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ABSTRACT

Parallel training of an ensemble of Deep Neural Networks (DNN) on a cluster of nodes is an effective approach

to shorten the process of neural network architecture search and hyper-parameter tuning for a given learning

task. Prior efforts have shown that data sharing, where the common preprocessing operation is shared across the

DNN training pipelines, saves computational resources and improves pipeline efficiency. Data sharing strategy,

however, performs poorly for a heterogeneous set of DNNs where each DNN has varying computational needs

and thus different training rate and convergence speed. This paper proposes FLEET, a flexible ensemble DNN

training framework for efficiently training a heterogeneous set of DNNs. We build FLEET via several technical

innovations. We theoretically prove that an optimal resource allocation is NP-hard and propose a greedy algorithm

to efficiently allocate resources for training each DNN with data sharing. We integrate data-parallel DNN training

into ensemble training to mitigate the differences in training rates and introduce checkpointing into this context

to address the issue of different convergence speeds. Experiments show that FLEET significantly improves the

training efficiency of DNN ensembles without compromising the quality of the result.

1 INTRODUCTION

Recent years have witnessed rapid progress in the develop-

ment of Deep Neural Networks (DNN) and their successful

applications to the understanding of images, texts, and other

data from sciences to industry (Patton et al., 2018; Math-

uriya et al., 2018; Ratnaparkhi & Pilli, 2012).

An essential step to apply DNNs to a new data set is hyper-

parameter tuning—that is, the selection of an appropriate

network architecture and hyper-parameters (e.g., the number

of layers, the number of filters at each layer, and the learn-

ing rate scheduling). It is called Neural Architecture Search

(NAS) when the tuned parameters determine a DNN’s archi-

tecture. Many different search strategies have been proposed

such as random search (Bergstra & Bengio, 2012; Li & Tal-

walkar, 2019), reinforcement learning (Zoph & Le, 2016;

Zoph et al., 2018), evolutionary methods (Salimans et al.,

2017), and Bayesian Optimization (Kandasamy et al., 2018).

Most existing methods used today need to train a large set

of DNN candidates with different architectures (e.g. 450

networks being trained concurrently in (Zoph et al., 2018))

to identify the best model for a particular task.
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An effective strategy for shortening the process of hyper-

parameter tuning and NAS is to concurrently train a set

of DNNs on a cluster of nodes1, which is referred to as

ensemble training of DNNs. We refer to an ensemble of

DNNs with the same architecture as a homogeneous en-

semble. Otherwise, the ensemble is called heterogeneous

ensemble.

A common ensemble training strategy is to duplicate a train-

ing pipeline on multiple nodes to train DNNs in parallel. A

typical DNN training pipeline is an iterative process includ-

ing data fetching, preprocessing, and training. For the ease

of description, we refer to data fetching and preprocessing

together as preprocessing. In ensemble training, training

steps are not identical because we train models with different

architectures and configurations. However, preprocessing

is redundant across the pipelines, resulting in unnecessary

CPU usage and even poor pipeline performance.

To eliminate the redundancies, Pittman et al. (Pittman et al.,

2018) proposed data sharing where the common preprocess-

ing operations are shared across training pipelines of all

DNNs in an ensemble. They demonstrated that data sharing

is an effective strategy to reduce computational resource

utilization and improve pipeline efficiency. Their solution,

however, assumes relatively homogeneous computational

needs for DNNs in an ensemble. It may perform poorly

1A “node” in this paper refers to a machine in a cluster; one
node may contain one or more CPUs and GPUs



FLEET

Operation

State of DataStorage Data Access

PreprocessingTraining

Raw data

Preprocessed
Data

Figure 1: A DNN training pipeline (Pittman et al., 2018).
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Figure 2: An illustration of data-parallel DNN train-

ing (Sergeev & Del Balso, 2018).

for an heterogeneous ensemble due to the variance of DNN

model training from two algorithmic characteristics.

The first algorithmic characteristic is varying training rate.

Training rate of a DNN is the compute throughput of pro-

cessing units (e.g., CPUs and GPUs) used for training the

DNN. Each DNN in an heterogeneous ensemble could have

varying computational needs and thus different training rates

with the same computing resources (Canziani et al., 2016;

Sze et al., 2017). If a DNN consumes preprocessed data

slower than other DNNs, others will have to wait for the

slower one before evicting current set of cached batches

when we employ synchronized data fetching for data shar-

ing to ensure that each DNN is trained using the entire

dataset. This waiting lowers the utilization of computing

resources in the cluster and delays the overall training time

of the ensemble.

The second one is varying convergence speed. Due to the

differences in network architecture or hyper-parameter set-

tings, some DNNs may require a larger number of epochs

(one epoch goes through all data samples once) to converge

than others (Krizhevsky et al., 2012; He et al., 2016; Huang

et al., 2017; Zagoruyko & Komodakis, 2016). There can be

scenarios where a subset of DNNs in the ensemble have al-

ready converged while the shared preprocessing operations

have to keep prepossessed data for the remaining DNNs.

Resources allocated to these converged DNNs will be under-

utilized until the training of all the DNNs is completed.

To address the issues, we propose FLEET, a flexible ensem-

ble training framework for efficiently training a heteroge-

neous set of DNNs. We build FLEET via several technical

innovations. First, we formalize the essence of the problem

into an optimal resource allocation problem. We analyze

the computational complexity of the problem and present

an efficient greedy algorithm that groups a subset of DNNs

into a unit (named flotilla) and effectively maps DNNs to

GPUs in a flotilla on the fly. The algorithm incurs marginal

runtime overhead while balancing the progressing pace of

DNNs. Second, we develop a set of techniques to seam-

lessly integrate distributed data-parallel training of DNN,

preprocessing sharing, and runtime DNN-to-GPU assign-

ments together into FLEET, the first ensemble DNN training

framework for heterogeneous DNNs. We introduce check-

pointing into this context to address the issue of different

convergence speeds. FLEET features flexible and efficient

communications and effective runtime resource allocations.

Experiments on 100 heterogeneous DNNs on SummitDev,

the Oak Ridge Leadership Computing Facility (Sec 6.1),

demonstrate that FLEET can speed up the ensemble training

by 1.12-1.92X over the default training method, and 1.23-

1.97X over the state-of-the-art framework that was designed

for homogeneous ensemble training.

2 BACKGROUND

This section provides the necessary background of DNN

training pipeline and data-parallel DNN training.

DNN Training Pipeline. As shown in Figure 1, a typical

DNN training pipeline is an iterative process containing

three main stages: data fetching, preprocessing, and training.

In each iteration, data is fetched to the main memory and

then run through a sequence of preprocessing operations

such as decoding, rotation, cropping, and scaling. The

preprocessed data is arranged into batches and consumed

by the training stage. The batch size is the number of data

samples used simultaneously per step.

The modern computing clusters and data centers have

evolved into a hybrid structure that contains both CPUs and

GPUs on each node. These heterogeneous CPU-GPU clus-

ters are particularly useful for DNN training as CPUs and

GPUs can work together to accelerate the training pipeline.

Compared to the training stage, preprocessing is usually

less computation intensive. To pipeline the preprocessing

and DNN training, typically preprocessing is performed

on CPUs while training on another batch of data happens

simultaneously on GPUs.

Data-Parallel DNN Training. Data-parallel DNN training

trains a single DNN using multiple training pipelines where

each pipeline handles a different subset of data. As illus-

trated in Figure 2, each pipeline fetches a different subset of

data from storage and prepossesses data independently. In

the training stage, gradients are calculated by each pipeline

and are reduced so that every pipeline has the same aver-

aged gradients. The averaged gradients are used to update

the model to make sure each pipeline has the same copy of
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Table 1: The job of different processes.

Process Type Job Description

Preprocesser
fetch data from storage, preprocess the data, and send

the preprocessed data to its paired training group master.

Training Group Master

receive the preprocessed data from its paired preprocesser,

scatter it within its training group, broadcast the data to

other training group masters, and train the DNN using

the assigned batch of data.

Training Worker
receive the assigned batch of data from its training

group master and use it to train the DNN.

P1

P2

T1 
(D1) 

T2 
(D2) 

T3 
(D2) 

T4 
(D3) 

T5 
(D4) 

T6 
(D4) 

T7 
(D4) 

T8 
(D4) 

Figure 3: An illustration of the ensemble training pipeline in

FLEET. P1 and P2 are preprocessors and T1-T8 are trainers.

There are four training groups, (T1), (T2, T3), (T4), (T5,

T6, T7, T8), which train the four DNNs D1-D4 respectively.

Edges indicate transfers of preprocessed images.

model parameters.

Pipelines in data-parallel DNN training can run either on

the same computing node using intra-node communication

(single node multiple GPU training) or different nodes us-

ing inter-node communication (multiple node multiple GPU

training). For the existing communication interfaces (e.g.,

MPI), the intra-node communication is usually more effi-

cient than inter-node communication. Thus, it is preferred to

allocate pipelines on the same computing node rather than

on different nodes. As it is common to run only one pipeline

on a single GPU, the number of GPUs available to train

a DNN model practically limits the maximum number of

pipelines that can be created in data-parallel DNN training.

3 OVERVIEW OF FLEET

This section gives an overview of FLEET. FLEET is a flex-

ible pipeline software architecture for efficient ensemble

training of heterogeneous DNNs. It provides flexibility for

configuring the scheduling of DNNs on nodes and GPUs

via separation of preprocessing and training into different

processes and a collection of communication schemes. It

creates efficiency via heterogeneity-conscious runtime re-

source allocation and scheduling, plus sharing of prepro-

cessing results among DNNs.

FLEET uses two types of processes, called preprocessor and

trainer, to perform preprocessing and training separately.

A trainer group contains at least one trainer processes and

is responsible for training one DNN in the ensemble. A

trainer process uses one GPU for training. When a trainer

group contains more than one trainer process, they perform

data-parallel DNN training for one DNN. Each trainer group

has a trainer as the training group master and zero or more

trainers as the training workers. The preprocessors commu-

nicate directly with only some master trainers, and those

master trainers forward the preprocessed data to other train-

ers. Figure 3 illustrates the ensemble training pipeline in

FLEET. The job of each process is summarized in Table 1.

Efficiency and Flexibility. Two important features of

FLEET are its efficiency and flexibility.

The efficiency of FLEET comes from its novel resource allo-

cation strategy developed for DNN ensemble training. The

strategy is powered by some fundamental understanding of

this resource allocation problem, and a greedy scheduling

algorithm designed specifically to heterogeneous ensemble

training. The algorithm seamlessly integrates data-parallel

distributed training with ensemble training. As illustrated

in Figure 3, different number of GPUs can be allocated to

each DNN so that the DNNs can reach a similar training

rate, avoiding the pipeline inefficiency caused by the slowest

DNNs. It overcomes the NP-hardness of the resource allo-

cation problem through a greedy design, grouping DNNs

into multiple flotillas and periodically (re)allocate GPUs

to remaining DNNs in a global efficient manner. It further

leverages check-pointing to mitigate the issue of varying

convergence speeds among DNNs. Together, FLEET is able

to achieve efficient ensemble training while enabling data

sharing to save CPU usage.

The flexibility of FLEET is in two aspects. First, decoupling

preprocessing and training using different processes2 pro-

vides the flexibility in configuring the number of preproces-

sors such that the preprocessing throughput can match the

trainers’ throughput without creating too many preproces-

sors that may waste computing resource and power. Second,

as each trainer is associated with one GPU, resources for

training can be allocated in the granularity of GPUs (rather

than nodes as in prior work (Pittman et al., 2018)). Each

GPU in a node can be assigned independently to DNNs.

Each DNN in an ensemble can be trained using different

numbers of GPUs concurrently, giving flexibility for han-

dling the heterogeneity in DNNs.

Two-fold Enabling Techniques. The key technical contri-

butions that make FLEET possible are two-fold. The first

is theoretical, consisting of a deep understanding of the re-

source allocation problem and some novel algorithms for

assigning DNNs to GPUs. The second is empirical, con-

sisting of a set of solutions to the various challenges for

implementing FLEET above the array of complex software

2The reason we used processes instead of threads is due to
the Global Interpreter Lock in Python. As FLEET is built on
TensorFlow which is in Python, multi-processing brings maximum
parallelism into the training pipeline.
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Table 2: Notations.

Notation Description

N the number of DNNs in an ensemble.

M the number of GPUs available in a cluster.

K the number of DNN flotillas.

D the list of DNNs in an ensemble, D = [D1, · · · , DN ].
F the list of flotillas of DNNs, F = [F1, · · · ,FK ].

Fk the k-th flotilla of DNNs, Fk = [D
(k)
1 , · · · , D

(k)
Nk

].

D
(k)
i

the i-th DNN in the k-th flotilla.

Nk the number of DNNs in the k-th flotilla.

A the list of GPU allocations, A = [A1, · · · , AK ]
Ak a Nk-by-M matrix, the GPU allocations for the k-th flotilla of DNNs.

a
(k)
i,j

whether the j-th GPU is assigned to D
(k)
i

.

m
(k)
i

∑M
j=1 a

(k)
i,j

, the number of GPUs assigned to D
(k)
i

.

r
(k)
i

(m) the training rate of D
(k)
i

trained with m GPUs.

components (TensorFlow, Horovod, Python, MPI, etc.) on

a heterogeneous Multi-GPU supercomputer like Summit-

Dev (Sum, 2019). We present the two-fold contributions in

the next two sections respectively.

4 RESOURCE ALLOCATION ALGORITHMS

Efficient ensemble training is essentially an optimal resource

allocation problem. The resources involve CPUs and GPUs

in the modern heterogeneous computing clusters. Under the

context of data sharing, an optimal CPU allocation sets the

number of preprocessors to be the one that just meets the

computing requirement of training DNNs. GPU allocation,

however, is much more complex and determines the pipeline

efficiency. We formalize it as an optimal resource alloca-

tion problem and analyze its computational complexity; the

understanding motivates our later designs of the practical

algorithms and the FLEET architecture. We next start with

the problem definition.

4.1 Problem Definition

There are two possible paradigms for scheduling DNNs

on GPUs. A local paradigm assigns a DNN to a GPU

immediately when the GPU becomes vacant. A global

paradigm periodically examines the remaining DNNs and

does a global (re)assignment of the DNNs to all GPUs.

The local paradigm is relatively easy to understand; the

global paradigm has the potential to avoid the local optimal

but is more difficult to design. Particularly, to effectively

realize the global paradigm, several open questions must be

answered: Is an optimal scheduling algorithm feasible? If

so, what is it? If not, how to efficiently approximate it? This

section focuses on the global paradigm and explores these

open questions. For easy reference, we put into Table 2 the

important notations used in the rest of this paper.

In this scheduling problem, the entire execution trains N

DNNs on M GPUs in K rounds. The beginning of a round

is the time for globally (re)scheduling remaining DNNs on

GPUs. The set of DNNs being trained in each round is

called a flotilla. So there are K flotillas being trained in the

execution, one flotilla a round.

Theoretically, a round can be a time period of an arbitrary

length. We first focus on a simple case where a round

finishes when and only when the training of all the DNNs in

a flotilla finishes (e.g., converges or the maximum training

epochs reached). In this setting, the GPUs that are done

with its work in the current flotilla earlier than other GPUs

would have some idle waiting time. The simplicity of this

setting, however, makes the analysis easy to understand. We

will briefly discuss the complexities of the more general

settings at the end of Section 4.2.

We now give a formal definition of the resource allocation

problem in the focused setting. Each DNN in the ensemble

are placed into at least one of the flotillas Fk, k = 1, · · · ,K
such that a list of K flotillas F = [F1, · · · ,FK ] cover all

the DNNs. Each flotilla, Fk = [D
(k)
1 , · · · , D

(k)
Nk

], contains

no more than M DNNs (i.e., Nk ≤ M ) such that each

DNN in the flotilla can have at least one GPU. Let A =
[A1, · · · , AK ] be the GPU assignment for the K flotillas of

DNNs. Each assignment Ak is a Nk-by-M matrix (a
(k)
i,j )

with:

a
(k)
i,j =

{

1, if the j-th GPU is assigned to the model D
(k)
i ,

0, otherwise,

s.t.

Nk
∑

i=1

a
(k)
i,j ≤ 1 (j = 1, 2, · · · ,M),

M
∑

j=1

a
(k)
i,j ≥ 1 (i = 1, 2, · · · , Nk).

An optimal resource allocation is an allocation strategy of

available GPUs in a cluster to DNNs in an ensemble such

that the end-to-end training time of the DNNs is minimized.

The definition is as follows:

Definition 1 Optimal Resource Allocation. Given a DNN

ensemble D and a cluster of nodes with totally M GPUs,

let T (D|F ,A) be the end-to-end time to finish the training

of all the DNNs according to the list F and the correspond-

ing GPU assignment A. The optimal resource allocation

problem is to find a schedule (F∗,A∗) such that

F∗,A∗ =argmin
F,A

T (D|F ,A) (1)

=argmin
F,A

K
∑

k=1

T (Fk|Ak), (2)

where, T (Fk|Ak) is the time spent on training the DNNs in

the Fk with the assignment Ak for some epochs.
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Algorithm 1 Greedy Algorithm

Input: D,M // DNN ensemble and the number of GPUs
Output: F ,A // A list of flotillas and GPU assignments
1: R = profile(D) // Profile training rates of each DNN trained

using m = 1, · · · ,M number of GPUs.
2: F ,A, cands, k = [], [],D, 1
3: while |cands| > 0 do
4: Fk,mk = createFlotilla(cands,R,M ) // Step 1: Create

a new flotilla from candidate DNNs; return the flotilla of
DNNs (Fk) and GPU count vector (mk)

5: Ak = getGPUAssignment(Fk,mk) // Step 2: Figure out a
GPU assignment for the flotilla

6: dels = train(Fk, Ak) // Step 3: Load the latest checkpoint if
available; train DNNs in the flotilla for some epochs; return
converged models (dels).

7: cands− = dels // Remove converged models from candi-
dates (cands)

8: F .append(Fk); A.append(Ak); k+ = 1
9: end while

4.2 Complexity Analysis

In this part, we argue that the Optimal Resource Allocation

problem is NP-hard in general. The argument comes from

the classic results in Parallel Task System Scheduling. As

Du and Leung have proved (Du & Leung, 1989), finding an

optimal non-preemptive schedule for a Parallel Task Sys-

tem with the precedence constraints consisting of chains is

strongly NP-hard for each n > 2 (n is the number of proces-

sors). And, when the precedence constraints are empty, the

problem is strongly NP-hard for each n ≥ 5. The Optimal

Resource Allocation problem can be viewed as a parallel

task system scheduling problem with each DNN as a task

and each GPU as a parallel processor. One subtle aspect

is that even though the DNNs are independent, to leverage

shared preprocessing data among DNNs, a newly freed GPU

does not take on a new DNN until the new round starts. It

could be viewed as there are some pseudo precedence con-

straints between the DNNs in two adjacent rounds. So in

general, the optimal solution is unlikely to be found in poly-

nomial time. Recall that our discussion has been assuming

that a new round starts only when the training of the DNNs

in the previous round is all done. If the condition is relaxed

such that a round can be a time period of an arbitrary length,

the problem becomes even more complex to solve.

4.3 Greedy Allocation Algorithm

Motivated by the complexity in finding optimal solutions

to the problem, we have designed a greedy algorithm for

FLEET to assign DNNs to GPUs efficiently. It is worth

noting that, even though the Optimal Resource Allocation

problem connects with the classic Parallel Task System

Scheduling, several special aspects of it make it unique and

demand new algorithm designs. First, unlike what is often

assumed in the classic scheduling problems, the length of

a task (DNN training) is hard if ever possible to predict:

There is no known method that can accurately predict the

number of epochs (and hence the time) needed for a DNN

to converge. Second, the relations among tasks (DNNs)

are “fluid”. The training of two DNNs are theoretically

independent: One does not depend on another’s data or

control. But when they are put into the same flotilla, they

become related: They would share the same preprocessed

data and hence need to keep a similar progressing pace.

These special aspects make the problem different from prior

problems and call for new algorithms to be designed.

This section describes our algorithm. It first introduces

four principles we followed in developing the solution and

then elaborates our greedy algorithm. We will explain the

solution in the context of the global paradigm and discuss

how it is also applicable to the local paradigm at the end of

this section.

4.3.1 Principles

A resource allocation strategy involves grouping the DNNs

into flotillas and assigning the DNNs in each flotilla to the

GPUs. We develop our solution by following four principles.

The core of these principles is to organize tasks with less

variation and dependencies at the flotilla level (Principles 1

and 2) and at the node level (Principles 3 and 4).

Principle 1 DNNs in the same flotilla should be able to

reach a similar training rate (e.g., images per sec) if a

proper number of GPUs are assigned to each of the DNNs.

This principle helps ensure a balanced pace of all GPUs,

which helps the DNNs in consuming the shared prepro-

cessed data in a similar rate to minimize the waiting time

of certain GPUs. This may result in multiple flotillas to be

created if not all DNNs in the ensemble are similar.

Principle 2 Packing into one flotilla as many DNNs as pos-

sible.

The reason for this principle is two-fold. First, the through-

put of multi-GPU training scales sublinearly3 with the num-

ber of GPUs due to the communication overhead of ex-

changing gradients. The principle is to help maintain good

efficiency of the DNNs. Second, it allows more DNNs to

share preprocessed data.

Principle 3 When assigning multiple GPUs to a DNN, try

to use GPUs in the same node.

3If all DNNs in an ensemble has a perfect linear scaling in
throughput, training the DNNs one after another would be the
optimal strategy. It is however often not the case in our observation.
Another practical reason for concurrently training multiple DNNs
is hyperparameter tuning. By checking the intermediate training
results of those DNNs, the unpromising ones can be discarded.
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This principle is to reduce the variation in communication

latency: inter-node communications are slower and have

more variations than intra-node communications.

Principle 4 Try to assign DNNs that need a small number

of GPUs to the same node.

This principle is similar to Principle 2 but at the node level.

The rationale is that, although it is hard to reduce the com-

munication overhead of DNNs that need to be trained us-

ing multiple nodes, we can minimize the communication

overhead of DNNs that need a small number of GPUs by

assigning them to the GPUs in the same node.

Based on the four principles, we propose a greedy algorithm

to solve the resource allocation problem, as described below.

4.3.2 Algorithm

The greedy algorithm is shown in Algorithm 1 (Complexity

analysis in Appendix A). It uses training rates of the DNNs,

R = {ri(m)}, i = 1, · · · , N,m = 1, · · · ,M , which are at-

tained through a short profiling process (line 1). We propose

profiling of fewer than 50 batches of training for each DNN.

We defer the detailed profiling process to Section 6.1.

The greedy algorithm dynamically determines the grouping

of the DNNs in an ensemble based on whether the DNN is

converged or not and the training rate of each DNN. Once

a flotilla is created, an optimal GPU assignment can be

derived. Initially, all DNNs are considered as candidates

(cands) when a new flotilla needs to be created (line 2). The

greedy algorithm then iterates over three main steps, flotilla

creation (line 4), GPU allocation (line 5), and training (line

6), until all the DNNs in the ensemble are converged (i, e,

cands are empty).

We next describe the three steps in detail.

Flotilla Creation. This first step selects a set of DNNs from

candidates to create a new flotilla whose DNNs are trained

concurrently with data sharing, following Principles 1 and

2. The Pseudo-code is in Appendix A. The algorithm first

identifies the largest training rate with a single GPU, rfast =
max{r1(1), · · · , r|cands|(1)}, and the corresponding DNN,

Dfast, from the candidate set of DNNs. Then rfast is

used as the reference training rate to search for other DNNs

that can be placed in the same flotilla. Mathematically, the

algorithm searches for the next DNN that can be placed into

the flotilla by solving the following optimization problem:

min
Di∈cands−Fk,

m=1,··· ,M

|ri(m)− rfast|,

s.t. |ri(m)− rfast| ≤ δ,

m ≤ M −Mk, (3)

where δ is the threshold that determines if two training rates

are close, and Mk is the total number of GPUs that are

already assigned to DNNs. In our experiments, δ is set to 20

(images/sec). The algorithm stops adding DNNs to a flotilla

if no solution exists to Eq. 3.

After a flotilla is formed, if there are still GPUs available,

we assign the next GPU to the DNN in the flotilla that has

the smallest training rate iteratively until all the GPUs are

assigned. The DNN with the smallest training rate deter-

mines the pipeline efficiency. Assigning extra GPUs to the

slowest DNN can improve pipeline efficiency.

The flotilla creation step produces a flotilla of DNNs as well

as the GPU count vector that specifies the number of GPUs

assigned to each DNN. We next explain how to properly

assign GPUs to each DNN based on the GPU count vector

and considering GPU locality.

GPU Assignment. This procedure assigns GPUs to DNNs

in a flotilla, following Principles 3 and 4. The goal of

this procedure is to find an assignment Ak to minimize the

number of nodes involved in training each DNN. Let c(.)
be the function that counts the number of nodes involved in

training a DNN given its GPU assignment a
(k)
i , which is the

i-th row of the assignment matrix Ak, the GPU assignment

is an optimization problem:

min
Ak

Nk
∑

i=1

c(a
(k)
i )

m
(k)
i

,

s.t.

M
∑

j=1

aki,j = m
(k)
i , i = 1, · · · , N, (4)

where
c(a

(k)
i

)

m
(k)
i

is the number of nodes involved to train the

i-th DNN, scaled by m
(k)
i , the number of GPUs assigned.

The solution space is as large as M !
∏Nk

i=1(m
(k)
i

!)
.

Instead of exhaustively searching for an optimal solution in

the space, we propose a greedy approach that assigns GPUs

to each DNN in an incremental fashion. For example, if the

j-th GPU is already assigned to a DNN, then the next GPU

to be assigned to the DNN is the j+1-th GPU. The solution

space is reduced to the space of possible permutations of

the GPU count vector (Nk!). This algorithm assumes the

number of GPUs per node is the same among nodes, which

holds in major supercomputers. It assigns GPUs to DNNs in

the following order: (1) the DNNs whose required number

of GPUs is a multiple of the number of GPUs per node; (2)

the pairs of DNNs whose sum of the required number of

GPUs is a multiple of the number of GPUs per node; (3) the

remaining DNNs by searching for an optimal assignment of

GPUs. The Pseudo-code is in Appendix A.

The flotilla creation and GPU assignment steps ensure that

DNNs in the same flotilla can achieve similar training rate
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to improve GPU utilization. We next describe how the

training step addresses the varying convergence speed issue

via check-pointing.

Training. The training step trains the DNNs on their as-

signed GPUs concurrently with data sharing. Due to the

architectural difference of DNNs in a heterogeneous ensem-

ble, these DNNs require a different number of epochs to

converge. With data sharing, converged models need to wait

for the un-converged models to complete, leading to the

waste of computing resources. We leverage check-pointing

to address the varying convergence speed issue. Specifically,

each flotilla is trained until only α · M GPUs remain ac-

tive for training. α is set to 0.8 in all our experiments. We

monitor whether a model is converged at the end of each

epoch. Once a model is converged, it is marked as complete

and its GPUs are released. If the total number of GPUs that

are not released falls below α · M , the training of all the

DNNs in the flotilla stops. The parameters, loss history, and

epoch count of all the DNNs are check-pointed for recover-

ing their training later. A DNN marked as complete will not

be packed into any of the following flotillas.

4.3.3 Application in the Local Paradigm

Although the discussion has been assuming the global

paradigm, the greedy algorithm applies the local paradigm

of resource allocation as well. The training proceeds as

follows: (1) At the beginning, the algorithm forms the first

flotilla of DNNs and starts training them. (2) Whenever a

DNN is done, the algorithm fills the released GPUs with

new DNNs. If no DNN remains untrained, terminate when

all current training is done.

5 IMPLEMENTATION

This section describes an efficient training pipeline imple-

mentation of FLEET. We focus on the following two main

implementation challenges:

Challenge 1: Recall that FLEET has two types of pro-

cesses, preprocessor and trainer. The number of prepro-

cessors needs to be set to meet the requirement of trainers’

throughput. Thus, it is necessary for FLEET to support cre-

ating a different number of processes per node on a cluster

and also enable flexible communications between prepro-

cessors and trainers.

Challenge 2: With data-parallel DNN training, prepro-

cessed data from a processor is received by its paired train-

ing group master, scattered to trainers within the group (in-

cluding the training group master), and broadcasted to the

other training group masters. How do we build the dataflow

to enable efficient training pipeline?

We next describe the solutions and the implementation de-

tails.

Communications between Preprocessors and Trainers.

A preprocessor process is created through the fork opera-

tion. The number of preprocessors can be controlled by

the number of trainer group masters that execute the fork

operation. We establish the communications between a pre-

processor and its paired trainer group master through server

process. A server process holds Python objects and allows

other processes to manipulate them using proxies. A proxy

is an object in the multiprocessing package of Python

and refers to a shared object which lives (presumably) in

another process. A preprocessor sends the processed data

to its training group master by writing to a Numpy object

using the object’s proxy.

Dataflow Implementation. Pipeline is the essential

scheme organizing the different stages of DNN processing

together. It allows the stages to run in parallel. For example,

while a DNN is trained on some set of data, preprocessors

can be preprocessing another set of data. Figure 4 illustrates

the dataflow implementation in FLEET.

The dataflow contains three pipelined steps: (1) Training

group masters receive preprocessed data from their paired

preprocessor and put the data into a preprocessed queue QP .

(2) Preprocessed data from QP are broadcast to all the train-

ing group masters through MPI. Each training group master

receives all the preprocessed data, but handles the data dif-

ferently, depending on whether data-parallel training is used.

If a training group contains only one trainer (i.e., only one

GPU is used to train a DNN), the training group master puts

all the data into its trainer queue QT . Otherwise, the train-

ing group master scatters the data to its trainer queue QT

and the distribution queue QD∗ . The data in the distribution

queue is sent to the trainer queue QT of each training group

worker via MPI point-to-point communication in a separate

thread. (3) Each trainer (T1-T4) reads preprocessed data

from the trainer queue QT to QD, creates batches, and feeds

each batch to the DNN model for training.

6 EVALUATION

We conduct a set of experiments to examine the efficacy

of FLEET by answering the following questions: (1) How

much speedup can FLEET bring to ensemble training of

heterogeneous DNNs? (2) How do the pros and cons of

the two paradigms in FLEET designs, local and global,

play out in handling the variations among DNNs? More

specifically, does the greedy scheduling algorithm in FLEET

produce favorable schedules? How much waiting time does

the round-by-round scheme in FLEET cause, compared

to eager scheduling schemes? (3) What is the overhead of

runtime profiling, scheduling, and checkpointing in FLEET?

We first describe the experiment settings (machines, base-
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Figure 4: Illustration of the dataflow implementation. Two

DNNs, D1 and D2, are trained using four GPUs (Ranks 0-

3) by two training groups, (T1) and (T2, T3, T4). T1 and

T2 are training group masters. Sizes of QP , QT and QD

are 2048 images, 2048 images and 10 batches respectively.

lines, etc.) in Section 6.1 and then report our experiment

results in Sections 6.2 and 6.3 to answer the questions.

6.1 Experiment Settings

DNNs. The DNNs used in this experiment are derived from

DenseNets (Huang et al., 2017) and ResNets (He et al.,

2016). Both models are the state-of-the-art network archi-

tectures that achieve high performance in various learning

tasks. We select these networks as the basis because, as

structural DNNs, they are composed of many Convolutional

blocks, which have a standard interface making a block

ready to be connected with any other blocks. As a result, it

is easy to derive new DNNs from them—one just needs to

remove or insert some Convolutional blocks. Based on the

public DNNs, we derive 100 experimental DNNs (50 from

DenseNet and 50 from ResNet) by randomly changing the

block size of DenseNet and ResNet variations. The sizes of

the DNN models vary from 232MB to 1.19GB. The distri-

bution of their training rates on a single GPU which vary

from 21 to 176 images/sec. (DNN details in Appendix B.1)

System. All experiments are conducted on Summit-

Dev (Sum, 2019) at Oak Ridge National Lab. Each node is

equipped with two IBM POWER8 CPUs, 256GB DRAM,

and four NVIDIA Tesla P100 GPUs. FLEET is built on

Tensorflow 1.12 (as the core training engine), Horovod

v0.15.2 (Sergeev & Del Balso, 2018) (as the basis for dis-

tributed DNN training), and mpi4py v3.0.0 (for the pipeline

construction). CUDA version is 9.2. (System details in

Appendix B.2)

Datasets. The datasets used in the experiments are Ima-

geNet (Deng et al., 2009) and Caltech256 Object Category

Dataset (Cal, 2007). ImageNet contains 1,261,406 training

images and Caltech256 contains 30,606 training images.

We use ImageNet whenever possible (e.g.,for throughput

comparisons), but use Caltech256 for the measurement of

end-to-end ensemble training times such that the training

can converge within the maximum 240 minutes limit that

SummitDev permits.

Profiling. To minimize the overhead of profiling, we only

profile the training rates of each DNN in the ensemble with

the number of GPUs varying from one to Mt(Mt < M),
where Mt is determined based on the training rates of each

DNN on a single GPU. For profiling on m (m = 1, · · · ,Mt)

GPUs, we train a DNN for a maximum of 48 batches and

use the training time of the last 20 batches to calculate the

exact training rate: ri(m), i = 1, · · · , N . Based on the

profiled training rates, we estimate the training rates of each

DNN when m > Mt. Profiling details are in Appendix

B.3. The profiling process also measures the throughput of

a range of preprocessors and uses it to set the number of

preprocessors.

Counterparts for Comparisons.

• Baseline The baseline uses the default TensorFlow to

train each DNN on one GPU independently. Each

DNN trainer has a preprocessor that preprocesses data

for itself independently. A GPU randomly picks one

yet-to-be-trained DNN whenever it becomes free until

there are no DNN left.

• Homogeneous Training This is the state-of-the-art

framework recently published (Pittman et al., 2018)

for ensemble DNN training. This framework allows

the DNNs that get trained at the same time to share

the preprocessed data. But it is designed for homoge-

neous DNN training, assuming no variations among

DNNs or the situation where the number of DNNs is no

greater than the number of GPUs. In our experiments,

when there are more DNNs than GPUs, the framework

randomly picks a subset of the remaining DNNs to

train, one DNN per GPU with shared preprocessed

data. After that subset is done, it picks another subset

and repeats the process until all DNNs are done.

• FLEET-G This is FLEET in the global paradigm.

• FLEET-L This is FLEET in the local paradigm as

described in Section 4.3.3. Its difference from FLEET-

G is that as soon as a DNN is done, the released GPUs

are immediately used to train some remaining DNNs;

which DNNs are picked is determined by the greedy

algorithm as in FLEET-G, but only locally (for the

newly released GPUs) rather than globally.

6.2 End-to-End Speedups

Figure 5 reports the speedups of the three methods over

the baseline method, in terms of the end-to-end ensemble

training time of the 100 DNNs. All runtime overhead for
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FLEET is included. We repeat each measurement multiple

times and report the average and error bars.

It shows the results in eight settings. The prior homoge-

neous framework shows large slowdowns in the first four

settings where the number of GPUs is less than the number

of DNNs. The slowdowns are due to the waiting of other

GPUs for the slowest DNN to finish in each round, shown

in Figure 6. In the other four settings, the homogeneous

framework performs similarly as the baseline does: As there

are more GPUs than DNNs, there is only one round, in

which, the two methods use resource similarly. The shar-

ing of preprocessing in the homogeneous framework does

not generate speedups for these DNN trainings because the

preprocessing is not the bottleneck for them.

FLEET-G gives the best overall performance, producing

1.12-1.92X speedups over the baseline. The primary reason

for the speedups come from its better resource allocation

to the DNNs. The bottom of Table 3 reports the mean and

standard deviations of the running lengths of DNNs in the

Table 3: Mean and standard deviation of the running length

of DNNs in seconds. (80 GPUs, 100 DNNs)

Technique Flotilla ID Mean Std. Dev.

Baseline - 10372.2 4178.9

FLEET-L - 6213 3580.0

0 2067.9 54.7

1 335.6 48.4

2 2291.9 26.0

FLEET-G 3 415.5 51.9

4 1072.2 364.0

5 2322.3 216.0

Table 4: Scheduling and checkpointing overhead.

(#GPU,

#DNN)

Total Training

Time (in sec)

Scheduling

Overhead

Checkpointing

Overhead

in sec in % in sec in %

(20,100) 55200.1 20.1 0.037 1496.0 2.7

(40,100) 30204.8 15.8 0.054 1156.0 3.8

(60,100) 24495.0 14.0 0.060 986.0 4.0

(80,100) 21891.0 12.0 0.057 816.0 3.7

(100,100) 18359.1 10.1 0.058 782.0 4.3

(120,100) 15323.9 9.9 0.068 680.0 4.4

(140,100) 13366.3 9.3 0.073 680.0 5.1

(160,100) 11825.2 10.2 0.092 748.0 6.3

first five flotillas in FLEET-G (80GPU,100DNN). In com-

parison to the data in the baseline and FLEET-L (top rows in

Table 3), the DNNs show much smaller variations in length,

which indicate the effectiveness of the GPU allocations in

FLEET-G in evening out the differences among DNNs. At

the beginning, we thought that the catch to FLEET-G is

the waiting time of some GPUs after they are done with

their work in a round. Our experiments, however, show

the opposite effects. As Figure 6 shows, the average wait-

ing time per GPU is smallest for FLEET-G. The reason is

that the other methods all suffer long waiting time at the

end; because of their suboptimal resource allocation, some

GPUs have to work long after others to finish up the last

few DNNs. FLEET-L gives notable but fewer speedups for

its less favorable decisions at resource allocation due to the

local view.

Overall, FLEET gives larger speedups when #GPU >

#DNN. It is worth noting that in such a setting, there are

still many flotillas to schedule and FLEET scheduler plays

an important role. The reason is that in many cases, the

FLEET scheduler assigns multiple GPUs to one DNN. For

instance, 20 flotillas were created when training 100 DNN

on 120 GPUs and 22 flotillas were created when training 100

DNNs on 160 GPUs. When #GPU<#DNN, the speedups

from FLEET are not that significant but still substantial:

113–120% for three out of the four such settings in Figure 5.

6.3 Overhead

Table 4 reports the breakdown of the runtime overhead of

FLEET-G. The overhead of scheduling and checkpointing is

at most 0.1% and 6.3% of the end-to-end training time in all

the settings. Recall that, due to wall-clock-time limitation

of SummitDev, we have used the small Caltech256 dataset.
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For large datasets (e.g., ImageNet), the overhead would be-

come negligible. The profiling overhead is independent of

dataset size and solely depends on ensemble size. Recall

that, profiling needs the DNN to train for only a few steps in

parallel. Its overhead is marginal for typical DNN trainings

on large datasets that take hours or days to train. On recent

GPUs, a feature called Multi-Process Services (MPS) could

potentially allow multiple DNNs to be co-scheduled to a

single GPU and run concurrently. It is not considered in the

current FLEET. To consider it, some co-run predictive mod-

els could help, which could quickly predict the performance

of a DNN when it co-runs with a set of other DNNs on one

GPU. The predictive performance can then be combined

with the existing performance models in FLEET to guide

the scheduling of DNNs.

7 RELATED WORK

Much research has been done to accelerate the training of

a single DNN over distributed systems, such as Tensor-

flow from Google (Dean et al., 2012; Abadi et al., 2016),

Project Adams from Microsoft (Chilimbi et al., 2014), Fire-

Caffe (Iandola et al., 2016), PipeDream (Harlap et al., 2018),

and GPipe (Huang et al., 2018). All those studies have fo-

cused on improving the training speed of an individual DNN

rather than ensemble training.

Recently, ensemble training starts drawing more atten-

tion. Besides the work by Pittman et al. (Pittman et al.,

2018), there are some other efforts (Garipov et al., 2018;

Loshchilov & Hutter, 2016) on ensemble training, but

they focus on designing lightweight methods to form high-

performing ensembles instead of improving pipeline effi-

ciency of ensemble training. HiveMind (Narayanan et al.,

2018) is a system designed for accelerating the training of

multiple DNNs on a single GPU by fusing common opera-

tions (e.g., preprocessing) across models. It, however, lacks

the essential support for distributed DNN training.

Another line of research that is relevant to this work is task

scheduling on clusters or workflow management systems.

The scheduling of a set of tasks or workloads on clusters

or multiprocessor systems has been extensively studied in

the literature (Turek et al., 1992; Shmoys et al., 1995; Ur-

gaonkar et al., 2002; Augonnet et al., 2011; Zaharia et al.,

2008; Grandl et al., 2015; Chowdhury et al., 2016; Xu et al.,

2018; Ousterhout et al., 2013; Cheng et al., 2016; Delim-

itrou & Kozyrakis, 2014; Feitelson et al., 1997). Recent

work including Gandiva (Xiao et al., 2018) and Tiresias (Gu

et al., 2019) design GPU cluster managers tailored for DNN

workloads. They, however, lack the flexibility supported

in FLEET. First, they treat different jobs as independent

black boxes. Without the MPI communication mechanisms

we put into FLEET to enable flexible data exchanges of

TensorFlow-based workers and preprocessors, these sched-

ulers cannot flexibly adjust the number of workers for a

DNN training. Second, as they treat the DNNs as separate

jobs, they cannot support the coordinations across DNNs

in an ensemble, such as, the sharing of preprocessed data,

cooperated checkpointing at the appropriate times.

Load balancing techniques for parallel computers such as

nearest neighbor assignment to dynamically distribute work-

loads have been studied in (Kumar et al., 1994). The way

FLEET distributes DNN training workloads are fundamen-

tally different because an initial task assignment is not set

at the beginning but dynamically determined based on both

the convergence status and the training rate of each DNN.

8 CONCLUSIONS

This paper presents a systematic exploration on enabling

flexible efficient ensemble training for heterogeneous DNNs.

It addresses two-fold challenges. First, it formalizes the

essence of the problem into an optimal resource alloca-

tion problem, analyzes its computational complexity, and

presents an efficient greedy algorithm to effectively map

DNNs to GPUs on the fly. Second, it develops a set of

techniques to seamlessly integrate distributed data-parallel

training of DNN, preprocessing sharing, and runtime DNN-

to-GPU assignments together into a software framework,

FLEET. Experiments on 100 heterogeneous DNNs on Sum-

mitDev demonstrate that FLEET can speed up the ensemble

training by 1.12-1.92X over the default training method,

and 1.23-1.97X over the state-of-the-art framework that was

designed for homogeneous ensemble training.
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cook, S. J., et al. Cosmoflow: using deep learning to learn

the universe at scale. In SC18: International Conference

for High Performance Computing, Networking, Storage

and Analysis, pp. 819–829. IEEE, 2018.

Narayanan, D., Santhanam, K., Phanishayee, A., and Za-

haria, M. Accelerating deep learning workloads through

efficient multi-model execution. In NIPS Workshop on

Systems for Machine Learning (December 2018), 2018.

Ousterhout, K., Wendell, P., Zaharia, M., and Stoica, I. Spar-

row: distributed, low latency scheduling. In Proceedings

of the Twenty-Fourth ACM Symposium on Operating Sys-

tems Principles, pp. 69–84. ACM, 2013.

Patton, R. M., Johnston, J. T., Young, S. R., Schuman, C. D.,

March, D. D., Potok, T. E., Rose, D. C., Lim, S.-H.,

Karnowski, T. P., Ziatdinov, M. A., et al. 167-pflops

deep learning for electron microscopy: from learning

physics to atomic manipulation. In Proceedings of the

International Conference for High Performance Comput-

ing, Networking, Storage, and Analysis, pp. 50. IEEE

Press, 2018.

Pittman, R., Shen, X., Patton, R. M., and Lim, S.-H. Ex-

ploring Flexible Communications for Streamlining DNN

Ensemble Training Pipelines. Proceedings of the Inter-

national Conference for High Performance Computing,

Networking, Storage, and Analysis (SC’18), 2018.

Ratnaparkhi, A. A. and Pilli, E. Networks. 2016 In-

ternational Conference on Emerging Trends in Com-

munication Technologies (ETCT), pp. 1–6, 2012. doi:

10.1109/ETCT.2016.7882969.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever,

I. Evolution strategies as a scalable alternative to rein-

forcement learning. arXiv preprint arXiv:1703.03864,

2017.

Sergeev, A. and Del Balso, M. Horovod: fast and easy

distributed deep learning in tensorflow. arXiv preprint

arXiv:1802.05799, 2018.

Shmoys, D. B., Wein, J., and Williamson, D. P. Scheduling

parallel machines on-line. SIAM J. Comput., 24(6):1313–

1331, December 1995. ISSN 0097-5397. doi: 10.1137/

S0097539793248317. URL http://dx.doi.org/

10.1137/S0097539793248317.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. Efficient

processing of deep neural networks: A tutorial and survey.

Proceedings of the IEEE, 105(12):2295–2329, 2017.

Turek, J., Wolf, J. L., Pattipati, K. R., and Yu, P. S. Schedul-

ing parallelizable tasks: Putting it all on the shelf. In

ACM SIGMETRICS Performance Evaluation Review, vol-

ume 20, pp. 225–236. ACM, 1992.

Urgaonkar, B., Shenoy, P., and Roscoe, T. Resource over-

booking and application profiling in shared hosting plat-

forms. ACM SIGOPS Operating Systems Review, 36(SI):

239–254, 2002.

Xiao, W., Bhardwaj, R., Ramjee, R., Sivathanu, M., Kwatra,

N., Han, Z., Patel, P., Peng, X., Zhao, H., Zhang, Q.,

et al. Gandiva: Introspective cluster scheduling for deep

learning. In 13th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 18), pp.

595–610, 2018.

Xu, L., Butt, A. R., Lim, S.-H., and Kannan, R. A

heterogeneity-aware task scheduler for spark. In 2018

IEEE International Conference on Cluster Computing

(CLUSTER), pp. 245–256. IEEE, 2018.

Zagoruyko, S. and Komodakis, N. Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016.

Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H.,

and Stoica, I. Improving mapreduce performance in het-

erogeneous environments. In Osdi, volume 8, pp. 7,

2008.

Zoph, B. and Le, Q. V. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning

transferable architectures for scalable image recognition.

In Proceedings of the IEEE conference on computer vi-

sion and pattern recognition, pp. 8697–8710, 2018.

http://dx.doi.org/10.1137/S0097539793248317
http://dx.doi.org/10.1137/S0097539793248317


FLEET

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  20  40  60  80  100

T
ra

in
in

g
 R

a
te

 (
im

a
g

e
s
/s

e
c
)

DNNs used in experiments

Figure 7: Training rate of each DNN on a single GPU.

A COMPLEXITY ANALYSIS OF THE

GREEDY ALLOCATION ALGORITHM

Algorithm 2 shows the flotilla creation algorithm. Flotilla

creation first searches for the reference training rate (line 1,

time complexity O(N)), then iteratively finds the best candi-

date DNN to add in the flotilla (lines 3-11, time complexity

O(Nk × N × M), and finally assigns all the remaining

GPUs available to the DNNs in the flotilla (lines 12- 15,

time complexity O(Nk ×M)). So the time complexity of

flotilla creation is O(Nk ×N ×M).

GPU assignment first prunes the factorial solution space by

identifying and assigning GPUs to the DNNs whose training

rate meets certain requirements in O(Nk) time complexity.

It then searches for the optimal GPU assignment strategy

for the remaining DNNs. The algorithm is shown in Al-

gorithm 3. This algorithm assumes the number of GPUs

per node is the same among nodes (GPUsPerNode), which

holds in major supercomputers. It assigns GPUs to DNNs

in the following order:

1. the DNNs whose required number of GPUs is a multi-

ple of the number of GPUs per node; (lines 5-11)

2. the pairs of DNNs whose sum of the required number

of GPUs is a multiple of the number of GPUs per node;

(lines 12-24)

3. the remaining DNNs by searching for an optimal as-

signment of GPUs. (lines 25-39)

Let N ′
k be the number of remaining DNNs. The solution

space is N ′
k!. Most of the time, N ′

k is a small number less

than five. However, enumerating all the possible solutions

is still in factorial time complexity. We set the maximum

number of solutions to explore as 1024, reducing the time

complexity to O(1). The time complexity of GPU assign-

ment is thus O(Nk).

B EXPERIMENT DETAILS

B.1 Characteristics of Experimental DNNs

The DNNs used in this experiment are derived from six

popular DNNs, DenseNet-121, DenseNet-169, DenseNet-

Algorithm 2 createFlotilla

Input: cands,R,M // The indices of DNNs that are not con-
verged, the training rates of the DNNs, and the number of
GPUs available

Output: Fk,mk // the k-th flotilla and the GPU count vector
1: Dfast, rfast = fastestDNN(cands,R) // Find the DNN with

the largest training rate with a single GPU
2: Fk,Mk,mk = [Dfast], 1, [1]
3: while |Fk| < |cands| do
4: Dbest, rbest,Mbest = findNext(rfast, R, cands,Fk,M −

Mk) // Find the next DNN, its training rate and required
GPU count

5: if Dbest == −1 then
6: break
7: end if
8: Fk.append(Dbest)
9: mk.append(Mbest)

10: Mk+ = Mbest

11: end while
12: while Mk < M do
13: Dslow = slowestDNN(Fk,mk, R) // in terms of speed

on the currently assigned GPUs
14: mk[slow]+ = 1
15: Mk+ = 1
16: end while
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Figure 8: Correlations between model size of a DNN and the

training rate and the number of epochs until convergence.

201, ResNet-50, ResNet-101 and ResNet-152. The first

three are variations of DenseNet (Huang et al., 2017). The

three variations share the same structure, but differ in the

number of DNN layers, indicated by their suffixes. The

latter three are variations of ResNet (He et al., 2016).

The 100 DNNs used in our experiments have a range of

model sizes, from 232 MB to 1.19GB. Different DNNs

have different GPU memory requirements and thus require

different batch sizes to maximize GPU utilization. For each,

we use the maximum batch size that can fit into GPU’s

memory. Figure 7 shows the distribution of their training

rates on a single GPU which vary from 21 to 176 images/sec.

Figure 8 outlines the relations between the training rates and

model sizes of the DNNs, as well as the relations between

convergence rates (i.e., the number of epochs needed for the
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Algorithm 3 getGPUAssignment

Input: Fk,mk // The k-th flotilla and the GPU count vector
Output: Ak

1: j = 1 // The current available GPU with the smallest index.
2: Ak = 0Nk,M // The GPU assignment matrix of dimension

Nk ×M
3: remaining = {1, · · · , N} // The indices of DNNs to allo-

cate GPUs
4: assigned = {} // The indices of DNNs that have assigned

GPUs
5: for all i ∈ remaining do

6: if m
(k)
i %GPUsPerNode == 0 then

7: assigned.add(i)

8: j = assignGPUs(Ak, i, j,m
(k)
i )

9: end if
10: end for
11: remaining -= assigned
12: memo, assigned = {}, {}
13: for all i ∈ remaining do

14: if −m
(k)
i %GPUsPerNode not in memo then

15: memo[m
(k)
i %GPUsPerNode] = i

16: else
17: for ii ∈ {i,memo[−m

(k)
i %GPUsPerNode]} do

18: assigned.add(ii)

19: j = assignGPUs(Ak, ii, j,m
(k)
ii )

20: end for
21: del memo[m

(k)
i %GPUsPerNode]

22: end if
23: end for
24: remaining -= assigned
25: if |remaining| > 0 then
26: m̃(k), bestScore, bestA, jcopy, Acopy =

[],∞, j, clone(Ak)
27: for all i ∈ remaining do

28: m̃(k).append((i,m
(k)
i ))

29: end for
30: for permutation in allPermutations(m̃(k)) do
31: j, Ak = jcopy, clone(Acopy)

32: for i,m
(k)
i in permutation do

33: j = assignGPUs(Ak, i, j,m
(k)
i )

34: end for
35: score = calculateScore(Ak) // Score is calculated based

on the loss function in Eq. 7
36: if score < bestScore then
37: bestScore, bestA = score,Ak

38: end if
39: end for
40: Ak = bestA
41: end if

Algorithm 4 assignGPUs

Input: Ak, i, j,m
(k)
i

Output: j // The index of the next available GPU to assign

1: while m
(k)
i > 0 do

2: ak
i,j = 1; j+ = 1; m

(k)
i − = 1

3: end while

DNNs to converge) and their model sizes. As model size in-

creases, the training rate tends to drop as more computations

are involved in the DNN, but there are no clear correlations

with the convergence rate. It is the reason that the resource

allocation algorithm in FLEET primarily considers training

rate explicitly, and relies on the periodical (re)scheduling to

indirectly adapt to the variations of DNNs in the converging

rates.

B.2 System Settings

All experiments are conducted on SummitDev (Sum, 2019),

a development machine for Summit supercomputer at Oak

Ridge National Lab. Each node is equipped with two IBM

POWER8 CPUs and 256GB DRAM, and four NVIDIA

Tesla P100 GPUs. Each POWER8 CPU has 10 cores with 8

HW threads each. The default SMT level is set to one unless

noted otherwise. The number of cores allocated per GPU

is five in all the experiments. NVLink 1.0 is the connection

among all GPUs and between CPUs and GPUs within a

node. EDR InfiniBand connects different nodes in a full fat-

tree. The file system is an IBM Spectrum Scale file system,

which provides 2.5 TB/s for sequential I/O and 2.2 TB/s for

random I/O. Our experiments show that thanks to the large

I/O throughput of the file system, I/O is not the bottleneck

of DNN training. The used CUDA version is 9.2.

FLEET is built on Tensorflow 1.12 (as the core train-

ing engine), Horovod v0.15.2 (Sergeev & Del Balso,

2018) (as the basis for distributed DNN training),

and mpi4py v3.0.0 (for the pipeline construction).

We set inter op parallelism threads and

intra op parallelism threads to # logical cores

for parallel TensorFlow operaitons on CPU. The used

CUDA version is 9.2.

B.3 Profiling Details

To minimize the overhead of profiling, we only profile the

training rates of each DNN in the ensemble with the num-

ber of GPUs varying from one to Mt(Mt < M). For

profiling on m (m = 1, · · · ,Mt) GPUs, we train a DNN

for a maximum of 48 batches and use the training time

of the last 20 batches to calculate the exact training rate:

ri(m), i = 1, · · · , N . Based on the profiled training rates,

we estimate the training rates of each DNN when m > Mt.

Specifically, the profiling has three steps:

1. Collect the training rates of each DNN on a single

GPU, R(1) = {ri(1)}, i = 1, · · · , N .

2. Estimate the number of GPUs required to make the

DNN that has the smallest training rate on a single GPU

achieve the largest single-GPU training rate, Ma =
⌈max(R(1))
min(R(1))

⌉

.
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Figure 9: The profiled training rates (images/sec) of 100

DNNs in an ensemble with Imagenet.

3. Collect the training rates of each DNN with the number

of GPUs varying from two to Mt = max(Ma,Mb),
where Mb = 2×GPUsPerNode.

Note that steps 1 and 3 can be done in parallel because the

trainings of different DNNs with different number of GPUs

are independent. The training rate of the i-th DNN with

the number of GPUs higher than Mt is estimated via the

following equation:

ri(m) = m×
ri(Mb)

Mb

×
( ri(Mb)

ri(Mb − 1)
×

Mb − 1

Mb

)m−Mb

. (5)

The formula for Mb and Equation 5 are the result of perfor-

mance modeling on our observations on the DNN perfor-

mance trend as illustrated in Figure 9. It achieves a good

tradeoff between the profiling cost and the performance

prediction accuracy.

The profiling process also measures the throughput of a

range of preprocessors (#cores=1, 2, 4, 8, 16, 32) in the

pipeline. This step is quick since preprocessing does not

exhibit large variations. Based on the profiled information,

FLEET calculates the minimum number of preprocessors

that can meet the demands of an arbitrary M DNNs (with

one running on one GPU), and uses it to set the number of

preprocessors.


