
FlexDCP: a QoS framework for CMP architectures

Miquel Moreto
Universitat Politècnica de Catalunya

(UPC), Barcelona, Spain
mmoreto@ac.upc.edu

Francisco J. Cazorla
Barcelona Supercomputing Center

(BSC), Barcelona, Spain
francisco.cazorla@bsc.es

Alex Ramirez
UPC, BSC, Barcelona, Spain

aramirez@ac.upc.edu

Rizos Sakellariou
University of Manchester, United Kingdom

rizos @cs.man.ac.uk

Mateo Valero
UPC, BSC, Barcelona, Spain

mateo@ac.upc.edu

Abstract
Current multicore architectures offer high throughput by increasing
hardware resource utilization. As the number of cores in a multi-
core system increases, providing Quality of Service (QoS) to appli-
cations in addition to throughput is becoming an important prob-
lem.

In this work, we present FlexDCP, a framework that allows
the Operating System (OS) to guarantee a QoS for each applica-
tion running in a chip multiprocessor. FlexDCP directly estimates
the performance of applications for different cache configurations
instead of using indirect measures of performance like the num-
ber of misses. This information allows the OS to convert QoS re-
quirements into resource assignments. Consequently, it offers more
flexibility to the OS as it can optimize different QoS metrics like
per-application performance or global performance metrics such as
fairness, weighted speed up or throughput.

Our results show that FlexDCP is able to force applications
in a workload to run at a certain percentage of their maximum
performance in 94% of the cases considered, being on average
1.48% under the objective for remaining cases. When optimizing a
global QoS metric like fairness, FlexDCP consistently outperforms
traditional eviction policies like LRU, pseudo LRU and previous
dynamic cache partitioning proposals for two-, four- and eight-
core configurations. In an eight-core architecture FlexDCP obtains
a fairness improvement of 10.1% over Fair, the best policy in the
literature optimizing fairness.

Categories and Subject Descriptors C.1 [Computer Systems Or-
ganization]: Processor Architectures; D.4 [Software]: Operat-
ing Systems; B.3.2 [Memory Structures]: Design Styles—cache
memories

General Terms Design, Performance, Measurement

Keywords Multicore Systems, Cache Partitioning, Quality of Ser-
vice, Performance Predictability, Operating Systems

1. Introduction
The current collaboration between the Operating System (OS) and
multithreaded architectures is inherited from the traditional collab-
oration between the OS and multiprocessors: The OS perceives
the different cores in a chip multiprocessor (CMP) (7) and the
hardware contexts in a simultaneous multithreading architecture
(SMT) (28; 33) as multiple, independent virtual processors. Thus,
the OS is not aware of the resource sharing problem and sched-
ules threads onto what it regards as independent processing units.
However, in multithreaded architectures the number of instructions
executed by a thread depends on the activity of the co-scheduled
threads. If no explicit control over shared resources is exercised, the
performance of applications becomes unpredictable. Several stud-
ies (4; 23) show that in both SMTs and CMPs the performance
of a task heavily depends on the workload1 it is executed in. To
deal with this performance variability problem, the OS should be
able to exercise more control over how threads share the internal
resources of the processor. More interaction is needed between the
architecture and the OS to allow the latter to provide some Quality
of Service (QoS) to applications (25).

General-purpose computing is moving off of desktops onto di-
verse devices such as cell phones, digital entertainment centers, and
data center servers. The interaction between the OS and the archi-
tecture must be flexible enough to cover different scenarios where
the concept of QoS has different meanings. For instance, in a high
throughput server scenario the target to maximize is system per-
formance or overall QoS (26; 15; 27) that can be measured with
metrics like fairness, weighted speed up or throughput. In other
scenarios like multimedia and real-time systems, per-application or
individual QoS is required (24; 12; 6). Finally, there are intermedi-
ate situations like soft real-time systems with hybrid QoS require-
ments, where some applications need an individual QoS and the
remaining ones need a global QoS (6). Hence, providing QoS to a
wide range of scenarios is an important challenge for future multi-
core architectures.

Recently, some authors have proposed an abstract, generic
framework for future many-core architectures that allows the OS
to explicitly manage resource allocation (25). This framework in-
corporates features from previous QoS frameworks and provides a
general approach to build new interfaces between the OS and the
architecture. Figure 1 shows the main components of this frame-
work.

1 A workload is a set of processes running simultaneously on the CMP.

86

Figure 1. Generic framework to manage shared resources in a
CMP architecture.

1. Policies: they are implemented primarily in software. Policies
should translate application and system objectives into resource
assignments, thereby managing system resources.

2. Enforcement mechanisms: they securely multiplex, arbitrate,
or otherwise distribute hardware resources in order to satisfy
the resource assignments. Their main task is to enforce that
each thread receives the amount of resources established by the
policies.

3. Feedback mechanisms: they inform the software about the
global resource usage, which can be used by the OS to find a
new resource assignment to accomplish with the QoS require-
ments of the running applications.

A common characteristic of all previous OS/architecture inter-
face proposals (6; 12; 24) is that they have not addressed one of the
key points of this approach: converting a given QoS target by ap-
plications into a resource assignment (25). For example, let us as-
sume that a given task has to be executed before a deadline d. None
of the proposed interfaces provides to the user a method to con-
vert this high-level QoS requirements into a resource assignment
for this task so that it meets the deadline d. The OS/architecture
interfaces proposed so far assume that either the applications will
be able to specify a target usage of each shared resource or the
OS will know somehow the way to convert performance targets
into resource assignments. The former situation is not possible in
most cases, as applications are normally architecture-independent.
Hence, the developer cannot provide the exact amount of resources
that an application will require to obtain a target performance. In
the latter situation, the OS job scheduling has to be architecture
independent to be portable between different architectures. With
current OS/architecture interface proposals, the user establishes a
given initial resource partition for the task. At the end of each time
quantum, the OS checks whether the task can accomplish its QoS
objective with this resource partition, increasing the amount of re-
sources given to it if this is not the case. This iterative process can
take long and, as applications may change their behavior, this pro-
cess has to be repeated frequently. As a consequence, applications
are constantly executed in a sub-optimal resource partition.

In this paper, we propose FlexDCP, a flexible framework that
represents the first implementation of a complete QoS framework.
On the one hand, we propose an effective feedback mechanism that
allows translating QoS requirements from the user into a hardware
resource assignment in a single step. FlexDCP is the first frame-
work to do so. On the other hand, FlexDCP supports all kind of QoS
requirements in CMP architectures with a shared cache. FlexDCP
can optimize any target metric related to IPC, leading to the best
performance results for at least three different targets (ensuring an
individual QoS level, fairness and throughput). This flexibility is

not possible with previous proposals, which focus on improving a
particular metric or cannot ensure a target individual QoS level.

In the FlexDCP framework, the architecture provides the OS
with the performance of running applications under the current
cache assignment, as current performance counters do. In addition,
FlexDCP uses additional hardware that also provides the OS with
the performance that the running applications would have with all
other possible cache size assignments. By reading this information,
the OS can compute the performance degradation or improvement
of each application when moving to another cache configuration.
This allows the OS to translate QoS requirements into resource
assignment, without profiling the application or forcing the OS
to know the internal details of the architecture, making it totally
architecture independent. Nor do application developers require
specifying the exact amount of resources that their applications
must use, making our solution closer to more realistic scenarios.

The main contributions of this work are the following:
1) Flexibility: We propose a new feedback mechanism that pre-

dicts the performance of running applications under cache parti-
tions different from the current one. FlexDCP can maximize over-
all QoS metrics like harmonic mean of relative IPCs 2, weighted
speed up or throughput, or ensure an individual QoS metric. Previ-
ous proposals do not offer this flexibility.

- Individual QoS: In contrast to previous work, FlexDCP allows
jobs to run at a certain percentage of their maximum speed, regard-
less of the workload in which these jobs are executed. Our results,
on a CMP scenario with a shared L2 cache, show that FlexDCP
successfully accomplishes with the target IPC in 94% of the cases
considered, reaching an IPC that is 1.48% lower than the objective
IPC in the remaining 6% of the cases.

- Global QoS/Scalability: Our results show that previous pro-
posals based on indirect metrics of performance provide diminish-
ing returns as the number of cores sharing the L2 cache increases.
FlexDCP obtains sustained throughput and fairness improvements
over LRU and previous proposals on the two-, four- and eight-core
architecture setups used in this paper. In the eight-core architec-
ture FlexDCP obtains a fairness improvement of 10.1% over Fair,
the best policy in the literature optimizing fairnes. When optimiz-
ing throughput, FlexDCP obtains improvements of 11% on aver-
age over MinMisses, the best policy in the literature improving
throughput.

2) Granularity Analysis: In this paper we show that the time
granularity at which the resource assignment decisions are taken
has a significant impact on performance. Wrong decisions are very
costly, mainly when the time granularity is high. Meanwhile mak-
ing resource assignment decisions too frequently also affects over-
all performance. In this paper, we give a complete analysis on how
to tune this decision period in order to obtain the highest perfor-
mance.

The rest of this paper is structured as follows. Section 2 presents
our new framework that ensures both individual and global QoS.
Section 3 describes the experimental environment while in Sec-
tion 4 simulation results are discussed. Section 5 introduces the
related work. Finally, Section 6 summarizes our results.

2. FlexDCP QoS Framework
FlexDCP is a framework that allows the OS to guarantee a QoS
for each application in a CMP architecture. FlexDCP provides the
OS with the necessary information to convert user’s QoS require-
ments into resource allocation. In particular, FlexDCP focuses on

2 The relative IPC of a thread is the ratio of its IPC when it runs in a
workload with respect to its IPC when it runs in isolation using all resources.

87

(a) Framework overview. (b) Interface between the OS and the
architecture.

Figure 2. FlexDCP: a QoS framework for CMP architectures.

the shared caches as one of the main sources of interaction be-
tween threads in CMP architectures. The architecture provides the
OS with the performance of running applications under the cur-
rent L2 cache assignment, as current performance counters do, and
the performance that the running applications would have with all
other possible cache size assignments. With this information the
OS can compute the performance degradation or improvement of
each application when moving from the current cache allocation,
currentCA, to a new cache allocation, newCA, simply by comput-
ing: execution time reduction = IPCcurrentCA

IPCnewCA
. Given that the

IPC values are provided by the architecture and the OS works with
the ratio between them, the OS does not need to know the internal
details of the architecture, making it architecture independent.

Figure 2(a) describes our QoS framework. First, developers or
users determine the target performance of the application and the
QoS metric to optimize. In some scenarios, like multimedia or real
time applications, different instances of the same application have
approximately the same performance (11). Thus, the user knows
beforehand the full speed of the application and can provide it
to our framework. The individual target performance determines
the minimum performance that the application requires, while the
QoS metric determines what to do with unassigned resources. If
no individual target performance is specified, the QoS metric will
guide resource assignment. For instance, fairness or throughput
might be optimized.

Next, the OS schedules applications according to their QoS
necessities. In our experiments we assume that the workload has
already been chosen by the OS. When different applications start
executing in the CMP architecture, an initial partition of the shared
L2 cache is decided. If the OS has no prior knowledge of the
applications, resources are evenly partitioned among threads. Thus,
it assigns Associativity

Number of Cores
ways of the shared L2 cache to each

thread. If the OS already has prior knowledge of the applications,
it can decide the initial partition based on that information.

Next, dedicated hardware estimates the performance of the ap-
plication running in each core with all other possible cache alloca-
tions. We denote these performance estimations Performance Pro-
jections. This hardware mechanism is detailed in Section 2.2. Each
thread stores its performance projections in a set of registers visible
to the OS. We call these registers Performance Projection Registers
(PPR). For a K-way associative cache, there are K 64-bit PPRs
(Figure 2(b), Step 1).

After this estimation period, the OS analyzes the values of the
PPRs of each core (Figure 2(b), Step 2). Using this information,
the OS decides a new partition for the next period (Figure 2(b),
Step 3). We assume that performance in the current measuring
period is representative of the performance of the next period.
Thus, the optimal partition for the last period will be chosen for
the following period. FlexDCP assigns to each thread the required

Table 1. Variability in the impact on performance of L2 misses.
Benchmark Ways Misses IPC

crafty config. 1 10 31K 1.689
config. 2 14 21K 1.707
variation +4 −32% +1.1%

facerec config. 1 7 2M 0.924
config. 2 16 1.2M 1.16
variation +9 −40% +25.5%

equake config. 1 1 10M 0.245
config. 2 4 6M 0.266
variation +3 −40% +8.6%

vpr config. 1 15 714K 0.88
config. 2 16 600K 0.966
variation +1 −16% +9.7%

cache quota to satisfy its individual QoS requirements3. Then, the
remaining resources are assigned among all threads according to
the overall QoS metric. Throughout our work, we determine the
optimal partition for our proposal as well as for previous work. We
take into account this time overhead when reporting performance
results.

Finally, cache partitions are implemented at a way granularity
with column caching (5), which uses a mask that marks the cache
ways (or columns) reserved for each thread. When a thread experi-
ences an L2 miss, the evicted line is the LRU line among the lines
owned by that thread. When the OS decides the cache quota per
thread, it writes the corresponding bit masks (BM) (Figure 2(b),
Step 3). Each BM contains a bit per cache way and there is a BM
per thread. If the k-th bit of the mask of a thread is set, the thread
owns that way. Running threads can read from all cache lines and,
consequently, correctness is ensured when updating bit masks (5).
Other authors have used more flexible implementations like Aug-
mented LRU (32). However, its hardware cost is considerable, as
a counter per thread and set is needed. Thus, in this work we use
column caching.

In the following section, we motivate the use of direct estima-
tions of performance as the adequate metric to decide L2 cache
partitions. Next, we give the hardware mechanism needed to obtain
these performance projections. Finally, in Section 2.3 we discuss
the adequate granularity of cache quota decisions.

2.1 Direct Vs Indirect Performance Metrics
A common characteristic of previous proposals is that they de-
cide new cache partitions using indirect indicators of performance,
mainly the number of L2 misses (5; 26; 32; 15; 29). However, the
effect of L2 misses on performance varies depending on the appli-
cation and even on the particular phase of the application.

To illustrate this idea, Table 1 shows the variation in perfor-
mance and the number of misses for some benchmarks from the
SPEC CPU 2000 suite as we vary the number of active ways,
w. For this experiment, we simulate a single threaded architec-
ture with a 16-way associativity 1MB L2 cache (see Section 3 for
more details). The remaining 16 − w ways are simply switched
off. For example, observe that when we move from 7 to 16 active
ways, facerec reduces its number of L2 misses by 40%. Analo-
gously, equake reduces misses by 40% when it moves from 1 to
4 ways. However, the effect on performance is different: the IPC
of facerec increases by 25% while the performance of equake
only increases by 9%. In contrast, we observe similar variation in
performance for vpr and equake and the reduction in misses is dif-
ferent (16% and 40%). This different impact on performance also
happens in case of crafty.

3 We ensure at least one reserved way in the L2 cache for each application.

88

Figure 3. Average L2 miss penalty for apsi, gzip and vpr with three
different L2 cache configurations.

Translating IPC into resource assignment has been identified as
a challenging problem (6; 25). It has also been shown to be a key
element in future multicore systems to improve the interaction be-
tween the OS and the architecture (25). A solution to this problem
consists in using the average miss penalty of L2 misses in the cur-
rent L2 cache configuration and assume it is constant for other con-
figurations (35). Figure 3 shows the average miss penalty of L2 data
misses when we vary the number of active ways of the L2 cache
from 1 to 16 for three different benchmarks. This miss penalty sig-
nificantly varies among L2 cache configurations because the clus-
tering level of the L2 misses changes for different cache sizes: an
isolated L2 miss has approximately the same miss penalty as a clus-
ter of L2 misses, if they all fit in the reorder buffer (ROB) and thus
can be served in parallel (14).

Instead, we propose to estimate this miss penalty at runtime us-
ing analytic models for superscalar processor performance. This
mechanism is based on OPACU methodology (21) and allows pre-
dicting IPC at runtime for different L2 cache configurations without
running all these configurations.

2.2 OPACU Methodology
OPACU methodology (Online Prediction of Applications Cache
Utility) has been proposed to predict the IPC of an application
in single threaded architectures for different cache configurations
at runtime (21). In this paper, we use a CMP architecture where
each core has private L1 data and instruction caches and share a
dynamically partitioned L2 cache with uniform access time. We
have adapted OPACU methodology to predict IPC values for each
benchmark in a workload.

OPACU interprets the performance of an application as a Cy-
cle Per Instruction (CPI) stack, composed of an ideal CPI (when
no misses occur) and the CPI penalties for each type of hazard, in-
cluding branch mispredictions, instruction cache misses and data
cache misses (14). Here, as the L2 cache is partitioned, interactions
between different threads are limited to the shared bus to access the
L2 cache and main memory. The size of the L2 cache assigned to
the thread varies, but the rest of the architecture remains constant.
Thus, the ideal CPI is assumed to be independent of the cache con-
figuration (it only depends on data dependencies of the particular
application). It can also be assumed that the branch miss penalty of
a particular thread remains constant for different cache sizes.

Thus, OPACU only considers the part of the model that con-
cerns the cache hierarchy. The model considers L2 instruction
and data misses separately: instruction misses are always serial-
ized while data misses can be served in parallel if they fit in the
ROB. Thus, the instruction miss penalty is constant (∆D cycles,
in absence of bus contention), while the average data miss penalty
(aDMP) can be computed as aDMP = ND

MD
·∆D, where ND is

the total number of clusters of L2 data misses and MD is the total
number of L2 data misses.

Figure 4. OPACU’s hardware implementation for one core with a
16-way L2 cache.

OPACU uses a sampled Auxiliary Tag Directory (ATD) to ob-
tain the number of misses per L2 configuration as in (32; 26; 15; 24)
and a reduced number of hardware counters to determine if L2 data
misses are clustered or not. Three counters per core are needed:
number of instructions, cycles and average ROB usage after an
L2 miss (AROAL2M). Three counters per cache assignment are
also needed: last L2 miss identifier (cdci), number of clusters
(overlapi) and total waiting cycles due to an L2 miss (PCVi).
When a load accesses the L2, the sampled ATD is used to deter-
mine if it would be a miss in other possible cache assignments.
Using the last L2 miss identifier, it can be determined whether a
new cluster of misses begins or not. The number of clusters and
lost cycles is updated accordingly. Using this information, IPC pre-
dictions are obtained and stored in the PPRs. Figure 4 illustrates
this mechanism.

For a four-core CMP with a shared 1MB 16-way L2 cache,
OPACU needs less than 1KB of total storage per core (including
a sampled ATD (26) and all the required hardware counters (21)).
The most expensive piece of hardware of this mechanism is the
sampled ATD. Given its wide use, significant efforts in the commu-
nity have been recently devoted to reduce the sampled ATD’s area
to tens of bytes per thread (26; 12; 24; 6). Some authors have em-
bedded the ATD inside the L2 cache, devoting some sets to monitor
each thread (13). Using this approach, the hardware cost of OPACU
would be reduced to 204 bytes per core with a 16-way L2 cache.
Moreover, in our view, energy consumption, rather than area, is a
main problem in future processor’s design. Only 1 entry in the sam-
pled ATD is active at a time, thus its energy consumption is low. As
a consequence, implementing sampled ATDs in future processors
will be feasible.

The main limitation of this analytic model is that it does not
take into account dependencies between different data misses, as
happens in pointer chasing. Despite of this limitation, OPACU
obtains high accuracy for different cache configurations, with an
average relative error of 3.11% when using the whole SPEC CPU
2000 benchmark suite. Parser and twolf are the benchmarks with
highest errors (9.8% and 16%) due to the simplifications of the
analytic model. The prediction error for a fixed number of assigned
ways is 3.11% and presents higher errors when just one or two
ways are being used (8% and 5% respectively) (21).

Using OPACU methodology to estimate performance is not a
limitation of our framework as other models can be developed to
obtain more accurate performance estimations. However, this work
shows that using performance projections to decide cache partitions
is more adequate and leads to better performance than previous
proposals guided by miss rates.

2.3 Granularity of Cache Quota Decisions
The frequency of cache partitioning decisions directly impacts the
performance improvement obtained by the mechanism. In this sec-
tion we show three possible implementations depending on the de-

89

Figure 5. Partitioning granularities in a two-core architecture.

Algorithm 2.1: TIMER INTERRUPT()

1- Save architecture state.
2- Call scheduler ticks()

2.1- Update counters and statistics.
2.2- Check if there are ready threads with

higher priority.
2.3- Decrement quantum of time and check if

the quantum has expired.
2.4- Balance load between different task queues.

3- Invoke microcode to decide L2 cache
partition.

4- Restore architecture state.

sired granularity of decisions. Figure 5 shows these three possible
alternatives.

1) Hardware granularity. The decision logic used to decide
new partitions can be implemented in hardware (12). With this so-
lution, the OS specifies the desired target performance at the time
slice boundary and the hardware decides new L2 cache partitions
at a smaller time granularity. Consequently, this solution provides a
quick response time to phase changes. If there is no time overhead
in deciding new partitions, the hardware solution is the best one.
However, as the number of cores and L2 associativity increase, the
time overhead of making a new decision also increases. As a conse-
quence, deciding new partitions too frequently can negate the per-
formance benefits. Furthermore, implementing a flexible decision
algorithm with different metrics to optimize with a complexity-
effective hardware is difficult.

2) Interrupt granularity. The second option consists in pro-
gramming a periodic interrupt to decide new L2 cache parti-
tions (27). With this option the frequency of partition decisions
can be chosen, but we have to pay the overhead of interrupting
the application and executing the interrupt handler. Thus, we have
lower hardware complexity than the hardware solution and a higher
time overhead as decisions are made in software. With this solu-
tion, the time overhead can become a problem as interrupt handlers
must not take long: While the interrupt is running, other interrupts
are inhibited and might be lost, which can be a critical problem.
Instead of adding the decision algorithm inside the interruption
handler, we propose to use a microcode piece of code that is in
charge of deciding the new partition. With this solution other inter-
rupts are not lost. The idea is similar to millicode (8) or co-designed
virtual machines (31), which have a concealed memory reserved in
main memory at boot time and the conventional applications are
never informed of its existence. The OS can program this con-
cealed memory, which gives more flexibility to the framework. We
modify the timer interrupt to invoke this microcode when an OS
tick occurs. The code that resides in the concealed memory can
take control of the hardware and decide new L2 cache partitions.
Algorithm 2.1 shows the different actions done when an OS tick
occurs (3).

Table 2. Performance improvement over LRU in a 4-core CMP
with a time overhead of 5000 cycles.

Granu- Decision Over Max perf. Real perf.
larity period head improvmnt. improvmnt.
Hard- 100K 5% 10.95% 5.67%
ware 500K 1% 10.65% 9.54%
Inte- 1M 0.5% 10.53% 9.98%
rrupt 5M 0.1% 10.15% 10.04%
Sche- 50M 0.01% 8.51% 8.499%
duler 100M 0.005% 8.00% 7.99%

3) OS quantum granularity. Finally, L2 cache partitions can
be decided at time slice boundaries (32). In this case, the OS al-
ready interrupts the application, reducing the time overhead of the
solution. However, the frequency of decisions might be too coarse
to adapt to phase changes. In Linux 2.6, the timer interrupt can
be configured to different periods: 1ms, 3.33ms, 4ms (default) and
10ms. The time slice duration depends on the thread priority and is
between 5ms and 800ms (100ms by default) (3). At a frequency of
2GHz, this corresponds to a range from 2 to 20 million cycles for
the timer interrupt (8 million by default), and a range from 10 to
1600 million cycles for the time slice (200 million by default). If
deciding cache partitions in every OS tick becomes too expensive,
decisions can be made when the OS schedules threads. Thus, we
have to make performance projections visible to the scheduler. We
propose to store these projections in the task struct, which stores
information of all processes alive in the system. With these per-
formance projections, the scheduler can restore the values of the
performance registers in a previous time slice. This idea prevents
deciding wrong L2 cache partitions when a new thread is sched-
uled. Finally, the microcode is invoked to decide the new cache
partition.

The optimal granularity at which a policy decides new cache
quotas depends on the application under consideration and also
on the time overhead of making a new decision. Instead of decid-
ing new cache partitions evaluating all possible combinations and
choosing the one that optimizes a given metric (exhaustive search),
we implement an algorithm that uses dynamic programming tech-
niques to reduce the time overhead of deciding new partitions [7].
Finding out the optimal partition for just two cores is straightfor-
ward as we have to check just K partitions. Thus, we can com-
pute the optimal number of misses when w ways are assigned to
these two threads, misses(w), in w steps. This function is inde-
pendent of the other threads, allowing us to build this curve in
parallel with the other thread pairings. Next, the same algorithm
is repeated for the new histograms of misses. For each pairing,
the complexity of the algorithm is O(K2/2), which is repeated
N
2

+ N
4

+ . . . + 1 = N − 1 times.
We have measured using the PIN instrumentation framework (17)

the number of dynamic instructions executed by this algorithm
when no individual QoS is specified (worst-case scenario). We have
evaluated different number of cores (2, 4 and 8) and associativities
(16, 24 and 32). With a 16-way cache, the number of executed in-
structions is less than 5000, while for a 32-way cache this number
increases up to less than 20000 instructions. This algorithm only
reads the PPRs and decides L2 cache quota. Hence, no data cache
miss is caused. The number of static instructions is between 50 and
100, causing little pollution in the instruction cache. In the case of
current CMP architectures with up to 8 cores, the time overhead
of this algorithm is less than 5000 cycles (assuming an IPC of 1
instruction per cycle).

Next, Table 2 reports the performance improvements over LRU
in a four-core architecture with a 1MB 16-way L2 cache when op-
timizing for throughput. The CMP configuration and workloads are
detailed in Section 3. First, we give the ideal performance improve-
ment when no time overhead is considered to make new cache de-
cisions (fourth column in Table 2). Next, we evaluate two possible

90

decision periods corresponding to the three possible implementa-
tions of our framework. We consider 100 and 500 thousand cycles
for the hardware solution, 1 and 5 million cycles for the interrupt
solution, and 50 and 100 million cycles when deciding partitions at
the scheduler granularity.

On the one hand, wrong decisions are very costly, mainly with
high granularities. On the other hand, making decisions too fre-
quently also affects overall performance. On average, using the in-
terrupt solution provides the highest improvement. For that reason,
we propose to use this granularity and decide cache partitions ev-
ery 5 million cycles. Even with a configuration with 8 cores and a
shared 32-way associative cache the overhead is under 0.4% with
this granularity. In this paper, we consider the time overhead of de-
ciding new cache partitions when reporting results.

2.4 Scalability of FlexDCP
Currently there are processors with 32- and 64-way associative
caches: Niagara T2 (32-way (2)), AMD Barcelona (32-way L3) or
ARM920T (64-way (1)). Furthermore, in future manycore archi-
tectures, we do not expect to have dozens of cores directly sharing
the same cache due to limitation on bandwidth and capacity of the
cache. The cores will be clustered in reduced groups of cores shar-
ing a cache. Hence, we believe that our mechanism will work well
with manycore architectures.

As the number of cores increases, the time overhead of evalu-
ating all possible partitions also increases. Previous work has pro-
posed several heuristics to determine partition candidates with low
time overhead and without losing performance (32; 26). In this
paper we have implemented a dynamic programming algorithm
that drastically reduces the time overhead of evaluating all possi-
ble partitions. The time overhead is now comparable to previous
proposed heuristics. Further reducing this overhead is part of our
future work.

3. Experimental Environment
3.1 Simulation Configuration
In this study we focus on a CMP with two, four and eight cores. We
use a two-level cache hierarchy, in which each core has a private
data and instruction L1 caches and the unified L2 cache is shared
among cores (15; 26; 32). Each core is single threaded and can fetch
up to 8 instructions each cycle. It has 6 integer (I), 3 floating point
(FP), and 4 load/store functional units and 32-entry I, load/store,
and FP instruction queues. Each thread has its own 256-entry ROB
and 256 physical registers. The processor frequency is 4 GHz. The
first level data and instruction caches have 64B lines, 16KB size
and 4 ways. For the L2 cache we used two configurations. A 1MB,
16-way associativity L2 cache. We also use a 2MB 32-way L2
cache as future CMP architectures will continue scaling L2 size
and associativity.

The latency from L1 to L2 is 15 cycles, and from L2 to mem-
ory 300 cycles. We use a 32B width bus to access L2 and a multi-
banked L2 of 16 banks with 3 cycles of access time. We model a
single channel to access main memory. Bus and banks conflicts are
modeled.

We extended the SMTSim simulator (33) to make it CMP. We
collected traces of the most representative 300 million instruction
segment of each program, following the SimPoint methodology
(30). We use the FAME simulation methodology (34) with a Maxi-
mum Allowable IPC Variance of 5%. This evaluation methodology
measures the performance of multithreaded processors by reexe-
cuting all threads in a multithreaded workload until all of them are
fairly represented in the final IPC measured from the workload.

Table 3. Workloads belonging to each case for a 16-way 1MB and
a 32-way 2MB shared L2 caches.

1MB 16-way
Cores

2
4
6
8

Case 1 Case 2 Case 3
155 (48%) 135 (41%) 35 (11%)
624 (4%) 12785 (86%) 1541 (10%)

306 (0.1%) 219790 (95%) 10134 (4.5%)
19 (0%) 1538538 (98%) 23718 (2%)

2MB 32-way
Cores

2
4
6
8

Case 1 Case 2 Case 3
159 (49%) 146 (45%) 20 (6.2%)
286 (1.9%) 12914 (86%) 1750 (12%)
57 (0.02%) 212384 (92%) 17789 (7.7%)

1 (0%) 1496215 (96%) 66059 (4.2%)

3.2 Workload Classification
We use the following two heuristics to classify workloads with 2, 4
and 8 benchmarks in three different groups (20).

Heuristic 1. wP%(B) measures the number of ways needed
by a benchmark B to obtain at least a given percentage P% of its
maximum IPC (when it uses all L2 ways).

Heuristic 2. The wLRU (thi) heuristic measures the number of
ways given by LRU to each thread thi in a workload composed of
N threads.

From these heuristics three groups of workloads can be created:
Case 1. When w90%(thi) ≤ wLRU (thi) for all threads. In

this situation LRU attains 90% of each benchmark performance.
Thus, it is intuitive that in this situation there is very little room for
improvement.

Case 2. When there exist two threads A and B such that
w90%(thA) > wLRU (thA) and w90%(thB) < wLRU (thB). In
this situation, LRU is harming the performance of thread A, be-
cause it gives more ways than necessary to thread B.

Case 3. Finally, when w90%(thi) > wLRU (thi) for all threads,
the L2 cache configuration is not big enough to ensure that all
benchmarks will have at least 90% of their peak performance.

From the SPEC CPU 2000 suite we generated all possible 2, 4,
6 and 8 workloads without repeating benchmarks in each workload.
In Table 3 we show the total number of workloads that belong
to each case for the different configurations with a 1MB 16-way
and a 2MB 32-way L2 cache. Note that with different L2 cache
configurations, the value of w90% will change for each benchmark.
An important conclusion from Table 3 is that as we increase the
number of cores, there are more combinations that belong to the
second case, which is the one with more improvement possibilities.

To evaluate our proposals, we use four different configurations.
We denote these configurations 2C (2 cores and 1MB 16-way L2),
4C-1 (4 cores and 1MB 16-way L2), 4C-2 (4 cores and 2MB 32-
way L2) and 8C-2 (8 cores and 2MB 32-way L2).

3.3 Performance Metrics
Depending on the scenario, the most adequate metric to measure
QoS may be different. For instance, in a high throughput server
scenario, we want to be fair among all threads. As performance
metric for this scenario, we use the harmonic mean of relative
IPCs to measure fairness, which we denote Hmean. We use Hmean
instead of weighted speed up because it has been shown to provide
better fairness-throughput balance than weighted speed up (18). We
also use the sum of individual IPCs, known as throughput, as a
complementary metric. In other scenarios like real-time systems,
we need to offer an individual QoS for each application. We use
the relative IPC to measure individual QoS, which is computed as
IPCCMP
IPCalone

. Finally, there are intermediate situations (soft real-time
systems), where some applications need an individual QoS and the
remaining ones need a global QoS.

91

Figure 6. Predictable Performance in the 4C-2 configuration.

4. Evaluation Results
4.1 Ensuring an Individual Quality of Service
Thanks to the flexibility of the FlexDCP framework, we are able to
control the performance of an individual application when executed
with other applications. Our framework allows the OS to run jobs
at a certain percentage of their maximum speed, regardless of the
workload in which these jobs are executed and without dedicating
all shared resources to them. Thus, non-time-critical jobs can make
significant progress as well and without significantly compromising
overall performance.

To evaluate the individual QoS results of our proposal, we
generate workloads containing four SPEC CPU 2000 benchmarks.
One of these benchmarks is a High Priority Thread (HPT). Our
objective is to force the HPT to run at a given target percentage
of its full speed (IPC when it runs alone in the architecture). This
full speed is estimated with the runtime mechanism to predict
performance, which cannot be estimated in previous proposals. The
HPT runs together with other Low Priority Threads (LPTs) which
makes it difficult to ensure performance isolation of the HPT.

For this experiment we use a worst-case scenario. We select 5
benchmarks as HPT (ammp, art, mgrid, parser and vpr) that
require many ways to achieve their maximum IPC (large w90%

value). For benchmarks with low cache requirements, it is less
challenging to attain the target IPC. We use the 4C-2 configu-
ration, since as the number of LPTs is high it is more difficult
to ensure the target IPC for the HPT. As LPTs we generate 3
groups of threads: we form the H group with cache hungry ap-
plications (apsi+facerec+galgel), the S group with applica-
tions with small working sets (crafty+gzip+vortex) and the L
group with applications that do not benefit from more cache space
(equake+mesa+mcf).

In Figure 6 we show the relative IPC of the HPT for the different
workloads and different target percentages. On the x-axis, the target
percentage of the full speed of the HPT is given, ranging from 20
to 90 percent. For each HPT and type of the LPTs, we give the
achieved relative IPC for the HPT (measured on the y-axis). For
example, the first bar corresponds to ammp when mixed with the H
group apsi+facerec+galgel. The target relative IPC is 20% and
we reach 32%.

Note that the number of assigned ways is discrete and, as a
consequence, we cannot always force an exact target IPC. Instead,
our mechanism assigns to the HPT the minimum number of ways
needed to be above the target IPC, which still ensures the target IPC
for the HPT. Some benchmarks already exceed the target IPC with
just one reserved way in the L2 cache. This is the case of mgrid that
runs at 69% of its full speed with 1 way. Note that, over the entire
range of different workloads and target percentages, the achieved
IPC follows the trend of the target IPC.

If we consider that we accomplish the target IPC for the HPT
when we obtain an IPC with a margin of error of 5%, then we
have a success rate of 89.3%, parser being the only benchmark
that does not succeed in some cases (success rate of 47% due to
its poor prediction accuracy). We also observe that when the LPTs

Figure 7. Predictable Performance in the 4C-1 configuration when
the target IPC is specified beforehand.

have high cache requirements (type H), it is more difficult for the
HPT to obtain its target IPC than when LPTs are type L or S. When
the target performance is not achieved, the HPT is 6.38% under the
objective IPC on average.

There are two main reasons that justify why some HPTs are
below their target performance. First, OPACU methodology shows
low accuracy in IPC predictions for some benchmarks like parser,
that has an IPC prediction error of 9.8%. Thus, the predicted full
speed IPC can differ from the real one. Our mechanism assigns to
the HPT the minimum number of ways needed to reach the tar-
get IPC, which is computed as a given percentage of the predicted
full speed IPC. If this prediction is inaccurate, the decision can be
wrong. To solve this problem, the accuracy of OPACU method-
ology should be improved. The second reason why some HPTs
are below target is the shared bandwidth to access the different L2
cache banks. In some situations the number of ways assigned to the
HPT is enough to reach the target IPC (the decision is correct), but
bus contention is too high and performance drops. We could use
a bandwidth arbiter as in (24; 22) to overcome this situation and
reserve a fraction of bandwidth to the HPT.

Figure 7 shows the results of our framework when the full speed
of the HPT is known beforehand. This performance could be given
by the user or obtained with an improved version of the OPACU
runtime mechanism. Also, it has been shown (11) that multimedia
applications have approximately the same performance for differ-
ent instances of the same application. Thus, in multimedia applica-
tions the user knows beforehand the full speed of the application
and can provide it to our framework.

We evaluate a four-core architecture with a 1MB 16-way L2
cache. As in the previous experiment, some benchmarks already
exceed their target IPC with just one reserved way (art reaches
76% of its full speed with one way). Here, FlexDCP achieves the
target IPC 94% of the time and the obtained IPC is much closer to
the target IPC. For the remaining 6% of the time, our framework is
1.48% under the target IPC on average. We note that vpr and ammp
cannot reach the 90% of their maximum performance because they
need more than 13 ways and we are assuming that each application
has at least one reserved way of the L2 cache (that is, there are not
enough resources in the architecture).

4.2 Ensuring a Global Quality of Service
In this section we evaluate the performance of FlexDCP when
optimizing an overall QoS metric. We compare our proposal with
the best state-of-the-art dynamic cache partitioning mechanisms:
MinMisses (26) that is the best policy in the literature improving
throughput, and Fair (15) that is the best policy in the literature
improving fairness. MinMisses estimates the number of misses of
each running application for all cache configurations and selects
the L2 cache partition that minimizes the total number of misses.
Instead of minimizing the total number of misses, Fair forces all
threads to have the same increase in percentage of L2 misses, trying
to equalize the statistic Xi =

missessharedi
missesalonei

of each thread i.

92

Figure 8. Hmean speed up over LRU when optimizing different
QoS metrics.

Optimizing Fairness. By using predicted IPCs, we can decide
to maximize any global QoS metric related to IPC. A relevant
goal in some environments like high performance servers is to
have fairness among threads. Several metrics have been used to
measure fairness, like weighted speed up or the harmonic mean
of relative IPCs. In this paper, we show results for the latter as it
has been shown to provide better fairness-throughput balance than
weighted speed up (18). In any case, our results for weighted speed
up follow the same trends than for harmonic mean. We compute
the relative IPC as IPCCMP

IPCalone
. We denote our proposal FlexDCP-

MaxFair as we maximize fairness. We compare our proposal with
LRU, MinMisses, Fair and FlexDCP-MaxIPC.

To evaluate our proposals, we randomly generate 16 workloads
belonging to each case for the four selected configurations4 (48
workloads per configuration). Average improvements do consider
the distribution of workloads among the three groups. We denote
this mean weighted mean, as we assign a weight to the speed up of
each case depending on the distribution of workloads from Table 3.
For example, for the 2C configuration, we compute the weighted
mean improvement as 0.48 · x1 + 0.41 · x2 + 0.11 · x3, where xi

is the average improvement in Case i.
Figure 8 shows the average Hmean improvement of all policies

over LRU for the four configurations. We observe that for all pro-
cessor/cache setups, FlexDCP-MaxFair outperforms the other pro-
posals on average. For the 4-core configurations FlexDCP-MaxFair
outperforms Fair by 3.5% and MinMisses by 6.5%. It is interest-
ing to note that as the number of cores and cache size increase, the
Hmean improvement of FlexDCP-MaxFair over previous propos-
als also increases, outperforming Fair by 10.1% and MinMisses by
10.3% on average in the largest configuration (8C-2).

All algorithms have similar results in Case 1. This is intuitive
as in this situation there is little room for improvement as all
threads fit in cache. In Case 2, FlexDCP-MaxFair improves pre-
vious approaches between 8.2% and 15.2%. As the number of
cores increases, MinMisses and Fair have more difficulties in find-
ing out the optimal partition for fairness. Instead, in configuration
8C-2, FlexDCP-MaxFair achieves an improvement of 10.8% over
Fair and 9.8% over MinMisses. In Case 3, MinMisses and Fair
present performance degradations with respect to LRU because of
the asymmetry between the cache requirements of applications. As
a result, MinMisses has worse average fairness than LRU (4.6% on
average). The same happens with Fair, which has 2.6% worse per-
formance than LRU. By using IPC predictions FlexDCP-MaxFair
instead obtains better results than LRU, 8.6% in the 8-core config-
uration and 10.9% in the 4-core configurations.

Optimizing Throughput. Next, we analyze the results of
FlexDCP when it maximizes throughput. We denote this proposal
FlexDCP-MaxIPC, as the metric to optimize is throughput. We
simulate MinMisses, Fair and FlexDCP-MaxIPC with the same 48
workloads that we selected for the fairness results. Figure 9 shows
the average speed up over LRU for these mechanisms. FlexDCP-

4 Except Case 1 in configuration 8C-2, as only one workload belongs to this
group.

Figure 9. Throughput improvement of MinMisses, Fair and
FlexDCP-MaxIPC over LRU.

Figure 10. Average speed up over pseudo LRU when optimizing
throughput.

MaxIPC provides the best performance for all cache configura-
tions. In 83.2% of the workloads, FlexDCP-MaxIPC outperforms
the throughput obtained by MinMisses, which means that perfor-
mance improvements are consistent among workloads.

Figure 9 shows that the performance benefits of MinMisses de-
crease with the increase in the number of cores and associativity,
obtaining 2.4% less throughput than LRU in configuration 8C-2.
In the 2C configuration it improves 8.5% over LRU, while in 4C-1
and 4C-2 these benefits decrease to 6.2% and 3.1% respectively.
Fair obtains even worse results than MinMisses in all configura-
tions. Instead, FlexDCP-MaxIPC has a more consistent throughput
improvement over LRU: 9.7% (2C), 10.3% (4C-1), 7.5% (4C-2),
and 8.4% (8C-2). Figure 8 shows that performance improvements
over LRU and MinMisses are not at the expense of fairness, as we
improve both in fairness and throughput.

Interaction with real pseudo LRU implementations. One of
the key aspects of any QoS framework to be considered by industry
is that it has to work with replacement policies implemented in
real processors. For highly associative caches, implementing true
LRU replacement becomes complex and with a high hardware cost.
As a consequence, current high performance processors implement
other simpler replacement algorithms in the L2 cache with similar
performance to LRU (9). For example, the Sun UltraSPARC T2 (2)
has a shared 4Mbyte 16-way associativity L2 cache with pseudo
LRU replacement, which has a used-bit scheme to implement a
Not Recently Used (NRU) replacement. The used bit is set to one
each time a cache line is accessed or when initially fetched from
memory. For a given cache set, if setting the used-bit causes all used
bits to be set to one, the remaining used bits are cleared instead. On
a miss, the L2 looks for the first line in that set with a used-bit set
to zero, which is chosen as the evicted line.

We propose to partition a shared L2 cache with NRU replace-
ment algorithm extending columnization, which was proposed to
partitioning caches with LRU replacement algorithm (5). We as-
sign an initial used-bit mask (UBM) for each thread that sets to one
the ways owned by other threads and sets to zero its owned ways.
Thus, threads can evict only lines from their owned ways. Extend-
ing columnization for NRU replacement algorithm is mechanical
and we do not give all implementation details for the sake of sim-
plicity. Exploring the interaction with other replacement algorithms
is part of our future work.

93

Table 4. Functionalities offered by the different frameworks.
Performance/resource Provides Provides Provides

Framework translation individual QoS hybrid QoS global QoS Fairness Throughput
MinMisses (26) × × × 4 + ++
Fair (15) × × × 4 ++ +
VPC (24) × 4 × × − −
Guo et al. (12; 6) × 4 4 × − −
FlexDCP 4 4 4 4 + + + + + +

Next, we show that our QoS framework is compatible with NRU
replacement algorithm. Figure 10 shows the average speed up over
NRU when optimizing a global QoS metric like throughput. We
evaluate MinMisses and FlexDCP-MaxIPC with the workloads that
were selected in Section 3.2. Neither the SDHs nor the PPRs will
provide results as accurate as with LRU. Even though, speed ups
are nearly the same than the ones obtained with LRU. MinMisses
presents diminishing returns as the number of core increases, with
an average improvement of 4.6% over NRU. FlexDCP-MaxIPC
has more consistent results with an average improvment of 9.6%
over NRU. The results when optimizing Hmean and individual QoS
present the same trend with Figures 6, 7 and 8.

4.3 Putting it all together
FlexDCP is the only framework providing enough flexibility to pro-
vide individual or global QoS to applications. FlexDCP can max-
imize overall QoS metrics like harmonic mean of relative IPCs,
weighted speed up or throughput, outperforming LRU and previous
throughput- or fairness-oriented DCP algorithms. The performance
results presented in this section prove that using performance pro-
jections to decide cache partitions is more adequate and leads to
better performance than previous proposals guided by miss rates.

5. Related Work
QoS-aware architectures. Some previous efforts focus on ensur-
ing QoS in multithreaded architectures. Cazorla et al. introduce a
mechanism to force predictable performance in SMT architectures
(4). They manage to run time-critical jobs at a given percentage of
their maximum IPC. To attain this goal, they need to control all
shared resources of the SMT architecture, while we work with a
CMP architecture.

Concerning CMP architectures, Rafique et al. propose to man-
age shared caches with a hardware cache quota enforcement mech-
anism and an interface between the architecture and the OS to let
the latter decide quotas (27). However, this proposal cannot guar-
antee individual QoS. Nesbit et al. introduce Virtual Private Caches
(VPC) (24), which consist of an arbiter to control cache bandwidth
and a capacity manager to control cache storage. They show how
the arbiter allows meeting QoS performance objectives or fairness.
However, the authors do not discuss how to decide resource assign-
ments. A similar framework is presented by Iyer et al. (12), where
resource management policies are guided by thread priorities. Indi-
vidual applications can specify their own QoS target (e.g. IPC, miss
rate, cache space) and the hardware dynamically adjusts cache par-
tition sizes to meet their QoS targets. An extension of this work
with an admission mechanism to accept jobs is presented in (6).
However, the authors claim that IPC is not suitable to specify a
QoS target because IPC is not easily convertible into resource allo-
cation. In this paper, FlexDCP attains this objective of converting
IPC into resource assignment.

Lee et al. present METERG QoS system, which provides QoS
in a soft real time scenario (16). However, in this framework, the
developer needs to run the application in the system before to
guarantee a QoS in future executions. With our framework, no
profiling information is needed to guarantee a QoS.

Table 4 compares the functionalities that previous proposals of-
fer with FlexDCP. In this table, we use the following symbols: +++
(very high), ++ (high), + (medium), - (low, equivalent to LRU),
4 (feature supported), × (feature not supported). FlexDCP is the
first framework to cover all the necessary steps to convert perfor-
mance and QoS requirements into resource assignments. Further-
more, the flexibility of the framework allows ensuring all concepts
of QoS, giving the best performance when optimizing global QoS
metrics like fairness or throughput.

Dynamic cache partitioning. Traditional eviction policies are
demand-driven and tend to give more space to the application that
has more accesses to the cache hierarchy. Previous work has pro-
posed to partition shared caches, assigning more cache space to the
applications that do a better use of this space. Static and dynamic
cache partitioning algorithms monitor the L2 cache accesses and
decide a partition in order to maximize throughput (5; 26; 32; 29)
or fairness (15). These proposals decide cache partitions at a way
granularity based on collected data. However, these proposals use
indirect metrics of performance like the number of misses to guide
decisions, and they cannot guarantee individual QoS.

Stack Distance Histogram. Common eviction policies such as
LRU have the stack property (19). This property allows building
Stack Distance Histograms (SDH) which can be obtained during
execution by running the thread alone in the system (5) or by
adding some hardware counters that profile this information (26;
32). Qureshi et al. presented a low-overhead circuit to measure
SDHs using an auxiliary tag directory, which is a separate copy
of the L2 tags (26). Nearly all cache partition schemes at way
granularity are based on SDHs. Some authors have used SDHs to
improve the management of main memory and reduce the number
of page faults (36).

Other Related work. Hsu et al. evaluate different cache poli-
cies in a CMP scenario (10). They show that none of them is op-
timal among all benchmarks and that the best cache policy varies
depending on the performance metric being used. Thus, they pro-
pose to use a thread-aware cache resource allocation. In fact, their
results reinforce the motivation of our paper: we need to have a flex-
ible framework that allows optimizing different performance met-
rics and being able to ensure a QoS.

6. Conclusions
In this work, we propose FlexDCP, a new framework that allows
the OS to guarantee a QoS for each application running in a CMP
architecture. Instead of using indirect measures of the performance,
FlexDCP uses direct estimations of the performance of each thread
for different cache configurations to decide cache quota assign-
ments, with less than 1KB of storage cost per core. These estima-
tions enable our framework to control the performance of individ-
ual applications when executed in a workload, ensuring an indi-
vidual QoS. In addition, this framework provides higher flexibility
than previous proposals as it allows the OS to optimize either fair-
ness, total throughput, or any other metric.

Simulation results show that FlexDCP is able to force applica-
tions to run at a certain percentage of their maximum performance,
which is required in real-time environments. We manage to reach
the objective performance in 94% of the cases considered, being

94

1.48% under the objective for remaining cases. When optimizing
for a global QoS metric like fairness or throughput, FlexDCP ob-
tains the best performance in all metrics. In an eight-core architec-
ture, FlexDCP-MaxFair obtains an average 10.1% improvement
over Fair in fairness, while FlexDCP-MaxIPC obtains an average
11.2% improvement over MinMisses in throughput. Finally, we
showed that FlexDCP also works with pseudo LRU replacement
algorithms currently implemented in processors like the Sun Ultra-
SPARC T2.

FlexDCP provides a platform that can also be used with paral-
lel applications. In single process-multiple data applications, all the
processes execute the same code on different data sets and use syn-
chronization primitives to coordinate their work. Thus, FlexDCP
framework can be used to estimate the performance of each pro-
cess between communication primitives. In the case of parallel ap-
plications in which threads concurrently work on the same data,
the parallel application can be seen as a whole accessing the shared
cache. With that goal, bit masks should be assigned to processes in-
stead of cores. Future work includes evaluating the impact of these
extensions on the FlexDCP framework.

Acknowledgments
This work has been supported by the Ministry of Science and Tech-
nology of Spain under contract TIN-2004-07739, TIN2007-60625
and grant AP-2005-3318, by the HiPEAC European Network of
Excellence and by the SARC European Project. Authors would also
like to thank C. Acosta, A. Falcon, D. Ortega, O. J. Santana and J.
Vermoulen for their work in the simulation tool. We also thank F.
Cabarcas, I. Gelado, D. A. Jiménez, A. Rico, J. E. Smith and C.
Villavieja for their technical comments on earlier drafts of this pa-
per and the reviewers for their helpful comments.

References
[1] ARM920T. Technical Reference Manual. http://infocenter.

arm.com/help/topic/com.arm.doc.ddi0151c/ARM920T_
TRM1_S.pdf.

[2] UltraSPARC T2. Supplement to the UltraSPARC Architec-
ture 2007. http://opensparc-t2.sunsource.net/specs/
UST2-UASuppl-current-draft-HP-EXT.pdf.

[3] D. P. Bovet and M. Cesati. Understanding Linux kernel. O’Reilly, 3rd
edition, 2005.

[4] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernandez,
A. Ramirez, and M. Valero. Predictable performance in SMT proces-
sors: Synergy between the OS and SMTs. IEEE ToC, 55(7):785–799,
2006.

[5] D. Chiou, P. Jain, S. Devadas, and L. Rudolph. Dynamic cache
partitioning via columnization. In Design Automation Conference,
2000.

[6] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for providing
quality of service in chip multi-processors. In MICRO, 2007.

[7] L. Hammond, B. A. Nayfeh, and K. Olukotun. A single-chip multi-
processor. Computer, 30(9):79–85, 1997.

[8] L. C. Heller and M. S. Farrell. Millicode in an IBM zSeries processor.
IBM J. Res. Dev., 48(3-4):425–434, 2004.

[9] J. L. Hennessy and D. A. Patterson. Computer architecture: a quanti-
tative approach. Morgan Kaufmann Publishers Inc., 3rd edition, 2002.

[10] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Communist,
utilitarian, and capitalist cache policies on CMPs: caches as a shared
resource. In PACT, 2006.

[11] C. J. Hughes, P. Kaul, S. V. Adve, R. Jain, C. Park, and J. Srinivasan.
Variability in the execution of multimedia applications and implica-
tions for architecture. In ISCA, 2001.

[12] R. R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell,
Y. Solihin, L. R. Hsu, and S. K. Reinhardt. QoS policies and archi-
tecture for cache/memory in CMP platforms. In SIGMETRICS, 2007.

[13] A. Jaleel, W. Hasenplaugh, M. K. Qureshi, J. Sebot, S. C. S. Jr, and
J. Emer. Adaptive insertion policies for managing shared caches on
cmps. In PACT, 2008.

[14] T. S. Karkhanis and J. E. Smith. A first-order superscalar processor
model. In ISCA, 2004.

[15] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partition-
ing in a chip multiprocessor architecture. In PACT, 2004.

[16] J. W. Lee and K. Asanovic. METERG: Measurement-based end-to-
end performance estimation technique in QoS-capable multiproces-
sors. In RTAS, 2006.

[17] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In PLDI, 2005.

[18] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and
fairness in SMT processors. In ISPASS, 2001.

[19] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems Journal, 9(2):78–117,
1970.

[20] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero. Explaining
dynamic cache partitioning speed ups. IEEE CAL, 2007.

[21] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero. Online predic-
tion of applications cache utility. In IC-SAMOS, 2007.

[22] O. Mutlu and T. Moscibroda. Stall-time fair memory access schedul-
ing for chip multiprocessors. In MICRO, 2007.

[23] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing
memory systems. In MICRO, 2006.

[24] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In
ISCA, 2007.

[25] K. J. Nesbit, M. Moreto, F. J. Cazorla, A. Ramirez, M. Valero, and J. E.
Smith. A framework for managing multicore resources. IEEE Micro,
special issue on Interaction of Computer Architecture and Operating
System in the Many-core Era, 38(3), 2008.

[26] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches. In MICRO, 2006.

[27] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural support for
operating system-driven CMP cache management. In PACT, 2006.

[28] M. J. Serrano, R. Wood, and M. Nemirovsky. A study on multi-
streamed superscalar processors. Technical Report 93-05, UCSB,
1993.

[29] A. Settle, D. Connors, E. Gibert, and A. Gonzalez. A dynamically
reconfigurable cache for multithreaded processors. Journal of Embed-
ded Computing, 1(3-4), 2005.

[30] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Dis-
covering and exploiting program phases. IEEE Micro, 2003.

[31] J. E. Smith and R. Nair. Virtual machines: versatile platforms for
systems and processes. Morgan Kaufmann Publishers Inc., 2005.

[32] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring
scheme for memory-aware scheduling and partitioning. In HPCA,
2002.

[33] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multi-
threading: maximizing on-chip parallelism. In ISCA, 1995.

[34] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana, E. Fernandez, and
M. Valero. FAME: Fairly measuring multithreaded architectures. In
PACT, 2007.

[35] T. Y. Yeh and G. Reinman. Fast and fair: data-stream quality of
service. In CASES, 2005.

[36] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and
S. Kumar. Dynamic tracking of page miss ratio curve for memory
management. In ASPLOS, 2004.

95

