

FlexFlow: Workflow for Interactive Internet Applications

Rakesh Mohan, Mitchell A. Cohen, Josef Schiefer
{rakeshm, macohen, josef.schiefer}@us.ibm.com

IBM T.J. Watson Research Center

PO Box 704
Yorktown Heights, NY 10598

Abstract

In this paper, we present a state-machine based workflow system, named FlexFlow, which formally

describes business processes with state charts. The FlexFlow system uses these descriptions to

directly control the execution of the applications. We give a description of the FlexFlow process

model and the underlying FlexFlow engine, and explain how FlexFlow can be used in commercial

platforms for B2B e-commerce.

Keywords: Interactive applications, e-business systems, workflow management, business process

management, e-commerce platforms.

1. Introduction

The implementation of an e-commerce platform at a company often requires a customization of processes, such as

an order process or a Request for Quotes, to the existing environment of that company. Workflow technology is

prevalent for the modeling, analysis and execution of business processes [2][6].

In most current e-commerce systems, the steps of a business process, or the actions a system takes in response to

user actions in such a process, are not made explicit, but are buried in a software code for both the dynamic pages

and the application server. This makes the modification of implemented business processes extremely difficult and

fragile. For example, to change the ordering of the process steps requires substantial rewriting of the software for

the application and the web pages for the user interface. For e-commerce platforms made to be used by different

companies, this presents a big problem as most companies’ business processes differ from those of other companies

to a small or large extent. Thus, deploying such e-commerce platforms at each different company incurs a large

overhead in terms of time and money required to rewrite the business processes [1][7]. Often, this overhead

actually forces companies to adjust their business processes to conform to an e-commerce system instead of

modifying the system to match their preferred processes.

In this paper, we show how to employ the formal method of state charts [3][4][5] for the specification of

processes for e-commerce platforms. By using state charts as our specification method, we are able to model

business processes which can be automatically executed by a workflow engine. Our contribution is the introduction

of process state diagrams, which use the state starts notation for modeling business processes. Furthermore, we

introduce the FlexFlow system, which supports the formal specification of process state diagrams, including the

simulation and execution of processes modeled with these diagrams.

2. FlexFlow – Overview

Figure 1 shows the lifecycle of business processes in the FlexFlow system. A visual modeling tool is used to design

new and modify existing business processes. The visual modeling tool generates from the process state diagrams an

XML representation. The XML is compiled and loaded into the FlexFlow system database. In this database,

FlexFlow also tracks each instance of a business process running at a given time in the business system including

the current state. The FlexFlow engine uses the database to control both the execution of the business process and

the user interface.

S1

S2S3

S5S4

C1

C2

C3C3

C4

Figure 1: FlexFlow - Lifecycle of a Business Process

3. The FlexFlow Process Model

FlexFlow models e-commerce business processes as Unified Modeling Language (UML) state diagrams [10],

which are an adaptation of Harel’s statecharts [3][5]. UML uses state diagrams to describe the behavior of objects,

whereas, FlexFlow uses them to describe processes. We adopt the UML state diagram notation for the FlexFlow.

Figure 2: Sample FlexFlow State Diagram

UML state diagrams are directed graphs with nodes called states and the directed edges between them called

transitions (see Figure 2). A transition represents a change of the process state, connecting a source state with a

target state. A transition corresponds to an action taken in response to an event. The transitions have guards

specifying under what conditions the transition can be traversed. Only one transition out of a state is taken in

response to an event.

FlexFlow adds three key features beyond UML: 1) the concept of roles, 2) the coordination of interactions of

multiple parties, and 3) the ability to allow different organizations to use different versions of the business process.

Figure 3: Simple FlexFlow state diagram for bilateral negotiation

For FlexFlow, events are incoming messages and actions correspond to task logic being executed at the application

server.

Figure 3 shows a FlexFlow modeling of a simple negotiation between a buyer and a seller [8][9]. The top right

transition shows that on the event “Offer”, the action “RecordOffer” is taken. The engine checks the guard

specifying that the user making the offer is the “Buyer”. As the action for the other “Offer” transitions is also

“RecordOffer” we do not show it here for the sake of simplicity. There is no action corresponding to the “Accept”

or “Reject” events. On entry to the final state “Deal” a “RecordDeal” action is taken.

4. FlexFlow Process Execution

The FlexFlow system has an engine to manage the execution of business processes. When an event arrives, an

event dispatcher figures out to which business process instances the event applies and invokes the engine for each.

The engine processes the event based on the instance’s current state and business process.

4.1. Event Creation

Events can be created in the following two ways (both shown in Figure 3):

• Interaction Controllers handle external interactions with different types of clients including web browsers,

mobile devices, and message queues. For example, a buyer requests on a web form for an RFQ to be closed.

This HTTP request is received by the interaction controller which converts it into an event.

• Internal System Actions can trigger events. For example, the “RFQ close” action might create a “Close Quote”

event for the responses to that for that RFQ.

4.2. The FlexFlow Event Handler

All events arrive first at the FlexFlow event handler (see Figure 3). Events triggered by interaction controllers

simply get routed to the FlexFlow engine. Events triggered by existing process instances are routed to all process

instances listening for it. For example, all the quotes listening to their parent RFQ need to process events coming

from the RFQ. To determine which instances are listeners, the router reads a Flow Instance Event Registry where

quote process instances are registered to listen to the RFQ process to which they belong. The FlexFlow event

handler will duplicate the event for all the listeners, routing each to the Flex Flow engine.

4.3. The FlexFlow Engine

The FlexFlow Engine receives targeted events from the event handler and executes the necessary actions. Figure 4

shows how the engine interacts with the other parts of the system for event processing.

When receiving an event, the FlexFlow Engine takes the following steps (as shown in Figure 4):

1. The incoming event is retrieved with its context including marshaling incoming parameters and deriving user

and role information.

2. The engine either retrieves the existing targeted instance or creates an instance of the new specified process

putting it in the start state. The engine registers the instance for events from those instances from which it needs

to know outgoing messages such as a quote with its parent RFQ.

3. The engine looks for a transition that 1) exits the current state of the instance, 2) has an event matching the

event being processed, and 3) has guards which can be satisfied; the engine calls the guard evaluation to check.

4. If no transitions were found in the previous step, then the engine returns control to the caller with a count of the

number of transitions traversed and the list of the next available events. When appropriate, the caller will treat

no transitions traversed as an error.

5. If the engine has come this far without returning, it has a transition that can be traversed. The first step is to

execute the exit action on the current state if there is one.

6. The engine executes the action on the found transition.

7. The engine looks for an entry action on the transition’s target state. If one exists, the engine executes it.

8. The engine updates the instance’s current state to the transition’s target state.

9. In order to process any automatic (null event) transitions exiting the new current state of the instance, the

engine then sets the incoming event to null and returns to step 3.

Business
Process Flows

(State
Machines)

Flow Instances

FlexFlow
Router

Flow Instance
Event Listener

Registry

FlexFlow
Engine

Incoming
Event

Guard
Evaluation

Commerce
Action

Execution
System

invoke
s

arrives

executes

executes

reads reads

reads and
writes

Interaction
Controller

creates

creates

writes

Figure 3: FlexFlow event handler and engine

Retrieve incoming event and its
context of invocation

Is commerce
request on an existing

instance?

Retrieve instance

YES

Create new instance

Set instance state to start state

NO

Retrieve found transition

Is there a
remaining transition in

the state machine which exits the
current instance state and is for

the incoming
event?

YES

Do the guards on the
transition pass?

NO

YES

Execute the transition's action

Set instance state to
transition's target state

Execute the exiting state's exit
action if it has one

Execute the transition's target
state's entry action if it has one

Return
"No transition traversed"NO

action fails? NO

action fails? NO

action fails?YESReturn
Action Failure Reason

YES

YES

NO

Return "Success"
and next available events

Retrieve events from state
machine transitions for which

user passes guards

Set incoming event to null

Is the incoming event null? NO

YES

Figure 4: Flow chart showing engine execution of an incoming event

Note that if any of the actions (exit, transition, or entry) fail to complete successfully, the engine returns control

to the caller with the reason for failure. The FlexFlow engine processes all actions from one event within a single

transaction scope. In other words, the system is left with either the effect of all the actions executed, or none. If any

action fails, the whole transaction is aborted and the effects of the previous actions whose execution was initially or

subsequently caused by the incoming event are rolled back. Only when all the actions succeed is the transaction

committed. This prevents the process instance from ending up in an “unnatural” state.

5. Conclusions

Web-applications are difficult to build with traditional workflow management systems. In this paper, we presented

an approach for managing web-based business processes. We proposed a state machine based model for the

specification of business processes and have shown the FlexFlow system which supports the modeling, simulation

and execution of process state machines. We have deployed two generations of the FlexFlow system in commercial

B2B e-commerce systems, first in IBM’s WebSphere Commerce Suite MarketPlace Edition ® (WCS MPe), and

then in IBM’s WebSphere Commerce Business Edition ® (WCS BE). Additional problems we want to consider in

the future include the management of hierarchical states as well as the concurrent execution of FlexFlow processes.

References

[1] Ahmed K. Elmagarmid and Weimin Du. Workflow Management: State of the Art vs. State of the Market.
In Advances in Workflow Management Systems and Interoperability, pages 1-17, August 1997.

[2] Georgakopolaus, Diimitiros and Hornik, Mark, An Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure, Distributed and Parallel Databases, 3, 119-153, 1995.

[3] Harel D., Statecharts: A Visual Formalism for Complex Systems, Science of Computer Programming, Vol.
8, 1987.

[4] D. Harel et. al., “STATEMATE: A Development Environment for Complex Reactive Systems,” IEEE
Transactions on Software Engineering, April 1990.

[5] Harel, D., On Visual Formalisms, Communications of the ACM Vol.31 No.5, 1988

[6] Mohan, C., Recent Trends in Workflow Management Products, Standards and Research, NATO, 1997.

[7] Peter Muth, Jeanine Weissenfels and Gerhard Weikum, What Workflow Technology can do for Electronic
Commerce, Current Trends in Database Technology, Idea Group Publishing, 1998

[8] Reuter, A., Schwenkreis, F., ConTracts - A Low-Level Mechanism for Building General-Purpose
Workflow Management Systems, IEEE Computer Society, Bulletin of the Technical Committee on Data
Engineering, 18(1):4-10, 1995

[9] J. Sprinkle, C.P. van Buskirk and G. Karsai, Modeling Agent Negotiation, Proceedings of the IEEE
Systems, Man, and Cybernetics Conference, October 2000.

[10] Unified Modeling Language Specification, version 1.4,
http://www.omg.org/technology/documents/formal/uml.htm, 2001

