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FLEX: A Tolerant and Cooperative User Interface to 
Databases 

AMIHAI MOTRO 

Abstract-FLEX is a user interface to relational databases that can 

be used satisfactorily by users with different levels of expertise. FLEX 

is based on a formal query language, but is tolerant of incorrect input. 

It never rejects queries; instead, it adapts flexibly and transparently to 

their level of correctness and well-formedness, providing interpreta- 

tions of corresponding accuracy and specificity. The most prominent 

design feature of FLEX is the smooth concatenation of several inde- 

pendent mechanisms, each capable of handling input of decreasing level 

of correctness and well-formedness. Each input is “cascaded” through 

this series of mechanisms, until an interpretation is found. FLEX is 

also cooperutive. It never delivers empty answers without explanation 

or assistance. By following up each failed query with a set of more 

general queries, FLEX determines whether an empty answer is genuine 

(it then suggests related queries that have nonempty answers), or 

whether it reflects erroneous presuppositions on behalf of the user (it 

then explains them). 

Index Terms-Adaptivity 

user interface, tolerance. 

cooperation, databases, query languages, 

I. INTRODUCTION 

A COMMON method for accessing databases is via 
query language interfaces. A query language inter- 

face defines a formal language, in which all retrieval re- 
quests must be expressed. The main advantages of query 
language interfaces are their generaE@ (the ability to ex- 
press arbitrary requests) and their unambiguity (each 
statement has clear semantics). However, using query 
language interfaces requires considerable proficiency. 
Users must understand the principles of the underlying 
data model, they must have good knowledge of the query 
language, and they must be familiar with the contents and 
organization of the particular database being accessed . In 
the absence of even some of this prerequisite knowledge, 
using such interfaces can become very inefficient and 
frustrating. Hence, most query language interfaces do not 
accommodate naive users very well. 

For such users, several alternative types of interfaces 
have been developed, including form and menu-based in- 
terfaces, graphical interfaces, natural and pseudonatural 
language interfaces, and browsers. These interfaces are 
oriented towards nonprogrammers, and therefore require 
only limited computer sophistication. Expressing requests 
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may be as simple as selecting from a menu or a filling a 
form, and familiarity with the contents or organization of 
the database is usually not required. However, naive user 
interfaces usually achieve simplicity and convenience at 
the price of expressivity. Also, as users acquire more ex- 
pertise, these interfaces tend to become more tediou s to 
use. 

Thus, it appears that no single user-database interface 
exists that can service satisfactorily both experts and na- 
ive users. Perhaps the only exception are the natural lan- 
guage interfaces. Ideally, such interfaces should be able 
to service satisfactorily all types of users. Unfortunately, 
existing natural language interfaces have two major prob- 
lems: they require enorr-nous investment to capture the 
knowledge that is necessary to understand user requests, 
and even the best systems are prone to errors . 

This paper reports on resea rch to de velop a single in- 
terface, that may be used satisfactorily by users with dif- 
ferent levels of expertise. This interface, called FLEX, is 
based on a formal query language, but is tolerant of in- 
correct input. It never rejects queri .es; instead, it adapts 
flexibly and transparently to their level of correctness, 
providing an interpretation at that level. Consequently, it 
can service a wider variety of users. FLEX is also coop- 
erative. It never delivers empty answers without expla- 
nation or assistance. This tolerant and cooperative behav- 
ior is modeled after human behavior, and is thus 
reminiscent of natural language interfaces. 

The design of FLEX is highly modular, consisting of 
various mechanisms for processing requests of different 
levels of well-formedness. Each user input is processed 
by several such mechanisms until an interpretation is ob- 
tained. Initially, the input is processed by a query parser 
to determine whether it constitutes a proper formal query. 
If parsing is successful, the query is executed. Otherwise, 
the input is processed by a query corrector, that attempts 
to salvage the query by applying various transformations. 
The corrector is usually successful whenever the input ex- 
hibits recognizable structures, and i ts interpretations are 
mostly safe. If the corrector fa ils to produce an interpre- 
tation, the input is processed by a query synthesizer, that 
attempts to conclude proper queries from words that are 
recognized in the input. As these interpretations are not 
entirely safe, they are offered as suggestions, and are sub- 
ject to refinements by the user. Finally, if the synthesizer 
fails to produce an interpretation, a browser is engaged to 
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display frames of information extracted from the database 
on the recognized input words. Hence, FLEX never re- 
jects queries, and the accuracy and specificity of its inter- 
pretations correspond to the correctness and well-formed- 
ness of the input. 

FLEX then observes the outcome of the final query: if 
the answer is empty, the original query is passed to a query 
generalizer, which issues a set of more general queries to 
determine whether the empty answer is genuine (it then 
suggests related queries that have nonempty answers), or 
whether it reflects erroneous presuppositions on behalf of 
the user (it then explains them). 

Because it is engaged only when needed and only as 
much as needed, FLEX can be used satisfactorily by ex- 
perts as well as novices. For example, input which is a 
perfect formal query will be executed immediately with- 
out any modification; while input which is a single word 
will flow through the entire sequence of mechanisms until 
finally it will result in a frame of information about this 
word. 

FLEX was designed to work with relational databases. 
It was fully implemented as a front-end for the relational 
databases system INGRES [lo]. A concise outline of the 
preliminary design of FLEX may be found in [2 11. 

The remainder of this paper is organized as follows. 
Section II establishes preliminary concepts and defini- 
tions. The next four sections are devoted to the individual 
mechanisms of FLEX: Section III describes the query 
parser and the query corrector, Section IV describes the 
query synthesizer, Section V describes the browser, and 
Section VI describes the query generalizer. Section VII 
discusses the implementation, and Section VIII concludes 
with a brief summary. 

II. PRELIMINARIES 

This section establishes concepts and definitions that are 
global to FLEX. It defines the data model and its formal 
language, it describes the knowledge used by the various 
mechanisms, and it presents an overview of the architec- 
ture of FLEX. 

A. The Data Model 

The following definition of relational databases is as- 
sumed. A database is a set of relations. For each relation 
there is a set of distinctly named attributes, some of which 
are designated as key attributes. Each attribute has an as- 
sociated domain, and each domain has an associated vpe. 
From the information on the keys, the database system 
can infer existing junctional dependencies: in each rela- 
tion, every nonkey attribute is functionally dependent on 
the key attributes. From the information on the domains, 
the database system can infer the allowable joins: two re- 
lations may be joined if and only if they have a common 
domain for at least one of their attributes. Type informa- 
tion is used to allocate storage, to determine which op- 
erations are allowed with the elements of the domain, and 
to assist in query generalization. For simplicity, we con- 
sider only two types, STRING and NUMBER. The only pa- 

rameter of the type STRING is its length. The type 
NUMBER has three parameters: minimum, maximum and 
delta; the first two specify the allowable range; the last 
one fixes the size of a “notch” in this range. 

Names of relations, attributes, and domains must all be 
distinct (i.e., the same name cannot be used for a relation 
and an attribute, or a relation and a domain, or an attribute 
and a domain). However, attributes in different relations 
may have the same name, if they have the same domain. 

Fig. 1 defines a database UNIVERSITY that will be used 
in the examples. The database has four relations: STU- 

DENT, DEPARTMENT, COURSE, and ENROLLMENT. Each re- 
lation definition shows the attributes (key attributes are 
underlined) and their associated domains and types. Thus, 
the attribute MAJOR in relation STUDENT and the attribute 
D-NAME in relation COURSE are both of domain ACA- 

DEMIC-DISCIPLINE, which is of type STRING. A small in- 
stance of this database is shown in Fig. 2. 

B. The Formal Language 

The formal language of FLEX consists of the following 
statement, reminiscent of SQL’s select statement [5] : 

retrieve attributeI, . . . , attribute, 
from relationI, . . . , relation, 
where condition 

condition is either a primitive term of the form attribute 
0 value or attribute1 8 attribute2 (where 8 is a comparator 
such as =, #, <, >, 5, r),oracombinationofsuch 
terms with the logic connectors and, or, and not. The 
answer to this query is defined by a product of all the 
relations named in the from clause, followed by a selec- 
tion according to the condition in the where clause, fol- 
lowed by a projection onto the attributes named in the 
retrieve clause. If two attributes in different relations are 
named identically, they are differentiated by including the 
relation name: relation.attribute. If more than one ver- 
sion of the relation is needed in the query, they are dif- 
ferentiated by an index: relation. 1 .attribute,relation.2. 
attribute, etc. If the where clause is omitted altogether, 
the selection condition is assumed to be true. 

For example, to retrieve the names and majors of the 
students enrolled in courses offered by Computer Science 
Department, one issues the following query: 

N?trieVe S-NAME, MAJOR 

fr0Il-l STUDENT, ENROLLMENT, COURSE 

where STUDENT.S-NAME=ENROLLMENT.S-NAME 

and ENROLLMENT.C-NO=COURSE.C-NO 

and COURSE.D-NAME=“COMPSCI" 

C. The Dictionary, the Lexicon, and i%e Thesaurus 

A database consists of values (the data), which are or- 
ganized according to a schematic definition (the meta- 
data). Elements of the data and the metadata will be re- 
ferred to collectively as database tokens. FLEX uses three 
special relations, called DICTIONARY, LEXICON, and THE- 

SAURUS to store information about data and metadata. 
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Fig. 1. Schema of database UNIVERSITY. 
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The DICTIONARY relation stores the metadata in the 
following form: DICTIONARY = (RELATION, ATTRIBUTE, 
DOMAIN,TYPE,KEY). An example of a dictionary tuple is 
(STUDENT,S-NAME,PERS~N - NAME,STRING(~O),YES), which 
states that relation STUDENT has attribute S-NAME, which 
is of domain PERSON NAME, has type STRING, and is 

- part of the key. 
The LEXICON relation is a mapping of data onto meta- 

data: each data token is associated with the relation and 
attribute in which it appears (and, therefore, with its do- 
main). Given an arbitrary data token, the system can use 
this lexicon to find out its possible domains, and thus gain 
some understanding of its meaning. The lexicon is imple- 
mented as an auxiliary relation of the following form: 
LEXICON = (TOKEN,RELATION,ATTRIBUTE). An example of 
a lexicon tuple is (SMITH,STUDENT,S-NAME), which states 
that the data token SMITH appears in attribute S-NAME of 
relation PERsoN. 

The THESAURUS relation stores synonym information 
about database tokens, associating various nondatabase 
tokens with database tokens. It is implemented as an aux- 
iliary relation of the following form: THESAURUS 
- - (WORD,TOKEN). The domain of words and the domain 
of tokens must be disjoint. Examples of thesaurus tuples 
are (STUDENTS,STUDENT), or (BOB,ROBERT), which state 
that the word STUDENTS should be understood as the me- 
tadata token STUDENT and the word BOB should be under- 
stood as the data token ROBERT. 
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D. An Overview of FLEX 

Fig. 3 illustrates the overall architecture of FLEX. Ini- 
tially, the user composes a query in a simple editor. When 
the user presses the submit button, the contents of the ed- 
itor buffer are transferred to the parser. If the parser suc- 
ceeds in parsing the input, it is passed to the query pro- 
cessor. If the parser fails, the input is piped through a 
sequence of three mechanisms (the corrector, the syn- 
thesizer, and the browser). Each of these mechanisms at- 
tempts to interpret the input. If a mechanism fails, it 
passes the input to the next mechanism; if the final mech- 
anism fails, then FLEX gives up. If a mechanism suc- 
ceeds in producing one or more interpretations (possibly 
after a brief clarification dialogue), it presents them to the 
user. If the user accepts an interpretation, it is copied back 
into the editor buffer, where it can be refined before re- 
submission. If the user does not accept any of the inter- 
pretations, the input is passed to the next mechanism. If 
a processed query returns a nonempty answer, it is dis- 
played to the user. If the answer is empty, the input is 
passed to the query generalizer. The generalizer will sug- 
gest related queries that have nonempty answers (or it will 
point out erroneous presuppositions). If the user accepts 
one of these queries, it is copied back into the editor 
buffer; otherwise, processing of this input is terminated. 

III. THE PARSER AND THE CORRECTOR 

When the user submits his input for processing, it is 
transferred to the parser. If parsing succeeds, the query is 
transferred to the processor. Therefore, the processing of 
perfect queries is not different than in any other query lan- 
guage interface. 

As suggested earlier, the accuracy and specificity of the 
interpretations of FLEX corresponds to the correctness 
and well-formedness of its input. In this respect, the 
parser handles only input which is correct, and its inter- 
pretations are all accurate. 

If parsing fails, the input is transferred to the query cor- 
rector. The corrector applies a set of transformations to 
try and salvage the query. Thus, the corrector handles in- 
put which is slightly imperfect, and its interpretations are 
mostly accurate. 

A. Principles 

Parsing begins with synonym substitution. The parser 
searches each input word in the THESAURUS relation. Any 
word that appears in the first attribute (WORD) is substi- 
tuted by the corresponding word in the second attribute 
(TOKEN). Since the domains of words and tokens in the 
thesaurus are disjoint, only nondatabase tokens can be re- 
placed. Therefore, substitutions may be considered safe, 
and remain in effect for the duration of processing. 

The parser then checks that the input is correct both 
syntactically and semantically. The syntactic analysis 
verifies that the input is indeed a sentence in the query 
language (as defined by a grammar). The semantic anal- 
ysis verifies that the sentence is meaningful (as defined by 
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Fig. 3. Overall architecture of FLEX. 

the database at hand). These two analyses are performed 
sequentially, and parsing is successful only if both suc- 
teed. 

Correction is performed in two corresponding phases: 
if the syntactic analysis fails, the input is subjected to syn- 
tactic corrections; if the semantic analysis fails, the input 
is subjected to semantic corrections. 

Correction is done without any interaction with the user. 
At the end of the entire correction process, the modified 
query is presented to the user for approval or further ed- 
iting. The corrector requires that the input includes the 
keywords retrieve and from (in this order). To assure 
that only input which is slightly imperfect is corrected, 
the total number of transformations applied to the input is 
monitored. When a predefined number is reached, the 
corrector considers the input to be beyond salvation, and 
passes it to the next mechanism. 

B. Corrective Transformations 

1) Syntactic Correction: The transformations applied 
in this phase are intended to coerce the input into the syn- 
tax of the language. Clearly, among the three clauses of 
the retrieve statement, retrieve, from, and where, the 
latter is the most demanding, and most of the transfor- 
mations are applied to this clause. They include: 

1) Insert the default comparator = where a comparator 
is expected (i.e., between two attributes or between an 

attribute and a value), possibly replacing the current input 
token in this position. 

2) Insert the default connector and where a connector 
is expected (i.e., between two subexpressions), possibly 
replacing the current input token in this position. 

3) Supply missing parentheses, according to a default 
scheme. 

4) Discard certain bad input tokens. 
The other two clauses are essentially lists of attributes 

or relations. The transformations applied to these clauses 
include: 

1) Accept list delimiters other than commas. 
2) Discard bad list elements. 
2) Semantic Correction: Verification of proper seman- 

tics is done against the database at hand. The semantic 
analysis includes five checks: 

1) For each relation referenced in the query there 
should be a database relation by that name. 

2) Each relation referenced in the retrieve or where 
clauses should be listed in the from clause. 

3) For each qualified attribute referenced in the query 
(i.e., an attribute prefixed by a relation) there should be 
an attribute by that name in the qualifying relation. 

4) For each unqualified attribute referenced in the 
query, there should be one database relation with that at- 
tribute. 

5) Every two attributes that are compared in the where 
clause must be from the same domain; if an attribute is 
compared to a value, the value must be from the domain 
of the attribute. 

First, the corrector discards any unrecognized rela- 
tions. This may shorten the list of relations in the from 
clause, and it may remove the qualifiers of attributes in 
the retrieve and where clauses. 

Next, the corrector attempts to qualify any unqualified 
attributes. If an unqualified attribute A appears in only one 
database relation R, then R is the qualifier of A. If A ap- 
pears in several database relations, then the corrector at- 
tempts to infer a single one by elimination: relations that 
are not listed in the from clause are eliminated, a term 
A 8 R.A in the where clause eliminates R because it would 
introduce a self-comparison, and a term R. A = S. A elim- 
inates either R or S, because both yield the same result. 
An unqualified attribute in the retrieve clause which does 
not appear in any database relation is discarded. 

Next, the corrrector considers badly qualified attri- 
butes. A badly qualified attribute R.A may be corrected 
either by substituting R by a relation that includes A, or 
by substituting A by another attribute of R. This set of 
possible substitutions is reduced by selecting relation sub- 
stitutes only from the list of from relations, by selecting 
relation substitutes that would not introduce any self-com- 
parisons in the where clause (e.g., a term R. A 8 S. A elim- 
inates the relation substitute S ), and by selecting attribute 
substitutes that would not introduce any domain conflicts 
in the where clause (e. g . , a term R. A 8 S. B eliminates any 
attribute substitute whose domain is different from the do- 
main of B). 
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Next, the corrector considers domain conflicts. A con- 
flicting comparison R.A 0 S. B may be corrected either by 
substituting A by an attribute of R that has the same do- 
main as B, or by substituting B by an attribute of S that 
has the same domain as A. ’ Methods similar to those men- 
tioned above are used to reduce the number of possible 
corrections. 

Finally, the corrector considers relations that are ref- 
erenced in the retrieve or where clauses, but are not listed 
in the from clause (note that such references may have 
been added by the corrector). These are simply added to 
the from clause. 

If any of these semantic corrections fails (i.e., the cor- 
rector cannot infer a unique correction), the input is as- 
sumed to be beyond salvation. 

C. Example 

Consider the following input: 

RETRIEVES-NAMEANDMAJOR; 

FROMSTUDENTSANDCOURSES; 

WHERESTUDENTS.S-NAME=S-NAME, 

ENROLLMENT.C-NO=COURSES.NUMBER, 

AND COURSES.D-NAME=“CS"; 

The initial synonym substitution pass replaces STU- 

DENTS with STUDENT, COURSES with COURSE, and cs with 
COMPSCI. Note that synonyms include both data and 
metadata. We have 

RETRIEVES-NAMEANDMAJOR; 

FROMSTUDENTANDCOURSE; 

WHERESTUDENT.S-NAME=S-NAME, 

ENROLLMENT.C-NO=COURSE.NUMBER, 

ANDCOURSE.D-NAME=“COMPSCI"; 

The syntactic analysis detects the keywords retrieve, 
from, and where, and applies these corrections. The key- 
word and and the trailing semicolon are removed from 
the retrieve and from clauses, and commas are inserted 
between the elements of these lists. The commas separat- 
ing the terms of the where clause and its terminating 
semicolon are discarded, and the connector and is in- 
serted between the first two terms. We have 

RETRIEVES-NAME, MAJOR 

FROMSTUDENT,COURSE 

WHERESTUDENT.S-NAME--S-NAME 

AND ENROLLMENT.C-NO=COURSE.NUMBER 

AND COURSE.D-NAME=“COMPSCI" 

The semantic correction begins by qualifying the attri- 
butes S-NAME and MAJOR: S-NAME appears in both STU- 

DENT and ENROLLMENT, but since the former would intro- 
duce a self-comparison in the where clause, it is qualified 
by the latter; MAJOR is qualified by STUDENT, which is the 

‘The corrector does not attempt to find another relation R’ that includes 
an attribute A with the same domain as B, or another relation S’ that in- 
cludes an attribute B with the same domain as A, because the data model 
requires that attributes appearing in more than one relation have the same 
domain. 

only relation to include it. Next, the bad qualification 
COURSE.NUMBER is replacedby COURSE.C-NO, c.~obeing 
the only attribute of COURSE with the same domain as EN- 

ROLLMENT.C-NO. The corrected query is now formatted 
and displayed to the user: 

RtIk%! ENROLLMENT.S-NAME,STUDENT.MAJOR 

from STUDENT, COURSE, ENROLLMENT 

where STUDENT.S-NAME=ENROLLMENT.S-NAME 

and ENROLLMENT.C-NO=COURSE.C-NO 

and COURSE.D-NAME=‘~COMPSCI" 

The user may now either accept this query or abandon the 
process. In the former case, the query is copied back into 
the editor, where the user may refine it before resubmit- 
ting it. In the later case, the corrector transfers the input 
to the next mechanism. 

D. Related Research 

Techniques for handling input errors have been imple- 
mented in compilers for general programming languages 
(for example, see 13, pp. 226-2271 or [l, pp. 164-1651. 
A common technique involves augmenting the grammar 
with ‘ ‘error productions’ ’ that parse erroneous input. This 
technique is usually applied to allow the compiler to re- 
cuver and continue its analysis (after generating appro- 
priate error diagnostics). The FLEX corrector applies a 
similar technique in its syntactical correction phase. 

In general, correcting semantic errors in large programs 
is considered to be both risky and expensive. The error 
correction capabilities of FLEX are a consequence of the 
relative simplicity of the language and the restricted se- 
mantics provided by the particular database being ac- 
cessed. 

IV. THE SYNTHESIZER 

If the input does not exhibit sufficient syntactic and se- 
mantic structures to be salvaged by the query corrector, 
or if the user rejects the corrected query, then FLEX en- 
gages its query synthesizer. 

The synthesizer treats the input as an unstructured set 
of words. The words that it recognizes are synthesized 
into proper queries. These queries are then presented to 
the user as educated guesses, and may be subject to fur- 
ther refinement by the user. 

Thus, compared to the corrector, the synthesizer han- 
dles input which is less well-formed (a set of words), and 
its interpretations are less accurate (educated guesses.) 

Indeed, it is possible to use FLEX as an interpreter of 
a very simple language, where the user provides sets of 
database tokens, and (after approving the suggested inter- 
pretations) is presented with the corresponding database 
output. Such input will fail all the mechanisms that pre- 
cede the synthesizer. 

A. Principles 

The universe of recognized words is defined by the da- 
tabase at hand, as its set of database tokens (i.e., the union 
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of its data and metadata elements). Words which are not 
recognized are discarded. 

In general, tokens which are elements of the metadata 
would be interpreted as requests, while tokens which are 
elements of the data would be interpreted as qual#ers. 
For example, in the input “RETRIEVESTUDENTANDMAJOR 

FORCSlol," the words STUDENT and MAJOR are elements 
of the metadata, and would be understood as requests for 
data of those types; the word cs 101 is an element of the 
data, and would be understood as a qualifier to help iden- 
tify the data requested; the words RETRIEVE, AND, FOR are 
not database tokens, and would be discarded. 

By its very nature, a set of tokens provides only frag- 
mented information. The goal of the synthesizer is to con- 
nect these individual requests and qualifiers into a mean- 
ingful database query. To assist in this task the synthesizer 
represents the information stored in the dictionary as a 
graph called the schema graph. 

/ GPA 
NUMBER-GRADE 

STUDENT + MAJOR 7 ACADEMICDISCIPLINE 

PERSON-NAME 

ENROLLMENT LETTER-GRADE 

COURSE-NUMBER 

COURSE UNIT-NUMBER 

The schema graph has a node for each relation, for each 
attribu te, and for each domain (relation nodes, attribute 
nodes, and domain nodes, respectively ,). Each domain 
node is connected with edges to all the nodes of the attri- 
butes that draw their values from this domain. Each at- 
tribute node is connected with edges to all the relation 
nodes that include this attribute. Note that schema graphs 
are not necessarily connected and may have cycles. 

DEPARTMENT CHAIRPERSON ’ 

COLLEGENAME 

Fig. 4. Schema graph for database UNIVERSITY. 

The schema graph for the example is shown in Fig. 4. 
Note that this database definition is cyclic; for example, 
the association between a student and a course may be 
either that the student is enrolled in the course, or that the 
course is offered by the department in which he majors. 

B. i%e Synthesis Procedure 

The problem of synthesizing a formal query from given 
input is translated into a graph problem. Roughly, the in- 
put is modeled by a set of nodes in the schema graph, the 
nodes are then connected into a subgraph, and the 
subgraph is translated into a query. Thus, the problem of 
synthesizing a query can be divided into three subprob- 
lems: 1) how to determine the nodes that correspond to 

the given input 2) how to connect the nodes into a 
subgraph, and 3) how to translate this subgraph into a 

query ’ 

To demonstrate this procedure, assume a user who is 
aware that the database contains information on students, 
courses, and enrollments, and would like to find out the 
names and majors of the students w  ho are en rolled in the 
course cs 101. However, this user can only utter some- 
thing like “ RETRIEVE 

I) From Words to 
STUDENT 

Nodes. I 
ANDMAJORFORCSl 

n general, for each 
01 

$9 
. 

recog- 
nized word one node in the schema graph is selected. 
First, the word is searched in the dictionary. If the word 

one domain are ambiguous. Such ambiguities are resolved 
by issuing to the user a request for clarification: the re- 
quest displays the ambiguous word, along with its possi- 
ble domains, and the user is asked to select the correct 
domain. If the word is not found in the lexicon, it is dis- 
carded. 

Recall the example input “RETRIEVESTUDENT AND MA- 

JOR FOR CSlol". The words STUDENT and MAJOR select 
the corresponding relation and attribute nodes with these 
names, the word cslO1 selects the domain node 
COURSE NUMBER, and the words RETRIEVE, AND, and FOR 

are discarded. 
2) From Nodes to Subgraph. To connect the selected 

nodes in the schema graph into a subgraph that spans 
them, the synthesizer applies an iterative procedure that 
finds an optimal (shortest) path between a given node and 
a set of nodes that have already been connected in a pre- 
vious step. 

It begins by ordering the selected nodes (possibly, by 
the order of the corresponding words in the input) and it 
marks the first node. It then considers the next node, and 
searches for the shortest path between this new node and 
the set of marked nodes (initially, this set includes only 
the first node). All the nodes of the path are marked, and 
the next selected node which is still unmarked is consid- 
ered. This procedure continues until all the selected nodes 
have been marked. When it terminates, a connected 
subgraph is available. Obviously, this subgraph is always 
a tree. 

Recall that the example input “RETRIEVE STUDENT AND 

MAJOR FOR cs 101” selected three nodes: the relation node 
STUDENT, the attribute node MAJOR, and the domain node 
COURSE-NUMBER. First, MAJOR is connected to STUDENT 

is a relation name, an attribute name, or a domain name, with a single edge; then, COURSE-NUMBER is connected to 
then the corresponding relation node, attribute node, or this subgraph with a path that goes through C-NO, EN- 

domain node is selected. If the word is not found in the ROLLMENT, and S-NAME. This subgraph is shown in Fig. 
dictionary, it is searched in the lexicon. If it is found (i.e., 5. 
it is a data token), then the node that corresponds to its When this procedure terminates, it is possible to have 
domain is selected. Data tokens that belong to more than a subgraph with a domain node which is not connected to 
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STUDENT MAJOR 

S-NAME 

ENROLLMENT 

\ C-NO COURSE-NUMBER 

Fig. 5. Connected subgraph. 

any attribute node (for example, when the only selected 
node is a domain node) , or an attribute node which is not 
connected to any relation node (for example, when the 
only selected node is an attribute node.) In the former 
case, the domain node is connected to an associated at- 
tribute node, and in the latter case the attribute node is 
connected to an associated relation node. If there are sev- 
eral attribute nodes that are associated with the domain 
node, or if there are several relation nodes that are asso- 
ciated with the attribute node, then the user is asked to 
select one. 

3) From Subgraph to Query: The subgraph is now 
transformed into a query as follows (the subsequent dis- 
cussion is concerned only with the subgraph). 

For each attribute node A: 
l Jf A was selected by a metadata token, then R.A is 

added to the retrieve clause, where R is one of A’s adja- 
cent relation nodes. 

l If A has several adjacent relation nodes RI, . . . , R,, 
then the selection phrase ( RI.A = R2.A and . . . and 
R n-l= A= R,. A) is conjoined to the where clause. 

For each relation node R: 
l R is added to the from clause. 
l If R was selected by a metadata token, and the re- 

trieve clause does not include any of its attributes, then 
all of R’s attributes are added to the retrieve clause. If R 
was selected by a metadata token, and the retrieve clause 
includes some of its attributes, then only the key attributes 
of R are added to the retrieve clause. 

For each domain node D: 
l If D was selected by a metadata token, then R. A is 

added to the retrieve clause, where A is one of D’s ad- 
jacent attribute nodes and R is one of A’s adjacent relation 
nodes. 

l If D was selected by data tokens Cl, . . . , Cn, then 
the selection phrase (R.A = Cl or . . . or R.A = Cn) is 
conjoined to the where clause, where A is one of D’s ad- 
jacent attribute nodes, and R is one of A’s adjacent rela- 
tion nodes. 

l If D has several adjacent attribute nodes Al, . . . , 
A,, which have adjacent relation nodes RI, . . . , Rn, then 
the selection phrase (RI. Al = R2. A2 and . . . and 
R n--l* A n-l = R,. A,) is conjoined to the where clause. 

Thus, an attribute mentioned in the input is interpreted 
as a request to retrieve that attribute. A relation mentioned 
in the input is interpreted as a request to retrieve its key 
attributes (if other attributes of this relation are mentioned 
in the input), or as a request to retrieve all its attributes 

(if none of its attributes are mentioned in the input). For 
example, “COURSE SMITH" will retrieve full details on the 
courses in which Smith is enrolled, while “COURSE UNITS 

SMITH" will retrieve only the course numbers and units of 
these courses. A domain mentioned in the input is inter- 
preted as a request to retrieve an attribute of this domain. 

The where clause is a conjunction of selection phrases. 
Each phrase either joins two relations or binds an attribute 
to a value (or to one of several values). For every attribute 
node that is adjacent to several relation nodes, or a do- 
main node that is adjacent to several attribute nodes, the 
corresponding relations are joined. For every domain node 
that was marked by data tokens, the adjacent attribute is 
bound to the data tokens. 

Finally, every relation whose node is in the subgraph is 
necessary for processing this query, and is therefore added 
to the from clause. 

When applied to the subgraph of Fig. 5, this procedure 
synthesizes the following query: 

retrieve S-NAME, MAJOR 

from STUDENT,ENROLLMENT 

where STUDENT.S-NAME=ENROLLMENT.S-NAME 

and ENROLLMENT.C-NO- “~~101” 

Its answer is 

ES-NAME i MAJOR 1 

We note that there are several additional minor correc- 
tions that may be applied to queries generated by this pro- 
cedure. 

C. Alternative Interpretations 

The synthesized query is suggested to the user. The user 
may then either accept it, reject it, or abandon the pro- 
cess. In the former case, this query is copied back into 
the editor, where the user may refine it before resubmit- 
ting it. In the latter case, the synthesizer terminates its 
attempts and transfers the input to the next mechanism. If 
the user rejects the query, the synthesizer tries to synthe- 
size an alternative query. This is done by repeating steps 
2 and 3 of the synthesis procedure. The synthesizer at- 
tempts to span the given nodes with a different subgraph, 
which serves as the basis for a new query. 

As another example, consider the input “STUDENT 

MATH". Its tokens select the relation node STUDENT and 
the domain node ACADEMIC DISCIPLINE. The shortest path 
that connects these nodes goes through the attribute node 
MAJOR. This subgraph yields the following query that lists 
all information on the students who are Math majors: 

retrieve S-NAME, MAJOR, G~A 

from STUDENT 

where STUDENT.MAJOR=“MATH" 



238 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 2, JUNE 1990 

Its answer is 

If this query is rejected, the synthesizer will connect the 
selected node with an alternative path that goes through 
the attribute node MAJOR, the relation node STUDENT, the 
attribute node S-NAME, the relation node ENROLLMENT, the 
attribute node C-NO, the relation node COURSE, the attri- 
bute node D-NAME, and the domain node ACADEMIC DIS- - 

CIPLINE. It yields the following query that lists all infor- 
mation on the students who are enrolled in Math courses: 

retrieve S-NAME, MAJOR, GPA 

from STUDENT, ENROLLMENT, COURSE 

where STUDENT.S-NAME=ENROLLMENT.S-NAME 

and ENROLLMENT.C-NO=COURSE.C-NO 

and COURSE.D-NAME=“MATH" 

Its answer is 
. 

S-NAME MAJOR GPA 

BROWN MATH 26 

KLEIN COMPSCI 2:s 

SMITH MATH . 32 

D. Related Research 

This method of synthesizing queries from a set of to- 
kens recalls work on the problem of inferring database 
joins automatically. That problem may be stated as fol- 
lows: given a set of database attributes, derive a relation 
that combines these attributes. If a unique relation may 
always be derived, then a query language may be de- 
signed that relieves its users from navigating within re- 
lations, thus achieving higher independence from the log- 
ical structure of the database. 

One approach to this problem, known as the universaZ 
relation approach, is to form the natural join of all the 
relations of the database, and then project on the given 
attributes [ 171. There are several problems with this ap- 
proach [ 131. One problem is that all database attributes 
must have different names. An even more severe problem 
is that if the database definition is cyclic (i.e., two attri- 
butes may be connected through different sequences of 
joins), then this procedure may yield unnatural results. A 
possible solution is to define databases that do not include 
cycles; however, this may lead to complexities of design 
and replication of information, both contrary to the very 
purpose of databases. 

A variation of this approach, which addresses these 
problems, is to incorporate maximal objects into the def- 
inition of the database [ 181. Intuitively, each maximal ob- 
ject is a derived relation that represents a unique mean- 
ingful connection among its attributes. The given attri- 
butes are then projected from every maximal object that 
contains them. and the union of the answers is formed. 

This approach is the basis for the relational database Sys- 
tem/U [ 141. Except for the additional requirement to pre- 
define the maximal objects, a major drawback of this ap- 
proach is that the final answer may combine tuples which 
represent different connections of the given attributes. 

Another approach for dealing with the presence of al- 
ternative connections, is to adopt a criterion of optimal- 
ity . Usually, the given attributes select certain compo- 
nents in a graph that represent the definition of the 
database, and the preferred connection is the one that cor- 
responds to a minimal subgraph that spans these compo- 
nents. Obviously, such subgraphs are always trees, and 
the problem is known as the Steiner tree problem [8]. 
(This problem is a generalization of the minimum span- 
ning tree problem.) This approach was taken by [6], [26], 
[ 151, and [20]. While it often yields satisfactory results, 
it has three drawbacks: first, Steiner trees are not neces- 
sarily unique, and there may be several such trees, each 
leading to a different query; second, the query intended 
by the user may correspond to a subgraph which is not 
necessarily minimal; and, third, finding Steiner trees is a 
problem known to be NP-complete. 

The FLEX approach is a variation of the minimal 
subgraph approach, with several significant differences. 
1) FLEX handles a wider variety of input tokens. While 
others consider attribute names only, FLEX considers to- 
kens which are either relation names, attribute names, do- 
main names, or data. 2) FLEX does not force a single 
interpretation upon its users. Its interpretations are offered 
as suggestions; if rejected, FLEX spans the nodes differ- 
ently, and synthesizes alternative queries. 3) Users are 
allowed to refine the queries suggested by FLEX. Even 
when a suggested query is not the one intended, the nec- 
essary modifications are often minor, and are relatively 
easy to perform because the syntactical and semantical 
structures are now mostly in place. 

V. THE BROWSER 

If the input does not contain any metadata tokens, or if 
the user rejects all the synthesized queries (or otherwise 
abandons the synthesis process), then FLEX engages its 
browser to construct a browsing request for one of the 
recognized data tokens. 

The browsing request retrieves from the database all the 
information that is available on the selected topic, and 
displays it to the user in a single frame. 

Thus, the browser handles input which is much less 
well-formed (one topic), and its interpretations are much 
less specific (everything that is known on that topic). 

Indeed, it is possible to use FLEX as a browsing tool, 
where the user provides topics, and is presented with 
frames of information on these topics. Such input will fail 
all the mechanisms that precede the browser. 

A. Principles 

Using the dictionary and the lexicon, the browser views 
the entire database as a single network of objects. 

All the occurrences of a particular data token t under 
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database attributes that are associated with the same do- 
main d are considered collectively to be one object called 
t (d ). For example, the object MATH (ACADEMIC-DISCI- 

PLINE) is assembled from occurrences of the token MATH 
under STUDENT.MAJOR, COURSE.D-NAME, and DEPART- 

MENT.D-NAME. Note that by using domain information, 
objects are guaranteed coherent semantics. For example, 
if BROWN occurred in the database both under attributes 
whose domain is ACADEMIC DISCIPLINE and under attri- 
butes whose domain is COLOR NAME, then two separate - 
objects would be assembled: BROWN (ACADEMIC-DISCI- 

PLINE) and BROWN (COLOR-NAME). 

Object relationships are based on the functional depen- 
dencies that are known to exist among the database attri- 
butes. In each relation, every attribute is functionally de- 
pendent on the key attributes. Consequently, each data 
token is related through functional dependencies to other 
tokens in the tuples in which it occurs. Since each object 
combines all the occurrences of a particular data token in 
the database, the relationships of this object to other ob- 
jects are based on all the relationships in which these oc- 
currences participate. Note that this object may be the 
source of a functional dependency in one relation, and the 
target of a functional dependency in another. 

Consider again the object MATH.~ It occurs once in DE- 

PARTMENT.D-NAME, and several times in STUDENT.MAJOR 

and COURSE.D-NAME. On the basis of these tuples, this 
object is related to six other objects: SCIENCE and FOX 

(functionally dependent on MATH in relation DEPART- 

MENT), SMITH and BROWN (functionally determining MATH 

in relation STUDENT), and MATH270 and MATH370 (func- 
tionally determining MATH in relation COURSE). 

By concatenating the relation names and the attribute 
names involved in each functional dependency, meaning- 
ful names for the relationships can be obtained. For ex- 
ample, MATH and FOX are related via is D-NAME of DE- 

PARTMENT having CHAIRPERSON, and MATH and BROWNING 

related via is MAJOR of STUDENT having S-NAME. 

The complete list of relationships of MATH is 

E844 -A ~824 - 

239 

A- ~762 ~ c+ ~742 

COMPSCI 

MATH370 2.6 

ENGINEER SCIENCE FOX 

Fig. 6. Object network for database UNIVERSITY (part). 

D-NAME of DEPARTMENT having CHAIRPERSON, and ~oxis 

related to MATH via is CHAIRPERSON of DEPARTMENT hav- 
ing D-NAME. 

Consider now the relation ENROLLMENT. Assume that 
its key attribute E-NO is removed, and, instead, the rela- 
tion is keyed on the combination of S-NAME and C-NO. In 
this case, GRADE is functionally dependent on this com- 
bination. To define object relationships in such cases, it 
is necessary to introduce the notion of a composite object, 
which is a combination of objects. For example, the ob- 
jects SMITH and MATH~~O are combined to create the com- 
posite object (SMITH,MATH~~O). A composite object oc- 
curs in the database whenever its components appear in 
the same tuple of some relation under the key attributes. 
Composite objects need not have separate entries in the 
lexicon, since they can be located through the entries of 
their components. 

Notice that the individual components of the key are 
themselves functionally dependent on the key. These so- 
called trivial dependencies are important, since they help 
establish relationships from components of the key to 
other data tokens in the tuple. For example, SMITH is re- 

latedtoboth (SMITH,MATH~~~) and (SMITH,CS~~~), which, 

in turn, are related, respectively, to c + and A - . 

MATH is D-NAME of DEPARTMENT having COLLEGE SCIENCE 

MATH is D-NAME of DEPARTMENT having CHAIRPERSON FOX 

MATH is MAJOR of STUDENT having S-NAME BROWN 

MATH is MAJOR of STUDENT having S-NAME SMITH 

MATH is D-NAME of COURSE having C-NO MATH270 

MATH is D-NAME of COURSE having C-NO MATH370 

Part of the object network derived from the database of 
Fig. 2 is shown in Fig. 6. Note that all edges represent 

Let E-ID denote the combination (S-NAME, C-NO). The 

two-way relationships: MATH is related to FOX via is 
first two tuples of ENROLLMENT give rise to these six re- 
lationships: 

SMITH is S-NAME of ENROLLMENT having E-ID (smrH,MATH370) 

SMITH is S-NAME of ENROLLMENT having E-ID (SMITH,CS 101) 

CSlOl is C-NO of ENROLLMENT having E-ID (SMITH,CS~~~) 

MATH370 is C-NO of ENROLLMENT having E-ID (SMITH,MATHVO) 

(~MITH,MATH~~O) is E-ID of ENROLLMENT having GRADE c+ 

(SMJTHJSIOI) is E-ID of ENROLLMENT having GRADE A- 

*When a token belongs to only one domain, the domain will be deleted 

from the object name. 
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Obvi 
jects 

ously , except for th 
(SMITH,MATH370)a 

eir name Y the new composite ob- 
.nd (SMITH ,cslOl) are identical to 

the previous simple objects ~762 and ~824. 

B. Processing Requests 

The browser extracts from the input a list of data tokens, 
and requests the user to select from this list a topic for a 
browsing request. The browser then locates the corre- 
sponding object in the object network and retrieves its im- 
mediate neighborhood: the adjacent relationships and ob- 
jects. This neighborhood is structured as a frame of 
information on this topic, which is then presented to the 
user as all that is known about this topic. 

The object network is not stored explicitly; only the 
portion required for the present request is constructed with 
several database accesses. First, the browser retrieves 
from the lexicon the attributes where the token occurs, 
and uses the dictionary to determine the various domains 
of the token. If the token belongs to more than one do- 
main, then the browser requests the user to select the do- 
main intended. For each attribute of the selected domain 
the browser issues a query to retrieve from the appropriate 
relation the tuples that have the given token in that attri- 
bute. In addition, the browser uses the dictionary to de- 
termine the keys of these relations. This information is 
used to determine the relationships in which the topic ob- 
ject participates and their names. The tuples returned from 
the various relations are then structured according to the 
relationships. The frame of the object MATH is shown in 
Fig. 7. 

As mentioned earlier, by providing arbitrary new topics 
(i.e., data tokens), the user may use FLEX as a browsing 
tool. Note that this kind of access does not require any 
understanding of the underlying relational data model. If 
the user provides new topics from the data tokens men- 
tioned in the current frame, he will be navigating in the 
object network. Note that this network view is never con- 
veyed explicitly to the user, but will usually become ap- 
parent after repeated use. 

C. Related Research 

Browsers are tools for performing exploratory searches, 
often by naive or casual users. They are especially useful 
when either 1) the user is unfamiliar with the underlying 
data model, 2) the user is not proficient in the formal query 
language, 3) the user is not familiar with the contents and 
organization of the particular database being accessed, 4) 
the user has no preconceived retrieval target, or 5) the 
user cannot describe his retrieval target in terms that are 
understood by the system. 

Browsers usually employ simple conceptual models and 
offer simple, intuitive commands. Often, the conceptual 
model is a network of some kind, and browsing is done 
by navigation: the user begins at an arbitrary point on the 
network (perhaps a standard initial position), examines 
the data in that “neighborhood”, and then issues a new 
command to proceed in a new direction. While browsing, 

MATHis-- - 

D-NAME of DEPARTMENT having COLLEGE SCIENCE 

CHAIRPERSON FOX 

D-NAME of COURSE having C-NO MATH270 

MATH370 

MAJOR of STUDENT having NAMEBROWN 

SMITH 

Fig. 7. Frame of MATH. 

users gain insight into the contents and organization of the 
searched environment. 

Examples of browsers include Cattell’s entity-based 
database interface [4]; SDMS, a graphical browsing tool 
for a ‘ ‘ spatial’ ’ database system [9]; TIMBER, a browser 
for the INGRES relational database system [25], 
BAROQUE, a relational browser [ 191; and KIVIEW, an 
object-oriented browser [24]. 

Because the tabular structures of relational databases do 
not lend themselves to a network representation, most 
browsers for relational databases are simply tools for 
scanning relations (either base relations or relations de- 
rived from queries), and therefore have only limited ex- 
ploration capabilities. Browsing is confined to a single re- 
lation at a time, and it is not possible to browse across 
relation boundaries. If a user encounters a token while 
browsing, and wants to know more about it, he must de- 
termine first in what other relations this token might ap- 
pear, then formulate a query, and resume browsing in the 
new relation. 

Using a lexicon to represent a relational database as a 
network of objects to support browsing was first done in 
BAROQUE. Essentially, the FLEX browser is an adap- 
tation of this approach to the larger framework of FLEX. 

VI. THE GENERALIZER 

Consider a query to retrieve all non-Math majors en- 
rolled in the course MATH 370 who received the grade 
A. As there is no enrollment for which the course is 
MATH 370, the student is not a Math major, and the grade 
is A, the database system returns an empty answer. This 
response, however, is misleading. Clearly, the author of 
this query seems to think that some non-Math majors are 
enrolled in MATH 370, and will conclude that none of 
them received the grade A. While, in fact, only Math ma- 
jors are enrolled in this course. 

A distinction is made between genuine empty answers, 
, 

and these fake empty answers that actually reflect erro- 
neous presuppositions on behalf of the user. Fake empty 
answers are misleading, as they are often mistaken for 
genuine empty answers (and may therefore be understood 
as reaffirmation of the user’s presuppositions). Even gen- 
uine empty answers are unsatisfactory, because their in- 
formation content amounts to a “shrug. ” 

This is in contrast with human behavior, where the de- 
tection of erroneous presuppositions is common cooper- 
ative behavior (Chairperson: “Who are the non-Math ma- 
jors in your class who received an A?” Professor: “All 
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the students in my class are Math majors”), and partial 
answers are usually provided when the query is legiti- 
mate, but does not have an answer (Chairperson: “Who 
are the students in your class who received an A?” Pro- 
fessor: “Nobody; but Smith received an A - ’ ‘). 

Hence, empty answers are rarely satisfactory, and 
FLEX does not deliver them without further explanation 
and assistance. When a query that had been processed re- 
turns an empty answer, FLEX engages the generalizer. 
The generalizer attempts to infer the presuppositions of 
the user, test their correctness, and offer partial answers 
when appropriate. 

A. Principles . . 
The generalizer is based on these observations. 
First, every query reflects a presupposition that the re- 

trieval request it expresses is plausible (may possibly suc- 
ceed). For example, a query to retrieve the non-Math ma- 
jors who received an A in MATH 370 reflects a 
presupposition that there may be non-Math majors who 
received an A in Math 370. These are the kind of presup- 
positions handled by FLEX. Indeed, the correspondence 
between a query and the presupposition it reflects is so 
tight, that the tern-is will be used interchangeably. 

Second, each presupposition is a source of more gen- 
eral (weaker) presuppositions. For example, from the pre- 
supposition that there may be non-Math majors who re- 
ceived an A in MATH 370, the presupposition that there 
may be non-Math majors who received at least a B in 
MATH 370 and the presupposition that there may be stu- 
dents who received an A in MATH 370 may be inferred. 
Presuppositions that are minimally more general than a 
given presupposition (i.e., are weaker by the smallest 
“notch” expressible in the system) will be called imme- 
diate generalizations. 

Third, given two presuppositions (inferred from the 
same query), the user is more confident about the more 
general presupposition. For example, the user is more 
confident about the existence of non-Math majors who re- 
ceived at least a B in MATH 370, or the existence of 
students who received an A in MATH 370, than about the 
existence of non-Math majors who received an A in 
MATH 370. 

Thus, while users expect that their queries may possi- 
bly have empty answers, they tend to be confident that 
every more general query would not have failed. Conse- 
quently , the following test is devised: When a query fails, 
its immediate general .izations are generated 
tempted. If all succeed, it is an indication that the 

and at- 
original 

empty answer was genuine; the answers to the general- 
izations may then be considered partial answers. If at least 
one of the immediate generalizations fails, it is an indi- 
cation that the original empty answer was fake; each failed 
generalization reflects an erroneous presupposition. 

Clearly, if one query is a generalization of another and 
both fail, then the erroneous presupposition behind the 
more specific query is insignificant. Hence, a failure is 
significant, only if all its generalizations succeed. The 

previous test is therefore continued until all significant 
failures are detected. 

The test can now be described as follows: When a query 
fails, the set of significant failures is determined. If the 
only significant failure is the query itself, then the empty 
answer is genuine (and each of its generalizations is a par- 
tial answer); otherwise, the empty answer is fake (and 
each significant failure reflects an erroneous presupposi- 
tion). 

B. l%e Generalization Procedure 

FLEX traps each query that returns a empty answer and 
passes it to the generalizer. To generalize this query, its 
where clause is converted to conjunctive normal form; 
i.e., a conjunction of terms, where each term is a dis- 
junction of primitive terms, where a primitive term is a 
comparison between two attributes or between an attri- 
bute and a value (negations are removed by using com- 
plementary comparators). This conjunctive query is gen- 
eralized into a set of queries by modifying a single prim- 
itive term at a time. 

Primitive terms are either numeric or nonnumeric, de- 
pending on the type of their operands, as specified in the 
dictionary. To generalize a numeric term, such as GPA > 

3.6, the delta specified in the dictionary is used to relax 
the comparison by one “notch, ” in this example, GPA > 

3.4. A nonnumeric term, such as MAJOR = “~~MPSCI", is 
generalized by replacing it with true. If a numeric com- 
parison is relaxed beyond the minimum or maximum val- 
ues of this domain, as specified in the dictionary, then it, 
too, is replaced with true. If a primitive term is replaced 
with true, then the value of the entire conjunct becomes 
true, and it may be removed. 

As an example, consider this query to retrieve the stu- 
dents with GPA over 3.6, whose major is either Computer 
Science or Electrical Engineering. 

Qo: retrieve S-NAME 

from STUDENT 

where STUDENT.GPA > 3.6 
and (STUDENT.MAJOR=“COMPSCI" 

Or STUDENT.MAJOR=“ELECENG") 

Its where clause is already in conjunctive normal form, 
and the following two generalizations are derived: 

Q 1: retrieve S-NAME 

fI-OIll STUDENT 

where GPA > 3.6 

e 2: retrieve S-NAME 

fr0Il-b STUDENT 

where STUDENT.GPA > 3.4 
and (STUDENT.MAJOR=“COMPSCI" 

Or STUDENT.MAJOR=“ELECENG") 

Q, omits the requirement on the major, and Q2 relaxes the 
requirement on the GPA. Qr is generalized further by de- 
creasing the GPA requirement to 3.4 (Q3), and Q2 is gen- 
eralized further by omitting the requirement on the major 



242 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 2, JUNE 1990 

( Q3 ), or by relaxing the GPA requirement to 3.2 ( Q4). 
This continues until the threshold GPA value reaches the 
minimum specified in the dictionary, at which point the 
GPA requirement is deleted altogether. Fig. 8 illustrates 
the complete hierarchy of queries, assuming a minimum 
GPA value of 3.0. The top three queries are as follows: 

Q7: retrieve S-NAME 

from STUDENT 

where GPA > 3.0 

Q8: retrieve S-NAME 

from STUDENT 

where STUDENT.MAJOR=“COMPSCI" 

Or STUDENT.MAJOR=“ELECENG") 

Q9: retrieve S-NAME 

from STUDENT 

This generalization strategy is slightly different when 
the query involves several relations that arejoined by the 
where clause. Assume a query that involves relations R,, 

l 7 
R,, and consider a particular join between Ri and 

ii. If a term that joins these two relations is removed, and 
it is the only connection (either directly or indirectly) be- 
tween these two relations, then the query becomes “dis- 
connected, ’ ’ with its n relations separated into two dis- 
joint subsets (one including Ri, the other including Rj). 
This query will now derive a relation from each of the 
subsets, and compute their product. Usually, such queries 
have little intuitive meaning. To avoid such queries, the 
generalization procedure is modified as follows. 

A join term whose immediate generalization is true, and 
whose removal disconnects the query, is called a discon- 
necting term. 3 A disconnecting term is removed only when 
one of the disjoint subsets of relations it creates has only 
one relation, and no other terms involve this relation. In 
the new query, this relation is removed from the from 
clause, and all its attributes are removed from the retrieve 

clause.4 
As an example, consider this query to retrieve the GPA 

and grade of Computer Science majors enrolled in MATH 
”  

370 . 

Qo: retrieve S-NAME, CPA, GRADE 

from STUDENT, ENROLLMENT 

where STUDENT.MAJOR=“COMPSCI" 

and ENR~LLMENT.~-NO=“MATH370" 

Its where clause is al 

and STUDENT. S-NAME=ENROLLMENT.S-NAME 

reaay 
1 r  

in conjunctive normal 
and the following two generalizations are derived: 

rorm, 

Q 1: retrieve S-NAME, GPA, GRADE 

from STUDENT,ENROLLMENT 

where ENRoLLMENT.C-~0 =“MATH~~~" 
and STUDENT.S-NAME=ENROLLMENT.S-NAME 

“Note that if a join term is numeric, its generalization could not involve 
disconnection, unless the threshold values have already been reached. 

41n the ‘ ‘pathological’ ’ case where the retrieve clause becomes empty, 

the key attributes of the relations addressed by the query (the relations in 
the other subset) are inserted into it. 

Fig. 8. Hierarc hy of generalizations for first example. 

Q 5 Q 6 

Q2: retrieve S-NAME, GPA, GRADE 

from STUDENT, ENROLLMENT 

where STUDENT.MAJOR=“COMPSCI" 

and STUDENT.S-NAME=ENROLLMENT.S-NAME 

Qi omits the requirement on the major, and Q2 omits the 
requirement on the course. By omitting the requirement 
on the course in Q,, or the requirement on the major in 
Q2, both queries are generalized to Q3: 

Q3: retrieve S-NAME, GPA, GRADE 

from STUDENT, ENROLLMENT 

where STUDENT.S-NAME=ENROLLMENT. S-NAME 

Qi and Q2 can also be generalized by removing the join 
term. In Qi the relation STUDENT and the attribute GPA are 
removed from its from and retrieve clauses, yielding Q4. 
Similarly, in Q2 the relation ENROLLMENT and the attribute 
GRADE are removed from its from and retrieve clauses 
yielding Q5. 

Q4: retrieve S-NAME, GRADE 

from ENROLLMENT 

where ENROLLMENT.C-NO=“MATH~~O" 

Q5: retrieve S-NAME, GPA 

from STUDENT 

where STUDENT.MAJOR="COMPSCI" 

Q3 is generalized further by omitting the join term, and 
removing either the relation STUDENT and the attribute 
GPA, or the relation ENROLLMENT and the attribute GRADE, 

yielding Q6 and Q7: 

Q 6: 

Q7: 

retrieve S-NAME, GRADE 

from EN 'ROLLMEN T 

retrieve S-NAM 

from STUDENT 

E, GPA 
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r-l Q 6 rl Q 7 
Finally, Q4 and 425 are generalized by omitting their where 
clauses altogether, also yielding Qs and QT. Fig. 9 illus- 
trates these generalization relationships. Note that the 
generalizations Q, to Q4, Q2 to Q5, Q3 to Qs, and Q3 to 
Q7 change the list of retrieved attributes. 

The generalization procedure outlined above may be 
specified with a formal algorithm as follows. Assume that 
genl (4, i ) is a subroutine that receives a query q and an 
index i and returns a new query, where the ith term of q 
has been substituted by an immediately more general term 
(recall that if the new term is true, then the entire conjunct 
is removed). Thus, gen 1 takes care of generalizations on 
nondisconnecting terms. Ass ume that gen2 (q, r) is a sub- 
routine that receives a q Y-Y q and a relation name r and 
returns a new query, where all references to Y have been 
removed (recall that it may be necessary to insert new 
retrieve attributes). Thus, gen2 takes care of generaliza- 
tions on disconnecting terms. The following algorithm 
takes a given query Q0 and generates a set of queries Q,, 

. . Q, that are immediate generalizations of Q,. Q0 is 
assumed to have a where clause in conjunctive normal 
form with terms tl, . . . , tn. If ti is a join term, then Ti, 1 
and ri 2 denote the two participating relations. Note that , 
Q 17 l *  l 9 

Q, may contain replications. 

procedure gen (4); 
m := 0; 
for i : = 1 to n do 
begin 

if ti is 
begin 

not a disconnecting term then 

m := m + 1; 

Q l = genl(Qo, i); m ’ 
end 

else 
begin 

if ti is the only term that references ri, 1 then 
begin 

m := m + 1; 

Q l = gen2(q, ri,l>; m* 

end 
if ti is the only term that references ri,2 then 
begin 

m := m + 1; 

Q '= gen2(q9 Ti,2); m- 

end 

end 

C. Examples 

In the first example, assume that Q0 is presented to the 
database. As there are no students with GPA’s over 3.6 
in either Computer Science or Electrical Engineering, its 
answer is empty, and the query is passed to the general- 
izer. 

In the first iteration, the generalization procedure de- 
rives Q, and Q2 and submits them to the processor. Q1 
still fails, but Q2 succeeds. Therefore, Q, is generalized 

Fig. 9. Hierarchy of generalizations for second example. 

further. In the second iteration, the generalization proce- 
dure derives Q3 and submits it to the processor. It suc- 
ceeds and the procedure terminates. Q, is a significant 
failure. 

In response to his original query, the user is presented 
with the message “Possible erroneous presuppositions- 
cannot answer even these more general queries: ’ ’ , fol- 
lowed by query Qi, which retrieves the students with GPA 
over 3.6. In effect, the system is telling the user: “not 
only are there no students with GPA over 3.6 in these two 
departments, there are no such students in the entire col- 
lege! ’ ’ 

In the second example, assume that Q0 is presented to 
the database. As there are no Computer Science majors 
enrolled in MATH 370, its answer is empty, and the query 
is passed to the generalizer. 

In the first iteration, the generalization procedure de- 
rives Qi and Q2 and submits them to the processor. Both 
queries succeed and the procedure terminates. Q, is a sig- 
nificant failure. 

In response to his original query, the user is presented 
with the message “No data matched-partial answers 
available: ’ ’ , followed by queries Qi and Q2, which re- 
trieve the information requested for all MATH 370 stu- 
dents, or for all enrolled Computer Science majors. The 
user can now submit any of these queries. 

Finally, assume that in the second example the user 
misspells the major, typing “cs” instead of “COMPSCI”.’ 

Q2 and Q5 fail. Q5 is a significant failure, and is presented 
as an erroneous presupposition. Since it retrieves infor- 
mation on students whose major is CS, the system is say- 
ing “there is no such major! “. 

D. Related Research 

First to address the problem of empty answers was 
Kaplan [ 121, who designed and implemented a natural 
language interface to CODASYL databases, called CO- 
OP, which featured some of the conventions of coopera- 
tion in human discourse, including corrective responses 
that detect erroneous presuppositions and suggestive re- 
sponses that anticipate followup queries. CO-OP trans- 

‘And assume that cs is not.a synonym for COMPSCI. 
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forms each natural language query to an intermediate lan- 
guage, called Meta-Query Language (MQL). An MQL 
representation is a graph, whose connected subgraphs 
correspond to the presuppositions the user has made about 
the domain of discourse. When the initial query returns 
an empty answer, CO-OP tests each of these presupposi- 
tions, by translating the corresponding subgraph into a 
query in the formal language, and checking it in the da- 
tabase. 

Providing quality responses to natural language queries 
that generate empty answers is also the topic of [ 161 
(which also surveys other related works in cooperative in- 
terfaces). Closer to the framework of FLEX, several 
works have dealt with the problem of empty answers that 
are issued by typical database systems in response to for- 
mal language queries. 

Janas [l l] considers a family of predicate calculus 
queries, and shows how to generate a set of predecessors 
queries (queries whose predicates are satisfied whenever 
the predicate of the original query is satisfied) for a given 
query from this family. These queries are then checked 
against the database. The main technique for generating 
predecessor queries is to remove primitive terms from the 
predicate calculus expression. Referential integrity con- 
straints are used to reduce the number of predecessor 
queries that must be checked. 

Corella et al. [7] adapted these techniques to simple 
Boolean queries with a single existential variable, and im- 
plemented a cooperative front-end to a large bibliograph- 
ical database. 

These techniques are futher refined in 1221 and [23], 
which define the concepts generalization query, signij- 
cant failure, genuine empty answer, and fake empty an- 
swer, and then formulate a strategy for detecting signifi- 
cant failures, thereby determining whether an empty is 
genuine or fake, and generating, accordingly, either par- 
tial answers or erroneous presuppositions. The FLEX 
generalizer is based on these works. [22] also suggests 
using other data model features, such as subclass hierar- 
chies, for generalizing queries. [23] extends the entire 
technique by testing the queries not only against data, but 
also against database knowledge (e .g . , completeness as- 
sertions and integrity constraints). 

VII. IMPLEMENTATION 

FLEX was fully implemented as an interface to the da- 
tabase system INGRES [lo]. It was written in the pro- 
gramming language C, on a Sun workstation running 
Unix. FLEX is purely a front-end interface; that is, it 
communicates with the database system only by issuing 
queries and receiving answers. 

The current version of FLEX assumes a terminal with 
a standard display of 24 lines and 80 characters, and a 
standard keyboard with additional 16 programmable keys. 
FLEX defines three screens called compose, query, and 
answer, and provides three special keys for instantaneous 
switching between these screens. All three screens are 
structured similarly with a text window (for queries or an- 

swers) and a menu window (listing the commands for that 
particular screen). Initially, the user is in the compose 
screen. Its text window is an editor buffer; the user types 
his query into this window and edits it with simple com- 
mands shown in the menu window. When ready, the user 
presses a special key to copy the query to the text window 
of the query screen, and switches to that screen. The user 
may then submit the query by pressing another special 
key. Throughout the processing of his input, the user re- 
mains in the query screen. All requests for clarifications 
and all suggested interpretations are shown in windows 
that are overlayed on this screen. When the user accepts 
an interpretation, it replaces the contents of the text win- 
dow. The user may then submit it immediately for pro- 
cessing, or copy it back to the text window of the com- 
pose screen, for further editing. Answers are shown in the 
text window of the answer screen, and can be scanned 
with the commands shown in the menu window of that 
screen. 

The “knowledge base” used by FLEX consists of three 
auxiliary relations, that are stored along with the database 
itself: DICTIONARY, LEXICON and THESAURUS. The dictio- 
nary is used by every FLEX mechanism, the lexicon is 
used by the synthesizer and the browser, and the thesaurus 
is used by the corrector. The DICTIONARY relation is rel- 
atively small, the information it contains is fairly stan- 
dard,6 and it needs to be updated only when the definition 
of the database is changed. The LEXICON relation is more 
demanding in terms of size and maintenance. This rela- 
tion should not be modified by users; the system should 
update it automatically, to reflect user updates to other 
relations (this is similar to the way that secondary indexes 
are handled in some relational systems). The cost of this 
relation, in terms of the additional space to store this re- 
lation and the additional computation for its initialization 
and its continuous update, is comparable to the cost of a 
secondary index on every database attribute. If the re- 
quired storage is prohibitive, it is possible to implement 
the lexicon only in part, by inverting on selected domains 
only; tokens of other domains will not be recognized. The 
THESAURUS relation is different, in that its information 
cannot be extracted automatically from the database. It 
may be constructed gradually by the database owner, 
using a log of unrecognized words maintained by the sys- 
tem. While the thesaurus enhances the operation of FLEX, 
it is not as essential as the other two relations. 

VIII. CONCLUSION 

The most prominent design feature of FLEX is the 
smooth concatenation of several independent mecha- 
nisms, each capable of handling input of decreasing level 
of correctness and well-formedness. Each input is “cas- 
caded” through this series of mechanisms, until an inter- 
pretation is found. 

Consequently, FLEX may be viewed as an interface that 
adapts to the level of correctness and well-formedness of 

6 The delta parameter is, perhaps, the only exception. 
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its input (providing interpretations of corresponding ac- 
curacy and specificity). Due to this feature, FLEX can 
service satisfactorily users with different levels of exper- 
tise, and thus appeal to a more universal community of 
users. 

This ability to adapt (which may also be regarded as 
tolerance towards incorrect input) is complemented with 
features of cooperative behavior, whereby empty answers 
are never delivered without explanation or assistance. 

Tolerance and cooperation are achieved with only min- 
imai interaction, avoiding excessively long dialogues, 
which tend to be tedious and discouraging. FLEX ap- 
proaches its users mainly to determine the domain of an 
ambiguous token, or to select from a list of possible 
browsing topics. Both tasks are relatively short and sim- 

ple 
By providing interpretations of ill-formed queries, 

FLEX also instructs its users in the proper application of 
the formal language. By providing alternative interpreta- 
tions, and allowing them to be refined, FLEX reduces the 
risk of misinterpretations. 7 

FLEX can also be perceived as an interface that sup- 
ports multiple languages, each with its own level of ex- 
pressivity: a formal language, a language whose queries 
are sets of database tokens, and a language whose queries 
are individual topics. The mechanisms of FLEX would 
then be viewed, not as procedures for coping with incor- 
rect formal queries, but as interpreters of these languages. 
Users may then deliberately submit queries in an “infe- 
rior” language; their input will flow through the inter- 
preters of the “superior’ ’ languages, until it arrives at the 
intended interpreter, and generates the expected database 
request. 

Work on FLEX is continuing. Current goals include: 
1) extension of the retrieval language to include a fuller 
set of operators (e.g., aggregate operators, grouping op- 
erators); 2) improved presentation (e.g., employ a larger 
display that accommodates all three screens simulta- 
neously, accept inputs via a “mouse”); and 3) various 
improvements to individual mechanisms. Some of the im- 
provements being considered are: a) in the corrector: 
modify it to present the user with various alternative sug- 
gestions (currently, the corrector is the only mechanism 
that produces a single suggestion); b) in the browser and 
synthesizer: modify the lexicon to store templates of to- 
kens (simple regular expressions) [2]; c) in the browser: 
consider methods that will limit or summarize the output; 
and d) in the generalizer: consider methods that will limit 
the number of the queries tested, for improved perfor- 
mance. 

To obtain better feedback on the effectiveness of FLEX, 
we plan to experiment with it in a classroom environment. 
To maximize the benefits of this experiment, FLEX will 
be instrumented to record user inputs, system interpreta- 
tions, and user reactions. In addition to the instructional 

70f course, the risk of misinterpretation is still present here, as in any 
process of interpretation (even a formal query may not convey the inten- 
tions of its author correctly). 
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potential of FLEX mentioned above, the inherent diver- 
sity of a student population, and the improvement of skills 
as a class progresses, suggest that an interface like FLEX 
could be a “perfect partner. ” It would provide more as- 
sistance to weak students, and less assistance to good stu- 
dents; more assistance in early stages (when inputs tend 
to be more erroneous), and gradually less and less assis- 
tance in later stages (when inputs tend to be more cor- 
rect). 
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