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ABSTRACT

We propose fLDA, a novel matrix factorization method to
predict ratings in recommender system applications where
a “bag-of-words” representation for item meta-data is natu-
ral. Such scenarios are commonplace in web applications like
content recommendation, ad targeting and web search where
items are articles, ads and web pages respectively. Because
of data sparseness, regularization is key to good predictive
accuracy. Our method works by regularizing both user and
item factors simultaneously through user features and the
bag of words associated with each item. Specifically, each
word in an item is associated with a discrete latent factor
often referred to as the topic of the word; item topics are
obtained by averaging topics across all words in an item.
Then, user rating on an item is modeled as user’s affinity to
the item’s topics where user affinity to topics (user factors)
and topic assignments to words in items (item factors) are
learned jointly in a supervised fashion. To avoid overfitting,
user and item factors are regularized through Gaussian lin-
ear regression and Latent Dirichlet Allocation (LDA) priors
respectively. We show our model is accurate, interpretable
and handles both cold-start and warm-start scenarios seam-
lessly through a single model. The efficacy of our method is
illustrated on benchmark datasets and a new dataset from
Yahoo! Buzz where fLDA provides superior predictive ac-
curacy in cold-start scenarios and is comparable to state-of-
the-art methods in warm-start scenarios. As a by-product,
fLDA also identifies interesting topics that explains user-
item interactions. Our method also generalizes a recently
proposed technique called supervised LDA (sLDA) to col-
laborative filtering applications. While sLDA estimates item
topic vectors in a supervised fashion for a single regression,
fLDA incorporates multiple regressions (one for each user)
in estimating the item factors.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Information filtering

General Terms: Algorithms, Design, Experimentation
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1. INTRODUCTION

Accurate prediction of response associated with dyadic
data is an important task in several applications like recom-
mender systems, web applications, online advertising and
social networks. For instance, predicting movie ratings by
users is an important input to a movie recommender sys-
tem like Netflix; predicting user click-rates on articles en-
ables a portal like Yahoo! to improve content recommenda-
tion; click-rate estimation for ads in the context of a given
query by a user is a crucial component of almost all online
advertising systems. These are difficult prediction prob-
lems that entails several challenges. Data incompleteness,
sparseness and non-uniform distribution of available obser-
vations across user-item pairs makes it difficult to obtain
good performance through simple methods. Other than data
sparseness, the cold-start problem whereby predictions are
required for new dyads adds to the complexity.

Several methods have been proposed to solve the afore-
mentioned problems. Of these, factorization models have
become popular and have provided good performance in
several real-world applications [25, 5]. The main idea is
to predict response y;; (e.g., user ¢’s rating on item j) for
a dyad (i,7) through a multiplicative function ujv;; u; and
v; are unknown vectors associated with user ¢ and item j
respectively (often referred to as latent factors). Such fac-
torization models provide a flexible class but often overfit
even for moderate number of user and item factors; hence,
it is imperative to impose constraints through appropriate
regularization. Early work in this area [5, 25, 1, 22] regu-
larized factors through a zero-mean Gaussian prior. Recent
work [2, 28, 30] improves by incorporating more flexibil-
ity in the Gaussian priors through regressions on users and
items factors. Such a prior also provides good performance
in both cold-start and warm start scenarios. Specifically,
ratings for new users and/or new items are predicted by the
prior means that are functions of user and item features.
However, all previous work assume the factors are vectors in
an Euclidean space that does not provide a natural way to
incorporate meta-data available as free form text.

In this paper, we propose a new factor model fLDA
that is suited to the task of incorporating both rich “bag-
of-words” type meta-data on items and user ratings simul-
taneously to enhance predictions. Such scenarios are com-
monplace in web applications like content recommendation,
advertising and web search. We note that “word” in our con-
text is a general term used to denote elements like phrases,
entitites, movie actors in different applications. We show our
model provides better accuracy compared to state-of-the-art



factor models when items have rich textual meta-data. As
a by-product, interpretable item topics may help in explain-
ing recommendations in some applications. We also show
that when rich item meta-data is not available or noisy, our
method is still comparable in accuracy to state-of-the-art
factorization models.

The key idea of our method is to let the user factors (or
profiles) take values in an Euclidean space as in existing fac-
torization models, but assign item factors through a richer
prior based on Latent Dirichlet Allocation (LDA) [8]. Specif-
ically, we model the affinity between user i and item j as s;z;,
where Z; is a multinomial probability vector representing the
soft cluster membership score of item j to K different latent
topics; s; represents user i’s affinity to those topics. The
main idea in LDA is to attach a discrete latent factor to each
word of an item that can take K different values (K topics)
and produce item topics by averaging the per-word topics
in the item. Thus, a news article where 80% of the words
are assigned to politics and the rest to education can be
thought of as being a political article but perhaps related to
an issue in education. Since the number of latent factors in

fLDA are large, regularization is key. In LDA, this is done

by modeling the word-topic association and the item-topic
association, and finally averaging the word topics for each
item. In our case, we also include user ratings on items as an
additional source of information when determining the item
topics. In fact, ratings on items influence the estimation
of the global word-topic association which in turn influence
the local assignment of topics to words in each item. For
instance, if political articles with mention of word “Obama”
are highly rated by many users, they may form a separate
topic in fLDA ; this may not happen in unsupervised LDA
that is only influenced by word occurrences. In fact, one
can think of ratings as providing additional information to
attach importance scores to different words in an item; in
unsupervised LDA, the scores are solely based on occurence
frequencies. The key is the ability of fLDA to learn these
scores automatically from the data. We also note that the
latent profile of users who rate items play a crucial role in
determining item topics and vice-versa. Thus, fLDA will
appropriately weight ratings on Obama articles by politi-
cally savvy versus politically naive users in deciding topic
attribution. This simultaneous estimation of both user pro-
files and topic attribution makes our method distinct from
recent work called sLDA [7] that incorporates a response
variable (like reviews on articles) in deciding LDA topics
through a global regression (while our model performs per-
user local regression). In fact, if we assume all users share
the same profile, fLDA reduces to sLDA. However, such
an assumption is not realistic in the applications we con-
sider whereby user affinity to items play a significant role in
obtaining better predictions on ratings.

The topic representation of items in fLDA also provide
interpretability and may help in explaining recommenda-
tions to users in applications. For well understood topics,
user factors can be thought of as providing an interest profile
for topics. The LDA model is well known to provide such
interpretation since the probability mass of topics tend to be
concentrated on a small set of words. This interpretability
is important for a number of reasons.

e Explanation of recommendations: In some appli-

cations, users expect explanations for items that are
recommended to them. fLDA provides one such nat-
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ural explanation in terms of users’ affinity to topics,
which can be presented, e.g., using word clouds.

e Content programming: Consider an application that
recommends articles to users visiting a portal [3]. The
articles in this application are programmed by human
editors to ensure high quality. User interest profiles
obtained from fLDA when coupled with visit patterns
during different times of the day and week may provide
valuable insights that may help editors program appro-
priate content more effectively; e.g., if many users are
interested in sports at noon, editors can use this infor-
mation to ensure enough sports articles before noon.

e Ad targeting: Another application where such profiles
can be useful is in the context of display advertising
where advertizers are targeting their ads to users based
on profiles composed of both demographic and browse
behavior [10]. A method that obtains interpretable user
interest profiles to maximize click-rates on ads can help
an ad-network produce better and finer user-targeting
attributes which may eventually lead to better ROI for
advertisers and increased revenue for the ad-network.

We also emphasize that fLDA does not compromise on
predictive accuracy in warm-start scenarios where an item
receives a large number of ratings due to its supervised na-
ture. In fact, it is as accurate as the usual state-of-the-art
factor models in applications without item meta-data. How-
ever, providing a topic interpretation in such cases may be-
come difficult. Through the LDA model, it also provides a
powerful method of incorporating meta-data in applications
where items have some form of document-like representation
and, similar to previous work, it provides a single unified
model to tackle both warm-start and cold-start scenarios in
a seamless way.

Contributions: Our contributions are as follows. We
provide fLDA, a new factorization model based on Latent
Dirichlet Allocation for predicting dyadic response that is
both accurate and interpretable when items have a bag-of-
words like representation. While LDA has been explored
in the context of recommender systems [17, 21], using LDA
to regularize factorization models based on bag-of-word item
meta-data has not been previously studied (see Section 5 for
details). Our method works by generalizing the supervised
LDA model [7] to perform multiple regressions (one for each
user) simultaneously on the item topics. Unlike previous
supervised LDA research, we perform exact model fitting
through a Monte Carlo EM algorithm and do not rely on
variational approximations. We illustrate the performance
of our method on benchmark datasets and a new dataset
obtained from Yahoo! Buzz on which we obtain significant
improvements in predictive performance relative to state-of-
the-art factor models.

2. MODEL

In this section, we define the fLDA model. We begin
with a high level overview of our model and point out the key
differences from previous work. This is followed by a detailed
mathematical specification. We then describe our fitting
procedure based on Monte-Carlo EM (MCEM) algorithm in
the next section.

2.1 Overview

We shall use (4,7) to denote a user-item dyad and the
response y;; will be referred to as rating user ¢ gives to item j.



For instance, items may be articles in a content optimization
problem, movies in movie recommender systems or ads in
online advertising. Ratings may be explicit ratings or clicks.
In particular, we are interested in scenarios where each item
has a natural bag-of-words representation. Needless to say
this is pervasive in web applications.

Our prediction method is based on fitting a two-stage hier-
archical mixed-effects model to training data. In particular,
we attach latent factors (o, s; *') to user i and (3;, 2 ")
to item j. Item factors Z; are obtained by averaging {z;n},
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where z;,, is a discrete latent factor® (with K possible topics)
that is attached to the nth word in item j, and W; is the
number of words in item j. As we will see, this is a key
difference between fLDA and existing factor models like [2]
that attach K continuous latent factors UJK X1 to each item.
The fLDA model specifies a generative process of rat-
ings and words in two stages. The first stage specifies the
relationship between ratings y;; for known latent factors.
In fact, the mean of y;; (to be more precise, some mono-
tone function of the mean) and latent factors are connected
through an easily interpretable bilinear function of factors

! —
a; + B + siZj,

where «a; is the rating bias of user i, §; is the item bias
representing the global popularity of item j, vector Z; is the
(empirical) probability distribution for item j over the K
topics, and vector s; quantifies user i’s affinity to each of
the K topics. As will be seen, these topics are interpretable.

The estimation of the multiplicative term s;z; that capture
user interaction with items is the main modeling challenge.
In fact, given the data incompleteness in applications (typi-
cally, we have response available for 1% to 5% of all possible
dyads), it is clear that latent factors cannot be estimated
reliably even for small number of topics K. Hence a second
stage that specifies constraints on factors through priors re-
duce the effective degrees of freedom and results in good
performance. The crux of the problem is in specifying the
prior, the first stage model is too flexible and would over-
fit if not regularized appropriately. Existing factor models
assume both user and item factors take values in an K-
dimensional Euclidean space but the values are moderated
through an L norm constraint or equivalently a zero-mean
Gaussian prior. The regression based latent factor model
( RLFM hereafter ) recently proposed in [2] relax the prior
to have a flexible mean that is obtained through a regres-
sion on user(item) features. Yu et al. [30] go further and
regularize the factors through a non-linear kernel function.
Other than providing better regularization, such a strategy
helps in providing better prediction in cold-start scenarios
through the fallback mechanism — for user (or items) with
small number of ratings, we give more weight to the prior
mean (predicted by user and/or item features) in estimating
the factor but with increasing number of ratings we converge
to a user (or item) specific factor estimate. The model tran-
sitions from global feature-based prediction to user (or item)

'We abuse the notation a little bit by using zj, to denote
both a discrete variable with K possible values and a vector
of length K, where there is exactly one element equal to one
and all the others are zero.
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specific ones in a smooth way after incorporating the sample
size and correlations effects in the data appropriately.

Our fLDA model is also similar in spirit but, while we
assume the user factors still take values in an Euclidean
space, for item factors we deviate significantly from previ-
ous work and assume factors are discrete with K possible
values (topics). Moreover, we attach a latent topic to each
word in an item and assume the average of per-word top-
ics to provide item topics. The granular topics at the word
level are regularized through user ratings and by assuming
the joint (word, topic, item) occurrence probabilities could
be appropriately modeled through (word, topic) and (topic,
item) interactions as done in the classical LDA model. More
mathematically, while the prior on user factors is still based
on a regression on user features as in RLFM , for the item
topics the prior is now given by a latent Dirichlet alloca-
tion (LDA) model [8] that have been shown to provide ex-
cellent and interpretable soft clustering of documents into
topics. However, unlike the LDA model, the posterior dis-
tribution of item factors depends on both the prior (unsu-
pervised LDA) and user ratings on items. The supervised
LDA (sLDA)[7] technique is also similar in spirit but does
not allow for a per-user regression which is the main focus
of fLDA . In fact, the sSLDA model is a special case of
fLDA when s; = s for each i, i.e., every user has the same
factor which gets estimated from the data. Clearly, such a
model cannot capture interactions in dyadic data applica-
tions, the main focus of this research. The use of LDA prior
provides significant advantages. While it improves predic-
tive accuracy in the presence of rich item meta-data, it may
also provide interpretable topics as in an unsupervised LDA
model. Once we get interpretable item topics, it is natural to
interpret user factors as affinities to different topics. We also
note that fLDA models the conditional distribution of rat-
ings through a model on the joint distribution of ratings and
word occurences in items. This is in contrast to other exist-
ing models where features are assumed non-stochastic, the
additional smoothing on the word occurrences contributes to
better regularization of item factors and may lead to better
performance in practice.

2.2 Model Specification

We provide a detailed description of our model in this
section. We begin by setting up notations.

Notations: To specify the model, we use the following
notations. Let index ¢ runs through users, index j runs
through items, index k runs through item topics, and index
n runs through words assuming a bag-of-words representa-
tion for an item. Let M, N, K and W denote the numbers
of users, items, topics and distinct words in the item cor-
pus respectively. We use W; to denote item length, i.e., the
number of words in item j. We abuse notation a little to let
xi, x; and x;; denote the feature vectors for user 4, item j
and the user-item dyad (i, j) respectively. For instance, z;
may include features like user’s age, gender, location, browse
behavior, z; may include features like item’s publisher, cat-
egory and x;; may include features like the number of times
a user saw an item in earlier visits. In addition to x;, items
have a bag-of-words vector w;, where w;, denotes the nth
word in item j (n =1, ..., W;) that are modeled through the
LDA prior.

First stage observation model: Our first stage ob-
servation model specifies the distribution of response condi-



tional on the latent factors and topics and is given as follows.

e For the Gaussian model, the rating that user i gives
item j is given by yi; ~ N (uij, %), where

pij = i b+ i + Bj + i 25

e For the Logistic model, the binary rating is generated
by yi; ~ Bernoulli(u;;), where

log (1572:1”) =i b+ i + 65 + i Z5.
Note that b is the regression weight vector for dyadic features
xij; and g, B, s; and zj;, are the latent factors. Each
word w;j, in item j has an underlying latent topic z;,, and
Wi oz,

for item j averaged over the topic distribution of words in
item j (z;n is interpreted as a vector of zeros with length
K except the kth position equals 1 if zj;, represents topic
k). We also note that in general b is a global parameter
whose dimension is small and hence does not require further
regularization. We now discuss our second stage state model
that specifies priors on the latent factors.

Second stage state model: Our goal here is to specify
the prior distribution on latent factors [{c:}, {5;}, {si}, {zjn }]
conditional on the features [{z;},{z;}, {wjn}]. We assume
the factor distributions are statistically independent, i.e.,

{au}, {85} {si}s {zm )] = (] J[ei] [T 155] H[Si]) -[{zin}]

i J

Zj = denotes the empirical distribution of topics

with priors given as follows.

1. User bias a; = gyz; + €5, where €§' ~ N (0, as), and go
is the regression weight vector on user features x;.

2. User factor s; = Hx; + €; is a K X 1 vector of topic
affinity scores, where € ~ AN(0,A4;), and H is the
regression weight matrix on user features x;.

3. Ttem popularity 3; = dyz; + ef, where ef ~ N(0,ag)
and dp is the regression weight vector on item features

Zj.

The prior for {z;»} is given by the LDA model. For the
sake of completeness and to setup notations, we now briefly
describe the LDA prior below (see [16, 8] for more details.)

LDA prior: The Latent Dirichlet Allocation model is an
unsupervised clustering method that works well when each
element to be clustered has a bag-of-words representation.
Thus, it clusters data that are categorical, high-dimensional
but sparse; classical methods like K-means does not work
well in such scenarios. It has found widespread use in text
mining applications where it provides a soft clustering of
each document into topics that are interpretable.

The LDA model works by assuming the occurrence prob-
abilities in the three way (word, item, topic) contingency
table can be modeled in terms of (word, topic) and (item,
topic) interactions. More concretely, it assumes word vec-
tors for items are generated in the following way. Asso-
ciate with each topic k a multinomial distribution @ixw
over the words in the entire corpus; i.e., Py, = Pr[observe
word ¢ | topic k|. Also assume a multinomial distribution
0;“1 for item j over the K topics; i.e., 8, = Pr[the la-
tent topic of a word is k | item j]. Now, the generative
model for the corpus is modeled as [{wjn }, {zjn }|{Pr}, {6;}]
o [{wyn }{zsn b A2k} - {21 }{0; 1] where
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Yij ~ N(piz,0%),0r  (Gaussian)

yi; ~ Bernoulli(g;;) (Logistic)

Upij) = i b+ i + B + 57 2

€ ~N(0,aq)
€5 ~ N(0, Ay)

e? ~ N(0,ap)

Rating:

/ «
Qi = go%i + €,
Si :HZE7+E:7

User factors:

Item factors: [; = doz; + e]@,

Zj =20 %n | Wj
6; ~ Dirichlet(\)
@y, ~ Dirichlet(n)
Zjn ~ Multinom(6;)
win ~ Multinom(®.,,)

Topic model:

Hij

for
T—pi; O

Note: [(uij) = pi; for Gaussian; l(u;;) = log
Logistic. See the text for details.

Table 1: LDA-based Factorization Model

1. zjn|0; ~ Multinom(6;), i.e., we draw a latent topic
for each word in item j from the document specific
multinomial, and

2. wjn|zjn ~ Multinom(®,;, ), i.e., after drawing the la-
tent topics for each word in the item, the words are
drawn from the topic specific (document independent)
multinomial distributions with topic = zjn.

To regularize the multinomial probabilities associated with
high dimensional simplices, we assume 0; ~ Dirichlet())
and ®;, ~ Dirichlet(n). Here, A and n are hyperparameters
of symmetric Dirichlet priors that indirectly control the en-
tropy induced in the posterior distribution [z;|{w;n}]. Large
values of hyperparameters would lead to less concentration
and higher entropy. The Dirichlet-multinomial conjugacy
enables us to marginalize over {®x} and {6}, so that one
could work directly with [{wjn}, {zjn}In, A\] and draw sam-
ples from the posterior of latent topics efficiently through
a collapsed Gibbs sampler for unsupervised LDA model fit-
ting as proposed in [16]. In fLDA | we shall also work with
the marginalized prior since the item factors are functions
of latent topic variables {z;»} that do not depend on the
multinomial probabilities {®} or {6,}. However, the func-
tional form of the collapsed Gibbs sampler for fLDA gets
modified by an exponential tilt through contribution from
the log-likelihood part of the first stage model that depend
on the ratings as we shall see later in Section 3. For easy
reference, we summarize our two-stage model succinctly in
Table 1 and show the graphical representation in Figure 1.

We now briefly describe the RLFM model in [2] since it
will be used as a baseline for comparison in our experiments.

RLFM Model: In this model, the item factors z; are re-
placed by continuous factors v; in the first stage observation
equation, in the second stage state equation the item factor
v; are assumed to have a regression prior, i.e., v; = Dx;+¢7,
where D is the regreession weight matrix on item features z;
and €; ~ N(0, Ay). All other details are same as in fLDA .

2.3 Discussion

We end this section with a brief discussion of why we chose
Z; to capture interactions in the first stage model instead
of 6;, the item multinomial topic probability vector. We
note that z; being the empirical distribution of word latent
factors in an item has more variability than 6;, this helps



Rating (i, j)

nth word
in item j

Win [ @‘@

Item j

User i

Figure 1: Graphical representation of fLDA . Vari-
ance components (0%, as, as, A;) are omitted for
succinctness.

in better behaved user level regressions and leads to faster
convergence.

3. TRAINING AND PREDICTION

In this section, we first provide a detailed description of
our model training procedure that is based on a Monte Carlo
Expectation Maximization (MCEM) algorithm and then dis-
cuss the prediction procedure. We begin with a precise for-
mulation of the optimization problem in the model training
phase followed by a description of our EM fitting algorithm.
For ease of exposition, we focus on the Gaussian first stage
model and discuss the Logistic model in Section 3.1.3.

For ease of exposition, let X;; = [x;,z;,x;;] denote the
features, A;; = [, B35, si] denote the continuous latent fac-
tors, and © = [b,go,do, H,0?, au,as, As, \,n] denote the
model parameters. We use the convention that y = {yi;},
X ={Xi;}, A={Ay}, 2 = {zjn} and w = {w;n}.

Following the empirical Bayes approach, given observed
ratings y and words w, the goal of training is to find the
parameter setting © that maximizes the incomplete data
likelihood (marginalizing over latent factors A and {z;n}):

0= argmgxPr[y,w |©, X],

Having obtained optimal value of © after optimizing the
incomplete data likelihood, inference and predictions can be
done through the posterior [A, {zjn} |y, w, ©, X].

3.1 Model Fitting

The EM algorithm[12] is well suited to fit factor models.
The factors in this case form the missing data that are aug-
mented to the observed data; complete data log-likelihood
is then obtained as product of likelihoods from our obser-
vation (first-stage) and state (second-stage) models. The
EM algorithm iterates between an E-step (taking expecta-
tion of complete data likelihood with respect to the posterior
of missing data (A, {z;»}) conditional on observed data and
current value of ©) and an M-step (in which we maximize the
expected complete data likelihood from the E-step to obtain
updated values of ©). At each iteration, the EM algorithm
is guaranteed not to deteriorate the value of incomplete data
log-likelihood. The major computational bottleneck is in the
E-step because the posterior of factors are not available in
closed form. Hence, we take recourse to Monte Carlo meth-
ods. We draw samples from this posterior and approximate
the expectation in E-step by taking Monte Carlo mean. This
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is known as the Monte Carlo EM (MCEM) algorithm [9]
in the literature. Alternatively, one can apply variational
approximation to derive a closed-form formula for the ex-
pectation, or apply the iterative conditional mode (ICM)
algorithm in which the expectation computation is replaced
by “plugging-in” the mode of the conditional distributions.
However,in our experience and other studies [24], sampling
usually provides better performance in terms of predictive
accuracy, while still being scalable. One reason for this be-
havior is the highly multi-modal nature of the posterior;
sampling in our experience ensures we do not get stuck in
a bad local mode region. In fact, we have found sampling
to be highly resistant to over-fitting even with increasing
number of factors; this is not the case with mode-finding
approaches that may overfit (see [2] for an example). Thus,
in this section, we focus on the Monte Carlo EM algorithm.
Let LL(O; A, z,y,w, X) = log(Pr[A, z,y,w | ©, X]) denote
the complete data log likelihood. Let 6" denote our cur-
rent estimate of © at the tth iteration. The EM algorithm
iterates through the following two steps until convergence.

e E-step: Compute Ea .[LL(O; A,z y,w, X)|0®] as
a function of ©, where the expectation is taken over
the posterior distribution of (A, z [0y, w, X).

e M-step: Find the © that maximizes the expectation
computed in the E-step.

e+l — arg max En[LL(O; A, z,y,w, X) | (;)(t)]

3.1.1 Monte-Carlo E-Step

Since Ea .[LL(O;A, z,y,w, X)| 0] is not available in
closed form, we compute the Monte-Carlo expectation based
on L samples generated by a Gibbs sampler[13]. The Gibbs
sampler repeats the following procedure L times. In the
following, we use (0 | Rest), where § can be one of «;, 5, si,
and z;n, to denote the conditional distribution of § given all
the others. Let Z; denote the set of users who rated item j,
and J; denote the set of items that user ¢ rated.

1. For each user i, sample «; from (a;|Rest), which is
Gaussian.
Let 0y = yi; — 2350 — B — s
Var{o;|Rest] = (i + Zjeji 712)71
Ela;|Rest] = Var[aﬂRes‘c](% +>

oij)
JET; o2

2. For each item j, sample 3; from (f; | Rest), which is
Gaussian.

Let 0ij = Yij — ‘Tijb — oy — ngj
Var(B;|Rest] = (5 + Yrer, 2)7"
E[B;|Rest] = Var{Bj[Rest](“0% + 32,1,

3. For each user ¢, sample s; from (s;|Rest), which is
Gaussian, for all 7.

Let 0y = yij — 2350 — ai —

Varfsi[Rest] = (A7" + 3¢ ;. 222) 7
E[si|Rest] = Var{s;|Rest](As " Haei + Y, ;. S




4. For each item j and each word n in item j, sample
Zjn from (zjn | Rest), which is multinomial. Assume
the word corresponding to zj, is wj, = £. Let Z;,ﬁ
denotes the number of times word ¢ belongs to topic k
in item j' with z;,, removed; i.e.,

Z;,gé” = zn,;m 1{z;,y = k and wj,» = £} and

Z0 =3 Wajrm =k and wjiy = £}, for j' # j.

Then, the multinomial probabilities are given by

—jn
Pr[zjn = k| Rest] % (Z;,fn + k) 9(y),
where Z,7" =Y, Z0, 27" =Y, 20", 23" =
> Z and, letting oy = yi; — x7; b — i — S,

9(y) = exp {2;B; — 57C}%; }
B; = ZZEI] 247t and C; = Ziezj 5;29

Note that here z; = 3, zjnr / Wj is the empirical
topic distribution of item j with z;, set to topic k.
For detailed derivation, see the appendix.

3.1.2 M-Step

In the M-step, we want to find the parameter setting
© = [b, go,do, H,02, aa, as, As, \, 7] that maximizes the ex-
pected complete data likelihood computed in the E-step.

O = arg max Ea-[LL(O; A, z,y,w, X) | 0]
where —LL(©; A, z,y,w, X) = constant

+3 > i) (22 (yij — o — B — xi;b— s7z;)° + log 0?)

+ i > (i — gozi)® + M log aa

+ 13 (si — Hxi)' A7 (si — Ha) + & log(det As)

+ 545 22, (8; — dow;)* + 5 logag

+ N (KlogI'(A\) — logT'(K\))

+32, (logT (Z; + KX) = 3, 10g T (Zjk + N))

+ K (WlogI'(n) — log I'(Wn))

+ >, (logD(Zk + Wn) — >, logT(Zke + 1)) -

It can be easily seen from the above equation that (b,c?),
(90, aa), (do,ag), (H,As), A and 5 can be optimized sep-
arately. In particular, the first four can be optimized by
solving four regression problems. The last two are single di-
mensional and can be solved easily by a grid search. In the
rest of this section, we provide the details. We use E[-] and
Var]-] to denote the Monte Carlo mean and variance.

Regression for (b,0%): Let 0;; = a; + 3; + siZ;. Here,
we want to minimize

o7 X5 Elyis — 2i;b — 0i3)*] + Dlog(o?),

where D is the number of observed ratings. It can be seen
that the optimal solution to b can be found by least squares
regression using x;; as features to predict (yi; — E[os;]). Let
RSS denote the residual sum of squares from this regression.
Then, the optimal o2 is (2245 Varloi;]+RSS)/D, where RSS
is the residual sum of squares of the regression.
Regression for (go,aq): Similar to the previous case,

the optimal go can be found by solving a regression problem
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using z; as features to predict E[ai], and the optimal a,, is
(3=, Varlow] + RSS) /M.

Regression for (do, ag): The optimal dy can be found by
solving a regression problem using x; as features to predict
E[B;], and the optimal ag = (3, Var[8;] + RSS)/N.

Regression for (H, A;): For simplicity, we assume the
variance-covariance matrix to be diagonal, i.e., As = asl.
Let Hj denote the kth row of H and s;; be the kth compo-
nent in s;. We find Hj, by solving a regression problem using
x; as features to predict E[s;x], for each topic k. Let RSSy
denote the residual sum of squares of the kth regression.
Then, as = (3, Var{six) + >, RSSy)/KM.

Optimization over 7n: We find n that minimizes

K (Wlogl(n) ~logT(Wn)
+ 5, (BllogT(Zi + Wn)] = X2, Ellog T (Zie + )]

Since this optimization is just one dimensional and 7 is a
nuisance parameter, we can simply try a number of fixed
possible n values.

Optimization over \: We find A that minimizes

N (K logI'(\) —log (K X))
+3, (BllogT (Z; + KA)] = ¥, EllogD(Zin + V)] )

Again, this optimization is single dimensional. We search
through a number of fixed points to find the best A value.

3.1.3 Remarks

Number of Gibbs samples: Replacing the precise E-
step with a Monte Carlo average no longer guarantees an
increase in the marginal likelihood at each step. If the
Monte Carlo sampling error associated with Opnew (an es-
timate of ©;;.,, that is obtained from true E-step) is large
relative to ||Ocurr — Ojiew ||, the Monte Carlo E-step is waste-
ful since it is swamped by the Monte Carlo error. There are
no rigorous solutions to this problem in the literature (espe-
cially when samples are dependent) except for some practical
guidelines [9]. For instance, it is better to use fewer Monte
Carlo simulations during early iterations. We performed ex-
tensive experiments with various schemes and found 20 EM
iterations with 100 samples (drawn after 10 burn-in samples)
at each iteration performed adequately in our experiments.
In fact, the performance was not too sensitive to the choice
of number of samples, even small number of samples like
50 did not hurt performance by much. We also note that
Gibbs sampler was chosen due to its simplicity; better sam-
pling methods to make the sampler mix faster is an open
research problem in the context of bilinear factor models.

Regularizing regressions: In the M-step, each regres-
sion is performed by using a t-prior on the coeflicients to
avoid overfitting.

Number of Topics: Based on several experiments in the
past and simulation studies, we have found the MCEM algo-
rithm to be resistant to over-fitting even when the number
of factors are mis-specified to be large, we did not try sev-
eral K values on the test data since that may inadvertently
lead to over-fitting and undermine the validity of our exper-
iments. Hence, in our experiments we run fLDA using a
large number of factors (20 — 25). In practice, one can also
perform cross validation within the training data to find the
best number of factors.

Scalability: Fixing the number of topics, the number of
EM iterations and the number of Gibbs samples per itera-



tion, the MCEM algorithm is essentially linear in the num-
ber of (rating + word) observations. In our experience, we
observe that the MCEM algorithm converges quickly after
a fairly small number of EM iterations (usually around 10).
We also note that the algorithm is highly parallelizable. In
particular, when drawing a sample for user (or item) factors,
one can partition the users (or items) and draw a sample
for each partition independently. For parallel algorithms to
draw LDA samples, see for example [29].

Fitting Logistic regression: This is done through a
variational approximation that involves a weighted Gaussian
regression after each EM iteration (see [2] for details).

3.2 Prediction

Given the observed ratings y and words w in the train-
ing data, our goal is to predict the rating y;;* of user ¢
on item j. We can predict the rating by the posterior mean
Elyi™ |y, w, 6,X ]. For computational efficiency, we approx-
imate the posterior mean by

Ely™ |y, w,0,X] = b+ ai+ f; + Els; 2]

xi b+ 6 + B + 8, Z,

Q

where § = E[6 |y, w, ©, X] (6 take values in {a;}, {8;}, {s:})
is estimated in the training phase. For estimating z; for a
new item j in cold-start scenarios, we use Gibbs sampling
to obtain topic distribution of words w; in item j through
unsupervised LDA sampling formula. However, note that
the topic X word matrix ® used during the sampling is the one
obtained from fLDA ; hence the predictions are influenced
by ratings even for new items.

4. EXPERIMENTS

We show the effectiveness of fLDA using three real-life
datasets. Specifically, we use the widely studied MovieLens
(movie rating) dataset to show that the predictive accuracy
of fLDA is among the best compared to six popular collab-
orative filtering methods. Here, because each movie in the
test set has enough ratings in the training set to estimate
the movie factors, fLDA does not provide improved accu-
racy. Next, we report a case study of how fLDA can be
used to provide interpretable, personalized recommendation
on a social news service site using the Yahoo! Buzz dataset.
We show that fLDA significantly outperforms the state-of-
the-art method when there are many new items that do not
appear in the training dataset, and it can also identify high
quality topics from news stories. Finally, we present another
case study using a book rating dataset. Again, we show that
fLDA can provide better predictive performance than state-
of-the-art methods. We note that we also ran fLDA with
a few different random seeds and obtained essentially the
same results.

4.1 MovieLens Data

In this section, we illustrate our method on the widely
studied movie recommender problem. Since both user and
item features are central to our method, we did not con-
sider Netflix (no user features are available). Instead, we
analyzed the MovieLens data that consists of 1M ratings on
6,040 users and 3,706 movies. User features used include
age, gender, zipcode (we used the first digit only), and oc-
cupation; item features include movie genre (this was only
used with RLFM). To construct bag-of-word features, we
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Model Test RMSE
fLDA 0.9381
RLFM 0.9363
unsup-LDA 0.9520
Factor-Only 0.9422
Feature-Only 1.0906
FilterBot 0.9517
MostPopular 0.9726
Constant 1.1190

Table 2: Test-set RMSE on Movielens

supplemented the movie features with actor, actress and di-
rector names, we also extracted words from movie titles and
plots. We further split the data into training set and test
set based on time; the first 75% ratings in chronological or-
der are used as training while the rest is used as test. This
data was analyzed in [2] and compared to several benchmark
methods; we report root mean square errors (RMSE) here
along with results from fLDA in Table 2.

Methods: The Constant model predicts the rating as
training data average for all test cases; Feature-Only is a
regression model trained on user and item features (genre)
only, Factor-Only is the usual matrix factorization model
with zero-mean priors, Most-Popular is a model based
only on user and item bias that are regularized using features
and Filter-Bot is a collaborative filtering method that is
used to deal with warm-start and cold-start problems simul-
taneously (we do not report on other collaborative filtering
methods like item-item similarity since they were all worse
than Filter-Bot). RLFM is the regression-based latent fac-
tor model proposed in [2]. unsup-LDA is the counterpart
of fLDA by using unsupervised LDA; i.e., it first applies un-
supervised LDA to identify topics of each word in each item
and then fit f{LDA by fixing Z; to be the unsupervised topics.

For this dataset, a large fraction of ratings in the test
set (almost 56%) involved new users, but most of them in-
volved old items for which ratings are available in the train-
ing data. The key to have good accuracy is whether a model
can handle cold-start for users, which is not the target ap-
plication scenario for fLDA . Thus, we did not expect sub-
stantial improvements from fLDA relative to RLFM, which
is the best among the methods we tried on this dataset.
The main purpose of this analysis was to demonstrate that
fLDA performs equally well in warm-start scenarios where
we have ratings on most items seen in the test set. We note
that it is not unreasonable to see RLFM slightly outperforms
fLDA, because its item factors are initialized with possibly
cleaner human labeled movie genres (while fLDA only uses
possibly noisier bag-of-word features) and are trained using
a large number of observations.

4.2 Yahoo! Buzz Application

Yahoo! Buzz (at buzz.yahoo.com) is a social news ser-
vice site that recommends “buzzing” news stories to users;
votes on articles (“buzz up” or “buzz down”) is an impor-
tant source of information used in deciding recommenda-
tions. Currently, it has a global ranked list of news stories
and 12 category-specific ranked lists. Once a user is signed
in, Yahoo! Buzz can also recommend articles buzzed by the
user’s friend. At present, the site does not use collaborative-
filtering-style algorithms. In this section, we conduct an of-
fline analysis to explore this possibility through fLDA.
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Figure 2: ROC curves of different methods

We collected 620,883 votes that were generated by 4,026
users rating 10,468 articles over a three-month period. To
minimize the effect of spamming votes, we only selected ar-
ticles from trusted sources and users with reasonable num-
bers of votes (no more than 1000 votes). We treat “buzz up”
votes as ratings with value 1, and “buzz down” votes as rat-
ings with value -1. In this application, the majority of votes
are “buzz up” since users usually “buzz down” a article only
when they really dislike it; it is difficult to obtain explicit
feedback on articles that are not of interest to them. Thus,
for each user who had N votes, we randomly selected IV ar-
ticles not voted by the user and gave them a user rating of 0.
Since users usually like a small number of articles, it is rea-
sonable to assume that random articles would not interest
them. Each user is associated with his/her age and gender.
We converted age values into 10 age groups (each of which
has a equal number of users). Each article is associated with
its title, description and a set of categories determined by
Yahoo! Buzz. We removed the stop words, ran an entity
recognizer to identify named entities, and stem the terms
by the Porter stemmer. Then, we created a training dataset
by using the first two months and a test dataset using the
last one month of data. Since the articles are related to
news, most articles in the test dataset are new and do not
appear in the training dataset.

We compare three models: fLDA with 25 supervised top-
ics, RLFM (the state-of-the-art method) with 25 factors and
unsup-LDA with 25 unsupervised topics. The ROC curves
(plotting true positive rate as a function of false positive
rate) are shown in Figure 2(a). To plot ROC curves, we
treat ratings with value 1 as positives and ratings with value
0 or -1 as negatives. It can be clearly seen that fLDA sig-
nificantly outperforms RLFM and unsup-LDA, and RLFM
is slightly better than unsup-LDA.

In Table 3, we list interesting topics identified by fLDA.
As can be seen, fLDA was able to identify important news
topics in Yahoo! Buzz, e.g., CIA’s harsh interrogation tech-
niques in the Bush administration (topic 1), swine flu (topic
2), the gay marriage issue (topic 4), the economy downturn
(topic 13), the North Korean issue (topic 14), the Amer-
ican International Group and General Motor issue (topic
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25). We note that most of the topics are quite easy to inter-
pret. However, we found 6 out of 25 topics are too general
to be useful. We also note that unsupervised LDA also iden-
tified interpretable topics. Roughly half of the topics look
similar to those identified by fLDA. However the predictive
performance of unsup-LDA is much worse than fLDA.

To summarize our analysis of Buzz data, fLDA was able
to identify interesting topics (more than 3/4 are easily inter-
pretable) and provides superior predictive performance over
the state-of-the-art method.

4.3 BookCrossing Dataset

BookCrossing (at www.bookcrossing.com) is an online book
club. Uses can rate books on a 1-to-10 scale. In prior work,
Ziegler et al. [31] collected book ratings from the site.? The
data is quite noisy; there are invalid ISBN’s; and some of the
ISBN’s in the rating file cannot be found in the book descrip-
tion file. We cleanup the dataset by only taking the books
that have at least three ratings and have reviews from the
product description pages of Amazon.com. We then took
the book reviews from Amazon.com as the text description
about the books. For each book, we take the top 70 terms in
the review with high TF/IDF scores. We selected users with
at least 6 ratings. Each user in the dataset is associated with
his/her age and location. We converted age values into 10
age groups and only took countries with at least 50 users as
the location feature. We removed all the “implicit” ratings
since they are not real ratings and their meaning is unclear.
To prevent test-set errors from being dominated by a small
number of outliers, we removed ratings with values from 1
to 4 (which accounts for less than 5% of explicit ratings),
and rescaled rating values from the range between 5 and
10 to the range between -2.5 and 2.5. At the end, we have
149,879 ratings for 25,137 books from 6,981 users. We then
create training-test split by three-fold cross validation. For
each user, we randomly put the books that he/she rated into
three buckets. In the nth fold, ratings in the nth bucket is
used as test data and the rest are used as the training data.

2The BookCrossing dataset can be downloaded from
http://www.informatik.uni-freiburg.de/ cziegler/BX/



Topic Terms (after stemming)

1 bush, tortur, interrog, terror, administr, cia, offici, suspect, releas, investig, georg, memo, al, prison, george w. bush,
guantanamo, us, secret, harsh, depart, attornei, detaine, justic, iraq, alleg, probe, case, said, secur, waterboard

3 mexico, flu, pirat, swine, drug, ship, somali, border, mexican, hostag, offici, somalia, captain, navi, health, us, attack, cartel,
outbreak, coast, case, piraci, violenc, u.s., held, spread, pandem, kill

4 nfl, player, team, suleman, game, nadya, star, high, octuplet, nadya_suleman, michael, week, school, sport, fan, get, vick,
leagu, coach, season, mother, run, footbal, end, dai, bowl, draft, basebal

6 court, gai, marriag, suprem, right, judg, rule, sex, pope, supreme_court, appeal, ban, legal, allow, state, stem, case, church,
california, immigr, law, fridai, cell, decis, feder, hear, cathol, justic

8 palin, republican, parti, obama, limbaugh, sarah, rush, gop, presid, sarah_palin, sai, gov, alaska, steel, right, conserv, host,
fox, democrat, rush_limbaugh, new, bristol, tea, senat, levi, stewart, polit, said

9 brown, chri, rihanna, chris_brown, onlin, star, richardson, natasha, actor, actress, natasha_richardson, sai, madonna, milei,
singer, divorc, hospit, cyru, angel, wife, charg, adopt, lo, assault, di, ski, accid, year, famili, music

10 idol, american, night, star, look, michel, win, dress, susan, danc, judg, boyl, michelle_obama, susan_boyl, perform, ladi,
fashion, hot, miss, leno, got, contest, photo, tv, talent, sing, wear, week, bachelor

11 nation, scienc, christian, monitor, new, obama, christian_science_monitor, com, time, american, us, world, america, climat,
peopl, week, dai, michel, just, warm, ann, coulter, chang, state, public, hous, global

12 obama, presid, hous, budget, republican, tax, barack, democrat, barack obama, parti, sai, senat, congress, tea, administr,
palin, group, spend, white, lawmak, politico, offic, gop, right, american, stimulu, feder, anti, health

13 economi, recess, job, percent, econom, bank, expect, rate, jobless, year, unemploy, month, record, market, stock, financi,
week, wall, street, new, number, sale, rise, fall, march, billion, februari, crisi, reserv, quarter

14 north, korea, china, north_korea, launch, nuclear, rocket, missil, south, said, russia, chines, iran, militari, weapon, countri,
chavez, korean, defens, journalist, japan, secur, nkorea, us, council, u.n., leader, talk, summit, warn

20 com, studi, space, livesci, research, earth, scientist, new, like, year, ic, station, nasa, water, univers, diseas, planet, human,
discov, ancient, rare, intern, risk, live, find, expert, red, size, centuri, million

22 israel, iran, said, isra, pakistan, kill, palestinian, presid, iraq, war, gaza, taliban, soldier, leader, attack, troop, milit, govern,
afghanistan, countri, offici, peac, group, us, minist, mondai, bomb, militari, polic, iraqi

23 plane, citi, air, high, resid, volcano, mondali, peopl, crash, jet, flight, erupt, south, itali, forc, flood, mile, alaska, small, hit,
near, pilot, dai, mount, island, storm, river, travel, crew, earthquak

25 bonus, american_international group, bank, billion, gener, compani, million, madoff, motor, financi, insur, treasuri, govern,

bailout, bankruptci, execut, chrysler, gm, corp, general_ motor, monei, pai, auto, ceo, giant, group, automak

Table 3: Some Topics identified by fLDA from the Yahoo! Buzz data

Model RMSE MAE
fLDA  1.3088 1.0317
RLFM 1.3278 1.0553
unsup-LDA  1.3539 1.0835

Table 4: Test-set RMSE for Book-Crossing

The test-set RMSE’s, MAE’s of fLDA with 25 supervised
topics, RLFM with 25 factors and unsup-LDA with 25 un-
supervised topics are listed in Table 4. The ROC curves (by
treating ratings above zero as positives and ratings below
zero as negatives) are shown in Figure 2(b). On this dataset,
fLDA outperforms RLFM, which outperforms unsup-LDA.
However, the differences are small.

5. RELATED WORK

Recommender systems have a rich literature by now and
have seen rapid progress in the past few years primarily trig-
gered by the Netflix competition (a proper review is not
possible here). Although several new methods have been
proposed, those based on matrix factorization [25, 24, 5,
1] and neighborhood based methods [18, 6] have become
popular and are widely used. Neighborhood based meth-
ods are popular due to their easy interpretation; a user gets
an item recommendation if other users with similar tastes
have liked the item. Factorization based methods are in
general more accurate but the factors are hard to interpret.
Recently, several papers have explored models to better reg-
ularize the latent factors, primarily inspired by the task of
improving RMSE for the Netflix data[19]. Using unsuper-
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vised LDA topics as features in recommender systems was
explored in [17]. In Section 4, we showed fLDA can signifi-
cantly outperform unsupervised LDA.

Models to address both cold-start and warm-start that
have been studied in collaborative filtering are also related
to fLDA . Although studied extensively [4, 11, 15, 20, 26],
only recently has this topic started getting attention in a fac-
torization model framework [30, 2, 28]. Our fLDA model
is an addition to this literature and works with discrete fac-
tors for items regularized through an LDA prior. Other than
providing good predictive performance, it also helps inter-
pretation that are useful in some applications.

Our work is related to supervised LDA [7], a variation of
LDA that incorporates regression in estimating the topics.
However, sLDA only fits a single global regression to item
factors, we fit one per user. This work was also inspired by
conjoint analysis that is often conducted in marketing [23].
The goal is to estimate individual partworths (user factors)
to items. However, item characteristics in this analysis are
known features, fLDA obtains item factors by converting
item meta-data that are in bag-of-words form into concise
topic vectors.

Relational learning [14] is also related. In a very general
sense, fLDA is a relational model. However, joint modeling
of ratings given by users to items and words in items has not
been studied in the literature. In related work, Porteous et
al. [21] apply LDA to cluster users and items into groups
and model ratings using the group membership; Singh et
al. [27] propose to jointly model user-to-item rating relation,
user-to-feature relation and item-to-feature relation via joint
factorization of multiple matrix.



6. CONCLUSION

We presented a new factorization model fLDA that pro-
vides significantly better performance in applications where
items have a bag-of-words representation, commonplace in
many web applications. The key idea that differentiates
fLDA from previous work in the area is the use of an LDA
prior to regularize item factors. As an additional benefit,
fLDA may provide interpretable user factors as affinities to
latent item topics. In fact, we illustrate both prediction ac-
curacy and interpretability on a real world example related
to content recommendation on Yahoo! Buzz.

Our work has opened up several avenues for future re-
search. In section 1, we discussed the potential benefit of
using output from fLDA for applications like content pro-
gramming to help in media-scheduling problems and user
targeting in display advertising. This requires more follow-
up work. On the algorithmic front, we note that updat-
ing the posterior of s; requires inverting a K x K matrix
which can be computationally expensive for large K. One
solution to this problem could be to express s;'z; as S;sz
where Qi xk is a global matrix estimated from data and
K, < K. Finally, although we have illustrated fLDA on a
real world application and on benchmark datasets, we are
currently scaling up computations in a map-reduce frame-
work to work with massive datasets on several other appli-
cations in advertising and content recommendation.
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APPENDIX

In the following, we derive the formula for Pr[z;, = k|Rest]. Let
z-jn denote z with zj, removed, and w;, = £. We have

Pr(zjn = k|Rest] o< Pr[zj, = k,y| zﬁjn,A,é(t),w,X]
x Prlzjn, = k| w,zﬂjn,é@] H Prlyij | zjn =k, 2-jn, 4, é(t>7X].
i€l
Przjn = k| w,zﬁjn,@(t)]
x Pr(zjn =k, wjn = | w—jn, 2-jn, @(t)]
= Pr{wjn =L | Wojn, Zjn =k, 2jn, 1] Prizjn =k|z-jn, A
= B[P | wﬁjnvzﬁjmn] E[ij ‘ Z=jn; Al
Z™ Z;kjn-&-kk
Z7" + W Z;J" + 36 Ak

Note that the denominator of the second term (Z;j" + 2 Ak)
is independent of k. Thus, we obtain

Z3™

Pr(z;, = k|Rest] x —%——
ey = | Rest] o« 20

3"+ 1 fiswis)
i€T;

where f;;(yi;) is the probability density at y;;, which is Gaussian

with mean :):;j b+ a; + B; + st z; and variance o2, and z; is

computed by setting z;, = k. Let 0;; = y;5 — xgj b—a; — B;.

1 (0ij — 8% 25)2
[T fij(vij) o exp -3 > L
. . o
i€Z; i€Z;

1
o exp {Z;Bj — §2§-Cj2j}

’
0i;S; sis!
where B;j = E I and C; = E L
) o2 ; 2
i€Z; €L




