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Abstract—Over the past decade, soft microprocessors and vec-
tor processors have been extensively used in FPGAs for a wide va-
riety of applications. However, it is difficult to straightforwardly
extend their functionality to support conditional and thread-
based execution characteristic of general-purpose graphics pro-
cessing units (GPGPUs) without recompiling FPGA hardware for
each application. In this paper, we describe the implementation of
FlexGrip, a soft GPGPU architecture which has been optimized
for FPGA implementation. This architecture supports direct
CUDA compilation to a binary which is executable on the FPGA-
based GPGPU without hardware recompilation. Our architecture
is customizable, thus providing the FPGA designer with a
selection of GPGPU cores which display performance versus
area tradeoffs. The benefits of our architecture are evaluated
for a collection of five standard CUDA benchmarks which are
compiled using standard GPGPU compilation tools. Speedups
of up to 30× versus a MicroBlaze microprocessor are achieved
for designs which take advantage of the conditional execution
capabilities offered by FlexGrip.

I. INTRODUCTION

Over the past ten years, soft microprocessors have become

ubiquitous in FPGA design [1]. Most FPGA designs use soft

processors for sequential tasks, such as I/O interfacing and

control that do not demand high performance. The benefits of

soft processor usage include the ability of software designers

to specify functionality in a familiar high-level language (e.g.

C) and the flexibility to modify this functionality for the FPGA

device without the need to recompile FPGA logic, a time-

consuming process that can range from minutes to days. The

success of soft microprocessors has led to alternative compute

models which follow a similar simple program-compile design

flow. Recently, soft vector processors [2][3], which provide

performance benefits for applications exhibiting significant

data parallelism have appeared. Although soft vector proces-

sors address a portion of the data parallel spectrum, they

are limited in their support for significant multithreaded and

conditional program execution. Multithreaded soft processors

have been reported [4][5], although they have generally been

constrained to executing a small number of threads.

Graphics processing units for general purpose computing

(GPGPUs) have exploded onto the computing scene over

the past five years as languages and compilers to program

them have become more programmer-friendly to use. Today,

GPUs are widely used to evaluate highly multithreaded data

parallel applications expressed in high-level languages such as

CUDA and OpenCL. A critical benefit of these devices is their

ability to automatically manage the execution of highly multi-

threaded applications in hardware, freeing the programmer

to focus on achieving maximum parallelization by writing

efficient CUDA code. Although a number of previous projects

have explored mapping GPU languages directly to FPGA

hardware [6][7], “GPU-like” soft FPGA architectures [8][9],

and soft multi-cores [10], a soft GPGPU architecture which

allows for direct execution of CUDA binary code following

compilation with the CUDA compile-time environment has not

been reported. Previous architectures also primarily consider

hardware synthesis for each application, which is a lengthy

and potentially infeasible option for designers which desire to

execute a number of GPGPU applications on the same FPGA

substrate.

This paper focuses on the implementation of FlexGrip

(FLEXible GRaphIcs Processor for general-purpose comput-

ing), a fully CUDA binary-compatible integer GPGPU which

has been optimized for FPGA implementation. The amount

of parallelism is customizable at multiple levels including the

number of parallel operations per instruction (processors) per

multiprocessor. The interaction between FlexGrip and an on-

chip MicroBlaze soft processor is coordinated allowing for

the seamless execution of sequential and parallel portions of

a CUDA program. The hardware can be used for numerous

CUDA programs without hardware resynthesis.

FlexGrip has been designed based on the NVIDIA G80

architecture [11] with compute capability, version 1.0. The

architecture has been implemented in VHDL for a variety

of parameters and evaluated in hardware using an ML605

Virtex-6 FPGA platform which includes DRAM. The RTL

code supporting FlexGrip has been written to allow the design

to be quickly customized for a variety of FPGA devices. A

total of five CUDA benchmarks have been directly compiled

to the architecture using standard NVIDIA compiler products.

The effects of customizing the architecture to the numerous

small memories, optimized external memory interfaces, and

on-chip digital signal processing (DSP) units commonly found

in FPGAs strongly influenced the architecture and its FPGA

implementation.

The remainder of this paper is structured as follows. Section

II provides background on similar work and an overview of

relevant features of GPUs. Section III describes the archi-

tecture of FlexGrip and provides an overview of the entire

FlexGrip system including the soft GPGPU, MicroBlaze, and

the DRAM interface. Section IV describes our experimental

approach and results are detailed in Section V. Section VI

concludes the paper and offers directions for future work.
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II. BACKGROUND

A. GPGPUs

GPGPUs have a many-core device architecture and possess

substantial parallel processing capabilities. As shown in Fig.

1, a typical GPGPU consists of an array of multiprocessors

(each with two or more processors) enabling the device to

execute numerous threads in parallel. In a GPGPU, a majority

of the silicon area is dedicated to data processing units with

only a small portion assigned to data caching and flow control

circuitry. Such a design architecture makes a GPGPU suitable

for solving streaming compute-intensive problems.

Although several different companies manufacture GPG-

PUs, in describing the devices we will use terminology com-

monly used with NVIDIA devices. A GPGPU is primarily

made up of an array of streaming multiprocessors (SMs), with

each multiprocessor consisting of multiple scalar processor
(SP) cores that generally use 32-bit operands. The term stream-
ing multiprocessor implies that scalar processors in an SM

perform the same operation, SIMD style. The vector register

file contains a pool of registers that is strictly partitioned across

scalar processors. This way, every processor uses its own set

of registers to store operands and intermediate results, steering

them clear of any data dependent hazards. A shared memory

serves as a communication medium between different cores

residing in the same SM. In addition, there is a read-only

constant memory accessible by all the threads. The constant

memory space is a cache for each SM, thus allowing fast data

access as long as all threads read the same memory address.

In the CUDA programming model, the host program

launches a series of kernels organized as a grid of thread
blocks. A thread block represents a collection of operations

which can be performed in parallel. The NVIDIA device ar-

chitecture partitions thread blocks and groups them into warps,

where a warp is a smaller set of simultaneous operations, some

of which may be performed conditionally. Multiple warps

may be assigned to a single SM and scheduled over time.

To manage fine-grained scheduling, each SM is architected

as a single instruction, multiple-thread (SIMT) processor. A

single instruction is mapped to the scalar processors in the

SM and each processor thread maintains its own program

counter (PC). Every thread performs the same operation on

a different set of data, but is free to independently execute

data-dependent branches. Branching threads diverge from the

normal execution flow and scalar processors which do not

execute the branch must be marked (deactivated) during this

execution. The instructions pointed to by the branching threads

are executed serially, while the non-branching threads are

masked.

B. Differences between GPGPUs and Vector Processors

In general, GPGPUs and vector processors have many

similarities and a few differences [12]. Both architectures

support wide data parallel, SIMD-style computation using

multiple parallel compute lanes, provide support for con-

ditional operations, and require optimized interfaces to on-

chip and off-chip memory. However, soft vector processors

contain a number of limitations regarding implementation and

compiler support that are addressed by GPU architectures. The

following GPGPU-specific issues are explored as part of this

work:

1) GPGPUs provide support for significant amounts of

compute threads both within an SM and across SMs.

Vector processors are generally limited to a single thread

per SIMD processor (similar to an SM). Our architecture

supports the implementation of numerous threads.

2) The memory system for GPGPUs is architected to take

advantage of the presence of numerous threads which

can be switched with low overhead by a thread sched-

uler. Vector processors generally rely on deep pipelining

to overcome memory latency.

3) The conditional branch mechanism for GPGPUs is typ-

ically implemented in hardware to simplify both the

user programming model and the associated compiler.

The burden for handling conditional operations in vector

processors generally falls on both the programmer and

the compiler, often leading to inefficiencies.

FlexGrip has been designed to address all three points, al-

though for this initial implementation, more emphasis has been

placed on the first and third points, support for multithreading

and conditional branch implementation.



C. Related Work

A number of previous projects have examined the imple-

mentation of data parallel applications on FPGAs. The VE-

GAS [3] and VENICE projects [13] examine the implementa-

tion of soft vector processors on a range of FPGAs. These

architectures support a customizable number of operations

performed in parallel, a optimized memory interface, and a

compiler. The VESPA project [2] explored a similar approach

and also considered the customization of the soft vector

processor instruction set and data bit widths. As mentioned in

the previous section, although similar, vector processors have

a more constrained operating model compared to GPGPUs.

Specifically, vector processors require a compiler to perform

strip mining of vector accesses and explicitly manage the

implementation of multiple threads.

Several FPGA-targeted projects consider the mapping of

GPGPU applications represented in OpenCL to multithreaded

implementations. The OpenRCL project [10] focused on a

compiler for a multi-core architecture. The results for a single

application mapped to a 30-core architecture using this LLVM-

based compiler showed a 5× power improvement versus

a commercial GPU for similar performance. Kingyens and

Steffan [8] described a GPU-like architecture which includes

substantial multithreading. This architecture was described in

the context of a graphics application although it was not

fully implemented in RTL or in hardware. Al-Dujaili, et al.
[9] implemented a simple GPU-like processor which requires

hand-compilation of GPU programs. The memory interface

limits operational speed. Although these projects examined a

similar goal to ours, the ability to target CUDA or OpenCL

code to FPGAs without hardware recompile, the architectures

and compilers do not take advantage of the dynamic thread

scheduling, memory access, and coordinated parallel branch

mechanism found in GPGPUs and expected by GPGPU com-

pilers. Our implementation is fully compatible with CUDA

integer binaries and typical GPGPU operation.

A number of recent projects, including one commercial

offering, have examined synthesizing designs specified in

CUDA and OpenCL to application-specific circuits imple-

mented in FPGAs. The MARC architecture [14], a multi-core

with custom datapaths, was optimized on a per-application

basis to achieve competitive performance versus full-custom

FPGA implementation. The FCUDA project [6] developed

a tool which converts CUDA programs to a synthesizable

version of C. A high-level synthesis tool and FPGA compiler

then converts this code to hardware circuits. Owaida, et al.
[7] presented an approach which converts OpenCL code to

a synthesizable RTL template. This approach is appropriate

for applications and programmer coding styles which match

well with the template. Finally, Altera has developed an

OpenCL compiler [15] which converts OpenCL programs to

a series of custom parallel compute cores. Although all of

these approaches generate circuits which are optimized for a

specific application and reap the associated area, performance,

and energy benefits, they all require the substantial compile

time associated with FPGA synthesis, place, and route. The

migration of a new application to the FPGA requires substan-

tially more time than the few seconds normally found when

targeting CUDA programs to GPGPUs.

Our approach attempts to effectively support the CUDA

programming and compile environments available to GPU

programmers on FPGAs without the need for costly hardware

compilation or remapping to parallel RISC-style integer cores.

We envision such a system as being particularly useful for

environments such as computing-in-the-cloud or embedded

processing where compute nodes contain reconfigurable logic

that may be used for many different purposes at different

times. In these cases, the extra cost, complexity, or power

consumption of an off-the-shelf GPGPU in the nodes may be

unwanted or unnecessary. The soft GPGPU can be swapped

into the FPGA as needed and used to execute recently-

compiled (perhaps on-the-fly compiled) CUDA code. Our

approach provides a fast way to target CUDA programs to

these environments.

D. GPGPU Optimizations for the FPGA and Contributions

In developing the soft GPGPU, a series of optimizations

for FPGA implementation were considered. These optimiza-

tions, which include the effective use of block RAMs and

DSP blocks, are critical to FlexGrip performance. Specific

contributions of our work include:

• We provide a detailed analysis of the operation and

resources consumed by the FlexGrip design along with

energy and power consumption.

• Our approach to implementing the hardware-based con-

ditional branch control circuitry that is central to GPU

architectures is analyzed.

• We consider FPGA performance tradeoffs as the number

of scalar processors in the soft GPGPU are varied. The

variation in compute density also affects the energy con-

sumption of the device. We evaluate the performance and

energy consumption of the architecture versus a compet-

ing soft processor approach using a Xilinx MicroBlaze.

The numerical results of these contributions are quantified

in Section V.

III. FLEXGRIP SYSTEM OVERVIEW

A. FlexGrip System Overview

Our FlexGrip soft GPGPU is used in concert with a Xil-

inx MicroBlaze to execute parallel operations. The FlexGrip

soft GPGPU is attached to the Xilinx MicroBlaze soft core

microprocessor via the AXI bus as shown in Fig. 2. During

execution of a program, the MicroBlaze processor loads a

driver that communicates control, status, and data to the AXI

bus interface logic. The control logic acts as an interface

between the AXI bus and the FlexGrip GPGPU. It executes

functions depending on the values written to the control regis-

ter. Once the driver is loaded, it dispatches CUDA instructions

and data which in turn are loaded into system and global

memory, respectively, by the control logic. In addition, the

driver loads parameters associated with the CUDA kernel
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program such as thread block and grid dimensions, number of

thread blocks per SM, the number of registers used per thread,

and the shared memory size. These parameters are stored in

the GPGPU configuration registers. After initialization, control

flow is passed to the GPGPU to execute the CUDA kernel.

During this period, the MicroBlaze processor can continue

execution concurrently with the GPGPU.

FlexGrip follows a SIMT model in which an instruction is

fetched and mapped onto multiple scalar processors simultane-

ously. The block scheduler is responsible for scheduling thread

blocks in a round-robin fashion. The number of thread blocks

scheduled at the same time is determined by the number of

scalar processors in an SM and the number of SMs. After

scheduling the thread blocks, the block scheduler signals the

warp unit to initiate scheduling the warps, which are contained

within the respective thread blocks. The maximum number of

thread blocks that can be scheduled to a SM is restricted by

the available shared memory and SM registers.

B. FlexGrip Streaming Multiprocessor

For this custom FPGA implementation we have developed a

five-stage pipelined SM architecture, shown in Fig. 3. The SM

includes Fetch, Decode, Read, Execute and Write stages. The

warp unit at the front of the pipeline coordinates the execution

of instructions through the pipeline. The following sections

elaborate on the different blocks used in this architecture.

Once the block scheduler assigns thread blocks to a specific

SM, the warp unit assigns threads to specific scalar processors

(SP). This unit schedules warps in a round-robin fashion. Each

warp includes a program counter (PC), a thread mask, and

state. Each warp maintains its own PC and can follow its

own conditional path. The mask is used to prevent thread

execution within a warp for threads which do not meet specific

conditions. The warp state indicates the status of the warp:

Ready, Active, Waiting or Finished. The Ready state indicates

that the warp is idle and is ready to be scheduled, while the

Active state indicates that the warp is currently active in the

pipeline.

Within a warp, threads are arranged in rows depending on

the number of scalar processors (SP) instantiated within an

SM. For example, for an 8-SP configuration, a warp with

32 threads would be arranged in four rows with each row

containing 8 threads. Similarly, for a 16-SP configuration, a

warp would be arranged in two rows with 16 threads each.

The maximum parallelism is achieved with 32 SPs and one

row.

The Fetch stage is the initial stage of the execution pipeline

and is responsible for fetching four or eight-byte CUDA

binary instructions from system memory. After fetching the

instruction, the PC value is incremented (by 4/8 bytes) to

point to the next instruction. The Decode stage decodes the

binary instruction to generate several output tokens such as

the operation code, predicate data, source and destination



operands.

In the Read stage, source operands are read from the vector

register file or shared/global memory blocks depending on the

decoded inputs. The vector register file is partitioned, with

each thread assigned a set of general-purpose registers. The

address register file stores memory addresses for load and store

instructions. All instructions can include an optional predicate

flag that controls conditional execution of the instruction

(predicate instructions). The predicate register file is used to

store these predicate flags, each of which is then used as

an index into a predicate look-up table which obtains the

predicated instruction (i.e.: less than, greater than, etc). The

warp mask is updated by combining the current mask with

the predicated instruction. The constant memory is a read-only

memory which is initialized by the host.

The Execute stage consists of multiple scalar processors and

a single control flow unit. This unit operates on control flow

instructions such as branch and synchronization instructions

which are described in more detail in the next section. Each

thread is mapped to one scalar processor, enabling parallel

execution of threads. The scalar processors support integer-

type addition, subtraction, multiplication, multiply and add,

data type convert operations, shifting operations and Boolean

logic operations.

The Write stage stores intermediate data in the vector

register file, memory addresses in the address register file,

and predicate flags in the predicate register file. Final results

are stored in the global memory. All pipeline stages output a

stall signal that is fed to the preceding stage. The stall signal

indicates that the stage is busy and not ready to accept new

data.

C. Conditional Branch Circuitry

A key contribution of the soft FlexGrip GPGPU is its ability

to support thread-level branching in hardware. A warp diverges

if the branch outcome may not be the same for all threads

in the warp. The set synchronization instruction is used to

set the reconvergence point of the branch instruction that

will be reached irrespective of whether or not the branch is

taken. In case of divergence, execution for some SPs proceeds

along one path (e.g., taken) until the reconvergence point is

reached. When the point is reached, the execution switches

back to the other path (not-taken) for the remaining SPs.

When the reconvergence point is reached for these processors,

thread execution of the same set of instruction operations is

performed by all processors once again. A stack in the Execute

stage circuitry is used to keep track of the PC for SPs which

are stalled waiting for conditional execution in an alternate

path to terminate.

In order to synchronize warps within a thread block, CUDA

supports explicit barrier synchronization. Warps that reach the

barrier instruction first have to wait for other warps to reach

to the same checkpoint, and are marked as Waiting. When all

the threads in a warp finish executing the kernel, the warp

is declared Finished. The warp unit contains a warp state

memory and a warp data memory to hold intermediate values

TABLE I
FLEXGRIP-SUPPORTED CUDA INSTRUCTIONS

Opcode Description
I2I Copy integer value to integer with conversion
IMUL/
IMUL32/
IMUL32I

Integer multiply

SHL Shift left
IADD Integer addition between two registers
GLD Load from global memory
R2A Move register to address register
R2G Store to shared memory
BAR Barrier synchronization
SHR Shift right
BRA Conditional branch
ISET Integer conditional set
MOV/
MOV32

Move register to register

RET Conditional return form kernel
MOV R, S[] Load from shared memory
IADD, S[],
R

Integer addition between shared memory and register

GST Store to global memory
AND C[], R Logical AND
IMAD/
IMAD32

Integer multiply-add; all register operands

SSY Set synchronization point; used before potentially
divergent instructions

IADDI Integer addition with an immediate operand
NOP No operation
@P Predicated execution
MVI Move immediate to destination
XOR Logical XOR
IMADI/
MAD32I

Integer multiply-add with an immediate operand

LLD Load from local memory
LST Store to local memory
A2R Move address register to data register

(not shown in Fig. 3). The warp state memory holds the state

of each warp and warp data memory holds the thread mask

and the warp PC. The barrier synchronization instruction is

used before potentially divergent branch instructions.

D. CUDA Instructions

The soft GPGPU supports the NVIDIA G80 instruction set

with compute capability 1.0. Instructions were tested based

on the requirements of the selected benchmarks. We tested 27

integer CUDA instructions as a part of this research. The list of

all supported instructions is shown in Table I. All instructions

needed by our benchmark circuits are supported.

E. FPGA-Specific Considerations

All circuitry described in this section has been implemented

in a Virtex-6 FPGA and has been shown to operate correctly.

While a strength of the FlexGrip architecture is its ability

to execute numerous CUDA binaries without the need for

FPGA design recompilation, a user may select to create

a new FlexGrip implementation, if desired. The FlexGrip

architecture is designed such that different counts of scalar

processors per SM or SMs per GPGPU can be implemented

by modifying parameters in a configuration file and rerunning

Xilinx tools. Depending on the target FPGA platform, the

user can customize FlexGrip to maximize performance or area.
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For a specific FlexGrip hardware implementation, a small set

of in-design registers are used to store application specific

configuration information, such as the grid size and thread

block count.

Most of FlexGrip source code was written in custom VHDL

code to provide for fine-grained control, although MATLAB’s

Simulink was used for coarse-grained functions. Xilinx Sys-

tem Generator converts MATLAB Simulink blocks to RTL

code for rapid development of FPGA designs. For example,

Simulink was used to connect DSP, adder, and multiply blocks

together to form SP functional units. To minimize data latency,

we heavily utilize dual-ported block RAMs throughout the

design. In the case of the warp unit scheduler, the state infor-

mation and the data are stored in block RAM indexed by the

warp ID. This allows warps to be scheduled every clock cycle

after an initial one clock cycle of latency. Similarly, the vector,

predicate, and address registers use dual-port block RAM

providing simultaneous read and write access. To support the

numerous integer arithmetic instructions, the scalar processors

take advantage of Xilinx’s DSP48E1 digital signal processing

blocks. A single DSP slice can support add/subtract, multiply,

multiply-add, shift, and bitwise logic instructions.

IV. EXPERIMENTAL METHODOLOGY

A. Software Flow

The complete CUDA binary code generation flow is il-

lustrated in Fig. 4. At compile time, the input program is

divided by the CUDA front-end (cudafe) into C/C++ host
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Fig. 5. Percent of instruction operations executed for each benchmark

code and the GPU device code. The GPU code is fed to the

host compiler (e.g.: gcc, cl) to generate a filehash containing

device code descriptors. The device descriptors are evaluated

by runtime libraries whenever device code is invoked by the

system. The NVIDIA CUDA compiler (nvcc) converts this

information to PTX assembly instruction code which is then

converted to CUDA binary instructions (.cubin). This code,

along with the device code descriptors, are merged (fatbin)

and compiled together with the host compiler to produce a

final executable. Microsoft Visual Studio 2008 and NVIDIA

Toolkit v2.3 are used together to compile the CUDA code

file. The NVIDIA toolkit is comprised of the NVIDIA CUDA

compiler (nvcc), and the CUDA driver and runtime API

libraries required for building the executable and the cubin

file.

B. Design Environment and Benchmarks

Synthesis was performed using the Xilinx ISE 14.2 toolkit

and Modelsim SE 10.1 was used for simulation and verifica-

tion. A block-level simulation approach was adopted, where

each block was individually verified using logic simulation in

addition to a system level verification. Inputs were stimulated

using CUDA binary instructions and data stored in block

RAM. To rapidly evaluate a variety of benchmarks and data,

we generated Memory Initialization Files (.mif) that were used

to populate Xilinx Block RAM cores.

We have evaluated five CUDA applications, bitonic sort,
autocorrelation, matrix multiplication, parallel reduction and

transpose from the University of Wisconsin [16] and the

NVIDIA Programmer’s Guide [17], using FlexGrip. The mix

of data-parallel (e.g. multiply, transpose) and control-flow

intensive (e.g. bitonic sort) benchmarks helped us evaluate

our platform. Fig. 5 provides a breakdown of the instruction

operations by type for each of the benchmarks.

V. EXPERIMENTAL RESULTS

The FlexGrip soft GPGPU design was implemented on a

Xilinx ML605 development board which utilizes a Virtex-

6 VLX240T device. The device area and design operating

frequency for designs with a varying number of scalar proces-

sors are annotated in Table II. We performed experiments and



TABLE II
AREA COMPARISON OF FLEXGRIP IMPLEMENTATIONS

Parameters Freq. LUTs Registers BRAM DSP48E
(MHz.)

8 SP 100 71,323 103,776 120 156
16 SP 100 113,504 149,297 132 300
32 SP 100 231,436 240,230 156 588

compared performance and energy results against a Xilinx Mi-

croBlaze soft-core processor with about 3,000 LUTs running

at 100 MHz using C versions of the same benchmarks. For the

purposes of this paper, a design with a single SM and 8 scalar

processors was implemented and benchmarked on the ML605

board, while 16- and 32-SP designs were simulated. The

FlexGrip design implemented in hardware could successfully

run all five benchmarks using the same FPGA bitstream. The

CUDA compile times for all benchmarks were less than one

second.

A. Architecture Scalability

We ran experiments by varying the number of scalar

processors within a single SM which effectively varies the

number of threads that can be executed in parallel. Fig. 6

shows application speedups versus a MicroBlaze for a varying

number of SPs per SM. Application speedups range from 7×
to 29× with an average speedup close to 12× for 8 SPs, 18×
for 16 SPs, and 22× for 32 SPs. Since they are highly data

parallel, matrix multiplication and reduction show the largest

speedups. Reduction has a highly symmetric data flow graph

consisting of multiple iterations. The number of array elements

in the benchmark is halved with each iteration, progressively

leading to smaller number of scheduled warps. Considering

the array size to be a multiple of 32 (the warp size), all active

threads remain tightly packed within a warp in every iteration,

thus fully utilizing the warp at all times. In bitonic, the sorting

network consists of a fixed number of swapping operations that

are performed at every stage. Though the warp divergence

increases with an increased number of parallel threads, the

divergence cost is amortized by performing more swapping

operations in parallel. Transpose shows less speedup due to

low arithmetic intensity and memory bandwidth limitations.

Matrix multiply has better performance than transpose, as

the former has higher arithmetic density which amortizes the

number of required memory accesses.

One common limitation to cycle speedup for all bench-

marks targeted to our architecture is memory access. Memory

operations are most effective when the burst data is written

and read in parallel. This action requires the memory to

be split up into multiple banks and coalesced, such that

consecutive memory addresses fall into consecutive banks.

Most data parallel CUDA kernels include neighboring threads

that access consecutive memory locations. However, for con-

trol flow intensive applications where data accesses are not

sequential, memory mapping is more of a challenge, especially

if multiple threads access the same memory location. For the

sake of architectural simplicity, enhanced support for memory
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Fig. 6. Speedup vs. MicroBlaze for variable scalar processors
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Fig. 7. Speedup of 32-SP GPGPU vs. MicroBlaze for varying problem size

coalescing was not included in our first soft GPGPU prototype

and will be addressed in the future. The matrix benchmarks

pay a slightly larger penalty for memory bandwidth limitations

due to a larger number of scatter-gather memory operations.

B. Application Scalability

Experiments were conducted to observe the performance

of the soft GPGPU in comparison to MicroBlaze for varying

problem (input data array) sizes of each benchmark. The

speedup results are shown in Fig. 7. Due to its regular

kernel structure, reduction reaps the steepest performance

benefits of almost 30× as the size of the array becomes large.

With increasing array size, performance increases gradually

for both autocorrelation and bitonic up to a certain point

and then begins to taper off. This result can be attributed

to the accumulation of the warp divergence penalty over

the execution time of larger arrays, amortizing the parallel

processing benefits. Matrix multiply shows a speedup of about

27×, with transpose showing an average speedup of 22×.

The flat curve of both benchmarks are due to limitations of

the memory bandwidth.

C. Energy Efficiency

We used Xilinx’s XPower power estimator tool to determine

static and dynamic power for the designs (Table III). Since



TABLE III
FPGA POWER ESTIMATES (W) AT 100 MHZ

Dynamic Static Total
8 SP 1.59 2.03 3.62
16 SP 1.92 2.04 3.97
32 SP 2.32 2.05 4.37
MicroBlaze 0.37 2.00 2.37
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Fig. 8. Normalized dynamic energy consumption versus MicroBlaze for
different SP counts

static power is largely a function of the device size, we evalu-

ate the dynamic energy consumption of the implementations.

This value is determined by multiplying dynamic power by

application execution time. We performed this experiment for

8-, 16-, and 32-SP architectures and compared the results

against the MicroBlaze processor. Fig. 8 depicts the normal-

ized dynamic energy consumption for the various benchmarks.

On average, the GPGPU requires 66% less energy than the

MicroBlaze processor, with the largest energy decrease of 78%

for the 32-SP reduction implementation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a CUDA binary-compatible, soft GPGPU

architecture is described. The scalable design has been fully-

implemented and tested on a Xilinx ML605 development

board. A novel design aspect of GPGPUs versus micropro-

cessors and vector processors is the ability to handle thread

divergence and barrier synchronization in hardware. The Flex-

Grip soft-core GPGPU provides control circuitry which can

automatically handle complex conditional control operations

in hardware, similar to the GPGPU programming model. Our

design has been validated using five benchmarks which were

compiled from CUDA to a binary representation. All five

benchmarks were executed using the same FlexGrip design

(no need to create a new bitstream). The binary was executed

on the soft GPGPU without any per-application hardware

modifications. Experimental results demonstrate application

speedups of up to 30× versus a MicroBlaze soft processor

for highly parallel benchmarks.

Future enhancements include optimizing the area and im-

proving the memory infrastructure to take advantage of coa-

lescing and DMA. Scalar processors will operate on a separate

clock domain enabling them to be clocked at higher frequen-

cies in addition to supporting floating point and transcendental

functions. Finally, we plan to release the source code for

FlexGrip to the reconfigurable computing research community

to allow for in-FPGA hardware experimentation of GPGPUs

for a wide range of researchers.
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