
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 2, JUNE 1990 231

FLEX: A Tolerant and Cooperative User Interface to
Databases

AMIHAI MOTRO

Abstract-FLEX is a user interface to relational databases that can

be used satisfactorily by users with different levels of expertise. FLEX

is based on a formal query language, but is tolerant of incorrect input.

It never rejects queries; instead, it adapts flexibly and transparently to

their level of correctness and well-formedness, providing interpreta-

tions of corresponding accuracy and specificity. The most prominent

design feature of FLEX is the smooth concatenation of several inde-

pendent mechanisms, each capable of handling input of decreasing level

of correctness and well-formedness. Each input is “cascaded” through

this series of mechanisms, until an interpretation is found. FLEX is

also cooperutive. It never delivers empty answers without explanation

or assistance. By following up each failed query with a set of more

general queries, FLEX determines whether an empty answer is genuine

(it then suggests related queries that have nonempty answers), or

whether it reflects erroneous presuppositions on behalf of the user (it

then explains them).

Index Terms-Adaptivity

user interface, tolerance.

cooperation, databases, query languages,

I. INTRODUCTION

A COMMON method for accessing databases is via
query language interfaces. A query language inter-

face defines a formal language, in which all retrieval re-
quests must be expressed. The main advantages of query
language interfaces are their generaE@ (the ability to ex-
press arbitrary requests) and their unambiguity (each
statement has clear semantics). However, using query
language interfaces requires considerable proficiency.
Users must understand the principles of the underlying
data model, they must have good knowledge of the query
language, and they must be familiar with the contents and
organization of the particular database being accessed . In
the absence of even some of this prerequisite knowledge,
using such interfaces can become very inefficient and
frustrating. Hence, most query language interfaces do not
accommodate naive users very well.

For such users, several alternative types of interfaces
have been developed, including form and menu-based in-
terfaces, graphical interfaces, natural and pseudonatural
language interfaces, and browsers. These interfaces are
oriented towards nonprogrammers, and therefore require
only limited computer sophistication. Expressing requests

Manuscript received November 28, 1989; revised October 27, 1989.
This work was supported in part by NSF Grant IRI-8609912 and by an
Amoco Foundation Engineering Faculty Grant.

The author is with the Computer Science Department, University of
Southern California, Los Angeles, CA 90089.

IEEE Log Number 9035100.

may be as simple as selecting from a menu or a filling a
form, and familiarity with the contents or organization of
the database is usually not required. However, naive user
interfaces usually achieve simplicity and convenience at
the price of expressivity. Also, as users acquire more ex-
pertise, these interfaces tend to become more tediou s to
use.

Thus, it appears that no single user-database interface
exists that can service satisfactorily both experts and na-
ive users. Perhaps the only exception are the natural lan-
guage interfaces. Ideally, such interfaces should be able
to service satisfactorily all types of users. Unfortunately,
existing natural language interfaces have two major prob-
lems: they require enorr-nous investment to capture the
knowledge that is necessary to understand user requests,
and even the best systems are prone to errors .

This paper reports on resea rch to de velop a single in-
terface, that may be used satisfactorily by users with dif-
ferent levels of expertise. This interface, called FLEX, is
based on a formal query language, but is tolerant of in-
correct input. It never rejects queri .es; instead, it adapts
flexibly and transparently to their level of correctness,
providing an interpretation at that level. Consequently, it
can service a wider variety of users. FLEX is also coop-
erative. It never delivers empty answers without expla-
nation or assistance. This tolerant and cooperative behav-
ior is modeled after human behavior, and is thus
reminiscent of natural language interfaces.

The design of FLEX is highly modular, consisting of
various mechanisms for processing requests of different
levels of well-formedness. Each user input is processed
by several such mechanisms until an interpretation is ob-
tained. Initially, the input is processed by a query parser
to determine whether it constitutes a proper formal query.
If parsing is successful, the query is executed. Otherwise,
the input is processed by a query corrector, that attempts
to salvage the query by applying various transformations.
The corrector is usually successful whenever the input ex-
hibits recognizable structures, and i ts interpretations are
mostly safe. If the corrector fa ils to produce an interpre-
tation, the input is processed by a query synthesizer, that
attempts to conclude proper queries from words that are
recognized in the input. As these interpretations are not
entirely safe, they are offered as suggestions, and are sub-
ject to refinements by the user. Finally, if the synthesizer
fails to produce an interpretation, a browser is engaged to

1041-4347/90/0600-0231$01.00 0 1990 IEEE

232 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 2, JUNE 1990

display frames of information extracted from the database
on the recognized input words. Hence, FLEX never re-
jects queries, and the accuracy and specificity of its inter-
pretations correspond to the correctness and well-formed-
ness of the input.

FLEX then observes the outcome of the final query: if
the answer is empty, the original query is passed to a query
generalizer, which issues a set of more general queries to
determine whether the empty answer is genuine (it then
suggests related queries that have nonempty answers), or
whether it reflects erroneous presuppositions on behalf of
the user (it then explains them).

Because it is engaged only when needed and only as
much as needed, FLEX can be used satisfactorily by ex-
perts as well as novices. For example, input which is a
perfect formal query will be executed immediately with-
out any modification; while input which is a single word
will flow through the entire sequence of mechanisms until
finally it will result in a frame of information about this
word.

FLEX was designed to work with relational databases.
It was fully implemented as a front-end for the relational
databases system INGRES [lo]. A concise outline of the
preliminary design of FLEX may be found in [2 11.

The remainder of this paper is organized as follows.
Section II establishes preliminary concepts and defini-
tions. The next four sections are devoted to the individual
mechanisms of FLEX: Section III describes the query
parser and the query corrector, Section IV describes the
query synthesizer, Section V describes the browser, and
Section VI describes the query generalizer. Section VII
discusses the implementation, and Section VIII concludes
with a brief summary.

II. PRELIMINARIES

This section establishes concepts and definitions that are
global to FLEX. It defines the data model and its formal
language, it describes the knowledge used by the various
mechanisms, and it presents an overview of the architec-
ture of FLEX.

A. The Data Model

The following definition of relational databases is as-
sumed. A database is a set of relations. For each relation
there is a set of distinctly named attributes, some of which
are designated as key attributes. Each attribute has an as-
sociated domain, and each domain has an associated vpe.
From the information on the keys, the database system
can infer existing junctional dependencies: in each rela-
tion, every nonkey attribute is functionally dependent on
the key attributes. From the information on the domains,
the database system can infer the allowable joins: two re-
lations may be joined if and only if they have a common
domain for at least one of their attributes. Type informa-
tion is used to allocate storage, to determine which op-
erations are allowed with the elements of the domain, and
to assist in query generalization. For simplicity, we con-
sider only two types, STRING and NUMBER. The only pa-

rameter of the type STRING is its length. The type
NUMBER has three parameters: minimum, maximum and
delta; the first two specify the allowable range; the last
one fixes the size of a “notch” in this range.

Names of relations, attributes, and domains must all be
distinct (i.e., the same name cannot be used for a relation
and an attribute, or a relation and a domain, or an attribute
and a domain). However, attributes in different relations
may have the same name, if they have the same domain.

Fig. 1 defines a database UNIVERSITY that will be used
in the examples. The database has four relations: STU-

DENT, DEPARTMENT, COURSE, and ENROLLMENT. Each re-
lation definition shows the attributes (key attributes are
underlined) and their associated domains and types. Thus,
the attribute MAJOR in relation STUDENT and the attribute
D-NAME in relation COURSE are both of domain ACA-

DEMIC-DISCIPLINE, which is of type STRING. A small in-
stance of this database is shown in Fig. 2.

B. The Formal Language

The formal language of FLEX consists of the following
statement, reminiscent of SQL’s select statement [5] :

retrieve attributeI, . . . , attribute,
from relationI, . . . , relation,
where condition

condition is either a primitive term of the form attribute
0 value or attribute1 8 attribute2 (where 8 is a comparator
such as =, #, <, >, 5, r),oracombinationofsuch
terms with the logic connectors and, or, and not. The
answer to this query is defined by a product of all the
relations named in the from clause, followed by a selec-
tion according to the condition in the where clause, fol-
lowed by a projection onto the attributes named in the
retrieve clause. If two attributes in different relations are
named identically, they are differentiated by including the
relation name: relation.attribute. If more than one ver-
sion of the relation is needed in the query, they are dif-
ferentiated by an index: relation. 1 .attribute,relation.2.
attribute, etc. If the where clause is omitted altogether,
the selection condition is assumed to be true.

For example, to retrieve the names and majors of the
students enrolled in courses offered by Computer Science
Department, one issues the following query:

N?trieVe S-NAME, MAJOR

fr0Il-l STUDENT, ENROLLMENT, COURSE

where STUDENT.S-NAME=ENROLLMENT.S-NAME

and ENROLLMENT.C-NO=COURSE.C-NO

and COURSE.D-NAME=“COMPSCI"

C. The Dictionary, the Lexicon, and i%e Thesaurus

A database consists of values (the data), which are or-
ganized according to a schematic definition (the meta-
data). Elements of the data and the metadata will be re-
ferred to collectively as database tokens. FLEX uses three
special relations, called DICTIONARY, LEXICON, and THE-

SAURUS to store information about data and metadata.

MOTRO: FLEX: TOLERANT AND COOPERATIVE USER INTERFACE

STUDENT

S-NAME

MAJOR

GPA

DEPARThf ENT

D-NAME

COLLEGE

CHAlRPERSON

COURSE

C-NO

D-NAME

UNITS

PERSON-NAME

ACADEMICDISCIPLINE

NUMBER-GRADE

ACADEMICDISCIPLINE

COLLEGE-NAME

PERSON-NAME

COURSE-NUMBER

ACADEMICDISCIPLINE

UNIT-NUMBER

STRING{ 20)

STRING(10)

NUMBER(0,4k,o.2

STRING(10)

STRING(10)

STRING (20)

STRING(8)

STRING(10)

NUMBER(1,1&l)

ENROLLMENT

S-NAME PERSON-NAME STRING (20)

C-NO COURSE-NUMBER STRING (8)

GRADE LETTER-GRADE STRING(z)

Fig. 1. Schema of database UNIVERSITY.

COURSE
‘1 7

D-NAME

COMPSCI

COMPSCI

MATH

MATH

BIOLOGY

Fig. 2

ENROLLMENT

E-NO S-NAME C-NO

~762 SMITH MATH370

~824 SMITH CSlOl

~628 BROWN 1310425

~742 BROWN MATH370

~844 KLEIN CSlOl

~722 KLEIN MATHr!70

E535 CHEN cs202

Instance of database UNIVERSITY.

GRADE

cs
A-

BS

A-

A

B-

B

The DICTIONARY relation stores the metadata in the
following form: DICTIONARY = (RELATION, ATTRIBUTE,
DOMAIN,TYPE,KEY). An example of a dictionary tuple is
(STUDENT,S-NAME,PERS~N - NAME,STRING(~O),YES), which
states that relation STUDENT has attribute S-NAME, which
is of domain PERSON NAME, has type STRING, and is

- part of the key.
The LEXICON relation is a mapping of data onto meta-

data: each data token is associated with the relation and
attribute in which it appears (and, therefore, with its do-
main). Given an arbitrary data token, the system can use
this lexicon to find out its possible domains, and thus gain
some understanding of its meaning. The lexicon is imple-
mented as an auxiliary relation of the following form:
LEXICON = (TOKEN,RELATION,ATTRIBUTE). An example of
a lexicon tuple is (SMITH,STUDENT,S-NAME), which states
that the data token SMITH appears in attribute S-NAME of
relation PERsoN.

The THESAURUS relation stores synonym information
about database tokens, associating various nondatabase
tokens with database tokens. It is implemented as an aux-
iliary relation of the following form: THESAURUS
- - (WORD,TOKEN). The domain of words and the domain
of tokens must be disjoint. Examples of thesaurus tuples
are (STUDENTS,STUDENT), or (BOB,ROBERT), which state
that the word STUDENTS should be understood as the me-
tadata token STUDENT and the word BOB should be under-
stood as the data token ROBERT.

233

D. An Overview of FLEX

Fig. 3 illustrates the overall architecture of FLEX. Ini-
tially, the user composes a query in a simple editor. When
the user presses the submit button, the contents of the ed-
itor buffer are transferred to the parser. If the parser suc-
ceeds in parsing the input, it is passed to the query pro-
cessor. If the parser fails, the input is piped through a
sequence of three mechanisms (the corrector, the syn-
thesizer, and the browser). Each of these mechanisms at-
tempts to interpret the input. If a mechanism fails, it
passes the input to the next mechanism; if the final mech-
anism fails, then FLEX gives up. If a mechanism suc-
ceeds in producing one or more interpretations (possibly
after a brief clarification dialogue), it presents them to the
user. If the user accepts an interpretation, it is copied back
into the editor buffer, where it can be refined before re-
submission. If the user does not accept any of the inter-
pretations, the input is passed to the next mechanism. If
a processed query returns a nonempty answer, it is dis-
played to the user. If the answer is empty, the input is
passed to the query generalizer. The generalizer will sug-
gest related queries that have nonempty answers (or it will
point out erroneous presuppositions). If the user accepts
one of these queries, it is copied back into the editor
buffer; otherwise, processing of this input is terminated.

III. THE PARSER AND THE CORRECTOR

When the user submits his input for processing, it is
transferred to the parser. If parsing succeeds, the query is
transferred to the processor. Therefore, the processing of
perfect queries is not different than in any other query lan-
guage interface.

As suggested earlier, the accuracy and specificity of the
interpretations of FLEX corresponds to the correctness
and well-formedness of its input. In this respect, the
parser handles only input which is correct, and its inter-
pretations are all accurate.

If parsing fails, the input is transferred to the query cor-
rector. The corrector applies a set of transformations to
try and salvage the query. Thus, the corrector handles in-
put which is slightly imperfect, and its interpretations are
mostly accurate.

A. Principles

Parsing begins with synonym substitution. The parser
searches each input word in the THESAURUS relation. Any
word that appears in the first attribute (WORD) is substi-
tuted by the corresponding word in the second attribute
(TOKEN). Since the domains of words and tokens in the
thesaurus are disjoint, only nondatabase tokens can be re-
placed. Therefore, substitutions may be considered safe,
and remain in effect for the duration of processing.

The parser then checks that the input is correct both
syntactically and semantically. The syntactic analysis
verifies that the input is indeed a sentence in the query
language (as defined by a grammar). The semantic anal-
ysis verifies that the sentence is meaningful (as defined by

234 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 2, JUNE 1990

submit

t

PARSER

I

PROCESSOR
I I

f

4

a INTERACTION - ’ CORRECTOR

Q f
c

t
a INTERACTION 4 ’ SYNTHESIZER

Q f
c

,

a . INTERACTION l ’ BROWSER

Q f

(““d)

L a INTERACTION + ’ GENERALIZER -

I I

f

3 = succeed

j = fail

a = accept

q = quit

Fig. 3. Overall architecture of FLEX.

the database at hand). These two analyses are performed
sequentially, and parsing is successful only if both suc-
teed.

Correction is performed in two corresponding phases:
if the syntactic analysis fails, the input is subjected to syn-
tactic corrections; if the semantic analysis fails, the input
is subjected to semantic corrections.

Correction is done without any interaction with the user.
At the end of the entire correction process, the modified
query is presented to the user for approval or further ed-
iting. The corrector requires that the input includes the
keywords retrieve and from (in this order). To assure
that only input which is slightly imperfect is corrected,
the total number of transformations applied to the input is
monitored. When a predefined number is reached, the
corrector considers the input to be beyond salvation, and
passes it to the next mechanism.

B. Corrective Transformations

1) Syntactic Correction: The transformations applied
in this phase are intended to coerce the input into the syn-
tax of the language. Clearly, among the three clauses of
the retrieve statement, retrieve, from, and where, the
latter is the most demanding, and most of the transfor-
mations are applied to this clause. They include:

1) Insert the default comparator = where a comparator
is expected (i.e., between two attributes or between an

attribute and a value), possibly replacing the current input
token in this position.

2) Insert the default connector and where a connector
is expected (i.e., between two subexpressions), possibly
replacing the current input token in this position.

3) Supply missing parentheses, according to a default
scheme.

4) Discard certain bad input tokens.
The other two clauses are essentially lists of attributes

or relations. The transformations applied to these clauses
include:

1) Accept list delimiters other than commas.
2) Discard bad list elements.
2) Semantic Correction: Verification of proper seman-

tics is done against the database at hand. The semantic
analysis includes five checks:

1) For each relation referenced in the query there
should be a database relation by that name.

2) Each relation referenced in the retrieve or where
clauses should be listed in the from clause.

3) For each qualified attribute referenced in the query
(i.e., an attribute prefixed by a relation) there should be
an attribute by that name in the qualifying relation.

4) For each unqualified attribute referenced in the
query, there should be one database relation with that at-
tribute.

5) Every two attributes that are compared in the where
clause must be from the same domain; if an attribute is
compared to a value, the value must be from the domain
of the attribute.

First, the corrector discards any unrecognized rela-
tions. This may shorten the list of relations in the from
clause, and it may remove the qualifiers of attributes in
the retrieve and where clauses.

Next, the corrector attempts to qualify any unqualified
attributes. If an unqualified attribute A appears in only one
database relation R, then R is the qualifier of A. If A ap-
pears in several database relations, then the corrector at-
tempts to infer a single one by elimination: relations that
are not listed in the from clause are eliminated, a term
A 8 R.A in the where clause eliminates R because it would
introduce a self-comparison, and a term R. A = S. A elim-
inates either R or S, because both yield the same result.
An unqualified attribute in the retrieve clause which does
not appear in any database relation is discarded.

Next, the corrrector considers badly qualified attri-
butes. A badly qualified attribute R.A may be corrected
either by substituting R by a relation that includes A, or
by substituting A by another attribute of R. This set of
possible substitutions is reduced by selecting relation sub-
stitutes only from the list of from relations, by selecting
relation substitutes that would not introduce any self-com-
parisons in the where clause (e.g., a term R. A 8 S. A elim-
inates the relation substitute S), and by selecting attribute
substitutes that would not introduce any domain conflicts
in the where clause (e. g . , a term R. A 8 S. B eliminates any
attribute substitute whose domain is different from the do-
main of B).

MOTRO: FLEX: TOLERANT AND COOPERATIVE USER INTERFACE 235

Next, the corrector considers domain conflicts. A con-
flicting comparison R.A 0 S. B may be corrected either by
substituting A by an attribute of R that has the same do-
main as B, or by substituting B by an attribute of S that
has the same domain as A. ’ Methods similar to those men-
tioned above are used to reduce the number of possible
corrections.

Finally, the corrector considers relations that are ref-
erenced in the retrieve or where clauses, but are not listed
in the from clause (note that such references may have
been added by the corrector). These are simply added to
the from clause.

If any of these semantic corrections fails (i.e., the cor-
rector cannot infer a unique correction), the input is as-
sumed to be beyond salvation.

C. Example

Consider the following input:

RETRIEVES-NAMEANDMAJOR;

FROMSTUDENTSANDCOURSES;

WHERESTUDENTS.S-NAME=S-NAME,

ENROLLMENT.C-NO=COURSES.NUMBER,

AND COURSES.D-NAME=“CS";

The initial synonym substitution pass replaces STU-

DENTS with STUDENT, COURSES with COURSE, and cs with
COMPSCI. Note that synonyms include both data and
metadata. We have

RETRIEVES-NAMEANDMAJOR;

FROMSTUDENTANDCOURSE;

WHERESTUDENT.S-NAME=S-NAME,

ENROLLMENT.C-NO=COURSE.NUMBER,

ANDCOURSE.D-NAME=“COMPSCI";

The syntactic analysis detects the keywords retrieve,
from, and where, and applies these corrections. The key-
word and and the trailing semicolon are removed from
the retrieve and from clauses, and commas are inserted
between the elements of these lists. The commas separat-
ing the terms of the where clause and its terminating
semicolon are discarded, and the connector and is in-
serted between the first two terms. We have

RETRIEVES-NAME, MAJOR

FROMSTUDENT,COURSE

WHERESTUDENT.S-NAME--S-NAME

AND ENROLLMENT.C-NO=COURSE.NUMBER

AND COURSE.D-NAME=“COMPSCI"

The semantic correction begins by qualifying the attri-
butes S-NAME and MAJOR: S-NAME appears in both STU-

DENT and ENROLLMENT, but since the former would intro-
duce a self-comparison in the where clause, it is qualified
by the latter; MAJOR is qualified by STUDENT, which is the

‘The corrector does not attempt to find another relation R’ that includes
an attribute A with the same domain as B, or another relation S’ that in-
cludes an attribute B with the same domain as A, because the data model
requires that attributes appearing in more than one relation have the same
domain.

only relation to include it. Next, the bad qualification
COURSE.NUMBER is replacedby COURSE.C-NO, c.~obeing
the only attribute of COURSE with the same domain as EN-

ROLLMENT.C-NO. The corrected query is now formatted
and displayed to the user:

RtIk%! ENROLLMENT.S-NAME,STUDENT.MAJOR

from STUDENT, COURSE, ENROLLMENT

where STUDENT.S-NAME=ENROLLMENT.S-NAME

and ENROLLMENT.C-NO=COURSE.C-NO

and COURSE.D-NAME=‘~COMPSCI"

The user may now either accept this query or abandon the
process. In the former case, the query is copied back into
the editor, where the user may refine it before resubmit-
ting it. In the later case, the corrector transfers the input
to the next mechanism.

D. Related Research

Techniques for handling input errors have been imple-
mented in compilers for general programming languages
(for example, see 13, pp. 226-2271 or [l, pp. 164-1651.
A common technique involves augmenting the grammar
with ‘ ‘error productions’ ’ that parse erroneous input. This
technique is usually applied to allow the compiler to re-
cuver and continue its analysis (after generating appro-
priate error diagnostics). The FLEX corrector applies a
similar technique in its syntactical correction phase.

In general, correcting semantic errors in large programs
is considered to be both risky and expensive. The error
correction capabilities of FLEX are a consequence of the
relative simplicity of the language and the restricted se-
mantics provided by the particular database being ac-
cessed.

IV. THE SYNTHESIZER

If the input does not exhibit sufficient syntactic and se-
mantic structures to be salvaged by the query corrector,
or if the user rejects the corrected query, then FLEX en-
gages its query synthesizer.

The synthesizer treats the input as an unstructured set
of words. The words that it recognizes are synthesized
into proper queries. These queries are then presented to
the user as educated guesses, and may be subject to fur-
ther refinement by the user.

Thus, compared to the corrector, the synthesizer han-
dles input which is less well-formed (a set of words), and
its interpretations are less accurate (educated guesses.)

Indeed, it is possible to use FLEX as an interpreter of
a very simple language, where the user provides sets of
database tokens, and (after approving the suggested inter-
pretations) is presented with the corresponding database
output. Such input will fail all the mechanisms that pre-
cede the synthesizer.

A. Principles

The universe of recognized words is defined by the da-
tabase at hand, as its set of database tokens (i.e., the union

236 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 2, JUNE 1990

of its data and metadata elements). Words which are not
recognized are discarded.

In general, tokens which are elements of the metadata
would be interpreted as requests, while tokens which are
elements of the data would be interpreted as qual#ers.
For example, in the input “RETRIEVESTUDENTANDMAJOR

FORCSlol," the words STUDENT and MAJOR are elements
of the metadata, and would be understood as requests for
data of those types; the word cs 101 is an element of the
data, and would be understood as a qualifier to help iden-
tify the data requested; the words RETRIEVE, AND, FOR are
not database tokens, and would be discarded.

By its very nature, a set of tokens provides only frag-
mented information. The goal of the synthesizer is to con-
nect these individual requests and qualifiers into a mean-
ingful database query. To assist in this task the synthesizer
represents the information stored in the dictionary as a
graph called the schema graph.

/ GPA
NUMBER-GRADE

STUDENT + MAJOR 7 ACADEMICDISCIPLINE

PERSON-NAME

ENROLLMENT LETTER-GRADE

COURSE-NUMBER

COURSE UNIT-NUMBER

The schema graph has a node for each relation, for each
attribu te, and for each domain (relation nodes, attribute
nodes, and domain nodes, respectively ,). Each domain
node is connected with edges to all the nodes of the attri-
butes that draw their values from this domain. Each at-
tribute node is connected with edges to all the relation
nodes that include this attribute. Note that schema graphs
are not necessarily connected and may have cycles.

DEPARTMENT CHAIRPERSON ’

COLLEGENAME

Fig. 4. Schema graph for database UNIVERSITY.

The schema graph for the example is shown in Fig. 4.
Note that this database definition is cyclic; for example,
the association between a student and a course may be
either that the student is enrolled in the course, or that the
course is offered by the department in which he majors.

B. i%e Synthesis Procedure

The problem of synthesizing a formal query from given
input is translated into a graph problem. Roughly, the in-
put is modeled by a set of nodes in the schema graph, the
nodes are then connected into a subgraph, and the
subgraph is translated into a query. Thus, the problem of
synthesizing a query can be divided into three subprob-
lems: 1) how to determine the nodes that correspond to

the given input 2) how to connect the nodes into a
subgraph, and 3) how to translate this subgraph into a

query ’

To demonstrate this procedure, assume a user who is
aware that the database contains information on students,
courses, and enrollments, and would like to find out the
names and majors of the students w ho are en rolled in the
course cs 101. However, this user can only utter some-
thing like “ RETRIEVE

I) From Words to
STUDENT

Nodes. I
ANDMAJORFORCSl

n general, for each
01

$9
.

recog-
nized word one node in the schema graph is selected.
First, the word is searched in the dictionary. If the word

one domain are ambiguous. Such ambiguities are resolved
by issuing to the user a request for clarification: the re-
quest displays the ambiguous word, along with its possi-
ble domains, and the user is asked to select the correct
domain. If the word is not found in the lexicon, it is dis-
carded.

Recall the example input “RETRIEVESTUDENT AND MA-

JOR FOR CSlol". The words STUDENT and MAJOR select
the corresponding relation and attribute nodes with these
names, the word cslO1 selects the domain node
COURSE NUMBER, and the words RETRIEVE, AND, and FOR

are discarded.
2) From Nodes to Subgraph. To connect the selected

nodes in the schema graph into a subgraph that spans
them, the synthesizer applies an iterative procedure that
finds an optimal (shortest) path between a given node and
a set of nodes that have already been connected in a pre-
vious step.

It begins by ordering the selected nodes (possibly, by
the order of the corresponding words in the input) and it
marks the first node. It then considers the next node, and
searches for the shortest path between this new node and
the set of marked nodes (initially, this set includes only
the first node). All the nodes of the path are marked, and
the next selected node which is still unmarked is consid-
ered. This procedure continues until all the selected nodes
have been marked. When it terminates, a connected
subgraph is available. Obviously, this subgraph is always
a tree.

Recall that the example input “RETRIEVE STUDENT AND

MAJOR FOR cs 101” selected three nodes: the relation node
STUDENT, the attribute node MAJOR, and the domain node
COURSE-NUMBER. First, MAJOR is connected to STUDENT

is a relation name, an attribute name, or a domain name, with a single edge; then, COURSE-NUMBER is connected to
then the corresponding relation node, attribute node, or this subgraph with a path that goes through C-NO, EN-

domain node is selected. If the word is not found in the ROLLMENT, and S-NAME. This subgraph is shown in Fig.
dictionary, it is searched in the lexicon. If it is found (i.e., 5.
it is a data token), then the node that corresponds to its When this procedure terminates, it is possible to have
domain is selected. Data tokens that belong to more than a subgraph with a domain node which is not connected to

MOTRO: FLEX: TOLERANT AND COOPERATIVE USER INTERFACE 237

STUDENT MAJOR

S-NAME

ENROLLMENT

\ C-NO COURSE-NUMBER

Fig. 5. Connected subgraph.

any attribute node (for example, when the only selected
node is a domain node) , or an attribute node which is not
connected to any relation node (for example, when the
only selected node is an attribute node.) In the former
case, the domain node is connected to an associated at-
tribute node, and in the latter case the attribute node is
connected to an associated relation node. If there are sev-
eral attribute nodes that are associated with the domain
node, or if there are several relation nodes that are asso-
ciated with the attribute node, then the user is asked to
select one.

3) From Subgraph to Query: The subgraph is now
transformed into a query as follows (the subsequent dis-
cussion is concerned only with the subgraph).

For each attribute node A:
l Jf A was selected by a metadata token, then R.A is

added to the retrieve clause, where R is one of A’s adja-
cent relation nodes.

l If A has several adjacent relation nodes RI, . . . , R,,
then the selection phrase (RI.A = R2.A and . . . and
R n-l= A= R,. A) is conjoined to the where clause.

For each relation node R:
l R is added to the from clause.
l If R was selected by a metadata token, and the re-

trieve clause does not include any of its attributes, then
all of R’s attributes are added to the retrieve clause. If R
was selected by a metadata token, and the retrieve clause
includes some of its attributes, then only the key attributes
of R are added to the retrieve clause.

For each domain node D:
l If D was selected by a metadata token, then R. A is

added to the retrieve clause, where A is one of D’s ad-
jacent attribute nodes and R is one of A’s adjacent relation
nodes.

l If D was selected by data tokens Cl, . . . , Cn, then
the selection phrase (R.A = Cl or . . . or R.A = Cn) is
conjoined to the where clause, where A is one of D’s ad-
jacent attribute nodes, and R is one of A’s adjacent rela-
tion nodes.

l If D has several adjacent attribute nodes Al, . . . ,
A,, which have adjacent relation nodes RI, . . . , Rn, then
the selection phrase (RI. Al = R2. A2 and . . . and
R n--l* A n-l = R,. A,) is conjoined to the where clause.

Thus, an attribute mentioned in the input is interpreted
as a request to retrieve that attribute. A relation mentioned
in the input is interpreted as a request to retrieve its key
attributes (if other attributes of this relation are mentioned
in the input), or as a request to retrieve all its attributes

(if none of its attributes are mentioned in the input). For
example, “COURSE SMITH" will retrieve full details on the
courses in which Smith is enrolled, while “COURSE UNITS

SMITH" will retrieve only the course numbers and units of
these courses. A domain mentioned in the input is inter-
preted as a request to retrieve an attribute of this domain.

The where clause is a conjunction of selection phrases.
Each phrase either joins two relations or binds an attribute
to a value (or to one of several values). For every attribute
node that is adjacent to several relation nodes, or a do-
main node that is adjacent to several attribute nodes, the
corresponding relations are joined. For every domain node
that was marked by data tokens, the adjacent attribute is
bound to the data tokens.

Finally, every relation whose node is in the subgraph is
necessary for processing this query, and is therefore added
to the from clause.

When applied to the subgraph of Fig. 5, this procedure
synthesizes the following query:

retrieve S-NAME, MAJOR

from STUDENT,ENROLLMENT

where STUDENT.S-NAME=ENROLLMENT.S-NAME

and ENROLLMENT.C-NO- “~~101”

Its answer is

ES-NAME i MAJOR 1

We note that there are several additional minor correc-
tions that may be applied to queries generated by this pro-
cedure.

C. Alternative Interpretations

The synthesized query is suggested to the user. The user
may then either accept it, reject it, or abandon the pro-
cess. In the former case, this query is copied back into
the editor, where the user may refine it before resubmit-
ting it. In the latter case, the synthesizer terminates its
attempts and transfers the input to the next mechanism. If
the user rejects the query, the synthesizer tries to synthe-
size an alternative query. This is done by repeating steps
2 and 3 of the synthesis procedure. The synthesizer at-
tempts to span the given nodes with a different subgraph,
which serves as the basis for a new query.

As another example, consider the input “STUDENT

MATH". Its tokens select the relation node STUDENT and
the domain node ACADEMIC DISCIPLINE. The shortest path
that connects these nodes goes through the attribute node
MAJOR. This subgraph yields the following query that lists
all information on the students who are Math majors:

retrieve S-NAME, MAJOR, G~A

from STUDENT

where STUDENT.MAJOR=“MATH"

238 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 2, JUNE 1990

Its answer is

If this query is rejected, the synthesizer will connect the
selected node with an alternative path that goes through
the attribute node MAJOR, the relation node STUDENT, the
attribute node S-NAME, the relation node ENROLLMENT, the
attribute node C-NO, the relation node COURSE, the attri-
bute node D-NAME, and the domain node ACADEMIC DIS- -

CIPLINE. It yields the following query that lists all infor-
mation on the students who are enrolled in Math courses:

retrieve S-NAME, MAJOR, GPA

from STUDENT, ENROLLMENT, COURSE

where STUDENT.S-NAME=ENROLLMENT.S-NAME

and ENROLLMENT.C-NO=COURSE.C-NO

and COURSE.D-NAME=“MATH"

Its answer is
.

S-NAME MAJOR GPA

BROWN MATH 26

KLEIN COMPSCI 2:s

SMITH MATH . 32

D. Related Research

This method of synthesizing queries from a set of to-
kens recalls work on the problem of inferring database
joins automatically. That problem may be stated as fol-
lows: given a set of database attributes, derive a relation
that combines these attributes. If a unique relation may
always be derived, then a query language may be de-
signed that relieves its users from navigating within re-
lations, thus achieving higher independence from the log-
ical structure of the database.

One approach to this problem, known as the universaZ
relation approach, is to form the natural join of all the
relations of the database, and then project on the given
attributes [171. There are several problems with this ap-
proach [131. One problem is that all database attributes
must have different names. An even more severe problem
is that if the database definition is cyclic (i.e., two attri-
butes may be connected through different sequences of
joins), then this procedure may yield unnatural results. A
possible solution is to define databases that do not include
cycles; however, this may lead to complexities of design
and replication of information, both contrary to the very
purpose of databases.

A variation of this approach, which addresses these
problems, is to incorporate maximal objects into the def-
inition of the database [181. Intuitively, each maximal ob-
ject is a derived relation that represents a unique mean-
ingful connection among its attributes. The given attri-
butes are then projected from every maximal object that
contains them. and the union of the answers is formed.

This approach is the basis for the relational database Sys-
tem/U [141. Except for the additional requirement to pre-
define the maximal objects, a major drawback of this ap-
proach is that the final answer may combine tuples which
represent different connections of the given attributes.

Another approach for dealing with the presence of al-
ternative connections, is to adopt a criterion of optimal-
ity . Usually, the given attributes select certain compo-
nents in a graph that represent the definition of the
database, and the preferred connection is the one that cor-
responds to a minimal subgraph that spans these compo-
nents. Obviously, such subgraphs are always trees, and
the problem is known as the Steiner tree problem [8].
(This problem is a generalization of the minimum span-
ning tree problem.) This approach was taken by [6], [26],
[151, and [20]. While it often yields satisfactory results,
it has three drawbacks: first, Steiner trees are not neces-
sarily unique, and there may be several such trees, each
leading to a different query; second, the query intended
by the user may correspond to a subgraph which is not
necessarily minimal; and, third, finding Steiner trees is a
problem known to be NP-complete.

The FLEX approach is a variation of the minimal
subgraph approach, with several significant differences.
1) FLEX handles a wider variety of input tokens. While
others consider attribute names only, FLEX considers to-
kens which are either relation names, attribute names, do-
main names, or data. 2) FLEX does not force a single
interpretation upon its users. Its interpretations are offered
as suggestions; if rejected, FLEX spans the nodes differ-
ently, and synthesizes alternative queries. 3) Users are
allowed to refine the queries suggested by FLEX. Even
when a suggested query is not the one intended, the nec-
essary modifications are often minor, and are relatively
easy to perform because the syntactical and semantical
structures are now mostly in place.

V. THE BROWSER

If the input does not contain any metadata tokens, or if
the user rejects all the synthesized queries (or otherwise
abandons the synthesis process), then FLEX engages its
browser to construct a browsing request for one of the
recognized data tokens.

The browsing request retrieves from the database all the
information that is available on the selected topic, and
displays it to the user in a single frame.

Thus, the browser handles input which is much less
well-formed (one topic), and its interpretations are much
less specific (everything that is known on that topic).

Indeed, it is possible to use FLEX as a browsing tool,
where the user provides topics, and is presented with
frames of information on these topics. Such input will fail
all the mechanisms that precede the browser.

A. Principles

Using the dictionary and the lexicon, the browser views
the entire database as a single network of objects.

All the occurrences of a particular data token t under

MOTRO: FLEX: TOLERANT AND COOPERATIVE USER INTERFACE

database attributes that are associated with the same do-
main d are considered collectively to be one object called
t (d). For example, the object MATH (ACADEMIC-DISCI-

PLINE) is assembled from occurrences of the token MATH
under STUDENT.MAJOR, COURSE.D-NAME, and DEPART-

MENT.D-NAME. Note that by using domain information,
objects are guaranteed coherent semantics. For example,
if BROWN occurred in the database both under attributes
whose domain is ACADEMIC DISCIPLINE and under attri-
butes whose domain is COLOR NAME, then two separate -
objects would be assembled: BROWN (ACADEMIC-DISCI-

PLINE) and BROWN (COLOR-NAME).

Object relationships are based on the functional depen-
dencies that are known to exist among the database attri-
butes. In each relation, every attribute is functionally de-
pendent on the key attributes. Consequently, each data
token is related through functional dependencies to other
tokens in the tuples in which it occurs. Since each object
combines all the occurrences of a particular data token in
the database, the relationships of this object to other ob-
jects are based on all the relationships in which these oc-
currences participate. Note that this object may be the
source of a functional dependency in one relation, and the
target of a functional dependency in another.

Consider again the object MATH.~ It occurs once in DE-

PARTMENT.D-NAME, and several times in STUDENT.MAJOR

and COURSE.D-NAME. On the basis of these tuples, this
object is related to six other objects: SCIENCE and FOX

(functionally dependent on MATH in relation DEPART-

MENT), SMITH and BROWN (functionally determining MATH

in relation STUDENT), and MATH270 and MATH370 (func-
tionally determining MATH in relation COURSE).

By concatenating the relation names and the attribute
names involved in each functional dependency, meaning-
ful names for the relationships can be obtained. For ex-
ample, MATH and FOX are related via is D-NAME of DE-

PARTMENT having CHAIRPERSON, and MATH and BROWNING

related via is MAJOR of STUDENT having S-NAME.

The complete list of relationships of MATH is

E844 -A ~824 -

239

A- ~762 ~ c+ ~742

COMPSCI

MATH370 2.6

ENGINEER SCIENCE FOX

Fig. 6. Object network for database UNIVERSITY (part).

D-NAME of DEPARTMENT having CHAIRPERSON, and ~oxis

related to MATH via is CHAIRPERSON of DEPARTMENT hav-
ing D-NAME.

Consider now the relation ENROLLMENT. Assume that
its key attribute E-NO is removed, and, instead, the rela-
tion is keyed on the combination of S-NAME and C-NO. In
this case, GRADE is functionally dependent on this com-
bination. To define object relationships in such cases, it
is necessary to introduce the notion of a composite object,
which is a combination of objects. For example, the ob-
jects SMITH and MATH~~O are combined to create the com-
posite object (SMITH,MATH~~O). A composite object oc-
curs in the database whenever its components appear in
the same tuple of some relation under the key attributes.
Composite objects need not have separate entries in the
lexicon, since they can be located through the entries of
their components.

Notice that the individual components of the key are
themselves functionally dependent on the key. These so-
called trivial dependencies are important, since they help
establish relationships from components of the key to
other data tokens in the tuple. For example, SMITH is re-

latedtoboth (SMITH,MATH~~~) and (SMITH,CS~~~), which,

in turn, are related, respectively, to c + and A - .

MATH is D-NAME of DEPARTMENT having COLLEGE SCIENCE

MATH is D-NAME of DEPARTMENT having CHAIRPERSON FOX

MATH is MAJOR of STUDENT having S-NAME BROWN

MATH is MAJOR of STUDENT having S-NAME SMITH

MATH is D-NAME of COURSE having C-NO MATH270

MATH is D-NAME of COURSE having C-NO MATH370

Part of the object network derived from the database of
Fig. 2 is shown in Fig. 6. Note that all edges represent

Let E-ID denote the combination (S-NAME, C-NO). The

two-way relationships: MATH is related to FOX via is
first two tuples of ENROLLMENT give rise to these six re-
lationships:

SMITH is S-NAME of ENROLLMENT having E-ID (smrH,MATH370)

SMITH is S-NAME of ENROLLMENT having E-ID (SMITH,CS 101)

CSlOl is C-NO of ENROLLMENT having E-ID (SMITH,CS~~~)

MATH370 is C-NO of ENROLLMENT having E-ID (SMITH,MATHVO)

(~MITH,MATH~~O) is E-ID of ENROLLMENT having GRADE c+

(SMJTHJSIOI) is E-ID of ENROLLMENT having GRADE A-

*When a token belongs to only one domain, the domain will be deleted

from the object name.

240 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2. NO. 2, JUNE 1990

Obvi
jects

ously , except for th
(SMITH,MATH370)a

eir name Y the new composite ob-
.nd (SMITH ,cslOl) are identical to

the previous simple objects ~762 and ~824.

B. Processing Requests

The browser extracts from the input a list of data tokens,
and requests the user to select from this list a topic for a
browsing request. The browser then locates the corre-
sponding object in the object network and retrieves its im-
mediate neighborhood: the adjacent relationships and ob-
jects. This neighborhood is structured as a frame of
information on this topic, which is then presented to the
user as all that is known about this topic.

The object network is not stored explicitly; only the
portion required for the present request is constructed with
several database accesses. First, the browser retrieves
from the lexicon the attributes where the token occurs,
and uses the dictionary to determine the various domains
of the token. If the token belongs to more than one do-
main, then the browser requests the user to select the do-
main intended. For each attribute of the selected domain
the browser issues a query to retrieve from the appropriate
relation the tuples that have the given token in that attri-
bute. In addition, the browser uses the dictionary to de-
termine the keys of these relations. This information is
used to determine the relationships in which the topic ob-
ject participates and their names. The tuples returned from
the various relations are then structured according to the
relationships. The frame of the object MATH is shown in
Fig. 7.

As mentioned earlier, by providing arbitrary new topics
(i.e., data tokens), the user may use FLEX as a browsing
tool. Note that this kind of access does not require any
understanding of the underlying relational data model. If
the user provides new topics from the data tokens men-
tioned in the current frame, he will be navigating in the
object network. Note that this network view is never con-
veyed explicitly to the user, but will usually become ap-
parent after repeated use.

C. Related Research

Browsers are tools for performing exploratory searches,
often by naive or casual users. They are especially useful
when either 1) the user is unfamiliar with the underlying
data model, 2) the user is not proficient in the formal query
language, 3) the user is not familiar with the contents and
organization of the particular database being accessed, 4)
the user has no preconceived retrieval target, or 5) the
user cannot describe his retrieval target in terms that are
understood by the system.

Browsers usually employ simple conceptual models and
offer simple, intuitive commands. Often, the conceptual
model is a network of some kind, and browsing is done
by navigation: the user begins at an arbitrary point on the
network (perhaps a standard initial position), examines
the data in that “neighborhood”, and then issues a new
command to proceed in a new direction. While browsing,

MATHis-- -

D-NAME of DEPARTMENT having COLLEGE SCIENCE

CHAIRPERSON FOX

D-NAME of COURSE having C-NO MATH270

MATH370

MAJOR of STUDENT having NAMEBROWN

SMITH

Fig. 7. Frame of MATH.

users gain insight into the contents and organization of the
searched environment.

Examples of browsers include Cattell’s entity-based
database interface [4]; SDMS, a graphical browsing tool
for a ‘ ‘ spatial’ ’ database system [9]; TIMBER, a browser
for the INGRES relational database system [25],
BAROQUE, a relational browser [191; and KIVIEW, an
object-oriented browser [24].

Because the tabular structures of relational databases do
not lend themselves to a network representation, most
browsers for relational databases are simply tools for
scanning relations (either base relations or relations de-
rived from queries), and therefore have only limited ex-
ploration capabilities. Browsing is confined to a single re-
lation at a time, and it is not possible to browse across
relation boundaries. If a user encounters a token while
browsing, and wants to know more about it, he must de-
termine first in what other relations this token might ap-
pear, then formulate a query, and resume browsing in the
new relation.

Using a lexicon to represent a relational database as a
network of objects to support browsing was first done in
BAROQUE. Essentially, the FLEX browser is an adap-
tation of this approach to the larger framework of FLEX.

VI. THE GENERALIZER

Consider a query to retrieve all non-Math majors en-
rolled in the course MATH 370 who received the grade
A. As there is no enrollment for which the course is
MATH 370, the student is not a Math major, and the grade
is A, the database system returns an empty answer. This
response, however, is misleading. Clearly, the author of
this query seems to think that some non-Math majors are
enrolled in MATH 370, and will conclude that none of
them received the grade A. While, in fact, only Math ma-
jors are enrolled in this course.

A distinction is made between genuine empty answers,
,

and these fake empty answers that actually reflect erro-
neous presuppositions on behalf of the user. Fake empty
answers are misleading, as they are often mistaken for
genuine empty answers (and may therefore be understood
as reaffirmation of the user’s presuppositions). Even gen-
uine empty answers are unsatisfactory, because their in-
formation content amounts to a “shrug. ”

This is in contrast with human behavior, where the de-
tection of erroneous presuppositions is common cooper-
ative behavior (Chairperson: “Who are the non-Math ma-
jors in your class who received an A?” Professor: “All

MOTRO: FLEX: TOLERANT AND COOPERATIVE USER INTERFACE 241

the students in my class are Math majors”), and partial
answers are usually provided when the query is legiti-
mate, but does not have an answer (Chairperson: “Who
are the students in your class who received an A?” Pro-
fessor: “Nobody; but Smith received an A - ’ ‘).

Hence, empty answers are rarely satisfactory, and
FLEX does not deliver them without further explanation
and assistance. When a query that had been processed re-
turns an empty answer, FLEX engages the generalizer.
The generalizer attempts to infer the presuppositions of
the user, test their correctness, and offer partial answers
when appropriate.

A. Principles . .
The generalizer is based on these observations.
First, every query reflects a presupposition that the re-

trieval request it expresses is plausible (may possibly suc-
ceed). For example, a query to retrieve the non-Math ma-
jors who received an A in MATH 370 reflects a
presupposition that there may be non-Math majors who
received an A in Math 370. These are the kind of presup-
positions handled by FLEX. Indeed, the correspondence
between a query and the presupposition it reflects is so
tight, that the tern-is will be used interchangeably.

Second, each presupposition is a source of more gen-
eral (weaker) presuppositions. For example, from the pre-
supposition that there may be non-Math majors who re-
ceived an A in MATH 370, the presupposition that there
may be non-Math majors who received at least a B in
MATH 370 and the presupposition that there may be stu-
dents who received an A in MATH 370 may be inferred.
Presuppositions that are minimally more general than a
given presupposition (i.e., are weaker by the smallest
“notch” expressible in the system) will be called imme-
diate generalizations.

Third, given two presuppositions (inferred from the
same query), the user is more confident about the more
general presupposition. For example, the user is more
confident about the existence of non-Math majors who re-
ceived at least a B in MATH 370, or the existence of
students who received an A in MATH 370, than about the
existence of non-Math majors who received an A in
MATH 370.

Thus, while users expect that their queries may possi-
bly have empty answers, they tend to be confident that
every more general query would not have failed. Conse-
quently , the following test is devised: When a query fails,
its immediate general .izations are generated
tempted. If all succeed, it is an indication that the

and at-
original

empty answer was genuine; the answers to the general-
izations may then be considered partial answers. If at least
one of the immediate generalizations fails, it is an indi-
cation that the original empty answer was fake; each failed
generalization reflects an erroneous presupposition.

Clearly, if one query is a generalization of another and
both fail, then the erroneous presupposition behind the
more specific query is insignificant. Hence, a failure is
significant, only if all its generalizations succeed. The

previous test is therefore continued until all significant
failures are detected.

The test can now be described as follows: When a query
fails, the set of significant failures is determined. If the
only significant failure is the query itself, then the empty
answer is genuine (and each of its generalizations is a par-
tial answer); otherwise, the empty answer is fake (and
each significant failure reflects an erroneous presupposi-
tion).

B. l%e Generalization Procedure

FLEX traps each query that returns a empty answer and
passes it to the generalizer. To generalize this query, its
where clause is converted to conjunctive normal form;
i.e., a conjunction of terms, where each term is a dis-
junction of primitive terms, where a primitive term is a
comparison between two attributes or between an attri-
bute and a value (negations are removed by using com-
plementary comparators). This conjunctive query is gen-
eralized into a set of queries by modifying a single prim-
itive term at a time.

Primitive terms are either numeric or nonnumeric, de-
pending on the type of their operands, as specified in the
dictionary. To generalize a numeric term, such as GPA >

3.6, the delta specified in the dictionary is used to relax
the comparison by one “notch, ” in this example, GPA >

3.4. A nonnumeric term, such as MAJOR = “~~MPSCI", is
generalized by replacing it with true. If a numeric com-
parison is relaxed beyond the minimum or maximum val-
ues of this domain, as specified in the dictionary, then it,
too, is replaced with true. If a primitive term is replaced
with true, then the value of the entire conjunct becomes
true, and it may be removed.

As an example, consider this query to retrieve the stu-
dents with GPA over 3.6, whose major is either Computer
Science or Electrical Engineering.

Qo: retrieve S-NAME

from STUDENT

where STUDENT.GPA > 3.6
and (STUDENT.MAJOR=“COMPSCI"

Or STUDENT.MAJOR=“ELECENG")

Its where clause is already in conjunctive normal form,
and the following two generalizations are derived:

Q 1: retrieve S-NAME

fI-OIll STUDENT

where GPA > 3.6

e 2: retrieve S-NAME

fr0Il-b STUDENT

where STUDENT.GPA > 3.4
and (STUDENT.MAJOR=“COMPSCI"

Or STUDENT.MAJOR=“ELECENG")

Q, omits the requirement on the major, and Q2 relaxes the
requirement on the GPA. Qr is generalized further by de-
creasing the GPA requirement to 3.4 (Q3), and Q2 is gen-
eralized further by omitting the requirement on the major

242 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 2, JUNE 1990

(Q3), or by relaxing the GPA requirement to 3.2 (Q4).
This continues until the threshold GPA value reaches the
minimum specified in the dictionary, at which point the
GPA requirement is deleted altogether. Fig. 8 illustrates
the complete hierarchy of queries, assuming a minimum
GPA value of 3.0. The top three queries are as follows:

Q7: retrieve S-NAME

from STUDENT

where GPA > 3.0

Q8: retrieve S-NAME

from STUDENT

where STUDENT.MAJOR=“COMPSCI"

Or STUDENT.MAJOR=“ELECENG")

Q9: retrieve S-NAME

from STUDENT

This generalization strategy is slightly different when
the query involves several relations that arejoined by the
where clause. Assume a query that involves relations R,,

l 7
R,, and consider a particular join between Ri and

ii. If a term that joins these two relations is removed, and
it is the only connection (either directly or indirectly) be-
tween these two relations, then the query becomes “dis-
connected, ’ ’ with its n relations separated into two dis-
joint subsets (one including Ri, the other including Rj).
This query will now derive a relation from each of the
subsets, and compute their product. Usually, such queries
have little intuitive meaning. To avoid such queries, the
generalization procedure is modified as follows.

A join term whose immediate generalization is true, and
whose removal disconnects the query, is called a discon-
necting term. 3 A disconnecting term is removed only when
one of the disjoint subsets of relations it creates has only
one relation, and no other terms involve this relation. In
the new query, this relation is removed from the from
clause, and all its attributes are removed from the retrieve

clause.4
As an example, consider this query to retrieve the GPA

and grade of Computer Science majors enrolled in MATH
”

370 .

Qo: retrieve S-NAME, CPA, GRADE

from STUDENT, ENROLLMENT

where STUDENT.MAJOR=“COMPSCI"

and ENR~LLMENT.~-NO=“MATH370"

Its where clause is al

and STUDENT. S-NAME=ENROLLMENT.S-NAME

reaay
1 r

in conjunctive normal
and the following two generalizations are derived:

rorm,

Q 1: retrieve S-NAME, GPA, GRADE

from STUDENT,ENROLLMENT

where ENRoLLMENT.C-~0 =“MATH~~~"
and STUDENT.S-NAME=ENROLLMENT.S-NAME

“Note that if a join term is numeric, its generalization could not involve
disconnection, unless the threshold values have already been reached.

41n the ‘ ‘pathological’ ’ case where the retrieve clause becomes empty,

the key attributes of the relations addressed by the query (the relations in
the other subset) are inserted into it.

Fig. 8. Hierarc hy of generalizations for first example.

Q 5 Q 6

Q2: retrieve S-NAME, GPA, GRADE

from STUDENT, ENROLLMENT

where STUDENT.MAJOR=“COMPSCI"

and STUDENT.S-NAME=ENROLLMENT.S-NAME

Qi omits the requirement on the major, and Q2 omits the
requirement on the course. By omitting the requirement
on the course in Q,, or the requirement on the major in
Q2, both queries are generalized to Q3:

Q3: retrieve S-NAME, GPA, GRADE

from STUDENT, ENROLLMENT

where STUDENT.S-NAME=ENROLLMENT. S-NAME

Qi and Q2 can also be generalized by removing the join
term. In Qi the relation STUDENT and the attribute GPA are
removed from its from and retrieve clauses, yielding Q4.
Similarly, in Q2 the relation ENROLLMENT and the attribute
GRADE are removed from its from and retrieve clauses
yielding Q5.

Q4: retrieve S-NAME, GRADE

from ENROLLMENT

where ENROLLMENT.C-NO=“MATH~~O"

Q5: retrieve S-NAME, GPA

from STUDENT

where STUDENT.MAJOR="COMPSCI"

Q3 is generalized further by omitting the join term, and
removing either the relation STUDENT and the attribute
GPA, or the relation ENROLLMENT and the attribute GRADE,

yielding Q6 and Q7:

Q 6:

Q7:

retrieve S-NAME, GRADE

from EN 'ROLLMEN T

retrieve S-NAM

from STUDENT

E, GPA

MOTRO: FLEX: TOLERANT AND COOPERATIVE USER INTERFACE 243

r-l Q 6 rl Q 7
Finally, Q4 and 425 are generalized by omitting their where
clauses altogether, also yielding Qs and QT. Fig. 9 illus-
trates these generalization relationships. Note that the
generalizations Q, to Q4, Q2 to Q5, Q3 to Qs, and Q3 to
Q7 change the list of retrieved attributes.

The generalization procedure outlined above may be
specified with a formal algorithm as follows. Assume that
genl (4, i) is a subroutine that receives a query q and an
index i and returns a new query, where the ith term of q
has been substituted by an immediately more general term
(recall that if the new term is true, then the entire conjunct
is removed). Thus, gen 1 takes care of generalizations on
nondisconnecting terms. Ass ume that gen2 (q, r) is a sub-
routine that receives a q Y-Y q and a relation name r and
returns a new query, where all references to Y have been
removed (recall that it may be necessary to insert new
retrieve attributes). Thus, gen2 takes care of generaliza-
tions on disconnecting terms. The following algorithm
takes a given query Q0 and generates a set of queries Q,,

. . Q, that are immediate generalizations of Q,. Q0 is
assumed to have a where clause in conjunctive normal
form with terms tl, . . . , tn. If ti is a join term, then Ti, 1
and ri 2 denote the two participating relations. Note that ,
Q 17 l * l 9

Q, may contain replications.

procedure gen (4);
m := 0;
for i : = 1 to n do
begin

if ti is
begin

not a disconnecting term then

m := m + 1;

Q l = genl(Qo, i); m ’
end

else
begin

if ti is the only term that references ri, 1 then
begin

m := m + 1;

Q l = gen2(q, ri,l>; m*

end
if ti is the only term that references ri,2 then
begin

m := m + 1;

Q '= gen2(q9 Ti,2); m-

end

end

C. Examples

In the first example, assume that Q0 is presented to the
database. As there are no students with GPA’s over 3.6
in either Computer Science or Electrical Engineering, its
answer is empty, and the query is passed to the general-
izer.

In the first iteration, the generalization procedure de-
rives Q, and Q2 and submits them to the processor. Q1
still fails, but Q2 succeeds. Therefore, Q, is generalized

Fig. 9. Hierarchy of generalizations for second example.

further. In the second iteration, the generalization proce-
dure derives Q3 and submits it to the processor. It suc-
ceeds and the procedure terminates. Q, is a significant
failure.

In response to his original query, the user is presented
with the message “Possible erroneous presuppositions-
cannot answer even these more general queries: ’ ’ , fol-
lowed by query Qi, which retrieves the students with GPA
over 3.6. In effect, the system is telling the user: “not
only are there no students with GPA over 3.6 in these two
departments, there are no such students in the entire col-
lege! ’ ’

In the second example, assume that Q0 is presented to
the database. As there are no Computer Science majors
enrolled in MATH 370, its answer is empty, and the query
is passed to the generalizer.

In the first iteration, the generalization procedure de-
rives Qi and Q2 and submits them to the processor. Both
queries succeed and the procedure terminates. Q, is a sig-
nificant failure.

In response to his original query, the user is presented
with the message “No data matched-partial answers
available: ’ ’ , followed by queries Qi and Q2, which re-
trieve the information requested for all MATH 370 stu-
dents, or for all enrolled Computer Science majors. The
user can now submit any of these queries.

Finally, assume that in the second example the user
misspells the major, typing “cs” instead of “COMPSCI”.’

Q2 and Q5 fail. Q5 is a significant failure, and is presented
as an erroneous presupposition. Since it retrieves infor-
mation on students whose major is CS, the system is say-
ing “there is no such major! “.

D. Related Research

First to address the problem of empty answers was
Kaplan [121, who designed and implemented a natural
language interface to CODASYL databases, called CO-
OP, which featured some of the conventions of coopera-
tion in human discourse, including corrective responses
that detect erroneous presuppositions and suggestive re-
sponses that anticipate followup queries. CO-OP trans-

‘And assume that cs is not.a synonym for COMPSCI.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2. NO. 2, JUNE 1990

forms each natural language query to an intermediate lan-
guage, called Meta-Query Language (MQL). An MQL
representation is a graph, whose connected subgraphs
correspond to the presuppositions the user has made about
the domain of discourse. When the initial query returns
an empty answer, CO-OP tests each of these presupposi-
tions, by translating the corresponding subgraph into a
query in the formal language, and checking it in the da-
tabase.

Providing quality responses to natural language queries
that generate empty answers is also the topic of [161
(which also surveys other related works in cooperative in-
terfaces). Closer to the framework of FLEX, several
works have dealt with the problem of empty answers that
are issued by typical database systems in response to for-
mal language queries.

Janas [l l] considers a family of predicate calculus
queries, and shows how to generate a set of predecessors
queries (queries whose predicates are satisfied whenever
the predicate of the original query is satisfied) for a given
query from this family. These queries are then checked
against the database. The main technique for generating
predecessor queries is to remove primitive terms from the
predicate calculus expression. Referential integrity con-
straints are used to reduce the number of predecessor
queries that must be checked.

Corella et al. [7] adapted these techniques to simple
Boolean queries with a single existential variable, and im-
plemented a cooperative front-end to a large bibliograph-
ical database.

These techniques are futher refined in 1221 and [23],
which define the concepts generalization query, signij-
cant failure, genuine empty answer, and fake empty an-
swer, and then formulate a strategy for detecting signifi-
cant failures, thereby determining whether an empty is
genuine or fake, and generating, accordingly, either par-
tial answers or erroneous presuppositions. The FLEX
generalizer is based on these works. [22] also suggests
using other data model features, such as subclass hierar-
chies, for generalizing queries. [23] extends the entire
technique by testing the queries not only against data, but
also against database knowledge (e .g . , completeness as-
sertions and integrity constraints).

VII. IMPLEMENTATION

FLEX was fully implemented as an interface to the da-
tabase system INGRES [lo]. It was written in the pro-
gramming language C, on a Sun workstation running
Unix. FLEX is purely a front-end interface; that is, it
communicates with the database system only by issuing
queries and receiving answers.

The current version of FLEX assumes a terminal with
a standard display of 24 lines and 80 characters, and a
standard keyboard with additional 16 programmable keys.
FLEX defines three screens called compose, query, and
answer, and provides three special keys for instantaneous
switching between these screens. All three screens are
structured similarly with a text window (for queries or an-

swers) and a menu window (listing the commands for that
particular screen). Initially, the user is in the compose
screen. Its text window is an editor buffer; the user types
his query into this window and edits it with simple com-
mands shown in the menu window. When ready, the user
presses a special key to copy the query to the text window
of the query screen, and switches to that screen. The user
may then submit the query by pressing another special
key. Throughout the processing of his input, the user re-
mains in the query screen. All requests for clarifications
and all suggested interpretations are shown in windows
that are overlayed on this screen. When the user accepts
an interpretation, it replaces the contents of the text win-
dow. The user may then submit it immediately for pro-
cessing, or copy it back to the text window of the com-
pose screen, for further editing. Answers are shown in the
text window of the answer screen, and can be scanned
with the commands shown in the menu window of that
screen.

The “knowledge base” used by FLEX consists of three
auxiliary relations, that are stored along with the database
itself: DICTIONARY, LEXICON and THESAURUS. The dictio-
nary is used by every FLEX mechanism, the lexicon is
used by the synthesizer and the browser, and the thesaurus
is used by the corrector. The DICTIONARY relation is rel-
atively small, the information it contains is fairly stan-
dard,6 and it needs to be updated only when the definition
of the database is changed. The LEXICON relation is more
demanding in terms of size and maintenance. This rela-
tion should not be modified by users; the system should
update it automatically, to reflect user updates to other
relations (this is similar to the way that secondary indexes
are handled in some relational systems). The cost of this
relation, in terms of the additional space to store this re-
lation and the additional computation for its initialization
and its continuous update, is comparable to the cost of a
secondary index on every database attribute. If the re-
quired storage is prohibitive, it is possible to implement
the lexicon only in part, by inverting on selected domains
only; tokens of other domains will not be recognized. The
THESAURUS relation is different, in that its information
cannot be extracted automatically from the database. It
may be constructed gradually by the database owner,
using a log of unrecognized words maintained by the sys-
tem. While the thesaurus enhances the operation of FLEX,
it is not as essential as the other two relations.

VIII. CONCLUSION

The most prominent design feature of FLEX is the
smooth concatenation of several independent mecha-
nisms, each capable of handling input of decreasing level
of correctness and well-formedness. Each input is “cas-
caded” through this series of mechanisms, until an inter-
pretation is found.

Consequently, FLEX may be viewed as an interface that
adapts to the level of correctness and well-formedness of

6 The delta parameter is, perhaps, the only exception.

MOTRO: FLEX: TOLERANT AND COOPERATIVE USER INTERFACE

its input (providing interpretations of corresponding ac-
curacy and specificity). Due to this feature, FLEX can
service satisfactorily users with different levels of exper-
tise, and thus appeal to a more universal community of
users.

This ability to adapt (which may also be regarded as
tolerance towards incorrect input) is complemented with
features of cooperative behavior, whereby empty answers
are never delivered without explanation or assistance.

Tolerance and cooperation are achieved with only min-
imai interaction, avoiding excessively long dialogues,
which tend to be tedious and discouraging. FLEX ap-
proaches its users mainly to determine the domain of an
ambiguous token, or to select from a list of possible
browsing topics. Both tasks are relatively short and sim-

ple
By providing interpretations of ill-formed queries,

FLEX also instructs its users in the proper application of
the formal language. By providing alternative interpreta-
tions, and allowing them to be refined, FLEX reduces the
risk of misinterpretations. 7

FLEX can also be perceived as an interface that sup-
ports multiple languages, each with its own level of ex-
pressivity: a formal language, a language whose queries
are sets of database tokens, and a language whose queries
are individual topics. The mechanisms of FLEX would
then be viewed, not as procedures for coping with incor-
rect formal queries, but as interpreters of these languages.
Users may then deliberately submit queries in an “infe-
rior” language; their input will flow through the inter-
preters of the “superior’ ’ languages, until it arrives at the
intended interpreter, and generates the expected database
request.

Work on FLEX is continuing. Current goals include:
1) extension of the retrieval language to include a fuller
set of operators (e.g., aggregate operators, grouping op-
erators); 2) improved presentation (e.g., employ a larger
display that accommodates all three screens simulta-
neously, accept inputs via a “mouse”); and 3) various
improvements to individual mechanisms. Some of the im-
provements being considered are: a) in the corrector:
modify it to present the user with various alternative sug-
gestions (currently, the corrector is the only mechanism
that produces a single suggestion); b) in the browser and
synthesizer: modify the lexicon to store templates of to-
kens (simple regular expressions) [2]; c) in the browser:
consider methods that will limit or summarize the output;
and d) in the generalizer: consider methods that will limit
the number of the queries tested, for improved perfor-
mance.

To obtain better feedback on the effectiveness of FLEX,
we plan to experiment with it in a classroom environment.
To maximize the benefits of this experiment, FLEX will
be instrumented to record user inputs, system interpreta-
tions, and user reactions. In addition to the instructional

70f course, the risk of misinterpretation is still present here, as in any
process of interpretation (even a formal query may not convey the inten-
tions of its author correctly).

245

potential of FLEX mentioned above, the inherent diver-
sity of a student population, and the improvement of skills
as a class progresses, suggest that an interface like FLEX
could be a “perfect partner. ” It would provide more as-
sistance to weak students, and less assistance to good stu-
dents; more assistance in early stages (when inputs tend
to be more erroneous), and gradually less and less assis-
tance in later stages (when inputs tend to be more cor-
rect).

ACKNOWLEDGMENT

The author wishes to thank Q. Yuan and S. Mathur for
their assistance in the implementation and for their helpful
comments.

111

121

PI

VI

PI

WI

PI

181

[91

mu

WI

WI

WI

WI

WI

WY

WI

WI

WI

WI

WI

REFERENCES

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques and Tools. Reading, MA: Addison-Wesley, 1986.
B. W. Ballard, J. C. Lusth, and N. L. Tinkham, “LDC-1: A trans-
portable, knowledge-based natural language processor for office en-
vironments, ’ ’ ACM Trans. O@ce Inform. Syst., vol. 2, no. 1, pp. l-
25, Jan. 1984.
P. Calingaert, Assemblers, Compilers and Program Translation.
Potomac, MD: Computer Science Press, 1979.
R. G. G. Cattell, “An entity-based database interface, ” in Proc.
ACM-SZGMOD Int. Conf Management Data, ACM, Santa Monica,
CA, May 14-16, 1980, pp. 144-150.
D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P. Griffiths,
R. A. Lorie, J. W. Mehl, P. Reisner, and B. W. Wade, “Sequel 2:
A unified approach to data definition, manipulation, and control, ”
IBM J. Res. Develop., vol. 20, no. 6, pp. 560-575, Nov. 1976.
C. L. Chang, “Finding missing joins for incomplete queries in rela-

tional data bases, ’ ’ Tech. Rep. RJ2145, IBM Research Lab., San Jose,
CA, Feb. 1978.
F. Corella, S. J. Kaplan, G. Wiederhold, and L. Yesil, “Cooperative
responses to Boolean queries, ’ ’ in Proc. IEEE Comput. Society First
Int. Conf. Data Eng., Los Angeles, CA, Apr. 24-27, 1984. Wash-

ington, DC: IEEE Computer Society, pp. 77-85.
S. Even, Graph Algorithms. Potomac, MD: Computer Science
Press, 1979.

C. Herot, “Spatial management of data,” ACM Trans. Database
Syst., vol. 5, no. 4, pp. 493-513, Dec. 1980.
SunINGRES Manual Set, Sun Microsystems, Mountain View, CA,
Release 5.0 Part Number 800-1644-01, 1987.
J. M. Janas, “Towards more informative user interfaces, ” in Proc.
Fifth Int. Conf Very Large Data Bases, ACM, Rio de Janerio, Brazil,
Oct. 3-5, 1979, pp. 17-23.
S. J. Kaplan, “Cooperative responses from a portable natural lan-
guage query system,” Artif Zntell., vol. 19, no. 2, pp. 165- 187, Oct.
1982.
W. Kent, “The universal relation revisited, ” ACM Trans. Database
Syst., vol. 9, no. 4, pp. 644-648, Dec. 1984.
H. F. Korth, G. M. Kuper, J. Feigenbaum, A. van Gelder, and J. D.
Ullman, “System/U: A database system based on the universal rela-
tion assumption, ’ ’ ACM Trans. Database Syst., vol. 9, no. 3, pp.
331-347, Sept. 1984.
W. Litwin, “Implicit joins in the multidatabase system MRDSM, ”

in Proc. IEEE Comput. Sot. 9th Int. Comput. Software Appl. Conf ,
Chicago, IL, Oct. 9-11, 1985, pp. 495-504.
W-S. Luk, M. Kao, and N. Cercone, “Providing quality responses
with natural language interfaces: The null value problem,” ZEEE
Trans. Software Eng., vol. SE-14, no. 7, pp. 959-984, July 1988.
D. Maier, The Theory of Relational Databases. Rockville, MD:
Computer Science Press, 1983.
D. Maier and J. D. Ullman, “Maximal objects and the semantics of
universal relation databases, ” ACM Trans. Database Syst. , vol. 8,
no. 1, pp. 1-14, Mar. 1983.
A. Motro, “BAROQUE: A browser for relational databases, ” ACM
Trans. Ofice Inform. Syst., vol. 4, no. 2, pp. 164-181, Apr. 1986.

“Constructing queries from tokens. ” in Proc.
Int. ’ Conf. Management Data, Washington,

ACM-SZGMOD
DC, May 28-30,

1986. New York: ACM, pp. 120-131.

7 “The design of FLEX: A tolerant and cooperative user interface

246 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 2, JUNE 1990

to databases, ’ ’ in Proc. Second Int. Con& Human-Comput. Interac-
tion, Vol. 2, Honolulu, HW, Aug. 10-14, 1987, p. 583-590, The
International Commission on Human Aspects in Computing, Geneva,
Switzerland. Conference proceedings available as Volumes 1OA and
1OB in the series Advances in Human Factors/Ergonomics, Elsevier

[26] J. A. Wald and P. G. Sorenson, “Resolving the query inference prob-
lem,” ACM Trans. Database Syst., vol. 9, no. 3, pp. 348-368, Sept.
1984.

Science Publishers.

v21 -7 “Query generalization: A technique for handling query fail-

ure,” in Proc. First Int. Workshop Expert Database Syst., Kiawah
Island, SC, Oct. 24-27, 1984, pp. 314-325, Institute of Information
Management, Technology and Policy, Univ. of South Carolina, Co-
lumbia, SC.

1231 -) “SEAVE: A mechanism for verifying user presuppositions in

query systems, ’ ’ ACM Trans. Ofice Inform. Syst., vol. 4, no. 4, pp.

312-330, Oct. 1986.
1241 A. Motro, A. D’Atri, and L. Tarantino, “The design of KIVIEW:

An object-oriented browser,” in Proc. Second Int. Coti. Expert Da-

Amihai Motro received the B. SC. degree in math-
ematical sciences from Tel Aviv University, Tel
Aviv, Israel, in 1972, the M.Sc. degree in com-
puter science from the Hebrew University, Jeru-
salem, Israel, in 1976, and the Ph.D. degree in
computer and information science from the Uni-
versity of Pennsylvania, Philadelphia, in 1981.

Since 1981 he has been with the faculty of the
Computer Science Department at the University
of Southern California, Los Angeles. His main re-
search area is data and knowledge management,

tabase Syst. Tysons Comer, VA, Apr. 25-27, 1988, pp. 17-31, in particular, intelligent user interfaces to databases, query languages for
George Mason University, Fairfax, VA. data and knowledge, and integration of databases. He is also interested in

[25] M. Stonebraker and J. Kalash, “TIMBER: A sophisticated database operating systems, and has worked for several years as a systems program-
browser, ’ ’ in Proc. Eighth Int. Con. Very Large Data Bases, Mexico mer.
City, Mexico, Sept.
mann 9 pp. l-10.

8-10, 1982. Los Altos, CA: Morgan-Kauf- Dr. Motro is a member of the
and the IEEE Computer Society.

Association for Computing Machinery

