
FlexGP

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Veeramachaneni, Kalyan et al. “FlexGP: Cloud-Based Ensemble
Learning with Genetic Programming for Large Regression
Problems.” Journal of Grid Computing 13.3 (2015): 391–407.

As Published http://dx.doi.org/10.1007/s10723-014-9320-9

Publisher Springer Netherlands

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/103516

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/103516

Noname manuscript No.
(will be inserted by the editor)

FlexGP

Cloud-Based Ensemble Learning with Genetic Programming
for Large Regression Problems

Kalyan Veeramachaneni · Ignacio
Arnaldo · Owen Derby · Una-May
O’Reilly

Received: date / Accepted: date

Abstract We describe FlexGP, the first Genetic Programming system to perform
symbolic regression on large-scale datasets on the cloud via massive data-parallel
ensemble learning. FlexGP provides a decentralized, fault tolerant parallelization
framework that runs many copies of Multiple Regression Genetic Programming, a
sophisticated symbolic regression algorithm, on the cloud. Each copy executes with
a different sample of the data and different parameters. The framework can create
a fused model or ensemble on demand as the individual GP learners are evolving.
We demonstrate our framework by deploying 100 independent GP instances in a
massive data-parallel manner to learn from a dataset composed of 515K exemplars
and 90 features, and by generating a competitive fused model in less than 10
minutes.

Keywords Cloud Computing · Ensemble Learning · Genetic Programming ·
Symbolic Regression

1 Introduction

The increased availability and cost effectiveness of data storage has allowed the
collection of many large datasets. However, the exploitation of large data requires
scaled machine learning solutions. We present FlexGP, the first Genetic Program-
ming system to perform symbolic regression on large-scale datasets on the cloud.
Genetic Programming continues to mature as a technique, with the emergence of
products such as DataModeler [1] and Eureqa [2]. The main advantages of GP are
its flexibility and is its embarrassingly parallel nature. The first allows nonlinear
symbolic models of the data to be obtained while the latter can be exploited to
harness the computational power provided by clouds.

Kalyan Veeramachaneni, Una-May O’Reilly, Ignacio Arnaldo
Massachusetts Institute of Technology
32, Vassar Street, Cambridge, MA, 02139, USA
Tel.: +1 6172538599
E-mail: kalyan@csail.mit.edu,unamay@csail.mit.edu,iarnaldo@mit.edu

2 Kalyan Veeramachaneni et al.

The increased size of datasets represents a challenge in the context of GP for
two reasons. First, the size of the training dataset may now exceed the capacity
of main memory. And second, the computational expense of the GP learner scales
with the quantity of training data, as the score or fitness assigned to each candidate
model depends on its error on the data.

To overcome these limitations, we implement a parallelization framework that
performs an efficient decomposition of the computation required for learning. The
proposed method splits the data into multiple subsets and learns a large quantity of
models via independent learners. This allows the computation to execute on many
instances in parallel and is known as a data-parallel approach (see [3]). Each model
is used to make a prediction and a meta-model or ensemble is developed to fuse
these predictions.

In this paper we present an end result of a three year project that resulted in
FlexGP. Our contributions and the challenges we address are:

Multiple Regression Genetic Programming (MRGP) learner: FlexGP
incorporates MRGP, a sophisticated learner that hybridizes tree-based GP and
Least Absolute Selection and Shrinkage Operator (LASSO) introduced in [4].
In previous work, we have shown that MRGP outperforms both multiple linear
regression and traditional GP-based symbolic regression methods [5].

Factoring: FlexGP employs factoring. Each learner can execute with a different
set of machine learning parameters. For large data problems, each learner trains
on a factored subset of the data. The subset can be on the basis of both
number of training examples and number of features. All factoring is done in
a probabilistic manner controlled by a simple user configuration. To improve
speed and address memory limitation, we reduce the data size at each instance
by a factor of 10.

Cloud-Scale Ensemble Learning: FlexGP is a cloud scale regression ensemble
learning system. Models are generated by multiple cloud-backed virtual ma-
chines each supporting an independent parametrized GP learner. Under this
scenario, FlexGP creates a fused model (ensemble) on demand at different
points in time while the individual GP learners are evolving. The stochasticity
of GP and the varying computation speed of virtual machines on the cloud in-
duces variability in the learning rate of each learner. In this paper, we examine
how the performance of the fused model changes in real time.

Decentralized Machine Learning platform: In FlexGP, there is no single
controller coordinating the system. It launches via a cascaded asynchronous
startup protocol and runs a completely decentralized neighbor discovery pro-
cess at its IP layer. The protocol establishes the network simultaneously with
the cascaded launch and integrates new instances into the network. It is re-
silient to instance failure and allows communication to continue even when
instances disappear.

The paper is organized as follows. Section 2 provides an overview of FlexGP.
We introduce MRGP, the regression algorithm at the core of FlexGP, in Section 3.
In Section 4, we explain the adopted ensemble approach while in Section 5, we
detail FlexGP’s communication layer. Section 6 describes the experimental setup
and we present the results in Section 7. Finally, Section 8 presents a review of
related work and we conclude in Section 9.

FlexGP: Cloud-Based Ensemble Learning with Genetic Programming 3

Fig. 1: FlexGP overview: each cloud node executes a copy of Multiple Regression
Genetic Programming in a multi-threaded fashion. The models generated at each
node can be retrieved online to build a meta-model via a fusion process.

2 FlexGP overview

The availability of massive on-demand computational resources via the cloud en-
ables us to learn many models in parallel. Bagging, boosting or simple parameter
variation are now feasible at an unprecedented scale. We FlexGP to run many in-
stances of a sophisticated Genetic Programming algorithm in parallel in the cloud,
thus generating an ensemble of models. Figure 1 provides an overview of FlexGP:

Multiple Regression Genetic Programming: Each cloud node executes in a
multi-threaded fashion a copy of Multiple Regression Genetic Programming [5].
MRGP is a hybrid method that combines tree-based Genetic Programming
with LASSO.

Ensemble Learning: The independent copies of the regression algorithm learn
from different samples of the data and run with different parameters. At any
moment of the run, it is possible to retrieve the best models of the run and
build a meta-model by means of a model fusion process.

Cloud Layer: FlexGP is a framework for mining large datasets on the cloud.
The platform implements a distributed launch protocol and a decentralized,
fault tolerant communication layer.

3 Multiple Regression Genetic Programming

MRGP is a hybrid method that combines tree-based Genetic Programming with
LASSO. MRGP targets the minimization of two objectives. The first, multiple

regression error, is an innovative accuracy measure that involves a LASSO process

4 Kalyan Veeramachaneni et al.

and is explained in detail in this section. The second objective is the model subtree
complexity measure introduced in [6]. The algorithm implements Single Point
crossover, Subtree mutation, and a selection strategy based on Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) introduced by Deb et al. [7].

3.1 Terminology

The objective in a regression task is to find a model that maps one or more input

variables onto a single target variable (desired output). When solving such a task
using GP-based symbolic regression, models are instantiated by programs (expres-
sion trees in case of tree-based GP), where program inputs (terminals, leaves) map
to the input variables’ values, and program output is the expression’s value when
the root node is executed.

3.2 Multiple regression error

MRGP differs from conventional GP primarily in eliminating direct comparison of
the final program output against the target variable, y. Instead, we tune in linear
combination all subexpressions of a program with respect to the target output y.
Then, we compare y to the output of the regression model. Given a dataset D
(also known as a set of fitness cases) composed of m columns of input variables
and n rows of examples, and a target vector y with target values for each example,
we proceed as follows:

1. We step by step execute the program (with the conventional inorder tree parse)
and store the output of each subexpression after it is executed. For tree-based
GP, this means pausing the program execution process at each tree node (in-
cluding leaves and the root node) and storing the value calculated at that
node. By doing this for each training example, we obtain an n × k matrix of
subexpressions F , where k is the size of the GP tree and n is the number of
exemplars of D.

2. We map the values of F onto the desired output y using multiple linear re-
gression (MR), which produces an optimal linear combination that minimizes
the prediction error of ŷ. Multiple regression determines the vector of coeffi-
cients β that minimizes the sum of squares of residuals e of mapping the k
subexpressions (predictors) onto the desired output y:

y = F ′β + e

where F ′ is a n × (k + 1) matrix obtained from F by prepending it with an
additional column of ones, so that the corresponding coefficient β1 implements
the intercept of the linear model.

3. To assess the quality of the regressed model, we compute its output as ŷ = Fβ
and compare it to the original targets of the dataset in a conventional way, i.e.,
as (y − ŷ)T (y − ŷ) = eT e.

FlexGP: Cloud-Based Ensemble Learning with Genetic Programming 5

Exemplar 1

· · ·

Exemplar n

+

log

x4

sin

+

x1 exp

x5

Root

s1 s4

s3

s2

x4 s1 x1 x5 s2 s3 s4 r

Matrix F

Subprograms

y

y1

· · ·

yn

Target

Multiple Regression (F,Y)

ŷ = F ′β + e

ŷ

ŷ1

· · ·

ŷn

ŷ

ŷ1

· · ·

ŷn

y

y1

· · ·

yn

Error Computation

2

Fig. 2: The outline of model evaluation in Multiple Regression Genetic Program-
ming

Figure 2 outlines this process for tree-based GP. Major challenges with mul-
tiple regression (step 2) can arise because the least squares approach fails if the
matrix F is not of full rank. Moreover, this step arguably introduces a compu-
tational overhead with respect to standard Genetic Programming. To avoid rank
deficiency issues and alleviate the computational burden, we resort to an efficient
implementation of regularized linear regression [8]. The employed implementation
is based on a cyclical coordinate descent method first proposed in [9]. Cyclical
coordinate descent methods work on large datasets and can solve the family of
regression problems written as follows:

min
β

1

2
||Xβ − y||22 + λ1||β||1 +

1

2
λ2||β||

2
2

where β is the vector of regression coefficients. We set λ2 = 0 so the solution is the
LASSO (L1-constrained) linear fit. The employed algorithm returns an array of
models corresponding to different values of the parameter λ. We select the value of
λ that maximizes the variables included in the model. Without loss of generality
we refer to this as Multiple Regression (MR). For further details on the employed
cyclical coordinate descent method, the reader is referred to the work by Friedman
et al. [9].

3.3 Population Initialization

MRGP allows the initial population to be seeded with a linear combination of the
input features (see Figure 3). With such model, the multiple regression process
involved in the evaluation step of MRGP obtains the LASSO linear fit of the
problem. This initialization strategy together with elitism ensures that the solution
provided by MRGP will be at least as accurate as the LASSO fit with respect to
training data.

3.4 Evaluation Parallelism

The evaluation of the population of candidate models is computed in a multi-
threaded fashion following a Master-Worker model. Each worker is charged with
the evaluation of a subset of the population and is executed by a different CPU

6 Kalyan Veeramachaneni et al.

+

x1 +

x2 +

x3 +

x4 +

Fig. 3: MRGP allows to seed the initial population with a linear combination of
the variables of the problem. In this case, the depicted problem is composed of 5
explanatory variables.

thread. Once the evaluation of the subpopulation is performed, the worker returns
the corresponding fitness values. The number of threads (4 in Figure 1) is set as a
parameter and allows to exploit the multi-core flavors offered by cloud computing
providers.

4 Ensemble Learning

FlexGP executes independent copies of the MRGP algorithm, each trained with
a different sample of the data and run with different parameters. At any moment
of the run, it is possible to build a meta-model (ensemble) by means of a model
fusion process.

4.1 Data Management

The targeted data D is split into training set Dtr, fusion training data Df , and
test set Dte. GP instances learn from a sample of Dtr while Df is employed to
filter and fuse the models obtained in the different cloud nodes. Finally, Dte is
reserved to test the accuracy of the fused model.

4.2 Data and Parameter Factoring

We define two parameters n and p for the local copies of the regression algorithm
(see Table 1). The parameter n corresponds to the size of Di

tr, the training data
used at the ith copy of the regression algorithm. Di

tr is constructed by sampling
without replacement n times from Dtr. The other parameter, p, is the size of the
feature set F presented to the local learner.

We build F by drawing p samples from the features of the dataset without
replacement. This strategy promotes the exploration of different combinations of
the variables of the problem in our cloud runs.

Data parallel strategies result in an ensemble of models, each obtained with a
different subset of the data. The isolation of the different copies of the algorithm
helps diversifying our runs and provides robustness to the learning process.

FlexGP: Cloud-Based Ensemble Learning with Genetic Programming 7

Parameter Definition
n number of examples
p size of feature set

Table 1: FlexGP parameters and their definition.

4.3 Building the final model

FlexGP provides capability to generate online, i.e. at any moment of the run, a
meta-model that combines the predictions of the models retrieved from the cloud
nodes. To obtain the final model, we perform a two-step process: model filtering

and model fusion.

4.3.1 Model Filtering

Each GP node stores the best model per generation, i.e. the model exhibiting the
lowest error with respect to the received training data. The motivation to save the
best model per generation is that models from advanced generations can overfit
the data while some of the models obtained previously might exhibit a better
generalization capability, i.e. a better accuracy with respect to unseen data. To
build a meta-model, the stored models (best per generation and cloud node) are
retrieved and evaluated against the fusion training data Df to obtain their Mean
Squared Error. The o models exhibiting the lowest error with respect to Df are
then selected as the best models of the run and will be used in the fusion process.

4.3.2 Model Fusion

In [10], we implemented and compared a number of fusion techniques and finally
decided upon the algorithm Adaptive Regression by Mixing (ARM) introduced by
Yang [11]. ARM allows to fuse a set of models M according to an estimation of
their accuracy. The fused model z obtained with ARM is a linear combination of
the models m ∈ M . Given a test sample Xj , the prediction ẑj issued by the fused
model is the weighted average of model predictions ẑj =

∑o
m=1 WmŶmj . Thus,

the fusion process consists of learning the weight Wm for each model. Let r = |Df |
be the size of the fusion training set, and o = |M| be the number of models in the
ensemble. Here, we assume that the errors for each model are normally distributed.
We then use the variance in these errors to identify the weights by executing the
following steps:

Step 1: Split Df randomly into two equally sized subsets D
(1)
f and D

(2)
f .

Step 2: For each model m, evaluate σ2
m which is the maximum likelihood estimate

of the variance of the errors em on D(1), em = {Ŷmj − Yj |Xj , Yj ∈ D
(1)
f }.

Compute the sum of squared errors on D(2), βm =
∑r

j= r

2
+1(

ˆYmj − Yj)
2.

Step 3: Estimate the weights using:

Wm =
(σm)−r/2exp(−σ−2

m βm/2)
∑o

j=1(σj)−r/2exp(−σ−2
j βj/2)

(1)

8 Kalyan Veeramachaneni et al.

Step 4: Repeat steps 1-3 for a fixed number of times. Average the weights from
each iteration to get the final weights for the models.

Transformation for large r: For large values of r, the calculation of the weights
as given by Eq. (1) encounters an underflow error. To avoid this problem we
equivalently compute the weights using Eqs. (2) and (3).

Am = −
r

2
log(σm) +

−σm
−2βm

2
(2)

Wm = exp(Am − log(
o∑

q=1

Aq)) (3)

5 Decentralized Machine Learning platform for running MRGP

FlexGP implements a distributed launch protocol and a decentralized, fault tol-
erant communication layer. For extensive details of the methods described in this
section, the reader is referred to the work by Derby [12].

5.1 Launch Protocol

In designing FlexGP’s launch protocol, we started by studying the severity of
latency in acquiring cloud instances. We assume that the time elapsed between
requesting an instance and when that instance has booted and begins running our
code, the latency, is modeled by some distribution P (u). We first estimated P (u)
by acquiring a single instance 1,000 times and measuring the latency, u, of each
request. The data and its distribution are reported in Fig. 4a. If we optimistically
assume a batch request of n instances is served in parallel as n independent re-
quests by the scheduler, then the total latency, vn, of the request ought to be the
maximum of n independent samples drawn from P (u). We estimated P (vn) for
n ∈ [5, 50, 100] with 500 samples and then fit a non-parametric distribution to the
data. We report the observed data and fitted distributions alongside the predicted
distributions (based on our measured P (u)) in Fig. 4. While the predicted and em-
pirical distributions for P (v5) are close, the actual latency distributions for P (v50)
and P (v100) are significantly larger than predicted.

This discrepancy indicates that smaller batch requests achieve closer to optimal
latency than larger requests. In light of this observation, we draw two important
guidelines to design the launch protocol:

1. Our system ought to emphasize small batch requests over large ones
2. Because acquiring many (50 or 100) instances may take significantly longer

than acquiring the first 10 instances, we should start running MRGP on an
instance immediately after it boots, long before the entire set of nodes is ac-
quired.

FlexGP: Cloud-Based Ensemble Learning with Genetic Programming 9

0 500 1000
0

0.2

0.4

0.6

Time (sec)

Empirical
Fitted PDF

(a) Times to acquire 1 node.

0 300 600 900 1200
0

0.2

0.4

0.6

Time (sec)

Empirical
Fitted PDF
Expected PDF

(b) Times to acquire 5 nodes.

0 300 600 900 1200
0

0.2

0.4

0.6

Time (sec)

Empirical
Fitted PDF
Expected PDF

(c) Times to acquire 50 nodes.

0 300 600 900 1200
0

0.2

0.4

0.6

Time (sec)

Empirical
Fitted PDF
Expected PDF

(d) Times to acquire 100 nodes.

Fig. 4: Probability distribution functions (PDF) of times to acquire nodes.

Another concern when computing using the cloud is failing nodes. Requested nodes
may never be acquired and running nodes may fail. This necessitates an architec-
ture which is resilient to failures.1

FlexGP implements a robust, decentralized, peer-to-peer (P2P) startup algo-
rithm. Every FlexGP instance is capable of launching other FlexGP instances.
Immediately after booting, every FlexGP instance retrieves parameters from the
node which started it. The parameters Ψ.k and Ψ.p indicate the number of nodes
to start and the target IP list size (see Sect. 5.2), respectively. The GP meta-

1 This is the case in our private OpenStack cloud where we experience frequent request
failures.

Algorithm 1 NodeStart(n, R)

n: nodes to launch, R: list of ancestor IP addresses
Ψ : launch parameters, Π: GP meta-parameters
ip← last(R)
retrieve(ip, Ψ , Π)
R← cat(R, MyIP())
n← n− 1
if n ≤ Ψ.k and n ≥ 1 then

for i = 1 to n do

ci ← BootNode(1, R)
else

for i = 1 to Ψ.k do

k ← ⌊ n
Ψ.k−i+1

⌋

ci ← BootNode(k, R)
n← n− k

IPDiscovery(R)
MRGPCompute()

10 Kalyan Veeramachaneni et al.

Fig. 5: A view of the launch of FlexGP for 7 nodes. Left: an initial node is launched
and it brings up 2 more, which in turn bring up 2 more each, in a cascading fashion.
Right: timeline of booting and launching of instances. After starting more nodes,
node A begins computation.

parameters, Π, are used to determine the parameterization of each GP learner
(see Sect. 4). These steps are detailed in the NodeStart function in Algorithm 1.

Figure 5 left illustrates how FlexGP would launch 7 instances when Ψ.k = 2.
Node A is launched and runs NodeStart(7, []), where [] indicates an empty list. A
then boots nodes B and X, each of which will run NodeStart(3, [IPA]), and will
go on to boot 2 more nodes each. Figure 5 right details the timeline of two nodes
during startup, illustrating the concurrency present in the FlexGP startup. As soon
as node A finishes executing NodeStart and started nodes B and X, it starts a
new thread to begin running MRGP and then continues into the IPDiscovery

algorithm, as described in Sect. 5.2. This enables us to run GP concurrent with IP
discovery and network discovery.

The protocol is tolerant of node failures: the failure of one node interrupts the
acquisition of further instances by that node, but does not hinder launches by
other running nodes. For example, in Fig. 5, if node X failed to launch properly,
nodes Y and Z will never be requested, but there is no impact on the acquisition
of nodes B, C or D. In general, while the actual number of acquired nodes may not
meet the requested N , GP (and IP discovery) can execute on all nodes that have
been acquired. We have taken the view that N will usually be large enough and
failure will be sufficiently infrequent. However, there may still be cases where the
launch did not acquire a sufficient proportion of N instances. This may occur in
the unlikely event that a node crashes very early on in the launch or in the face of
intermittent cloud service interruptions. If such a scenario arises, FlexGP enables
us to ask an existing node to run the startup protocol with new parameters. This
way, the node will try to populate the network with more resources. This same
strategy can also be used to increase the number of running instances after startup.

5.2 Distributed IP discovery

Cloud-scale systems need an established network to robustly extract information
and results. As we observed in Section 5.1, the latency for a many-node acquisition
is quite large, therefore we need to establish a communication network and start
the learning process before the last of the instances is acquired. To reduce the
latency while still achieving the networking requirements of FlexGP, we design a

FlexGP: Cloud-Based Ensemble Learning with Genetic Programming 11

Algorithm 2 IPDiscovery(R)

Λ← R

loop

λ← set of new messages received
for m in λ do

if m.type is RequestIPList then

Λ← merge(Λ, m.Λ)
RespondIPList(m.ip, Λ)

else if m.type is RespondIPList then

Λ← merge(Λ, m.Λ)
if len(Λ)< Ψ.p then

ǫ← random(Λ)
RequestIPList(ǫ)

distributed IP discovery protocol. Note, we focus here on the initial bootstrapping
of the network, i.e. the “IP discovery” problem. This is separate from the problem
of creating particular topologies in P2P networks as in [13].

Recall that as part of startup a parent node shares its IP list with all its
children. A node at level i therefore has i IP addresses at startup. We then use a
gossip protocol to populate the neighbor list at each node. First, we set a lower
limit, Ψ.p, for the number of IP addresses a node needs to acquire. It generally is a
function of the total number of nodes. We then follow the address passing protocol
shown in Algorithm2. In this protocol’s active phase, each node selfishly tries to
increase its IP addresses up to its limit by requesting more IP addresses from its
neighbors while it shares with its neighbors its IP addresses in exchange. After it
meets or exceeds the limit, in its passive phase, it serves any request it receives in
exchange for their IP addresses.

6 Bases of comparison

The experiments presented in this paper aim to compare FlexGP to state-of-the-
art regression approaches. In this section, we provide concise descriptions of the
compared approaches and the experimental parameters we used. It also reviews
the dataset we used for comparison.

6.1 MRGP vs. other single-desktop regression algorithms

As a foundation, we compare the learner currently used by FlexGP, MRGP, in
standalone mode to other single-desktop regression algorithms to justify the in-
vestment in scaling it on the cloud. We consider Multiple Linear Regression, Vow-
pal Wabbit, Feed-Forward Neural Networks, and three validated GP techniques
including the commercial tool Eureqa. This analysis will help the reader iden-
tify the best regression algorithm according to his/her own needs. For instance,
Feed-Forward Neural Networks provide highly accurate predictions but sacrifice
transparency of the models. The parameter settings of MRGP are summarized in
Table 2.

12 Kalyan Veeramachaneni et al.

Multiple Linear Regression: We obtain a linear model of the data using the
least squares approach. In the following, this approach is referred to as Multiple

Linear Regression.
Vowpal Wabbit (VW): Vowpal Wabbit is a fast out-of-core machine learning

tool [14]. VW implements an online learning algorithm based on sparse gradient
descent on a user-selected loss function (see [15]). VW generates linear models
of large datasets (that might not fit in RAM) in minimal time. We consider
three different configurations corresponding to three values of the learning rate

decay parameter:
– VW-0.5D: VW with a learning rate decay of 0.5
– VW-0.1D: VW with a learning rate decay of 0.1
– VW-0.01D: VW with a learning rate decay of 0.01

Feed Forward Neural Networks: Neural Networks can be trained to mimic
any input to output mapping. Feed Forward Neural Networks (FFNNs) are
characterized by the number of hidden layers and the number of neurons per
layer. The first layer has a connection to the network input. Each subsequent
layer has a connection from the previous layer and the final layer produces the
network’s output. In this paper, we consider four different configurations (see
Table 3):
– FFNN-1l-10n: FFNN with one hidden layer of 10 neurons
– FFNN-1l-20n: FFNN with one hidden layer of 20 neurons
– FFNN-1l-30n: FFNN with one hidden layer of 30 neurons
– FFNN-5l-20n: FFNN with five hidden layers of 20 neurons
We employ Matlab’s Neural Network Toolbox [16] to train the FFNNs. The
networks are trained via backpropagation with the Levenberg-Marquardt op-
timization.

Dynamic operator equalization Genetic Programming: We built a tree-based
GP system with subtree mutation, single point crossover and tournament selec-
tion. We incorporated linear scaling [17,18] and implemented dynamic operator
equalization [19], a technique that ensures an appropriate size distribution of
the population. This approach is referred to as DynEq-GP in the remaining of
this work. The parameter settings of this approach are summarized in Table 2.

Multi-Objective Genetic Programming (MOGP): MOGP is also a tree-based
GP system with subtree mutation, single point crossover, and post-hoc linear
scaling. However, in this case we do not use an equalization operator. Instead,
we implement a multi-objective strategy based on Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II). The algorithm minimizes both the error of the
models and the subtree complexity measure proposed in [6]. The parameter
settings of this approach are summarized in Table 2.

Optimized Multi-Objective Genetic Programming (MOGP-opt): The learn-
ing strategy is identical to MOGP. This version optimizes speed via a popula-
tion compilation technique and multi-threading.

Eureqa Desktop: Eureqa [20] is a commercial Symbolic Regression tool that
obtains short, readable models by optimizing a ratio of accuracy versus model
complexity. Although Eureqa offers distributed implementations that run on
private servers or Amazon EC2, we employ the desktop release to make an
appropriate comparison with MRGP. Table 2 shows the parameter settings of
this approach.

FlexGP: Cloud-Based Ensemble Learning with Genetic Programming 13

Parameter DynEq-GP MOGP/MOGP-opt MRGP Eureqa
pop size 1000 1000 1000 -

selection
Dynamic Eq. with NSGAII with NSGAII with

-
tournament selection crowded Tournament crowded Tournament

crossover Single Point Crossover Single Point Crossover Single Point Crossover -
mutation Subtree mutation Subtree mutation Subtree mutation -
Error MSE MSE Multiple regression error MSE
Complexity - Subtree Complexity Subtree Complexity -
Threads 1 1/4 4 4

Table 2: Parameters settings of the Symbolic Regression Strategies based on Ge-
netic Programming.

Parameter FFNN-1l-10n FFNN-1l-20n FFNN-1l-30n FFNN-5l-20n
hidden layers 1 1 1 5
neurons per layer 10 20 30 20
Training algorithm Backprop. Backprop. Backprop. Backprop.
Error MSE MSE MSE MSE
Threads 4 4 4 4

Table 3: Parameters settings of the Feed-Forward Neural Networks.

Method Stop Criterion replicas
Multiple Linear Regression - 1
Vowpal Wabbit 100 passes or convergence 1
Feed-Forward Neural Networks 100 epochs or convergence 10
GP-Based Symbolic Regression end of generation after 1 hour 10

Table 4: Stop criteria and number of replicas of the different regression algorithms.

Due to the different nature of the compared algorithms, it is not straightforward
to ensure equal conditions for all the algorithms. Instead, we set the stop criteria
summarized in Table 4 and focus the analysis on the trade-off between accuracy
and waiting time of the studied algorithms. The limit of one hour for the runs is
motivated by the fact that cloud computing providers such as Amazon AWS do
not charge fractional hours [21]. This means that, cost-wise, there is no benefit in
reducing the running time below one hour.

We run all the algorithms on the same machine, equipped with an Intel Core-
i7-3930K composed of 6 cores with hyper-threading running at 3.20GHz, 32GB
of RAM, and a SSD drive. Note that we run 10 replicas of the algorithms that
present a stochastic nature, i.e. Feed-Forward Neural Networks, and all GP-Based
Symbolic Regression methods.

6.2 FlexGP vs. Single-Desktop MRGP

We analyze whether exploiting the different levels of parallelism of Genetic Pro-
gramming allows better solutions to be obtained in a shorter time. FlexGP runs
many instances of Multiple Regression Genetic Programming on the cloud, each
with a different subset of the data and a sample of the explanatory variables of
the problem. Moreover, each instance of MRGP is executed in a multi-threaded
fashion to exploit the evaluation parallelism of GP.

14 Kalyan Veeramachaneni et al.

Dtr Df Dte Total

Exemplars
362K 51K 102K 515K
70% 10% 20% 100%

Features 90 90 90 90
use single-desktop training testing -
use FlexGP training fusion train testing -

Table 5: MSD splits

This experimental setup assumes the need of transparent, accurate, non-linear
models in a reduced time and great availability of compute resources. The latter
assumption is valid in cloud environments where compute resources are inexpensive
and readily accessible in large quantities.

6.3 Million Song Dataset

We employ the Million Song Dataset (MSD) year prediction challenge introduced
in [22]. It is a popular regression problem in which the goal is to predict the
release year of a large set of songs. The size and dimensionality of the dataset are
challenging, since it is composed of 515K songs, each described with 90 features
and a year label. We generate the splits Dtr, Df , and Dte accounting for 70%,
10%, and 20% of the data respectively (see Table 5). Note that the producer effect

issue has been taken into account to perform all the splits.

7 Results

We first compare MRGP, the core learner of FlexGP (Section 3), with state-of-
the-art regression algorithms. Then, we analyze whether FlexGP improves the
results obtained with the single-desktop version of MRGP and whether it generates
accurate models in a shorter time.

7.1 Analysis of Single-Desktop Regression Algorithms

Table 6 shows the Mean Squared Error (MSE) and training time of the approaches
compared in this analysis. We also depict in Figure 6 the trade-off between waiting
time and error the models obtained with Multiple Linear Regression, Vowpal-
Wabbit, Feed-Forward Neural Networks, and the GP-based Symbolic Regression
methods MOGP, MOGP-opt, Eureqa, and MRGP.

Linear Regression: Linear Regression methods obtain accurate models in a very
reduced time. It is worth noting that VW obtains an accuracy very close to
the least-squares linear fit in only 9.18 seconds.

Feed-Forward Neural Networks: FFNNs provide the most accurate predic-
tions, obtaining a MSE of only 75.117 in the case of the network composed
of 5 hidden layers, each with 20 neurons. The training time of FFNNs de-
pends on the structure of the network, which in turn determines the number
of parameters that need to be learned during the training process.

FlexGP: Cloud-Based Ensemble Learning with Genetic Programming 15

Method Method MSE Time (seconds)

Linear Regression

Multiple Linear Regression 87.225 31.04
VW-0.5D 107.308 7.74
VW-0.1D 89.706 7.73
VW-0.01D 87.233 9.18

Feed-Forward Neural Networks

FFNN-1l-10n 77.015 1312.96
FFNN-1l-20n 76.474 2122.00
FFNN-1l-30n 76.454 3231.05
FFNN-5l-20n 75.117 4208.61

GP-Based Symbolic Regression

DynEq-GP 112.563 48323.84
MOGP 112.603 3600.00
MOGP-opt 106.780 3600.00
Eureqa 96.862 3600.00
MRGP 85.666 3600.00

Table 6: Testing set Mean Squared Error (MSE) and learning time of state-of-the-
art regression techniques on the Million Song Dataset.

GP-Based Symbolic Regression: GP-based methods present different behav-
iors. DynEq-GP is impractical because the first generation is extremely time
consuming (48323.84 seconds) and makes it hard to conform to the provided
computational budget. MOGP obtains an accuracy similar to DynEq-GP but
in a significantly shorter time. MOGP-opt outperforms both DynEq-GP and
MOGP but it remains highly time consuming and the achieved accuracy is far
from that of linear models. Eureqa significantly outperforms the approaches
based purely on Genetic Programming, i.e. DynEq-GP, MOGP, and MOGP-
opt.

MRGP: FlexGP’s local learner outperforms DynEq-GP, MOGP, MOGP-opt,
and Eureqa given the training time limit of one hour. It also outperforms the
accuracy achieved with linear regression methods. Therefore, it is the method
that generates the most accurate transparent models.

Fig. 6: MSE vs waiting time trade-off of the models obtained with Multiple Lin-
ear Regression, Vowpal-Wabbit, Feed-Forward Neural Networks, and GP-based
Symbolic Regression methods MOGP, MOGP-opt,Eureqa, and MRGP.

16 Kalyan Veeramachaneni et al.

Parameter cloud nodes flavor exemplars n feature set size p

FlexGP-DATA 100 s1.4core 10% 100%
FlexGP-DATA-VARS 100 s1.4core 10% 50%

Table 7: FlexGP configurations.

A deeper analysis of the MRGP runs reveals that, due to the high cost of its
fitness evaluation, fewer evaluations are executed with respect to the other GP-
based methods. With this observation in mind, we posit that MRGP can benefit
from a data-parallel deployment with our FlexGP framework to reduce its training
time and hopefully improve its final accuracy.

It is worth noting that, in previous works, we have employed FlexGP to run
different GP-Based Symbolic Regression methods, namely DynEq-GP [23,10],
MOGP, and MOGP-opt [24] on MSD and other benchmarks. Given that MRGP
outperforms these three methods, we expect to improve upon previous results
when we deploy MRGP with the FlexGP platform.

7.2 Ensemble Learning with FlexGP

We deploy the Multiple Regression Genetic Programming learner with FlexGP
on our private OpenStack development cloud. We study two different FlexGP
configurations corresponding to two learning strategies. The parameters of these
two configurations are summarized in Table 7 and detailed in the following:

1. FlexGP-DATA: We run 100 copies of the algorithm, each learning from a dif-
ferent 10% split of the training data. We refer to this configuration as FlexGP-

DATA.
2. FlexGP-DATA-VARS: In addition, we analyze whether factoring explana-

tory variables helps improving the accuracy of the fused model to solve this
particular problem. We also run 100 FlexGP nodes, each with a 10% split of
the data and a random sample of 50% of the variables of the problem. We call
this second configuration FlexGP-DATA-VARS.

In both cases, all the cloud nodes are run with the s1.4core flavor, that is, a virtual
machine with the following specs: 4 VCPUs, 2GB RAM, and 10.0GB Disk. We
exploit the multicore flavor by running each of the local copies of the algorithm in
a 4-threaded fashion. Note that the runs are replicated 10 times.

We retrieve the models generated after 5, 10, 15, 30, 45, and 60 minutes and
perform the filtering and fusion processes at each time step. The average error of
the fused model (or meta-model) at the different time steps is shown in Table 8.

FlexGP-DATA vs FlexGP-DATA-VARS: FlexGP-DATA clearly outperforms
FlexGP-DATA-VARS. In the first case, the error is progressively reduced over
time and reaches 84.304 at the end of the run (60 minutes). On the other hand,
the final error of FlexGP-DATA-VARS is 96.606. It appears, in this particular
problem, that larger subsets, perhaps only the full set, of variables are required.

FlexGP vs MRGP: With respect to the single-desktop version, FlexGP-DATA

improves the final accuracy of the fused model (84.304 vs. 85.666). Moreover,
as soon as in the first 10 minutes of the run, FlexGP-DATA obtains a fused

FlexGP: Cloud-Based Ensemble Learning with Genetic Programming 17

Approach MSE@5 MSE@10 MSE@15 MSE@30 MSE@45 MSE@60
FlexGP-DATA 86.102 85.522 85.480 84.921 84.643 84.304
FlexGP-DATA-VARS 98.896 97.428 97.355 96.446 96.220 96.606

Table 8: MSE of the fused model at different time steps of the FlexGP runs. The
errors are averaged over 10 runs.

model with an average MSE of 85.222, an error lower than the obtained with
the single-desktop MRGP running for one hour.

The results presented in this paper show that significant speedup can be ob-
tained by deploying MRGP in a data-parallel manner with FlexGP. Moreover,
when large datasets that do not fit in RAM are targeted, the memory footprint
and running time of each instance do not increase when the learning data at each
instance is kept constant.

We have also shown that the fused model built with FlexGP outperforms the
models obtained with the single-desktop version of MRGP. This difference was,
however, more significant in previous works (see [10]). In the referred work, the
core learner was Dynamic operator Equalization Genetic Programming and the re-
trieved models performed poorly when evaluated individually. The fusion process
improved the accuracy significantly by assigning appropriate weights to the differ-
ent weak models. In the experiments presented in this paper, the fusion process
via ARM enhances only marginally the performance of individual models. Two ob-
servations explain the observed behavior. First, the core learner MRGP presents
low variability between runs, and yields competitive models with correlated pre-
dictions. Therefore, weighting these models via ARM does not change significantly
the predictions made by the individual models. Second, we have verified that the
models trained with a reduced subset (only 10%) of the training data achieve a
performance on unseen data similar to that of models trained with the complete
training set. This can be caused by the technique employed to sample examples
at each instance, which takes into account the producer effect and, as a result,
generates splits that maintain the original distribution of the data.

8 Related Work

There is a large body of distributed EC research which focuses exclusively on the
design of distributed, algorithmic models, like island-based GP [25], but are not
designed to take advantage of a particular resource type or communication layer.
Much of this work is only tangentially related to FlexGP, as we developed an EC
platform which takes advantage of the cloud platform. The systems in [26,27,28,
29,30] rely upon MapReduce for parallelization. MapReduce is a powerful platform
for distributed computation, but its dependence upon a distributed file system,
single point of failure in the master and synchronization bottlenecks are not a
good match for an iterative approach like Genetic Programming-based symbolic
regression.

FlexGP’s IP discovery is like other EC peer-to-peer systems. For example, the
EvAg system introduced in [31,32] also relies upon gossiping for node discovery.
Little information is available on its startup method. It is not specialized to run
on particular resource types whereas it is designed to investigate topology and

18 Kalyan Veeramachaneni et al.

a fine grained distribution model. EvAg and FlexGP differ in how they intro-
duce evolutionary diversity: EvAg employs different operators across randomized
neighbourhood whereas FlexGP factors each island with differentiation of data
and input variables. Folino et al. [33] introduced peer to peer based design for
building classifier ensembles.

Over the past two decades numerous researchers in the machine learning com-
munity have pursued the idea of generating a great quantity of models for the
same data [34,35,36,37,38]. Similarly, the task of combining predictions from an
ensemble of models has attracted attention in recent years. This follows from two
observations: there is usually not a single explanation for the data, and multiple
models cover the observation space in a more robust manner than a single model
can. Initially researchers focused on methods which generated multiple models
from the same data irrespective of what kind of learner was being used. These
methods relied on repeated subset sampling methods with replacement, e.g. bag-
ging introduced by Breiman [39] and iterative sampling methods, e.g. boosting
proposed by Freund [40]. Other examples include random forests [41] and Ad-
aboost [42]. In this work, in addition to these subset sampling techniques, we
focus on how the changing the parameters of the base learner can generate multi-
ple models. We also explore how subsampling can allow us to learn from smaller
dataset that could potentially fit in the main memory in addition to reducing the
time for each iteration in GP.

When looking at ensembles built using GP, most of the work has focused on
classification [43,44,45,46,47,48]. In classification with GP, models are either built
to output discrete class labels or are constructed to yield a continuous number
which leads to a class label when converted into class probabilities. As demon-
strated in [49], multiple class labels can be fused via majority vote or a sophisti-
cated criterion.

Conversely, there has been very little research on regression ensembles; some
examples include the works [50,51,52]. GP based regression ensembles present
two challenges. First, in regression, due to the unconstrained nature of GP models
one must perform multiple tests which can guarantee models’ outputs are within
a reasonable range for any unseen data point before the model is admitted into
an ensemble. Second, in classical machine learning, many examine methods for
combining ensembles of parametric models. These methods attempt to understand
the differences in the models based on their parameters and/or produce a fused
model by fusing the parameters. However, for a structure free, parameter free
approach, one has to rely on developing a fusion model in the output space. To
fuse outputs of models from such regression ensembles, most current approaches
use simple averaging techniques. In FlexGP we utilize a fusion method called ARM
introduced by Yang [11] which trains a meta model using a subset of data set aside
for fusion training. The method is low overhead and produces a linear combination
of the models in the ensemble. This achieves superior and more stable performance
than simple averaging.

9 Conclusions

We have described FlexGP, the first Genetic Programming system to perform
regression on large-scale datasets on the cloud via massive data-parallel ensem-

FlexGP: Cloud-Based Ensemble Learning with Genetic Programming 19

ble learning. To overcome cloud failures, FlexGP implements an asynchronous,
fault-tolerant cascaded launch protocol and a decentralized communication layer.
It launches many copies of Multiple Regression Genetic Programming, a novel re-
gression method that combines tree-based Genetic Programming with Lasso. The
independent copies run with different parameters and learn from different samples
of the data, thereby reducing the computational burden on each learner and gen-
erating a diverse ensemble of models. FlexGP allows the best models of the run to
be retrieved online, and to build a meta-model by means of a model filtering and
fusion process.

We demonstrate our approach with the Million Song Dataset year prediction
challenge, a large regression problem in which the goal is to predict the release
year of 515K songs. We first compare MRGP, i.e. FlexGP’s local learner, against a
variety of state-of-the-art regression methods. We show that MRGP outperforms
all methods that provide transparent models, i.e. GP-based symbolic regression
and linear regression methods, given a training time limit of one hour. Additionally,
we deploy the MRGP learner with FlexGP in a massive data-parallel manner. The
performed experiments show that exploiting the data, run, and evaluation levels
of parallelism of Genetic Programming allows for more accurate solutions to be
obtained in a shorter time.

We plan to release FlexGP and offer it to researchers in the need of a large-scale
symbolic regression tool. We encourage the EC community to develop competitive
regression methods and to use FlexGP to deploy them on the cloud in a data-
parallel manner to tackle large-scale data problems.

Acknowledgements The authors would like to thank Dylan Sherry for his valuable contri-
butions to the FlexGP project and Dr. Krzysztof Krawiec for his contributions to the MRGP
method. The ALFA group gratefully recognizes the financial support of the Li Ka Shing Foun-
dation and the G.E. Global Research Center. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not necessarily reflect
the views of G.E.

References

1. M. Friese, O. Flasch, K. Vladislavleva, T. Bartz-Beielstein, O. Mersmann, B. Naujoks,
J. Stork, M. Zaefferer, in Proceedings of the 22nd Workshop Computational Intelligence
(Dortmund, Germany, 2012), pp. 215–227

2. M. Schmidt, H. Lipson, Science 324(5923), 81 (2009)
3. A. Choudhury, P.B. Nair, A.J. Keane, et al., in Proceedings of the Second SIAM Interna-

tional Conference on Data Mining (SIAM, 2002), pp. 95–111
4. R. Tibshirani, Journal of the Royal Statistical Society, Series B 58, 267 (1994)
5. I. Arnaldo, K. Krawiec, U.M. O’Reilly, in Proceedings of the 2014 Conference on Genetic

and Evolutionary Computation (ACM, New York, NY, USA, 2014), GECCO ’14, pp.
879–886. DOI 10.1145/2576768.2598291

6. E. Vladislavleva, Model-based Problem Solving through Symbolic Regression via Pareto
Genetic Programming. Ph.D. thesis, Tilburg University, Tilburg, the Netherlands (2008)

7. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, Evolutionary Computation, IEEE Trans-
actions on 6(2), 182 (2002). DOI 10.1109/4235.996017

8. Y. Ganjisaffar. Lasso4j. https://code.google.com/p/lasso4j/ (2014)
9. J.H. Friedman, T. Hastie, R. Tibshirani, Journal of Statistical Software 33(1), 1 (2010)

10. K. Veeramachaneni, O. Derby, D. Sherry, U.M. O’Reilly, in Proceedings of the 15th An-
nual Conference on Genetic and Evolutionary Computation (ACM, New York, NY, USA,
2013), GECCO ’13, pp. 1117–1124. DOI 10.1145/2463372.2463506

11. Y. Yang, Journal of the American Statistical Association 96(454), 574 (2001)

https://code.google.com/p/lasso4j/

20 Kalyan Veeramachaneni et al.

12. O. Derby, FlexGP : a scalable system for factored learning in the cloud. Master’s thesis,
Massachusetts Institute of Technology (2013)

13. M. Jelasity, A. Montresor, O. Babaoglu, Computer Networks 53(13), 2321 (2009). DOI
10.1016/j.comnet.2009.03.013. Gossiping in Distributed Systems

14. J. Langford. Vowpal wabbit. http://hunch.net/~vw/ (2014)
15. J. Langford, L. Li, T. Zhang, Journal of Machine Learning Research 10, 777 (2009)
16. MathWorks. Neural network toolbox (2014). URL

http://www.mathworks.com/products/neural-network/
17. M. Keijzer, in Genetic Programming, Lecture Notes in Computer Science, vol. 2610, ed. by

C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, E. Costa (Springer Berlin / Heidelberg,
2003), pp. 275–299

18. C. Vladislavleva, G. Smits, Final Thesis for Dow Benelux BV (2005)
19. S. Silva, S. Dignum, L. Vanneschi, Genetic Programming and Evolvable Machines 13(2),

197 (2012)
20. (2014). http://www.nutonian.com/products/eureqa/
21. (2014). http://aws.amazon.com/
22. T. Bertin-Mahieux, D.P. Ellis, B. Whitman, P. Lamere, in Proceedings of the 12th Inter-

national Conference on Music Information Retrieval (ISMIR 2011) (2011)
23. D. Sherry, K. Veeramachaneni, J. McDermott, U.M. O’Reilly, in Applications of Evolu-

tionary Computation, ed. by C.D. Chio, A. Agapitos, S. Cagnoni, C. Cotta, F.F.d. Vega,
G.A.D. Caro, R. Drechsler, A. Ekárt, A.I. Esparcia-Alcázar, M. Farooq, W.B. Langdon,
J.J. Merelo-Guervós, M. Preuss, H. Richter, S. Silva, A. Simes, G. Squillero, E. Tarantino,
A.G.B. Tettamanzi, J. Togelius, N. Urquhart, A.. Uyar, G.N. Yannakakis, no. 7248 in
Lecture Notes in Computer Science (Springer Berlin Heidelberg, 2012), pp. 477–486

24. D.J. Sherry, FlexGP 2.0: multiple levels of parallelism in distributed machine learning via
genetic programming. Master’s thesis, Massachusetts Institute of Technology (2013)

25. F. Fernández, M. Tomassini, L. Vanneschi, Genetic Programming and Evolvable Machines
4(1), 21 (2003). DOI 10.1023/A:1021873026259

26. P. Fazenda, J. McDermott, U.M. O’Reilly, in Applications of Evolutionary Computation,
Lecture Notes in Computer Science, vol. 7248, ed. by C. Chio, A. Agapitos, S. Cagnoni,
C. Cotta, F. Vega, G. Caro, R. Drechsler, A. Ekárt, A. Esparcia-Alcázar, M. Farooq,
W. Langdon, J. Merelo-Guervós, M. Preuss, H. Richter, S. Silva, A. Simes, G. Squillero,
E. Tarantino, A. Tettamanzi, J. Togelius, N. Urquhart, . Uyar, G. Yannakakis (Springer
Berlin Heidelberg, 2012), pp. 416–425. DOI 10.1007/978-3-642-29178-4 42

27. S. Wang, B.J. Gao, K. Wang, H.W. Lauw, in Proceedings of the 34th International ACM
SIGIR Conference on Research and Development in Information Retrieval (ACM, New
York, NY, USA, 2011), SIGIR ’11, pp. 1083–1084. DOI 10.1145/2009916.2010060

28. A. Verma, X. Llora, D. Goldberg, R. Campbell, in Intelligent Systems Design and Ap-
plications, 2009. ISDA ’09. Ninth International Conference on (2009), pp. 13–18. DOI
10.1109/ISDA.2009.181

29. A. Verma, X. Llora, S. Venkataraman, D. Goldberg, R. Campbell, in Evolutionary Compu-
tation (CEC), 2010 IEEE Congress on (2010), pp. 1–8. DOI 10.1109/CEC.2010.5586468

30. D.W. Huang, J. Lin, in Cloud Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference on (2010), pp. 780–785. DOI 10.1109/CloudCom.
2010.18

31. J. Jiménez Laredo, D. Lombrańa González, F. Fernández de Vega, M. Garćıa Arenas,
J. Merelo Guervós, in Genetic Programming, Lecture Notes in Computer Science, vol.
6621, ed. by S. Silva, J. Foster, M. Nicolau, P. Machado, M. Giacobini (Springer Berlin
Heidelberg, 2011), pp. 108–117. DOI 10.1007/978-3-642-20407-4 10

32. J. Laredo, A. Eiben, M. Steen, J. Merelo, Genetic Programming and Evolvable Machines
11, 227 (2010). DOI 10.1007/s10710-009-9096-z

33. G. Folino, A. Forestiero, G. Spezzano, Journal of Software 1(2), 12 (2006)
34. M.P. Perrone, L.N. Cooper, in Neural Networks for Speech and Image processing, ed. by

R. Mammone (Chapman and Hall, 1993), pp. 126–142
35. A. Krogh, J. Vedelsby, Advances in neural information processing systems 7 pp. 231–238

(1995)
36. J.R. Quinlan, in Proceedings of the Thirteenth National Conference on Artificial Intelli-

gence - Volume 1 (AAAI Press, 1996), AAAI’96, pp. 725–730
37. T. Dietterich, Machine learning 40(2), 139 (2000)
38. T. Dietterich, in Multiple Classifier Systems, Lecture Notes in Computer Science, vol.

1857 (Springer Berlin Heidelberg, 2000), pp. 1–15. DOI 10.1007/3-540-45014-9 1

http://hunch.net/~vw/
http://www.mathworks.com/products/neural-network/
http://www.nutonian.com/products/eureqa/
http://aws.amazon.com/

FlexGP: Cloud-Based Ensemble Learning with Genetic Programming 21

39. L. Breiman, Machine learning 24(2), 123 (1996)
40. Y. Freund, R. Schapire, in Machine learning international conference (Morgan Kauffman

Publishers, Inc., 1996), pp. 148–156
41. L. Breiman, Machine learning 45(1), 5 (2001)
42. Y. Freund, R.E. Schapire, Journal of computer and system sciences 55(1), 119 (1997)
43. K. Imamura, T. Soule, R. Heckendorn, J. Foster, Genetic Programming and Evolvable

Machines 4(3), 235 (2003)
44. U. Bhowan, M. Johnston, M. Zhang, X. Yao, Evolutionary Computation, IEEE Transac-

tions on (2012). DOI 10.1109/TEVC.2012.2199119
45. W. Langdon, S. Barrett, B. Buxton, in Genetic Programming, Lecture Notes in Computer

Science, vol. 2278, ed. by J. Foster, E. Lutton, J. Miller, C. Ryan, A. Tettamanzi (Springer
Berlin Heidelberg, 2002), pp. 60–70. DOI 10.1007/3-540-45984-7 6

46. U. Johansson, T. Löfström, R. König, L. Niklasson, Artificial Intelligence and Soft
Computing–ICAISC 2006 pp. 613–622 (2006)

47. G. Folino, C. Pizzuti, G. Spezzano, in Genetic Programming, Lecture Notes in Computer
Science, vol. 4445, ed. by M. Ebner, M. O’Neill, A. Ekárt, L. Vanneschi, A. Esparcia-
Alcázar (Springer Berlin Heidelberg, 2007), pp. 160–169. DOI 10.1007/978-3-540-71605-1
15

48. P.L. Lanzi, in Proceedings of the 2003 Congress on Evolutionary Computation CEC2003,
ed. by R. Sarker, R. Reynolds, H. Abbass, K.C. Tan, B. McKay, D. Essam, T. Gedeon
(IEEE Press, Canberra, 2003), pp. 1186–1191

49. J. Kittler, M. Hatef, R. Duin, J. Matas, Pattern Analysis and Machine Intelligence, IEEE
Transactions on 20(3), 226 (1998)

50. H. Iba, in Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2,
ed. by W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E.
Smith (Morgan Kaufmann, Orlando, Florida, USA, 1999), vol. 2, pp. 1053–1060

51. K. Veeramachaneni, K. Vladislavleva, M. Burland, J. Parcon, U.M. O’Reilly, in Proceedings
of the 12th annual conference on Genetic and evolutionary computation (ACM, 2010),
pp. 1291–1298

52. M. Kotanchek, G. Smits, E. Vladislavleva, in Genetic Programming Theory and Practice
V, ed. by R. Riolo, T. Soule, B. Worzel, Genetic and Evolutionary Computation Series
(Springer US, 2008), pp. 201–220. DOI 10.1007/978-0-387-76308-8 12

	Introduction
	FlexGP overview
	Multiple Regression Genetic Programming
	Ensemble Learning
	Decentralized Machine Learning platform for running MRGP
	Bases of comparison
	Results
	Related Work
	Conclusions

