
FlexCast: Graceful Wireless Video Streaming

Siripuram T Aditya, Sachin Katti
Stanford University

{staditya,skatti}@stanford.edu

Abstract

Video streaming performance on wireless networks is choppy. The
culprit is the unpredictable wireless medium, whose fluctuations re-
sults in fluctuating throughput and bit errors. Current video codecs
are not equipped to handle such variations since they exhibit an all
or nothing behavior. If the channel is strong and above a threshold,
the video stream gets decoded perfectly. If not, typically nothing
gets decoded. Thus, there is no graceful degradation with wireless
conditions.

In this paper, we present a new technique FlexCast, that delivers
a video reconstruction whose quality automatically varies with the
channel conditions. The key idea is a novel joint-source channel
code, that allows the sender to continuously transmit video bits, and
the receiver to decode a video quality corresponding to the number
of bits it receives and the instantaneous wireless channel quality.
We show via experimental evaluation that FlexCast performs almost
as well as the optimal scheme, and outperforms the state of the art
graceful video delivery systems by nearly 6dB PSNR.

Categories and Subject Descriptors

C.2 [Computer Systems Organization]: Computer-Communication
Networks

General Terms

Algorithms, Performance, Design

Keywords

Wireless, Video, Coding

1. INTRODUCTION
Wireless video is becoming the major driver for mobile wireless

traffic [1]. However, the actual user perceived mobile video per-
formance leaves a lot to be desired. The culprit is the combination
of current video codecs and unreliable wireless networks. Video
codecs are designed to work at a particular bitrate (adjustable over
long time scales by the video server), however if the instantaneous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MOBICOM’11, September 19–23, 2011, Las Vegas, Nevada, USA.
Copyright 2011 ACM 978-1-4503-0492-4/11/09 ...$10.00.

wireless channel quality cannot support that bitrate (i.e. it can de-
liver that bitrate only with a higher BER), video performance suf-
fers drastically. The reason is that video codecs exhibit an all or
nothing behavior, below a particular error free bitrate, they typi-
cally cannot decode the raw video stream, leading to fluctuating
video quality.

The main reason for this choppy performance is the implicit as-
sumption that senders of the video stream can measure the wire-
less link quality, and adjust the bitrate accordingly. However, this
assumption is untenable considering the actual behavior of wire-
less links, and the current architecture of video streaming systems.
First, wireless links vary continuously and unpredictably due to a
variety of factors (interference, multipath fading etc). Second, the
majority of wireless video is consumed over the Internet, with video
streams residing in data centers connected over long latency paths
(on the order of tens to hundreds of milliseconds) to the wireless
link. The typical coherence time (period over which wireless chan-
nel conditions are stable) of a wireless link is on the order of a few
milliseconds [25], hence even if one could measure the channel and
send it back to the video sender, the information would be stale by
the time the streamer acts on it. Due to this reality, senders are
forced to pick conservative bitrates, that are wasteful when wireless
channel conditions are good, and harmful when conditions are bad.

In this paper, we present the design and implementation of Flex-
Cast, a novel technique that achieves a video reconstruction that
degrades gracefully with instantaneous wireless link quality even
in fast varying mobile channels. FlexCast works end-to-end, requir-
ing changes to only how video is encoded and decoded. Further, the
video sender in FlexCast is very simple, it transmits a continuous
stream of encoded video bits and does not require any feedback
about the wireless network conditions. The receiver decodes from
any received packet, even those with errors, and achieves a video re-
construction commensurate with the link quality at that point. Thus,
FlexCast preserves the simplicity of the current end-to-end design
and yet provides graceful performance.

FlexCast’s design is motivated by the observation that even if a
receiver cannot correctly decode a transmitted bitstream, each de-
coded bit comes with a confidence estimate known as the soft in-
formation. Conceptually, soft information can be thought of as the
PHY’s estimate of the probability that a transmitted bit was “1”
or “0”. Soft information can be generated for any constellation and
channel coding scheme (e.g. convolutional coding schemes in WiFi
can compute a soft output of their decoding decisions). The key in-
sight behind FlexCast is that the quality of the soft information (i.e.
the receiver’s confidence in its decisions) increases with channel
strength, and hence if we reconstruct the video stream based on soft
information (called soft reconstruction henceforth), the quality of
the video will be proportional to the channel strength.

However, soft reconstruction alone is not sufficient. The reason
is that in video not all bits are created equal, the most significant
bits (MSBs) corresponding to the lower frequency components are
much more important than others. Decoding them with high confi-
dence significantly reduces distortion, while decoding the least sig-
nificant bit (LSBs) of a high frequency component is not nearly as
important. Motivated by this observation, a second key component
in FlexCast’s design is a rateless video codec that enables propor-
tional representation, i.e. the ability to automatically provide dif-
ferent bits in a video frame a level of protection that is proportional
to their importance. Note that the protection is rateless, i.e. we
do not need to know the wireless channel conditions in advance to
decide on the redundancy to add. At the receiver the confidence
in decoding a bit is proportional to the amount of protection added
at the sender, and the instantaneous channel quality, thus achieving
the desired proportional representation.

FlexCast does require access to soft information from the wire-
less PHY at the receiver. However, the good news is that soft infor-
mation is already computed at the PHY for decoding channel codes,
FlexCast only requires the PHY to expose this already computed in-
formation. Thus, architecturally FlexCast is similar to the recently
proposed SoftPHY abstraction [13] and uses a modular network
stack at the receiver where the PHY interface is augmented to ex-
pose soft information along with decoded bits.

We have implemented FlexCast by modifying the popular ffm-
peg [2] MPEG4 encoder/decoder and evaluated it on top of a 802.11a/g
style wireless PHY in the GNURadio codebase. We evaluate Flex-
Cast in a testbed with USRP2s and compare it to the omniscient
scheme (one which knows the network conditions exactly in ad-
vance and picks the best video bitrate and channel FEC accord-
ingly), as well as SoftCast [12] and Apex [23], the two state of
the art graceful video delivery systems. Our experimental evalua-
tion shows that FlexCast provides graceful wireless video delivery
across a wide variety of varying and unknown network conditions.
Specifically, we show the following:

• FlexCast achieves a video reconstruction that is within 1 dB
of the omniscient scheme across a wide range of SNRs, with-
out having any knowledge of the channel SNR.

• FlexCast outperforms SoftCast which also operates without
knowing the channel SNR by nearly 4dB.

• In walking speed mobility scenarios, FlexCast outperforms
Apex by nearly 3dB PSNR and SoftCast by 4dB.

• In fast mobility scenarios where network conditions fluctuate
rapidly, FlexCast outperforms Apex by nearly 6dB PSNR and
Softcast by 4dB.

FlexCast also provides architectural gains over Apex and Soft-
Cast in addition to the PSNR gains discussed above. FlexCast’s
design is layered and end-to-end, i.e. unlike Apex and SoftCast it
does not require the wireless PHY to be aware of video semantics
and appropriately change its own coding and modulation choices.
The layered design preserves modularity and allows the PHY and
video layers to independently evolve and innovate. Finally, the en-
coding and decoding complexity of FlexCast is linear, and we reuse
most of the components found in MPEG4. Hence, we believe Flex-
Cast can be integrated into existing video codecs via small modifi-
cations.

2. RELATED WORK
FlexCast is related to a large body of work on video encoding,

including MPEG and its variants, layered encoding and multiple

resolution coding [6, 15, 16, 22, 27, 10] (the reference list is rep-
resentative and not meant to be complete). These schemes typi-
cally encode the video into multiple layers, with each successive
layer needing the previous layer for successful decoding. All these
schemes assume the source knows the wireless link conditions and
can carefully choose the best bitrate and codec for each layer, given
the channel SNR. Similar arguments apply to techniques such as su-
perposition coding [8], which is a PHY layer technique for provid-
ing unequal error protection. To implement superposition coding,
the sender needs accurate knowledge of the channel SNR. Further
superposition coding requires that receivers have channel strengths
that are significantly different, and finally, it is limited in the video
resolutions it can actually provide. FlexCast makes no such as-
sumptions, and provides graceful performance without requiring
any link state feedback.

FlexCast is directly related to two state-of-the-art techniques,
Softcast [12] and approximate communication [23] that also aim
to provide graceful wireless video performance. However, these
techniques both need the PHY at the wireless AP to be aware of
video semantics, and appropriately encode their own transmissions.
Specifically, Softcast needs a completely new wireless PHY that
shuns all conventional modulation and coding techniques. Further,
SoftCast is essentially an analog transmission technique, and can-
not obtain the gains we get from digital channel coding, a point we
discuss in depth in Sec. 7. Approximate communication (or Apex)
requires the wireless PHY to be aware of different video frames,
and maps data from these two frames to carefully chosen constella-
tion points to provide unequal error protection. However, to realize
Apex’s benefits the channel SNR should be sufficiently high (>
10dB) so that we can use a dense constellation (at least 16 QAM).
Such high SNRs are uncommon in mobile scenarios. Further, it re-
quires knowledge of the channel SNR to adjust the symbol mapping
on the constellation. FlexCast has none of these onerous require-
ments, it works with existing wireless PHYs without requiring any
link feedback, and yet outperforms both SoftCast and Apex as we
will see in our evaluation.

FlexCast is also related to digital fountain codes [14] in the sense
that it does not matter if a packet is lost, and it can recover from the
other coded packets. However, there are two critical differences.
First, digital fountain codes are all or nothing codes. Hence if n
packets are encoded using a digital fountain code, we need at least
n coded packets before we can recover anything. In FlexCast, we
can recover a reconstruction even if we get less than n packets with
a quality proportional to the number of packets received. Second,
digital fountain codes only work with packets with no bit errors.
FlexCast can take advantage of even packets with bit errors, that
are common in wireless networks.

Finally, FlexCast is related to prior work on joint source-channel
coding [20, 18, 11] for video. This line of work shares the same
high level principle as FlexCast, i.e., since entropy coding and error
prone wireless channels do not play well with each other, a video
encoding scheme should consider the source compression and the
channel coding problem separately. Similar to FlexCast, many of
these schemes consider dividing video bits according to their im-
portance and providing unequal error protection. FlexCast differs in
the design of the protection mechanism itself, since the same code
compresses as well as protects, and provides a semi-rateless prop-
erty that allows FlexCast to operate well even when link conditions
are varying and the transmitter has no channel state information.

wireless channels are error prone,

3. OVERVIEW
We begin with a short description of how to visualize video sig-

nals, and what achieving graceful performance means. The discus-
sion informs many of FlexCast’s key ideas that are described subse-
quently. We will first discuss a single frame, and then generalize the
discussion to a sequence of frames or video. The frame discussed
below corresponds to the I-frame in traditional video codecs. A
video server encodes the video stream and sends it to the wireless
AP, which in turn encodes it for transmission on the wireless link to
the mobile client.

A video frame is a matrix of pixels, with each pixel typically
represented by a 8-bit value. However, since natural images do not
show large variations, there is a lot of redundancy in the pixel rep-
resentation. To compress, typically a linear frequency transform is
applied to the raw pixel matrix (e.g. Discrete Cosine Transform
in MPEG4). The lack of large variations in natural images implies
that higher frequency values will be close to zero, which can be dis-
carded (or represented using a small number of bits by quantization)
without causing human perceivable signal loss.

The quantized DCT components are then compressed using an
entropy code such as Huffman code, packetized and sent to the
wireless AP. The wireless AP adds FEC via channel coding to pro-
tect against channel distortions and transmits it on the wireless link.
The mobile client after receiving the packets, first decodes the FEC
from the AP, and then decodes the video stream to recover the DCT
components. It then applies an inverse DCT to recover the pixels
representing the I-frame.

Since wireless link qualities fluctuate (especially in mobile net-
works), the AP has to constantly monitor and pick the best link
bitrate to transmit at. If the AP incorrectly picks a bitrate that the
channel cannot support, then packets will be received in error. To
recover from such errors, the AP retransmits at a lower bitrate and
attempts to ensure that the packet is delivered correctly. The net ef-
fect is fluctuation in goodput to the client, as well as packets being
received with errors.

If the goodput drops below the encoded video bitrate, then the
video stream cannot be decoded, causing stutter in video render-
ing and buffering delays. Hence if the goodput fluctuates as it often
does in mobile networks, the client will experience intermittent stut-
tering and buffering delays. To avoid such cases, video senders pick
conservative and low video encoding bitrates to ensure that they are
likely to deliver a minimum quality. Hence clients are forced to
accept a relatively low quality video playback, and cannot take ad-
vantage of the times when the channel quality is good. To sum it up,
wireless link variability implies video playback has to be designed

for the worst case scenario, and cannot gracefully adapt to the in-

stantaneous link quality.

Decoding Video from Erroneous Frames: A possible approach
to improve video performance is to use the erroneous packets that
are thrown away by the PHY and see if their partial information can
be used to improve video decoding. In this case, the video decoder
would take packets with bit errors from the PHY and attempt to
decode the video stream. However this immediately fails, since bit
errors are numerous and randomly distributed. If the bit errors are
in the most significant bits of the DCT components, the resulting
distortion in video will be quite high.

3.1 FlexCast
FlexCast’s goal is to enable graceful video delivery, i.e., deliver

a video reconstruction quality that is proportional to the instanta-
neous wireless link quality. Given that wireless link fluctuations
are an unavoidable reality, FlexCast assumes that bit errors and
packet loss will occur. But instead of throwing these erroneous
packets away and requesting retransmissions, FlexCast opportunis-

tically exploits these erroneous frames to decode the video, albeit
not fully but with a reconstruction error that is proportional to the
difference between what link quality the packet was encoded for
and what the actual quality was. FlexCast’s design is based on two
key components:

1) Proportional Representation: FlexCast exploits packets with
bit errors to decode video. However, since bit errors in the MSBs
of DCT components cause a large amount of distortion, it is harmful
to treat all bits equally. In FlexCast, bits should receive proportional
representation, i.e. the protection a bit gets should be proportional

to the overall error a decoding error on that bit would produce. To
implement proportional representation, FlexCast first groups bits of
equal importance together by a technique called distortion group-

ing. Intuitively, distortion grouping clusters bits (from the bitstream
representing the DCT components) according to the amount of er-
ror they would cause if they were decoded in error. For example, all
the MSBs in a 8 bit binary representation would form one distor-
tion group (since they would cause an error of 128 for a decoding
error each), and so on for the other bit positions. FlexCast then sep-

arately encodes these distortion groups according to their relative
importance.

To add protection, FlexCast designs a rateless video codec based
on raptor codes [24] that allows the sender to protect bits in dif-
ferent distortion groups according to their relative importance. In
other words, it has the property that if a particular group of bits is
encoded with more bits, then its reconstruction error is correspond-
ingly lower after going through a noisy wireless channel. However
note that the codec is rateless, it operates without any knowledge
of the network conditions. Since network conditions are unknown
at the video sender, the video codec cannot guarantee that any dis-
tortion group is perfectly decoded. However, it guarantees that the
reconstruction error for the group is inversely correlated to instan-
taneous channel quality.

2) Soft Reconstruction: The second key component of FlexCast
is to exploit physical layer soft information at the client to provide
a better video reconstruction. FlexCast uses the SoftPHY interface
from prior work [13] to expose soft information from the PHY layer
to the upper video layer for video decoding. Soft information can
be thought of as a probability distribution pi(1), pi(0) on the actual
bit decisions for bit i, i.e., an estimate of the receiver’s confidence
that the transmitted bit was “1” or “0”. Soft information for each
decoded bit is calculated by the decoding algorithm for the rateless
video codec as explained in Sec. 5. FlexCast exploits this soft in-
formation to perform soft reconstruction of the DCT component
represented by the bit. Specifically, FlexCast computes the DCT
coefficient as

x =

i=8∑

i=1

(pi(1) ∗ 2
8−i + pi(0) ∗ 0) (1)

where bi, i = 1, . . . , 8 represents the 8 bits for that DCT compo-
nent. Thus it computes the expected value of the DCT coefficient
given soft information on the bit decisions. The key idea is that the
quality of the soft information depends on the channel strength at
that point. For example, if the channel is bad, the soft information
will be very indecisive, i.e. pi(1) = pi(0) = 0.5. In this case we
avoid making large errors in estimating the DCT component, and
thus the error for the recovered DCT component scales inversely
with the channel strength.

4. VIDEO SENDER
MPEG4 takes a sequence of raw video frames, and encodes it to

produce combinations of three different frames, First, the I-frame is
the reference frame and is essentially a still image that is encoded
independently. Next, there are two predicted framed, P-frames and
B-frames. A P-frame holds only the changes in the image from the
previous frame, while the B-frame incorporates the future frame
too.

Figure. 1 shows the high level procedure for MPEG encoding.
In MPEG, the raw I-frame is divided into a set of macroblocks.
To create the P and B frames, the macroblocks in consecutive raw
frames are compared to each other, and the closest macroblocks are
identified and the corresponding motion vectors are computed. The
differences between the matching macroblocks are then computed
into a differential macroblock and stored in the P and B frames. Af-
ter the macroblocks are produced, the rest of the encoding process
is the same for all frames.

1) Discrete Cosine Transform: Each macroblock is first passed
through a DCT transform to compute their frequency contents. Since
natural images do not typically exhibit sharp variations, the high
frequency components will be close to zero.

2) Quantization: In the second step, each macroblock DCT com-
ponent is quantized. Quantization at a high level, compresses a
range of continuous values into a single discrete value. In MPEG,
the important low frequency components are quantized into a larger
number of discrete levels, and hence need more bits to represent.
The less important components are quantized into a smaller num-
ber of discrete levels, and require fewer bits to represent. Depend-
ing on the desired resolution, different quantization strategies are
employed.

3) Compression: The quantized bits in a macroblock are then com-
pressed using a combination of Run-Length encoding (RLE) and
Huffman encoding. The compression step naturally produces a ran-
dom bitstream of reduced size [21]. These bits for each macroblock
are then packaged into the appropriate frame to create the com-
pressed I, P and B frames.

FlexCast only changes the last step, it replaces the compression
stage (RLE and Huffman) with its own rateless video codec. The
rest of the section will therefore focus on describing our rateless
video code, we refer the reader to [21] for a detailed description of
the earlier stages in the MPEG encoding process. Further, note that
FlexCast also simplifies the quantization step for MPEG, since it
only uses the quantization strategy that produces the highest video
resolution. FlexCast thus retains the same I, P and B frame structure
of traditional MPEG, and only changes the last step of how these
frames are populated. We hope that due to this relatively small
change, it will be easier to integrate FlexCast into MPEG standards.

4.1 FlexCast
FlexCast takes the output bits from the quantizer and encodes

them in two stages: distortion grouping and rateless video coding.

4.1.1 Distortion Grouping

First, FlexCast groups bits from the quantized DCT coefficients
which if decoded incorrectly, contribute equal amounts to the over-
all mean square error. For example, if DCT components are repre-
sented using 8 bits each, the most significant bits would form one
distortion group and so on for the other bit positions. MPEG typi-
cally uses variable length quantization [21]), and hence the value

255

55

72

12

43

93

1 1 1 1 1 1 1 1

0 0 1 1 0 1 1 1

0 1 0 0 1 0 0 0

0 0 0 0 1 1 0 0

0 0 1 0 1 0 1 1

0 1 0 1 1 1 0 1

Quantization

DCT Coefficients Binary Representation

Distortion

Group (MSBs)

Distortion

Group (LSBs)

Rateless Video Code

Figure 2: FlexCast’s distortion grouping algorithm. Bits which

if decoded incorrectly cause the same amount of distortion are

grouped into one group.

of each bit is not just dependent on its position. Therefore, in-
stead of grouping bits based on their position, we compute for each
bit position in each quantized DCT value their contribution to the
overall reconstruction error if it is decoded incorrectly. These esti-
mated distortion contributions are then clustered, and each cluster
is grouped into a separate group. Note that this assignment is inde-
pendent of the video being encoded, and needs to be computed only
once offline. The distortion groups are arranged in descending or-
der of their importance (i.e., the group which causes a higher error if
it is decoded incorrectly is more important). Figure 2 demonstrates
the grouping algorithm.

4.1.2 Rateless Video Code

FlexCast next encodes the bits in each distortion group using it’s
rateless video code separately. The rateless video encoder is based
on Raptor codes [24], which are an efficient class of rateless chan-
nel codes. Raptor codes can produce an infinite stream of coded bits
without requiring any knowledge of network conditions. However,
traditional Raptor codes have an “all or nothing" property, depend-
ing on the channel quality they require a minimum number of bits
after which all the input bits are decoded, and below which noth-
ing is. Instead, in FlexCast we want graceful behavior, given any
number of bits received we want a reconstruction proportional to
the number received and the instantaneous channel quality.

To achieve this graceful property, FlexCast modifies the Raptor
code design. Lets say there are n bits in a distortion group D(i).
Typically, Raptor codes take all the n bits and pass them through
a combination of an LDPC (Low Density Parity Check) codes [9]
and a standard digital fountain code (the Luby LT codes [14]) to
produce coded bits. However in FlexCast we modify the flow:

1. First, the n bits are not coded in any way, they are transmit-
ted directly. This is unlike Raptor codes, which directly start
encoding the n bits.

2. LDPC code: Next, pick 3 bits at random from the n bits in
the distortion group, and XOR them to create an intermediate
coded bit. Repeat this process n times to create n intermedi-
ate coded bits.

3. LT code: The LT code in FlexCast uses a robust Soliton dis-
tribution with a mean 4.6 [14]. The encoder first samples this
distribution to produce an integer m. Next it picks m bits
at random from the intermediate coded bits from the LDPC
stage, and XORs them to create a parity bit. This step can
be repeated as many times as needed to create an infinite
stream of parity bits. The parity bits are appended to the n
un-encoded bits from the first step to produce the final rate-
less encoded video bits.

Figure 1: Standard MPEG4 encoding. FlexCast only replaces the entropy coding stage.

Regular

LDPC Code LT Code

Distortion

Group

Intermediate

Coded Bits Parity Checks

Systematic

Encoded Bits

Figure 3: FlexCast’s rateless video code based on Raptor codes.

FlexCast produces “systematically" encoded bits, i.e the initial

input bits appended with parity checks.

To see why this modification to Raptor codes provides the de-
sired graceful performance, note that the new code is a “system-
atic" code. In systematic codes, the n input bits are kept as is, and
parity bits are appended to the end of the n input bits to produce
the coded bits. If any of the initial n bits are received in error, the
extra parity bits are there to help correct them. This automatically
produces graceful performance, since the soft reconstruction error
in the initial n bits is directly correlated to the raw channel quality.
Next as the receiver gets parity bits, as we will see in Sec. 5, we
successively reduce the reconstruction error in the first n bits.

FlexCast repeats the above steps for each distortion group. Fig-
ure 3 depicts the process.

4.1.3 Proportional Representation

Packetization in FlexCast exploits the fact that the rateless video
code is graceful and proportional. Specifically, lets say the video
sender has the opportunity to send M packets of size B (where
B is typically 1500 bytes) bytes each per second, and there are G
distortion groups D(1), D(2), . . . , D(G). Then the MB bytes are
allocated as follows among the distortion groups in the following

SoftPHY

Hints

Demodulator Decoder

Symbols Coded Bits Bits

RX Soft Output

Decoder

Error vectors

(rcvd symbol – closest valid symbol)

Figure 4: FlexCast augments the PHY layer to pass on SoftPHY

hints.

ratio

Allocation for distortion group i = MB ∗
N(D(i)) ∗ ED(i)∑
k
N(D(k)) ∗ ED(k)

(2)
where ED(i) is defined as the average MSE if a bit in the distortion
group D(i) is decoded incorrectly, and N(D(i)) is the number of
bits in distortion group D(i).

In other words, the fraction of space allocated to a distortion
group is proportional to its importance, as well as the number of
bits in the distortion group. As discussed in the previous section, the
rateless video code in FlexCast has the property that if a distortion
group receives more bits, then its reconstruction error correspond-
ingly drops. Hence the above allocation automatically ensures that
more important distortion groups get relatively more bits allocated
to them from the budget and are decoded with an error proportional
to their importance.

The video server sends these encoded video packets to the wire-
less AP. The wireless AP takes the packets and transmits them on
the wireless link.

5. MOBILE CLIENT
The decoding at the mobile client proceeds in three steps: Soft-

PHY, decoding the rateless video code and soft reconstruction.
As discussed earlier in the paper, FlexCast assumes a SoftPHY

interface at the physical layer [13] of the mobile client. Intuitively,
a SoftPHY interface exports per-bit confidences along with the de-
coded bits for both correct and incorrect packets. SoftPHY hints

b1

b2

b3

Variable Nodes

Function Nodes

+

Figure 5: Example of Belief Propagation Factor Graph where

b3 = b1 ⊕ b2.

can be computed for any PHY using a linear convolutional or block
code, examples of which include WiFi, WiMax and Zigbee. We
omit the details here for brevity, but refer the reader to [13, 26]
for a detailed description of SoftPHY computation for a number of
standard wireless PHYs. In the rest of the paper we will assume that
we have LLRs (log likelihood ratios) or the probabilities on each bit
decision, i.e. the probability that the decoded bit is 1 or 0.

5.1 Decoding the Rateless Video Code
FlexCast exploits the SoftPHY hints to decode the rateless video

code using an algorithm called belief propagation [19]. We will
describe how the decoding algorithm decodes the bits belonging to
a single distortion group D, i.e. bk, k = 1. . . . , n from the LLRs
it receives from the SoftPHY. Remember that the n bits from the
distortion group are encoded to produce coded bits c1, . . . , cM as
follows by the video server: the first n bits are the same as the raw
bits themselves, and following them are parity bits created using a
combination of LDPC and LT codes. We will assume that we have
received m > n such encoded bits at the mobile client, with the
corresponding LLRs. From the LLRs we can compute the proba-
bilities p(ci = 1), p(ci = 0).

The high level goal of the decoding algorithm is to compute the
probabilities of the bits in the distortion group bk being “1" (or “0").
Since the first n bits in the received bits correspond directly to the
bits in the distortion group bk, k = 1, . . . , n, the initial probabilities
can be computed,

p(bi = 1) = p(ci = 1) i = 1, . . . n (3)

The accuracy of the initial probability estimates above depends
on the wireless link strength, if the wireless link is noisy, then the
probability estimates can be indecisive i.e. p(bk = 1) ≈ p(bk =
0) ≈ 0.5, and hence we cannot confidently decode. The extra par-
ity bits that are transmitted by the video server enable us to improve
these probability estimates further and improve decoding. Remem-
ber that these extra parity bits are generated by passing the first n
distortion group bits through a combination of linear LDPC and LT
codes. Thus, these parity bits are a linear combination of a subset of
the first n bits. To understand how these linear combinations help
us improve the estimate of the probabilities, we will use a simplified
example where there are only two bits in the distortion group b1, b2
, and we receive one extra parity bit, which is just the XOR of the
two distortion group bits b3 = b1 ⊕ b2. These three bits b1, b2, b3
are transmitted by the wireless AP after channel coding, and on the
receiver, the SoftPHY passes them up with the computed LLRs.

Lets assume the LLRs for these three bits are such that the cor-
responding probabilities for the decoded bits being “1" are p(b1 =
1) = p(b2 = 1) = p(b3 = 0) = 0.7. From the first two Soft-
PHY hints, we get the raw initial probabilities for the bits p(b1 =

1) = p(b2 = 1) = 0.7. How can we use the third SoftPHY hint to
improve these probability estimates?

Intuitively the high probability that the third bit is “0" (the XOR
of the first two bits), coupled with the high initial probabilities that
the first two bits are “1" too suggests that the first and second bits
are very likely “1". To quantify how likely, FlexCast uses an algo-
rithm called belief propagation [19]. The algorithm works at a high
level by setting up a factor graph that encodes the linear constraints
among all the bits. In the example above, the linear constraint is that
the XOR of the three bits is 0 (since b1 ⊕ b2 ⊕ (b1 ⊕ b2) = 0). Fig-
ure 5 shows the factor graph for this example, the three edges going
to the XOR function node imply that the input three bits are sup-
posed to add up to zero. The nodes on the right are called the vari-

able nodes, and the node corresponding to the constraint is called
the function node.

As the name of the algorithm suggests, beliefs about bit values
are propagated along the edges of this graph. The three nodes rep-
resenting the bits are initialized with beliefs using the LLRs from
the physical layer. Hence the beliefs for the first two nodes are
p(b1 = 1) = p(b2 = 1) = 0.7 and for the third node p(b3 = 1) =
0.3. Next, these nodes pass their beliefs to the function node. The
function node updates its beliefs about bit b1 using the following
equation

p(b1 = 1) = p(b2 = 1)p(b3 = 0) + p(b2 = 0)p(b3 = 1) (4)

which is essentially computing the probability that b1 = 1 given
the probabilities of the other two bits. A similar equation can be
written for the other two bits. Plugging the values into the equation
we find that the belief at the function node for the first two nodes is
p(b1) = p(b2) = 0.58. These beliefs are sent back to the nodes,
which then have to update their own beliefs about their respective
values.

At this point the first two nodes receive conflicting beliefs about
their bits, the one computed from the LLRs says p′(b1 = 1) = 0.7,
and the belief received from the function node says p

′′

(b1 = 1) =
0.58. To resolve this conflict, the node computes the new belief
using the following equation

p(b1 = 1) =
p′(b1 = 1)p

′′

(b1 = 1)

p′(b1 = 1)p′′(b1 = 1) + p′(b1 = 0)p′′(b1 = 0)
(5)

The equation implies that the new belief is the probability that the
two beliefs agree on the value of bit b1 = 1, divided by the proba-
bility that the two beliefs agree on the value being “1" or “0". This
computation can be intuitively thought of as the probability that the
decoder would have decoded that bit to be “1" at that point, given
that it decodes anything at all. To see why, consider the decoding
rule: the decoder has to make a decision on the value of bit b1 by
tossing two weighted coins corresponding to the two beliefs. If the
coins both showed “1", then the bit would be decoded to “1", and
“0" if they both showed “0". In this experiment, the probability that
we would decode to “1" is given by Eq. 5. In the above two bit
example, the new beliefs at the first and second nodes can now be
computed as p(b1 = 1) = p(b2 = 1) = 0.76, which is a marked
improvement from 0.7. Thus the extra linear constraint from the
third node helps improve the probabilities of the first two bits, and
pushes it closer and closer towards the correct decoding decision.

5.1.1 Algorithm

The above description is a high level sketch of the belief propaga-
tion algorithm, we encourage the reader to refer to[19] for a detailed
algorithm as well as mathematical analysis. BP provably converges
and computes the correct final probabilities when the factor graph

Decoded DCT bits

with soft information

LT Code

constraints

LDPC Code

constraints

Variable

Nodes

Function

Nodes

Figure 6: Belief Propagation decoding of FlexCast’s code

has no loops. For graphs with loops, BP has been shown to provide
very good performance empirically. Finally, we summarize the de-
coding algorithm based on belief propagation for each distortion
group below in a pseudocode. The algorithm is repeated for all the
distortion groups.

1. Set up the factor graph in three stages as show in Figure. 6.
The first stage consists of variable nodes corresponding to the
received bits with SoftPHY hints, the second stage is function
nodes that combine the linear constraints of the LT code and
LDPC codes, and the final stage corresponds to the variable
nodes corresponding to the n bits in the distortion group. The
edges connect bits that are part of a linear constraint in the
LT/LDPC code.

2. The variable nodes for the first stage are initially seeded with
probabilities that they are “1" or “0" via the corresponding
LLRs from the SoftPHY. Next, the belief propagation algo-
rithm passes messages through the factor graph edges and up-
dates the probabilities for all the other nodes. The probability
update equations are generalized versions [24] of Eqns. 4 and
5. This counts as one iteration.

3. The message passing iterations are repeated until the proba-
bilities of the nodes on the right-most stage, i.e. the bits in
the distortion group are all above a threshold, or we have ex-
ceeded a pre-specified maximum number of iterations. In our
current implementation, we found empirically that a thresh-
old LLR of 15 and a maximum iteration limit of 20 suffices.

At the end of this stage, we have probabilities that the bits in each
distortion group are “1" (or “0").

5.1.2 How to realize the compression gains?

FlexCast replaces the entropy coding stage in traditional MPEG4
with its own rateless video code to achieve graceful video delivery.
However, entropy coding does provide compression gains in tradi-
tional MPEG4 encoding. How do we achieve the same compression
gain in FlexCast?

Our approach to achieve compression is based on a well known
theoretical result in information theory. The result is based on the
insight that when we compress using entropy coding, we are ex-
ploiting the data statistics (e.g. 70% of the bits being 0 in a file)
to compress. However, if we dont perform this compression di-
rectly but instead encode the raw data using a channel code (like
the rateless video code FlexCast uses), we can achieve the same
gains as compressing at the sender if we send the data statistics to

the receiver and it uses these statistics in performing its decoding.
In FlexCast that would mean that the BP decoding algorithm de-
scribed above would initialize the variable nodes at the right in the
factor graph using the data statistics to bootstrap the BP decoding
algorithm. Caire et al [7] show that this is equivalent to performing
entropy coding at the source and then separately channel coding it,
i.e. both approaches would require the same number of bits to be
transmitted on the wireless channel.

To exploit this insight in FlexCast, we send metadata about the
data statistics for each distortion group in the header of the video
frame. Similar to other information in the packet headers, this meta-
data is important and should be correctly received at the receiver for
correct decoding. Hence we protect this using extra FEC. However,
note that the metadata overhead is negligible, in our experiments
we found that it adds 2% extra overhead including the FEC.

5.2 Soft Reconstruction
Soft reconstruction uses the probability estimates to compute the

expected value for the DCT components. Specifically, the receiver
collects all the bits representing a single quantized DCT compo-
nent along with their corresponding probabilities, and computes its
estimate of the DCT component as follows:

y =

L−1∑

i=0

2i ∗ p1(i) (6)

where L is the number of bits used to represent the quantized DCT
component, and p1(i) represents the probability that the i’th bit in
the representation of the DCT component is “1". Intuitively, the
above equation is computing the expected value of the DCT com-
ponent, given the probability distributions on each bit. Clearly if
all bits have been correctly decoded (i.e. p1 = 1.0 if bit “1" was
transmitted), then the computed y will match the value of the actual
DCT component. However, when there is still some uncertainty,
the soft reconstruction error will only be proportional to the proba-
bilistic uncertainty in the soft information. Since this probabilistic
uncertainty is correlated inversely with the channel quality, Flex-
Cast achieves the graceful reconstruction we hoped for.

The final step is the same as traditional MPEG, converting the
DCT components to raw pixels for all frames: I, P or B. Specif-
ically, the recovered DCT components above are passed through
an IDCT to recover the raw macroblocks for the I-frames, and the
differential macroblocks for the P and B frames. These differen-
tial macroblocks are now recovered using the motion compensation
vectors to compute the raw frames, and the video is rendered.

6. IMPLEMENTATION
Our current implementation of FlexCast is built using the widely

available ffmpeg [2] video encoding/decoding library. As we dis-
cussed before, FlexCast retains the motion vector computation, quan-
tization, and transform steps of traditional MPEG4. We only re-
place the entropy encoding/decoding stage with our rateless video
code. However, our design does affect some of the parameters of
the earlier stages, which we describe below.

First, traditional encoders adjust the Quantization Parameters (QP)
based on what network throughput is available. QP adjusts the res-
olution of the video and is thus a form of lossy compression, and is
controlled to meet a user specified bitrate budget (e.g. 1Mbps video
bitrate). In FlexCast, there is no concept of a set encoding bitrate,
hence we set QP to as low as possible. In other words we encode
video at the highest resolution possible.

At the receiver, we augment the the wireless PHY to expose
SoftPHY hints. Our current implementation is based on the MIT

12dB 10dB 8dB 6dB

0.3 0.37 0.44 0.51

Table 1: Microbenchmarks - Decoding CPU time normalized

wrt actual video stream time.

GNURadio WiFi-like implementation that was used in prior work
on SoftRate [26]. It is an OFDM PHY with all the modulations
and convolutional coding rates used in WiFi, but with the narrower
bandwidth the USRP2 can support. It includes the soft decoding al-
gorithms needed to expose SoftPHY hints [13]. We omit the details
for brevity, but the implementation is the same as the one used in
SoftRate [26].

For the video decoding component, we retain all the traditional
components of MPEG4 except entropy decoding, which is replaced
with the belief propagation (BP) algorithm and soft reconstruction
as discussed in Section 5. Our current implementation of BP is
based on a widely used message passing algorithm implementa-
tion [3].

6.1 Complexity
At the encoder, the extra complexity is from the distortion group-

ing and rateless encoding components. Both operations have linear
complexity in the number of input bits. However, we note that en-
coding is typically not done on the fly and hence is not on the crit-
ical path. Senders can encode their video and store it in advance
for transmission. Further, unlike current systems which have to en-
code their video for multiple bitrates and qualities (e.g. 300kbps,
600kbps, 1Mbps for Youtube) into separate files, FlexCast keeps
only one high resolution encoded file.

At the decoder, the major source of extra complexity comes from
the belief propagation algorithm. The complexity of the algorithm
is proportional to the number of edges in the factor graph since that
determines the number of messages passed around every iteration.
For FlexCast’s rateless video code, the number of edges is equal to
a constant (≈ 7.6) times the number of bits in the distortion group.
Hence the decoding complexity is linear in the number of encoded
bits.

Microbenchmark: FlexCast is implemented on a PC with an Intel
Core i7 980x processor and 8GB of RAM. We benchmark the per-
formance of our implementation by evaluating how long it takes to
decode a 30 second video encoded at a 720p resolution. We nor-
malize the decoding time with the actual video playing time, since
at the very least we have to ensure that decoding works faster than
the rate at which video needs to be displayed. Table 1 shows the
results at different channel SNRs. As we can see, the normalized
time is typically less than 0.6 and hence can easily keep up with
the video playback. The decoding time grows as the channel gets
weaker which we intuitively expect. With noisy channels, the de-
coder takes more iterations to converge on the LLRs, leading to the
higher decoding time.

6.2 Experimental Setup
We evaluate name using both simulations and experiments on a

USRP2 testbed. we describe the setup below.
Hardware and Testbed: Our experiments use nodes connected to
the USRP2 radio platform. The USRP2 platform, is a radio fron-
tend which is connected to a PC that is running the GNURadio
signal processing framework. We deploy an indoor testbed of 14
USRP2s in our lab. The node locations are shown in Fig. 7. To
simulate different channel SNRs, we move around the nodes until

Mobility Trace Path

Figure 7: FlexCast Indoor Testbed Layout

we can obtain the SNR for which we want to run the experiment.
The blue arrow represents the path the node takes for our mobility
experiments.
Compared Schemes: We compare the following four schemes:

• FlexCast: This is our implementation of FlexCast which fol-
lows the description in Sections 4 and 5.

• Omniscient MPEG (Omn-MPEG): This uses traditional MPEG4,
but assumes omniscient knowledge of network conditions.
Specifically, here the sender is assumed to instantaneously
know the current channel SNR and network capacity, and em-
pirically picks the optimal combination of MPEG encoding
and wireless PHY bitrates that maximizes the PSNR for that
channel SNR. Hence, this scheme would be the best possible
performance by a conventional scheme.

• SoftCast: This is a recent state-of-the-art scheme that re-
designs the wireless PHY at the AP to transmit a signal that is
directly proportional to the pixel value [12] to achieve grace-
ful performance.

• Apex is based on a technique called approximate communi-
cation [23], and is backward compatible with existing MPEG4
but modifies the wireless AP’s PHY to provide differential
protection and provide some graceful performance. Apex
also assumes that a traditional wireless rate adaptation and
MAC protocol is operating underneath. To be fair to Apex,
since FlexCast uses SoftPHY hints, we implement SoftRate [26],
a state of the art rate adaptation protocol that also uses Soft-
PHY hints and outperforms the standard rate adaptation al-
gorithms.

Tested Video and Video Quality Metric: We use a standard ref-
erence video available at the Xiph.org foundation [4]. In particular,
we use the football video in the SIF format which has 300 frames
in a 4:3 screen format. The football video has large temporal vari-
ation, and hence stresses the video encoding and decoding system
and is not as compressible as a more static video.

We compare the four schemes using the Peak Signal-to-Noise
Ratio (PSNR). PSNR is a standard measure of video/image quality.
We refer the reader to [12, 23] for a description of the computation.
The key thing to note is that a PSNR below 16dB is effectively
noise, whereas a PSNR above 40dB is excellent quality. A PSNR
increase of 3dB means that your video quality is relatively twice as
better.

7. EVALUATION
We evaluate FlexCast and the other compared approaches in a

variety of settings using experiments and trace driven simulations.
We summarize the key findings below

• FlexCast performs as well as the Omn-MPEG scheme in both
low mobility and high mobility scenarios and across all prac-
tical channel SNRs, achieving almost the same PSNR with-
out requiring any of the network state feedback or adapting
in any way.

• FlexCast outperforms both SoftCast and Apex. For high mo-
bility with medium to low SNRs (typical cellular scenario),
FlexCast provides an average PSNR improvement of 6 dB
over Apex, and 4 dB over SoftCast.

• FlexCast’s gains come from both soft reconstruction and pro-
portional representation. Without soft reconstruction, Flex-
Cast loses 6dB from its PSNR performance. Without propor-
tional representation FlexCast loses nearly 8dB PSNR.

Symbol Budget: If there are no real-time constraints then every
video can be perfectly decoded and rendered with zero error. Video
quality varies because frames have to be rendered within a certain
time period beyond which they are useless. Hence to fairly compare
the different schemes it is important to set a uniform channel airtime
budget which is independent of the scheme, what the channel SNR
is and so on.

Our approach here is to assume that the client is going to experi-
ence the best video experience when the channel is very good. So if
we pick a very high video PSNR (specifically 45dB, beyond which
the human eye cant tell the difference), we calculate what channel
airtime the Omn-MPEG scheme needs at a relatively high channel
SNR (20dB) to achieve that PSNR. We take this to be the channel
airtime budget for all other schemes as well as channel conditions.
Naturally, for the same channel airtime at a lower channel SNR, the
achieved goodput will be lower. The goal of our evaluation is to
show who gracefully the PSNR drops with varying channel SNRs
and other network parameters.

7.1 Testbed Evaluation
We evaluate FlexCast using experiments in our indoor testbed

with USRP2s. We compare to Omn-MPEG and SoftCast in these
experiments, and are not able to compare with Apex. The reason is
that Apex requires a dynamic bit-rate adaptation and MAC protocol
operating at the PHY layer, however USRP2s do not meet the tim-
ing requirements needed to implement rate adaptation and MAC.
However, we do provide a comparison with Apex using trace driven
emulation experiments in Sec. 7.2.

FlexCast is layered and works end-to-end, and is compatible with
whatever rate adaptation protocol the wireless AP uses. However,
as we said above we cannot implement a full dynamic rate adapta-
tion protocol in USRP2s. Hence, to make sure FlexCast is not bene-
fiting from very accurate rate adaptation, we constrain the wireless
AP to use only a very crude static rate adaptation protocol when
we are running experiments with FlexCast. Specifically, the wire-
less AP is only allowed to change the constellation among three
choices (QPSK, 16-QAM and 64-QAM) and use none of the con-
volutional channel codes that traditional rate adaptation schemes
can use. When the channel SNR is below 8dB, we use QPSK, be-
tween 8−15dB we use 16-QAM and above 15dB we use 64-QAM.
The adaptation is done by the receiver notifying the sender using a
control packet whenever the SNR crosses any of the above three
SNR transition points. Note that the adaptation is very coarse and

20

25

30

35

40

45

50

V
id

e
o

 Q
u

a
li

ty
 (

P
S

N
R

)

Performance with Unknown SNR

Omn-MPEG

FlexCast

SoftCast

20

3 8 13 18 23

SNR (dB)

Figure 8: FlexCast performance with unknown SNR. FlexCast

performs almost as well as the omniscient MPEG scheme at all

SNRs. It outperforms SoftCast by upto 4dB at high SNRs.

inaccurate, and happens quite infrequently. Therefore we do not
run into the timing related issues for implementing standard rate
adaptation protocols on USRP2s.

7.1.1 Performance with Unknown SNR

Method: In this experiment, we randomly place two USRP2 nodes
in our testbed and measure the SNR of the link. We then attempt
to transmit our test video between the two nodes. For Omn-MPEG
scheme, we transmit the video using all possible combinations of
video encoding bitrates and wireless bitrates, and pick the one which
achieves the maximum PSNR at the receiver. For FlexCast, we use
FlexCast’s video encoding and decoding algorithms along with the
coarse rate adaptation protocol described above, and compute the
reconstructed video’s PSNR. Note that FlexCast’s video encoder
has no knowledge of the channel SNR between the sender and the
receiver. Finally, we transmit the videos with SoftCast and compute
the PSNR. We repeat this experiment 10 times for the same location
of the nodes and take the average PSNR for each scheme. We then
change the locations of the two nodes to get a different SNR and
repeat the above procedure. We plot the average PSNR achieved by
the three schemes vs SNR in Fig. 8.

Analysis: FlexCast performs well across a large range of SNRs, it
matches the performance achieved by the omniscient MPEG scheme
almost across the entire range. Surprisingly in the low SNR region
it often outperforms the omniscient scheme. The reason is that the
rateless video code in FlexCast which is based on raptor codes is
also a good channel code, especially at low SNRs [24]. The omni-
scient scheme on the other hand uses convolutional codes which do
not perform as well at low SNRs.

FlexCast outperforms SoftCast across the entire range by nearly
2−4dB. The reason is that SoftCast cannot take advantage of chan-
nel coding, it is in essence an uncoded transmission reminiscent of
analog TV. To understand this better, we conduct a different ex-
periment. We pick a particular configuration of the sender and re-
ceiver such that their channel SNR is roughly 12dB, and we vary
the channel airtime budget given to both schemes. For each budget,
we let both schemes transmit video and measure the received sig-
nal’s PSNR. Fig. 9 plots the variation in PSNR vs the normalized
channel airtime budget (w.r.t the budget used in the previous exper-
iment). As we can see SoftCast cannot take advantage of increased
airtime to improve the video PSNR. The reason is unlike digital
systems that can spread information over multiple channel symbols
via channel coding to reduce errors, SoftCast is essentially an ana-

10

20

30

40

50

60

V
id

e
o

 Q
u

a
li

ty

(P

S
N

R
)

Impact of Channel Airtime Budget

Omn-MPEG

FlexCast

SoftCast
10

0.6 1.1 1.6 2.1 2.6

Normalized Airtime Budget

Figure 9: FlexCast performance with varying channel airtime

budget. PSNR tracks the airtime budget, but SoftCast can-

not take advantage of increased airtime because it is an analog

scheme that cannot perform channel coding.

20

25

30

35

40

45

50

V
id

e
o

 Q
u

a
li

ty
 (

P
S

N
R

)

Impact of Soft Reconstruction

Omn-MPEG

Flexcast

Flexcast (No Soft

Reconstruction)
20

0 5 10 15 20 25

SNR (dB)

Reconstruction)

Figure 10: FlexCast performance without soft reconstruction.

PSNR drops especially at low SNRs due to high BERs.

log technique that cannot exploit extra airtime via coding even if it
is available. For example, if there is a 64 length DCT vector repre-
senting a frame, SoftCast creates a 64 length vector of real numbers
for transmission, which only require 32 symbols on the wireless
channel to transmit. Hence even if the wireless capacity was high
and one could transmit much more than 32 symbols in the given
video delay budget, SoftCast cannot take advantage of it due to its
analog structure.

7.1.2 Impact of Soft Reconstruction

Method: In this experiment, we modify FlexCast to not use Soft-
PHY hints from the PHY at the client to evaluate the impact soft
reconstruction has on FlexCast’s performance. The rest of the ex-
periment is conducted similar to the previous experiment. We plot
the average PSNR achieved by Omn-MPEG, SoftCast and FlexCast
without soft reconstruction vs SNR in Fig. 10.

Analysis: FlexCast performs worse without soft reconstruction, es-
pecially at low SNRs. The reason is that at low SNRs we are likely
to have lots of bit errors, and not weighting the contribution of a
bit by its confidence leads to large distortion. As channel SNR in-
creases, the BER reduces and there is less uncertainty in each bit
decision. Consequently the distortion is reduced and approximates
normal FlexCast at high SNRs.

7.1.3 Impact of Proportional Representation

Method: In this experiment, we modify FlexCast to not use pro-

18

23

28

33

38

43

48

V
id

e
o

 Q
u

a
li

ty
 (

P
S

N
R

)

Impact of Proportional Representation

Omn-MPEG

Flexcast

Flexcast (No Proportional

Representation)

18

0 5 10 15 20 25

SNR (dB)

Figure 11: FlexCast performance without proportional repre-

sentation. PSNR drops especially at low SNRs because its more

likely important bits are decoded with low confidence.

portional representation, i.e. each distortion group is given an equal
amount of space in the packet regardless of their importance. The
rest of the experiment is conducted similar to the above experi-
ments. We plot the average PSNR achieved by the three schemes
vs average channel SNR in Fig. 11.

Analysis: FlexCast performs worse without proportional represen-
tation, again at low SNRs. The reason is that at low SNRs BER is
high and it is important to avoid making large errors on the most
significant bits. However, without proportional representation all
bits are treated equally, hence there is significant distortion due to
errors in MSBs. As expected the problem is mitigated as SNR in-
creases, since the BER reduces and the confidence of the MSBs
increases, leading to lower distortion.

7.2 Trace Driven Emulation
Although FlexCast can run in real time on a USRP2 connected

node, similar to prior work [23] we turn to trace driven emulation
to compare FlexCast with Apex, a state of the art video delivery
technique that works with modifications to the wireless APs PHY.
This is for two reasons. First, as discussed earlier, Apex requires
dynamic rate adaptation and MAC protocols operating in the AP’s
PHY, which cannot be implemented given the timing constraints on
the USRP2. Second, we want to compare the schemes over varied
channel conditions, from static to rapidly changing to assess how
consistently they perform across all scenarios. However, it is hard
to generate controllable high-mobility and high-contention in ex-
perimental settings. Note that to be fair, Apex is allowed to use
a state of the art rate adaptation protocol SoftRate [26] that uses
SoftPHY hints for accurate rate adaptation. SoftRate outperforms
SampleRate [5], the rate adaptation scheme which Apex originally
used in its evaluation.

Trace: Trace: We collect real channel information for the simula-
tions via two traces: one for mobility and the other for contention.
We use the Stanford RUSK channel sounder [17] to collect channel
state information for a 20MHz 802.11 wireless channel. The chan-
nel sounder is an equipment designed for high precision channel
measurement, and provides almost continuous channel state infor-
mation over the entire measurement period, and can measure chan-
nel SNRs as low as -3dB. Our experiments are conducted at night on
the band between 2.426 and 2.448GHz which corresponds to WiFi
channel 6, and include some interference from the building’s WiFi
infrastructure which operates on the same channel. To collect the
trace, a mobile channel sounder node is moved at normal walking

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000

Omn-MPEG

FlexCast

SoftCast

Apex

V
id

e
o

 Q
u

a
li

ty
 (

P
S

N
R

)

Trace Index

Performance at Human Speed Mobility

Figure 12: Performance with human speed mobility vs trace

index. All schemes perform relatively well.

speed (≈3mph) in the testbed and the channel sounder node at the
center (the blue node at the center of the testbed figure 7) measures
the channel from the mobile node. These nodes record and estimate
detailed channel state information for all frequencies in the 20Mhz
channel, and therefore include frequency selective fading which we
would not have seen with USRP2s that operate on 6.25Mhz bands.
We collect around 100000 measurements over a 100 second period,
and get a CSI sample every 1ms for one trace. We use 10 different
walking paths to collect 10 different mobility traces.
Emulator: We feed this trace to a custom emulator written using
the the MIT C++ Gnuradio OFDM Code [26] and FlexCast’s C++
implementation. For Apex, the emulator implements a 802.11 style
PHY augmented with the SoftRate rate adaptation algorithm as dis-
cussed before. The other MAC parameters are the same as tradi-
tional WiFi, but of course Apex controls how packets are retrans-
mitted and how bits are mapped for an transmission.

Simulating Mobility: To vary mobility, we replay the trace at dif-
ferent speeds. For example, 4× mobility implies the channel mea-
surements that spanned T seconds now span T/4 seconds. When
a packet is transmitted at time t in simulation, the symbols in the
packet are distorted using the corresponding channel measurement
from the trace at time t. If the trace has been sped up 4× to simulate
mobility, the channel measurement at time t in the new trace will
be the channel measurement in the original trace at time 4t.

7.2.1 Low Mobility

Method: We first examine the performance of FlexCast at the nor-
mal speed of the trace, i.e. human speed mobility. Note that the
Omn-MPEG scheme has advance knowledge of all the channel states
that affect each packet transmission, and picks the highest bitrate
and video encoding rate that maximizes the PSNR at every instant.
The other schemes are implemented as described before. The per-
formance metric is the average PSNR over an interval, smoothed to
improve readability. Fig. 12 plots the average PSNR with the trace
index.

Analysis: As expected all schemes perform well. At low mobility
the wireless channel is largely predictable. Hence rate adaptation
algorithms as well as video bitrate adaptation work well. Again
SoftCast performs worse (by ≈ 4dB) due to its inability to take
advantage of digital channel coding and its reliance on essentially
analog transmission.

V
id

e
o

 Q
u

a
li

ty
 (

P
S

N
R

)

Simulated Speed (mph)

0

5

10

15

20

25

30

35

40

3 10 20 40 60 80 160 300

PSNR with Increasing Mobility
Omn-MPEG

FlexCast

SoftCast

Apex

Figure 13: Performance with increasing mobility. FlexCast per-

forms almost as good as the omniscient MPEG scheme, but

Apex performance degrades with increasing mobility.

7.2.2 High Mobility

Method: Next, we compare the performance of FlexCast under
varying mobility by playing the trace at increasing speeds, from 1×
walking speed (3mph) to 20× corresponding to vehicular speeds
(60-80mph) to 100× corresponding to 300mph. We run the simu-
lations and compute the average PSNRs achieved by Omn-MPEG,
FlexCast, SoftCast and Apex. Fig. 13 plots the average PSNR vs
simulated speeds.

Analysis: FlexCast performs relatively well with increasing mobil-
ity. At vehicular speeds for example, FlexCast outperforms Apex
by nearly 6dB in PSNR and SoftCast by 3dB. FlexCast’s gains
come from two aspects. First, it does not require accurate rate
adaptation at the PHY layer, it can work with incorrect decisions
and recover video even from erroneous frames. Second, its video
bitrate adaptation is rateless and graceful. Hence even though good-
put might be fluctuating constantly, the receiver recovers a video
quality corresponding to instantaneous channel quality.

Apex on the other hand performs worse by nearly 6dB. There
are two key reasons. First, Apex requires somewhat accurate rate
adaptation, since it requires that at least the I-frames (which are
mapped to the well protected constellation positions) are decoded
without error. If there are bit errors, the I-frame is lost and Apex
has to retransmit. Second, in highly mobile scenarios the rate adap-
tation algorithm picks resilient constellations such as QPSK. For
such constellations Apex provides no gain at the PHY layer and re-
duces to traditional MPEG, though Apex still provides some gains
due to MAC layer modifications. Hence overall Apex performance
suffers.

SoftCast works slighly better compared to Apex, but is still 4dB
worse than FlexCast. SoftCast does not require accurate rate adap-
tation or video bitrate adaptation, hence it is not that sensitive to
wireless link variations. Nonetheless, it performs worse than Flex-
Cast again because of its inability to use digital channel coding
techniques, and being forced to live with the raw instantaneous
channel quality.

8. CONCLUSION
Current video codec’s properties are not compatible with the real-

ities of the harsh wireless channel, hence its not surprising that they
do not perform well for mobile video delivery. FlexCast provides a
video codec that exploits the unique properties of video as well as
wireless channels to deliver graceful performance. FlexCast’s de-
sign is layered, modular and end-to-end. In the future, we plan to

extend FlexCast to multicast as well as broadcast video streaming.
Further, we believe that FlexCast’s code design has applications to
other Internet video delivery systems such as P2P streaming, ex-
ploring them is future work.

9. ACKNOWLEDGEMENTS
This work was supported by a Stanford Graduate Fellowship and

a Stanford Terman Fellowship. We would like to thank Aditya
Gudipati, Nick Mckeown and Dina Katabi for valuable feedback.
Finally, we sincerely thank the anonymous reviewers for their in-
valuable comments.

10. REFERENCES
[1] Cisco visual networking index.

http://www.cisco.com/.
[2] ffmpeg. http://ffmpeg.org.
[3] libdai - a free and open source c++ library for discrete

approximate inference in graphical models.
http://goo.gl/cKmqV.

[4] Xiph.org test media.
http://media.xiph.org/video/derf/.

[5] BICKET, J. Bit-rate selection in wireless networks. Master’s
thesis, MIT, 2005.

[6] BYERS, J., LUBY, M., AND MITZENMACHER, M. A digital
fountain approach to asynchronous reliable multicast. In
IEEE JSAC, 20(8):1528âĂŞ1540 (Oct 2002).

[7] CAIRE, G., SHAMAI, S., SHOKROLLAHI, A., AND

VERDÃŽ, S. Fountain codes for lossless compression of
binary sources. In IEEE Workshop on Information Theory

(2004).
[8] COVER, T., AND THOMAS, J. Elements of information

theory.
[9] GALLAGHER, R. Ldpc codes.

[10] GOYAL, V. K. "multiple description coding: Compression
meets the network". IEEE Signal Processing Mag. (Sep
2001).

[11] HE, Z., CAI, J., AND CHEN, C. W. Joint source channel
rate-distortion analysis for adaptive mode selection and rate
control in wireless video coding. IEEE Trans. Circuits Syst.

Video Techn..
[12] JAKUBZAK, S., RAHUL, H., AND KATABI, D. Softcast:

One size fits all wirless video. In HotNets 2009.
[13] JAMIESON, K., AND BALAKRISHNAN, H. Ppr: Partial

packet recovery for wireless networks. In Proc. ACM

SIGCOMM (2007).
[14] LUBY, M. Lt codes. In Proc. of FOCS 2002 (2002).

[15] MAJUMDAR, A., SACHS, D., KOZINTSEV, I.,
RAMACHANDRAN, K., AND YEUNG, M. Multicast and
unicast real-time video streaming over wireless lans. In IEEE

Trans. Circuits and Systems for Video Technology,

12(6):524âĂŞ534 (2002).
[16] MCCANNE, S., VETTERLI, M., AND JACOBSON, V.

Low-complexity video coding for receiver-driven layered
multicast. In IEEE JSAC, 15(6):983âĂŞ1001 (Aug 1997).

[17] N. CZINK, B. BANDEMER, G. V. L. J., AND PAULRAJ, A.
Stanford july 2008 radio channel measurement campaign. In
COST 2100 (October 2008).

[18] O. BURSALIOGLU, M. FRESIA, G. C., AND POOR, H. V.
"lossy joint source-channel coding using raptor codesâĂİ.
International Journal of Digital Multimedia Broadcasting

(2008).
[19] PEARL, J. Reverend bayes on inference engines: A

distributed hierarchical approach. In Second National

Conference on Artificial Intelligence. AAAI-82 (Pittsburgh,
PA, 1982).

[20] RAMCHANDRAN, K., ORTEGA, A., UZ, K., AND

VETTERLI, M. Multiresolution broadcast for digital hdtv
using joint source-channel coding. IEEE Journal on Selected

Areas in Communications, Special issue on High Definition

Television and Digital Video Communications (1993).
[21] RICHARDSON, I. H.264 and MPEG4. Wiley & Sons, 2003.
[22] SAID, A., AND PEARLMAN, W. An image multiresolution

representation for lossless and lossy compression. In IEEE

Trans. Image Processing, 5(9):1303âĂŞ1310 (Sep 1996).
[23] SEN, S., GILANI, S., SRINATH, S., SCHMITT, S., AND

BANERJEE, S. Design and implementation of an
"approximate” communication system for wireless media
applications. In ACM SIGCOMM 2010.

[24] SHOKROLLAHI, A. Raptor codes. IEEE/ACM Trans. Netw.

14, SI (2006), 2551–2567.
[25] TSE, D., AND VISHWANATH, P. Fundamentals of Wireless

Communications. Cambridge University Press, 2005.
[26] VUTUKURU, M., BALAKRISHNAN, H., AND JAMIESON, K.

Cross-layer wireless bit rate adaptation. SIGCOMM Comput.

Commun. Rev. 39, 4 (2009), 3–14.
[27] WU, D., HOU, Y., AND ZHANG, Y.-Q. Scalable video

coding and transport over broadband wireless networks. In
Proc. of the IEEE, 89(1):6âĂŞ20 (2001).

http://www.cisco.com/
http://ffmpeg.org
http://goo.gl/cKmqV
http://media.xiph.org/video/derf/

	Introduction
	Related Work
	Overview
	FlexCast

	Video Sender
	FlexCast
	Distortion Grouping
	Rateless Video Code
	Proportional Representation

	Mobile Client
	Decoding the Rateless Video Code
	Algorithm
	How to realize the compression gains?

	Soft Reconstruction

	Implementation
	Complexity
	Experimental Setup

	Evaluation
	Testbed Evaluation
	Performance with Unknown SNR
	Impact of Soft Reconstruction
	Impact of Proportional Representation

	Trace Driven Emulation
	Low Mobility
	High Mobility

	Conclusion
	Acknowledgements
	References

