromatic mirror, and a 525/50-nm bandpass emission fi lter 
(fi lter cube GFP; Leica). 

 DAPI staining of nucleus 
 Cells fi xed with 3.7% formaldehyde for 15 min were stained with 5  � g/ml 
DAPI. DAPI fl uorescence was observed with a 340 – 380-nm bandpass ex-
citation fi lter, a 400-nm dichromatic mirror, and a 425-nm longpass emis-
sion fi lter (fi lter cube A; Leica). 

 TEM 
 Cells were grown in rich medium until stationary phase, harvested, fi xed 
with 2.5% glutaraldehyde, and postfi xed with 2% (wt/vol) osmium tetroxide. 
The samples were subsequently dehydrated in a series of graded ethanol 
and embedded in Spurr ’ s resin. 80-nm ultrathin sections were stained with 
uranyl acetate and lead citrate and examined under an electron micro-
scope (JEM-1230; JEOL). 

 Immuno-EM 
 Immuno-EM of ultrathin cryosections was performed essentially as described 
previously ( Martin et al., 2005 ). In brief,  fl d1 �   cells transformed with  
FLD1-GFP  were grown in SC media to late log phase and fi xed in 
2% PFA/0.2% glutaraldehyde in 0.1 M PHEM buffer (60 mM Pipes, 25 mM 
Hepes, 2 mM MgCl 2 , and 10 mM EGTA), pH 6.9, for 1 h at room temperature. 
Cells were embedded in 10% gelatin, cryoprotected using polyvinyl 
pyrrolidone – sucrose, and snap frozen onto specimen holders in liquid N 2 . 
Ultracryomicrotomy was performed by a slight modifi cation of the Tokuyasu 
technique, and sections were picked up with a 1:1 mixture of 2.3 M 
sucrose and 2% methyl cellulose. Grids were viewed using a transmission 
electron microscope (model 1010; JEOL). 

 DNA manipulations 
  Construction of a vector expressing GFP-tagged YLR404wp.   A 1.4-kb frag-
ment containing the native promoter and the coding sequence before the 
stop codon of  YLR404W  was amplifi ed by PCR using a 5 ’  primer (5 ’ -HindIII-
TTACCATGCACGTTGTCG) and a 3 ’  primer (5 ’ -BamHI-GCTATGTTTCTTG-
GATT). This fragment was then subcloned into the HindIII- and BamHI-cleaved 
YCplac111-GFP plasmid, in which the GFP coding sequence was inserted 
between the BamHI and EcoRI restriction sites. A sequence encoding yeast 
codon bias GFP (yEGFP; a gift from B. Winsor, Universit é  Louis Pasteur, 
Strasbourg, France) was used for all GFP constructs. 

   Construction of a vector expressing GFP-tagged Tgl3p.   A 2.7-kb 
fragment containing the natural promoter and the coding sequence before 
the stop codon of  TGL3  was amplifi ed by PCR using a 5 ’  primer (5 ’ -ACG-
 GC-HindIII-TCTGTT) and a 3 ’  primer (5 ’ -BamHI-CCTACTCCGTCTTGCTCTT). 
This fragment was then subcloned into the HindIII- and BamHI-cleaved 
YCplac111-GFP plasmid, in which the GFP coding sequence was inserted 
between the BamHI and EcoRI restriction sites. 

   Construction of vectors expressing seipins.   The coding sequences of 
human seipin and mouse seipin were amplifi ed by PCR using a 5 ’  primer (5 ’ -SphI- 
ATGGTCAACGACCCTCCAGTACCTGC) and a 3 ’  primer (5 ’ -BamHI-T C A-
G GAACTAGAGCAGGTGGGGCGCTG) from human cDNA BC012140, a 5 ’  
pri mer (5 ’ -SphI-ATGTCTACAGAAAAGGTAGACC A A A AGG) and a 3 ’  primer 
(5 ’ -BamHI-TCAGGAACTAGAGCAGGTGGGGCGCTG) from human cDNA 
AF052149, and a 5 ’  primer (5 ’ - SphI-A T G A T A C A T C A A A G A A G A G A AGCTGG) 
and a 3 ’  primer (5 ’ -XbaI-TCAGGAACTGGAGCAGGTCG G G CGTTG) 

fatty acid incorporation into all major phospholipids as a re-

sult of the deletion of  FLD1  ( Fig. 5  and Fig. S3, available at 

http://www.jcb.org/cgi/content/full/jcb.200711136/DC1).  

 We identi� ed seipin (Fld1p) as a novel regulator of the 

cellular dynamics of LDs. The deletion of  FLD1  causes increased 

levels of neutral lipids, clustering of LDs, and formation of en-

larged (supersized) LDs. Increased neutral lipids often lead to 

an increase in the number but not the size of LDs ( Fig. 1, C, 

b and c;  and Fig. S2, available at http://www.jcb.org/cgi/content/

full/jcb.200711136/DC1). Therefore, the appearance of super-

sized LDs in  � d1 �   cells is unlikely to be caused by an increase 

in neutral lipids. Rather, the physical property of the surface of 

LDs might have been altered in  � d1 �   cells as a result of changes 

in phospholipids, which may facilitate the clustering and fusion 

of LDs. In support of this, LDs isolated from  � d1 �   cells can ag-

gregate and fuse without the supply of ATP and cytoplasmic 

proteins ( Fig. 3 C ). 

 What is the molecular function of Fld1p or seipin? We favor 

a role of Fld1p in phospholipid/fatty acid metabolism for the 

following reasons: (1) a shift from long to medium/short acyl 

chains was detected in  � d1 �   cells ( Fig. 5 ); (2) LDs isolated from 

 � d1 �   cells can aggregate and fuse without the supply of ATP and 

cytoplasmic proteins, suggesting a role for phospholipids ( Fig. 3 ); 

(3) the other gene that is associated with CGL is APGAT2, 

a major enzyme in phospholipid metabolism; and (4) lipin, an-

other well-known protein that is associated with lipodystrophy 

in mice, is a phosphatidate phosphatase ( Han et al., 2006 ). 

Deletion of  SPO7  or  NEM1 , two genes involved in the activation 

of lipin, also caused aberrant LD morphology (Table S1 and our 

unpublished data). 

 Results described herein show for the � rst time that seipin 

and its homologues modulate the formation and especially fu-

sion of the LDs. Our data also suggest that changes in phospho-

lipid metabolism may be the unifying theme for both CGL1 and 

CGL2. Understanding the molecular function of seipin will pro-

vide mechanistic insights into LD formation and adipogenesis. 

 Materials and methods 

 Strains 
 Both wild-type BY4741 ( MATa his3 � 1 leu2 � 0 met15 � 0 ura3 � 0 ) and sin-
gle deletion mutants, including the  ylr404w �   strain ( MATa his3 � 1 leu2 � 0 
met15 � 0 ura3 � 0 YLR404W::KanMX4 ), were obtained from the European 
 Saccharomyces cerevisiae  Archives for Functional Analysis collection 
( Winzeler et al., 1999 ). 

 Reagents 
 Nile red, oleic acid, and Brij58 were purchased from Sigma-Aldrich; 
glutaraldehyde and osmium tetroxide were obtained from Electron Microscopy 
Sciences. DAPI, anti-Dpm1 mouse monoclonal, and anti-GFP rabbit poly-
clonal were purchased from Invitrogen. [4- 14 C]cholesterol, Ficoll PM400, 
and [9, 10(n)- 3 H]oleic acid were purchased from GE Healthcare. 

 Media 
 Unless otherwise stated, yeast cells were grown with rotary shaking at 
30 ° C in liquid YPD medium (1% yeast extract, 2% bacto peptone, and 2% 
dextrose). Alternatively, cells were grown in SC medium (0.67% nitrogen 
base and 2% dextrose with all amino acids supplemented), YPO medium 
(1% yeast extract, 2% bacto peptone, and 0.1% oleic acid in 1% Brij58), 
or in YPDO medium (1% yeast extract, 2% bacto peptone, 2% dextrose, 
and 0.1% oleic acid in 1% Brij58). Plasmid-carrying strains were grown 
on synthetic medium with appropriate selection as described previously 
( Kaiser et al., 1994 ). 
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  Cell fractionation 

  Preparation of spheroplasts.   Cells were harvested by centrifugation at 
3,000  g  for 5 min, washed once with double-distilled H 2 O, suspended to 
0.5 g of wet weight/ml in 0.1 M Tris-Cl, pH 9.4, and 10 mM DTT, and in-
cubated at 30 ° C for 10 min. Afterward, they were washed once with 1.2 M 
sorbitol and suspended in 1.2 M sorbitol and 20 mM K 3 PO 4 , pH 7.4, 
to 0.15 g of wet weight/ml. Zymose 20T was added to 2 mg/g of wet 
weight cells. The suspension was incubated at 30 ° C with gentle shaking 
for 20 – 60 min. Spheroplasts were harvested by centrifugation for 5 min at 
1,500  g , washed twice with 1.2 M sorbitol, and suspended in the appro-
priate buffer for homogenization. 

   Differential centrifugation and sucrose density gradient analysis of 
whole cell extract.   Spheroplasts were lysed in ice-cold lysis buffer II (50 mM 
Tris-HCl, pH 7.5, 1 mM EDTA, and 0.2 M sorbitol) containing protease 
inhibitors. Cell lysates were cleared at 500  g  for 5 min, resulting in super -
natant S5, which was then subjected to centrifugation at 13,000  g  for 
15 min, resulting in supernatant S13 and pellet P13. A continuous sucrose 
density gradient fractionation procedure was used as described previously 
( K ö lling and Hollenberg, 1994 ) except that only 13 fractions were taken 
from top to bottom. In brief, cells were lysed in STED10 (10% wt/wt 
sucrose, 10 mM Tris, pH 7.4, 1 mM EDTA, and 1 mM DTT) using a glass 
bead beater and were spun at 500  g  for 5 min to remove cell debris. 950  � l 
of cleared cell extract was loaded onto a sucrose density prepared as 
follows: in 13-ml centrifuge tubes (SW41; Beckman Coulter), 3.8 ml STED53 
(53% sucrose), STED35 (35% sucrose), and STED20 (20% sucrose) was 
loaded on top of each other. Centrifugation was performed at 30,000 rpm 
for 13 – 17 h for membranes to reach their equilibrium density. 950- � l frac-
tions were collected from the top of the gradient. Dpm1p was used as 
an ER marker. 

   Isolation of LDs.   LDs were purifi ed as described by  Leber et al. 
(1994)  with minor modifi cations. In brief, 0.15 g/ml spheroplasts were 
suspended in breaking buffer (10 mM Tris-Cl, pH 6.9, 0.2 mM EDTA, 
and 12% [wt/wt] Ficoll 400) and chilled on ice. Protease inhibitors were 
added in buffers as follows: 1 mM PMSF, 2  μ g/ml aprotinin, 0.5  μ g/ml 
leupeptine, and 1  μ g/ml pepstatin A. Spheroplasts were homogenized 
with a Dounce homogenizer applying 10 – 20 strokes using a loose-fi tting 
pestle, and the homogenate was transferred into 13.5-ml centrifuge tubes 
(Ultra-Clear; Beckman Coulter) and overlaid with an equal volume of 
breaking buffer. Centrifugation was performed for 60 min at 28,000 rpm 
in an SW41 swing bucket rotor (Beckman Coulter). A fl oating layer that 
consists mainly of LDs and vacuoles was collected and suspended gently 
in breaking buffer using a Dounce homogenizer with a loose-fi tting pestle. 
The suspension was again transferred into 13.5-ml tubes, overlaid with 
an equal volume of 10 mM Tris-Cl, pH 7.4, 0.2 mM EDTA, and 8% 
(wt/wt) Ficoll 400, and centrifuged for 60 min at 28,000 rpm in an 
SW41 swing bucket rotor. The fl oating layer was recovered, suspended 
gently in 10 mM Tris-Cl, 0.2 mM EDTA, 0.6 M sorbitol, and 8% (wt/wt) 
Ficoll 400 in 13.5-ml tubes, and overlaid with 10 mM Tris-Cl, 0.2 mM 
EDTA, and 0.25 M sorbitol. After centrifugation at 28,000 rpm for 30 min, 
the fl oating layer consists of highly enriched LDs that are separated 
from vacuoles. 

  Online supplemental material 
 Tables S1 and S2 summarize the genes identifi ed in the genome-wide 
screen for  fl d  strains and  mld  strains, respectively. Fig. S1 presents neutral 
lipid analysis of wild-type and  ylr404w �   ( fl d1 �  ) strains. Fig. S2 shows that 
mutants ( mld ) with increased levels of neutral lipids do not contain enlarged LDs. 
Fig. S3 is an analysis of phosphatidylethanolamine and phosphatidyl-
choline, which is continued from  Fig. 5 . Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200711136/DC1. 
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from mouse cDNA BC061689. The gene sequence encoding the fi rst 280 
amino acids of seipin was amplifi ed using a 5 ’  primer (5 ’ -SphI-ATGGT-
CAACGACCCTCCAGTACCTGC) and a 3 ’  primer (5 ’ -BamHI-TCAGG A A T-
T GTCTCTTTTTCGGATG) from human cDNA BC012140. The fragments 
were subcloned into SphI- and BamHI-cleaved or SphI- and XbaI-cleaved 
YCplac111-MET3 plasmid in which the MET3 promoter was inserted be-
tween HindIII and SphI restriction sites. 

   Site-directed mutagenesis.   Site-directed mutagenesis was performed 
using the QuikChange II XL kit (Stratagene) according to the manufacturer ’ s 
instructions. 

  Lipid analysis 

  Thin-layer chromatography and quantitation of neutral lipids.   Lipid extrac-
tion from lyophilized yeast cells was performed as previously described 
( Zhang et al., 2003 ). In brief, cells were grown in the appropriate medium 
until the required growth phase (determined by OD 600 ), harvested, washed 
twice with 0.5% Nonidet P-40 and once with deionized H 2 O, and lyophi-
lized. The dried cell pellets were resuspended in 50  μ l lyticase (Sigma-
Aldrich) solution (1,700 U/ml in 10% glycerol) and incubated at 37 ° C for 
15 min at  � 70 ° C for 1 h and at 37 ° C for 15 min. Lipids were extracted with 
hexane and blown dry. Quantitation of neutral lipids was performed as de-
scribed previously by  Zweytick et al. (2000)  with modifi cations. Samples 
were dissolved in 100  μ l chloroform/methanol (2:1; vol/vol) and applied to 
Silica gel 60 F 254  plates (Merck), and chromatograms were developed in 
hexane/diethyl ether/acetic acid (85:15:1) with triolein and cholesteryl es-
ter as the standard. For quantitation of SE and TAG, plates were dipped into 
methanolic MnCl 2  solution (0.63 g MnCl 2 -4H 2 O, 60 ml water, 60 ml methanol, 
and 4 ml of concentrated sulfuric acid), dried, and heated at 120 ° C for 
15 min. Densitometric scanning was performed at 500 nm with a scanner 
(thin-layer chromatography; CAMAG). For each assay, at least three inde-
pendent tests were performed; average and SD were calculated. 

   Oleic acid incorporation.   Incorporation of [ 3 H]oleic acid into SE and 
TAG was performed as described previously ( Zhang et al., 2003 ). 5 ml of 
cells at OD 600  =  � 0.6 – 0.8 were pulsed with 5  μ Ci [ 3 H]oleic acid at 30 ° C 
for 30 min with shaking. Lipid extraction and thin-layer chromatography 
were performed as mentioned in the previous paragraph except that the 
plates were stained with iodine vapor. Incorporation of label into neutral 
lipids was determined after scintillation counting (Beckman Coulter) and 
normalization to a [ 14 C]cholesterol internal standard and cell dry weight. 
For each assay, at least three independent tests were performed; average 
and SD were calculated. 

   Analysis of lipids using high performance liquid chromatography/
mass spectrometry.   A high performance liquid chromatography system 
(Agilent) coupled with a triple quadrupole/ion trap mass spectrometer 
(4000Qtrap; Applied Biosystems) was used for quantitation of individual 
lipids. Samples were introduced into the mass spectrometer by loop injec-
tions with chloroform/methanol/300 mM piperidine (1:1:0.1) as a mobile 
phase at a fl ow of 200  � l/min ( Shui et al., 2007 ). Based on product ion 
and precursor ion analysis of head groups and fatty aclys, two comprehen-
sive sets of multiple reaction monitoring (MRM) transitions were set up for 
quantitative analysis of various lipids ( Guan et al., 2006 ), and results are 
expressed as normalized intensities. 

   Fatty acyl profi les of polar lipids.   Fatty acyl profi les of polar lipids 
were acquired using a micromass spectrometer (Micromass Q-TOF; 
Waters Corp.) in the negative electrospray ionization ion mode. Piperidine 
(fi nal concentration of 15  μ M) was added into lipid extracts to enhance 
ionization ( Leber et al., 1994 ). Samples were infused into the mass spec-
trometer at a fl ow rate of 15  � l/min. High collision energy (55 V) was ap-
plied to fragment polar lipid parent ions to generate fatty acyl profi les. The 
operation parameters for the mass spectrometer are a sample cone tem-
perature of 250 ° C, a sample cone voltage of 70 V, and collision energy of 
55 V. Mass spectra were recorded from mass/charge ratios of 140 – 900. 

   Calculation of lipid levels.   Precursor ion or neutral loss scans of 
 phospholipid headgroup fragments ( Han and Gross, 2005 ) were used 
to obtain information on yeast phospholipid compositions. Based on this 
 infor ma tion, a comprehensive list of MRM transitions was set up to follow 
fatty acyl compositions of these lipids (parent → fatty acyl fragment transi-
tions). The signal intensity of each MRM value was normalized using the 
following equation: 

       

 

Normalized intensity of lipid 1 = 
Signal intensity of lipidd 1

Signal intensity of all MRM transitions measured∑
.
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