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ABSTRACT

The BigDFT project was started in 2005 with the aim of testing the advantages of using a Daubechies wavelet basis set for Kohn–Sham (KS)
density functional theory (DFT) with pseudopotentials. This project led to the creation of the BigDFT code, which employs a computational
approach with optimal features of flexibility, performance, and precision of the results. In particular, the employed formalism has enabled
the implementation of an algorithm able to tackle DFT calculations of large systems, up to many thousands of atoms, with a computational
effort that scales linearly with the number of atoms. In this work, we recall some of the features that have been made possible by the peculiar
properties of Daubechies wavelets. In particular, we focus our attention on the usage of DFT for large-scale systems. We show how the
localized description of the KS problem, emerging from the features of the basis set, is helpful in providing a simplified description of large-
scale electronic structure calculations. We provide some examples on how such a simplified description can be employed, and we consider,
among the case-studies, the SARS-CoV-2 main protease.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004792., s

I. INTRODUCTION

Since their foundation, disciplines such as computational
physics and quantum chemistry have had to deal with the ques-
tion of the computational reliability of results. The reliability of a
given approach can be defined in terms of two key concepts, namely,

“accuracy,” i.e., the ability of the model to predict quantities that can
be externally verified, e.g., through experiment, and “precision,” i.e.,
the ability of the employed numerical approach to find the solu-
tion to a given physical model. A precise approach should there-
fore reduce the computational uncertainties of quantities extracted
from a well-defined model and provide reference results that can be
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compared to other computer codes employing the same model. For
theoretical approaches wherein no analytic solution exists, reducing
the computational uncertainty is the only way to shed light on the
predictive power of the model. The accuracy of a result with respect
to experimental data may therefore only be reliably quantified if the
computational uncertainty is significantly lower than the observed
discrepancy.

Density functional theory (DFT)1,2 has had widespread success
for simulating a range of materials, from molecules to solids, and
has therefore become the most popular approach to electronic struc-
ture simulations. While the accuracy of DFT is dominated by the
approximations made to the exchange–correlation (XC) functional,
the precision of a given simulation depends on a number of factors,
in particular the choice of basis set. Thus, two different DFT codes
might use the same physical formalism (including the same XC func-
tional) but differ in results due to the use of different numerical
approaches. In order to compare the results across DFT codes, care-
ful attention must therefore be paid to the precision of the results,
as seen, for example, in the DeltaCode project in which a systematic
comparison of a number of periodic DFT codes was undertaken.3

In this context, an important distinction should be made
between codes that use systematic and non-systematic basis sets.
A systematic basis set allows one to calculate the exact solution of
the Kohn–Sham (KS) equations with arbitrarily high precision by
increasing the number of basis functions. In other terms, the numer-
ical precision of the results is related to the number of basis functions
used to expand the KS orbitals. With such a basis set, it is thus pos-
sible to obtain results that are free of errors related to the choice of
the basis, eliminating a source of uncertainty. As such, it is highly
desirable to have at hand a computational formalism, which is able
to provide at the same time:

● a set of reliable results, which can be systematically improved
by the end-user, in view of increasing—when needed—the
precision of the calculations;● a flexible approach in which the desired models can be
explicitly implemented without having to deal with correc-
tion terms and intrinsic approximations;● an efficient computer program, which enables the optimal
use of computational resources, especially in the context of
high performance computing; and● the ability to connect together different levels of theory,
where various approaches might be linked within a given
computational setup.

In 2005, the EU FP6-STREP-NEST BigDFT project funded a
consortium of four European laboratories (L_Sim, CEA-Grenoble,
France; Basel University, Switzerland; Louvain-la-Neuve University,
Belgium; and Kiel University, Germany), with the aim of develop-
ing a novel approach for DFT calculations based on Daubechies
wavelets.4 Beyond building a DFT code from scratch, the objective
of this three-year project was to test the potential benefit of a new
formalism in the context of electronic structure calculations.

This project was motivated by the fact that Daubechies wavelets
exhibit a set of properties that make them ideal for a precise and
optimized DFT approach. In particular, their systematicity pro-
vides a reliable basis set for high-precision results, whereas their
locality (both in real and reciprocal space) is highly desirable to
improve the efficiency and the flexibility of the treatment. Indeed, a

localized basis set allows the optimization of the number of degrees
of freedom for a required accuracy, which is highly desirable, given
the complexity and inhomogeneity of systems under investigation
nowadays. Moreover, an approach based on localized functions
makes possible to explicitly control the nature of the boundaries
of the simulation domain, allowing complex environments such
as mixed boundary conditions (BCs) and/or systems with a net
charge.

We organize this contribution as follows: we first present some
basic illustrations of the properties of Daubechies wavelets and their
peculiarities in the context of computational discretization of three-
dimensional KS operators. To this aim, we present the KS formalism
in BigDFT, briefly outlining the main features of the Poisson solver
implemented in the code. We will then explain in more detail how
the solution of the KS problem is implemented in the code and
how the properties of wavelets enable the realization of a compu-
tational algorithm whose time-to-solution is linearly scaling with
the number of atoms in the system. We will also explain how this
formalism is useful in the context of the traditional cubic scaling
(CS) KS approach, which is also available in the same computer pro-
gram. Then, we will outline a few examples of how the capabilities
of treating systems of many thousands of atoms in the DFT formal-
ism enable novel investigation paradigms, with the ability to—at the
same time—reduce the complexity of the computational descrip-
tion and gain insights into the interactions between system’s con-
stituents. The BigDFT software package also presents an innovative
software approach for releasing and distributing the code. We will
illustrate this approach together with some comments and examples
of how the code features optimal capabilities for massively paral-
lel supercomputers. We will conclude with some perspectives on
ongoing work.

II. WAVELETS AS A COMPUTATIONAL BASIS SET

Wavelet basis sets have rarely been used for electronic struc-
ture calculations, with most efforts having been devoted to their
use in all-electron calculations, e.g., in MRChem5 and most appli-
cations of MADNESS.6 Since such a basis is therefore rather uncom-
mon, we explain here its use in the context of KS-DFT calculations.
While referring the reader to Ref. 7 for an exhaustive presentation of
how wavelet basis sets can be used for numerical simulations, we
here summarize the main properties of Daubechies wavelets with
a special focus on the representation of the objects (wavefunctions
and operators) involved in the KS-DFT formalism. We will start by
illustrating the principles of one-dimensional Daubechies wavelet
basis.

A. Daubechies wavelets

Every wavelet family comprises a scaling function ϕ, and a
second function ψ, which is properly called a wavelet. Figure 1
illustrates the least asymmetric Daubechies wavelet family of order
2m = 16, the basis set which is used in the BigDFT code. These
functions feature a compact support [1 − m, m] and are smooth
and therefore also localized in Fourier space. The use of Daubechies
wavelet families is guided by different criteria. Daubechies wavelets
represent the best compromise between compact support, smooth-
ness, and orthogonality for a wavelet family. We chose the family of
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FIG. 1. Least asymmetric Daubechies wavelet family of order 2m = 16. Note that
both the scaling function ϕ(x) and the wavelet ψ(x) are different from zero only
within the interval [1 − m, m].

the order 16 as it is the most compact one, which has a degree of con-
tinuity of at least 2. Nonetheless, such a family exhibits polynomial
exactness of degree 8, which means that it is able to represent exactly
the Taylor expansion of a Kohn–Sham orbital up to the eighth order.
Such an observation, combined with the Magic Filter method (see
Ref. 8), enables an accurate and efficient approach for the evaluation
of the kinetic and potential energy in KS-DFT calculations.

A basis set is simply generated by the integer translates of the
scaling and wavelet functions, with arguments measured in units of
the grid spacing h. For instance, a 1D domain of extension L, cen-
tered at x = 0, can be spanned by the following set of N scaling
functions:

⟨x∣ϕi⟩ ≡ ϕi(x) ≙ 1√
h
ϕ( x

h
− i), i ≙ −N/2, . . . ,N/2, (1)

where h = L/(N − 1) is the (uniform) grid spacing. The basis set
can be completed by the addition of the translates of the wavelet
functions ψi. These functions form an orthogonal basis set,

⟨ϕi∣ϕj⟩ ≙ δij ≙ ⟨ψi∣ψj⟩ , ⟨ϕi∣ψj⟩ ≙ 0. (2)

The most important feature of any wavelet basis set is related
to the concept of multiresolution. Such a feature builds upon the
following scaling equations (or “refinement relations”):

ϕ(x) ≙ √2∑
j

hj ϕ(2x − j) , ψ(x) ≙ √2∑
j

gj ϕ(2x − j), (3)

which relate the wavelet representation at a given resolution to that
at twice the resolution, and so on. According to the standard nomen-
clature, the sets of the hj and g j = (−1)jh−j coefficients are called low-
and high-pass filters, respectively. A wavelet family is therefore com-
pletely defined by its low-pass filter. In the case of Daubechies-2m
wavelets, j ∈ [1 −m,m].

The representation f (x) of a function in the above defined basis
set is given by

f (x) ≙ N/2∑
i≙−N/2

ci ϕi(x) + N/2∑
i≙−N/2

di ψi(x), (4)

where the expansion coefficients are formally given by ci ≡ ⟨ϕi| f ⟩,
di ≡ ⟨ψi| f ⟩. Using the refinement equations (3), one can map the

basis appearing in Eq. (4) to an equivalent one including only scaling
functions on a finer grid of spacing h/2.

B. One-dimensional operators with Daubechies
wavelets

The multiresolution property plays a fundamental role in the
wavelet representation of differential operators. For example, it can
be shown that the exact matrix elements of the kinetic operator can
be written in the form of a circular matrix, namely,

Tij ≙ Ti−j ≡ −1
2 ∫ dxϕi(x)∂2

ϕj(x) (5)

and are equal to the entries of an eigenvector of a matrix, which
solely depends on the low-pass filter (see, e.g., Ref. 7).

Daubechies-2m wavelets exhibit m vanishing moments; thus,
any polynomial of degree less than m can be represented exactly by
an expansion over the sole scaling functions of order m. For higher
order polynomials, the error isO(hm), i.e., vanishingly small as soon
as the grid is sufficiently fine. Hence, the difference between the
representation of Eq. (4) and the exact function f decreases as hm.
The discretization error due to Daubechies-2m wavelets is therefore
controlled by the grid spacing. Among all the orthogonal wavelet
families, Daubechies wavelets feature the minimum support length
for a given number of vanishing moments.

Given a potential V known numerically on the points {xk} of a
uniform grid, it is possible to identify an effective approximation for
the potential matrix elements V ij ≡ ⟨ϕj|V|ϕi⟩. It has been shown8,9

that a quadrature filter {ωk} can be defined such that the matrix
elements given by

Vij ≡ ⟨ϕj∣V ∣ϕi⟩ ≙∑
k

ωk−i V(xk)ωk−j (6)

yield excellent accuracy with the optimal convergence rate O(h2m)
for the potential energy. The same quadrature filter can be used to
express the grid point values of a (wave)function, given its expansion
coefficients in terms of scaling functions,

f (xk) ≙∑
i

ci ωk−i +O(hm), (7)

ci ≙∑
k

f (xk)ωk−i +O(hm). (8)

As a result, the potential energy can equivalently be computed either
in real space or in wavelet space, i.e., ⟨ f |V| f ⟩ = ∑k f (xk)V(xk)f (xk)≡∑ij ciV ij cj. The quadrature filter elements can therefore be consid-
ered as the most reliable transformation between grid point values
f (xk) and scaling function coefficients ci, as they provide exact results
for polynomials of order up to m − 1 and do not alter the con-
vergence properties of the basis set discretization. The filter {ωk}
is of length 2m and is defined unambiguously by the moments of
the scaling functions (which, in turn, depend only on the low-pass
filter).7

Using the above formulas, the (so far one-dimensional) Hamil-
tonian matrix Hij = Tij + V ij can be constructed. Note that, in con-
trast to other discretization schemes (finite differences, plane waves,
etc.), in the wavelet basis set, neither the potential nor the kinetic
terms have diagonal representations. Instead, Ĥ is represented by a
band matrix of width 2m.
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C. Three-dimensional wavelet basis

For a three-dimensional description, the simplest basis set is
obtained by a set of products of equally spaced scaling functions on
a grid of grid spacing h′,

ϕi,j,k(r) ≙ ϕ(x/h′ − i)ϕ(y/h′ − j)ϕ(z/h′ − k). (9)

In other words, the three-dimensional basis functions are a tensor
product of one-dimensional basis functions. Note that we are using
a cubic grid, where the grid spacing is the same in all directions, but
the following description can be straightforwardly applied to general
orthorhombic and non-orthorhombic grids.

The basis set of Eq. (9) is equivalent to a mixed basis set of
scaling functions on a twice coarser grid of grid spacing h = 2h′,

ϕ
0
i,j,k(r) ≙ ϕ(x/h − i)ϕ(y/h − j)ϕ(z/h − k), (10)

augmented by a set of seven wavelets

ϕ
1
i,j,k(r) ≙ ψ(x/h − i)ϕ(y/h − j)ϕ(z/h − k),
ϕ
2
i,j,k(r) ≙ ϕ(x/h − i)ψ(y/h − j)ϕ(z/h − k),

ϕ
3
i,j,k(r) ≙ ψ(x/h − i)ψ(y/h − j)ϕ(z/h − k),
ϕ
4
i,j,k(r) ≙ ϕ(x/h − i)ϕ(y/h − j)ψ(z/h − k),

ϕ
5
i,j,k(r) ≙ ψ(x/h − i)ϕ(y/h − j)ψ(z/h − k),
ϕ
6
i,j,k(r) ≙ ϕ(x/h − i)ψ(y/h − j)ψ(z/h − k),

ϕ
7
i,j,k(r) ≙ ψ(x/h − i)ψ(y/h − j)ψ(z/h − k).

(11)

This equivalence follows from the fact that, from Eq. (3), every
scaling function and wavelet on a coarse grid of spacing h can be
expressed as a linear combination of scaling functions at the fine grid
level h′ and vice versa.

In a simulation domain, there are therefore three categories
of grid points: those which are closest to the atoms (“fine region”)
carry one (three-dimensional) scaling function and seven (three-
dimensional) wavelets; those which are further from the atoms

FIG. 2. Example simulation grid for a molecule with coarse (fine) grid points
depicted in blue (gold).

(“coarse region”) carry only one scaling function, corresponding to
a resolution, which is half of that of the fine region; and those which
are even further away (“empty region”) carry neither scaling func-
tions nor wavelets. To determine these regions of different resolu-
tions, we construct two spheres around each atom a; a small one with
radius R f

a ≙ λf ⋅ r fa and a large one with radius Rc
a ≙ λc ⋅ rca (Rc

a > R f
a ).

The values of r fa and rca are fixed for each atom type, whereas λf and
λc can be specified by the user in order to control the accuracy of the
calculation. The fine (coarse) region is then given by the union of all
the small (large) spheres, as shown in Fig. 2. Hence, in BigDFT, the
basis set is controlled by three user specified parameters; systematic
convergence of the total energy is achieved by increasing the values
of λc and λf while reducing the value of h.

III. KS-DFT FORMALISM WITH WAVELETS

In this section, we describe how a Daubechies wavelet basis
may be used to solve the KS equations. We first introduce some
notations relating to the operators that have to be discretized in
Daubechies wavelets. The energy of the system in the KS formalism
can be defined by

E∥λ, ρc,F,{ψi}∥ ≙ −1
2 ∫ dr tr(∇2∣r⟩⟨r∣F) + tr(FVext∥λ∥)

+Exc∥ρ + ρc∥ + EH∥ρ∥ + αXEX∥F∥
≙∑

i

fi⟨ψi∣HKS∥ρ, ρc, λ∥∣ψi⟩ − EH∥ρ∥ − αXEX∥F∥
+Exc∥ρ + ρc∥ −∫ drρ(r)Vxc∥ρ + ρc∥(r), (12)

where we have indicated with f i the occupation numbers associ-
ated with the KS wavefunctions ψi, which determine the density ρ(r)
= F(r, r), where F(r, r′) ≙ ∑i fiψ

∗
i (r)ψi(r′) is the density matrix

operator in real space. Such occupation numbers are functionally
dependent on the KS energy f i = f (ϵi), as by definition, the KS
orbitals satisfy the eigenvalue problem of HKS. The KS Hamiltonian
is defined as

HKS∥ρ, ρc, λ∥ ≡ −1
2
∇2 + VH∥ρ∥ + Vxc∥ρ + ρc∥ + αXD̂X + Vext∥λ∥.

(13)

The exact exchange term EX[F] and the associated Fock operator D̂X

are introduced in Sec. III C. An alternative definition of the operator
HKS can be given as the functional derivative of the total KS energy
functional with respect to the density matrix operator,

HKS(r, r′) ≡ δEKS

δF(r, r′) . (14)

The external potentialVext , which contains local and non-local pseu-
dopotential (PSP) terms, depends on a set of electron-independent
parameters λ that model the system under analysis, e.g., the
atom positions. The core charge density ρc[λ] also depends on
these variables, but it is assumed to be independent of the KS
orbitals. BigDFT efficiently treats Gaussian pseudopotentials of
the Goedecker–Teter–Hutter (GTH) and Hartwigsen–Goedecker–
Hutter (HGH)10–13 types, since the intrinsic separability of both the
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basis set and Gaussian pseudopotentials allows for the simplification
of several 3D operations into a sum of 1D products. The approxima-
tion of the all-electron KS quantities induced by the PSP terms has
been shown to bemuch less severe than the exchange and correlation
terms. Such PSP terms have proven to yield all-electron precision
for most of the quantities of interest in ground-state DFT calcula-
tions, as can be seen in the DeltaTest initiative,3 where an accuracy
of 0.1 meV/atom—the best among the PSP calculations—can be
obtained for the set of atoms belonging to the first three rows of the
periodic table or in Ref. 13 where we show that the accuracy of the
G2-1 and S22 test sets is comparable with all-electron calculations
made by highly precise Gaussian basis sets.

A. Poisson solver

In Eq. (13), the Hartree potential VH[ρ] depends on the charge
density from Poisson’s equation, which in atomic units, in vacuum,
reads ∇2V = −4πρ. Having efficient algorithms to solve the Pois-
son equation is therefore essential. The large variety of situations in
which this equation can be found require us to face this problemwith
different choices of boundary conditions (BC) in mind. The long-
range behavior of the inverse Laplacian operator makes this problem
strongly dependent on the BC of the system.

In Refs. 14–16, a novel method for solving the screened and
unscreened Poisson’s equation in vacuum with free, fully peri-
odic, surface-like, and wire-like BC was presented, including non-
orthorhombic cells. Such a method is direct (rather than iterative) in
that the solution along the isolated directions is found in its integral
form using the Green’s function method. For instance, in the case of
a fully isolated system (or “cluster-like”),

V(r⃗) ≙ 4π∫ d3 r⃗′ G(μ0; ∣⃗r − r⃗′∣)ρ(r⃗′), (15)

where r⃗ ≙ (x, y, z). Homogeneous Dirichlet BCs (V = 0 at ∣⃗r∣ → ∞)
along the isolated directions are explicitly enforced by the selection
of the Green’s function.

The method has been in use for a few years in a number of
ab initio codes (see the references cited in Ref. 16) and has proven
to be highly efficient and accurate in every application attempted
to date. It is based on a representation of ρ and V in interpolat-
ing scaling functions (ISFs), which allows any sort of periodicity to
be modeled in the most natural, clean, and mathematically rigor-
ous way. ISFs—arising in wavelet theory7—enjoy several properties
that make them superior to other basis sets. For instance, the rep-
resentation in terms of mth order ISFs makes the first m moments
of the continuous and discrete charge distributions coincide.8 As a
consequence, the representation is definitely faithful (more than just
convenient), since the different moments of the charge distribution
capture the major features of the potential. Moreover, ISFs are gen-
uinely localized due to their compact support (the length of which is
equal to 2m) and endowed with the refinement relations, which eas-
ily allow for switching from a representation on a grid with spacing
h to a doubly refined grid with spacing h/2.

The inclusion of such functionalities is motivated by the strong
theoretical, experimental, and technological interest in the charac-
terization of nanostructured materials, since solving Poisson’s equa-
tion is only one of the many steps involved in state-of-the-art com-
puter simulations and is repeated several times. Moreover, in the

context of KS-DFT and extensions thereof, there are quantities,
which are computed via convolution integrals very similar to that in
Eq. (15): for instance, the exact exchange term arising within those
generalizations of KS-DFT employing orbital-dependent or hybrid
functionals (see Ref. 17 and references therein) or the coupling-
matrix in time-dependent DFT (TDDFT).18 In this respect, the elec-
trostatic problem of concern here provides the paradigm for many
other computations, even well beyond the scope of electrostatics.

B. Soft-sphere implicit solvation model

This high-degree of flexibility makes the BigDFT Poisson solver
library optimal for calculations of polarized systems or systems with
non-Born-von Karman boundary conditions, such as material sur-
faces and isolated molecules. Nonetheless, the computational study
of matter in various environments is a continuously growing field
in solid state physics and chemistry. Systems of interest are, for
instance, molecules, clusters, or surfaces in contact with solvents.19

An alternative to the explicit inclusion of a wet environment is its
implicit description while still treating the other parts of the system
explicitly on an atomic quantum level.20 Such an explicit/implicit
treatment requires three main ingredients:

1. a dielectric cavity represented by a proper function ϵ(r) mim-
icking the surrounding solvent of a solute as a continuum
dielectric;

2. a solver for the generalized Poisson equation,21

∇ ⋅ ϵ(r)∇ϕ(r) ≙ −4πρ(r), (16)

where ϕ(r) is the potential generated by a given charge density
ρ(r); and

3. a model for the non-electrostatic terms to the total free energy
of solvation.

The dielectric function ϵ(r) has to take the value of 1 where the
solute is placed to solve a vacuum-like quantum problem and the
bulk dielectric constant ϵ0 outside.

The “soft-sphere” model developed by Fisicaro et al.22

and implemented in BigDFT improves upon previous solvation
approaches (see, e.g., Tomasi’s method23). Model features are the
following: accurate forces and a numerical cost comparable to stan-
dard vacuum calculations; feasible extensive potential energy surface
(PES) explorations; a small number ofmodel parameters; exact treat-
ment of molecular or slab-like geometries; and the ability to treat
neutral and charged molecules simultaneously in order to tackle
complex interfaces (e.g., a double layer).

The interface between the quantum-mechanical solute and the
surrounding environment is described by a fully continuous permit-
tivity built up with atomic-centered “soft” spheres. This approach
combines many of the advantages of the self-consistent contin-
uum solvation model24 in handling solutes and surfaces in contact
with complex dielectric environments or electrolytes in electronic-
structure calculations. In addition, it is able to describe accurately
both neutral and charged systems.

We developed, tested, and implemented within the BigDFT
suite a solver for the generalized Poisson [Eq. (16)] and the
Poisson–Boltzmann equations to treat neutral and ionic solutions,
respectively.21 The solver for the solution of the generalized Poisson
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equation and the linear regime of the Poisson–Boltzmann is based
on a preconditioned conjugate gradient (CG) scheme. It allows for
the iterative solution of the minimization problem with some ten
iterations of the ordinary Poisson equation solver. In addition, a
self-consistent procedure solves the non-linear Poisson–Boltzmann
problem. Both solvers exhibit very high accuracy and parallel effi-
ciency and allow for the treatment of free, slab, and wire-like
boundary conditions.

The continuous function, describing the variation of the
permittivity, allows for the analytic computation of the non-
electrostatic contributions to the solvation free energy, which are
described in terms of the quantum surface. The capability of
treating arbitrary molecular or slab-like geometries as well as
charged molecules is key to tackling electrolytes within mixed
explicit/implicit frameworks. Within the soft-sphere model, two
parameters are sufficient to give a mean absolute error of only
1.12 kcal/mol with respect to the experimental aqueous solva-
tion energies for a set of 274 neutral solutes. For charged sys-
tems, the same set of parameters provides solvation energies for
a set of 60 anions and 52 cations with an error of 2.96 kcal/mol
and 2.13 kcal/mol, respectively, improving upon previous literature
values.

The soft-sphere model has been already applied to the study of
molecular doping of silicon,25 the interface of fluorite terminations
with water,26 and the investigation of wet environment effects for
ethanol and water adsorption on anatase TiO2 (1 0 1) surfaces.

27 The
latter example is presented as a case study in Sec. V A.

C. (Exact) exchange and correlation terms

The calculation of the exact exchange energy EX requires a
double summation over all the N occupied orbitals,

EX∥F̂∥ ≙ −1
2
∑
σ
∫ dr dr′

Fσ(r, r′) Fσ(r′, r)∣r − r′∣
≙ −1

2
∑
i,j,σ

fi,σ fj,σ ∫ dr dr′
ρσij(r) ρσji(r′)
∣r − r′∣ , (17)

where we have defined ρσij(r) ≙ ψ∗j,σ(r) ψi,σ(r). The diagonal (i = j)
contribution to EX exactly cancels out the Hartree electrostatic
energy EH[ρ]. The action of the Fock operator D̂X to be added to
the KS Hamiltonian directly stems from the EX definition,

D̂X ∣ψi,σ⟩ ≙ ∫ drdr′
δEX∥F̂∥
δFσ(r, r′)ψi,σ(r′)∣r⟩

≙ −∑
j
∫ drfj,σV

σ
ij(r)ψj,σ(r)∣r⟩, (18)

where we have defined

V
σ
ij(r) ≙ ∫ dr′

ρσji(r′)
∣r − r′∣ , (19)

that is, the solution of Poisson’s equation ∇2Vσ
ij ≙ −4πρσij. In a KS-

DFT code that searches for the ground state orbitals, one has to
repeatedly evaluate, during the SCF procedure, for a given set of
ψi ,σ(r), the value of EX as well as the action of the corresponding
Fock operator D̂X on the entire set of occupied orbitals.

D. Atomic forces

The atomic forces are, by definition, the opposite of the deriva-
tive of the total energy with respect to the atom position. In this
notation, we should thus calculate

dE
dλ
≙∑

i

fi⟨ψi∣dVext

dλ
∣ψi⟩ +∑

σ
∫ dr

dρσc (r)
dλ

V
σ
xc∥ρ + ρc∥(r). (20)

Clearly, numerically, the set of ∣Ψi⟩ is expressed in a finite basis set.
This means that the action of HKS can, in principle, lie outside the
span of the ∣Ψi⟩. We can define therefore a residual function,

∣χi⟩ ≙HKS∣Ψi⟩ − ϵi∣Ψi⟩, (21)

which represents the deviation of the numerical KS orbital from
being the exact KS orbital. By definition, ⟨Ψj∣χi⟩ ≙ 0 ∀i, j. The norm
of this vector, once projected on to the basis set used to express ∣Ψi⟩,
is often used as a convergence criterion for the ground state energy.
However, even though the basis set is finite, the orthogonality of
KS orbitals holds exactly. It is thus easy to show that the numerical
atomic forces are defined as follows:

− dEBS
dRa

≙ −∑
i

fi⟨Ψi∣∂HKS

∂Ra
∣Ψi⟩ − 2∑

i

Re(⟨χi∣ ∂Ψi

∂Ra
⟩), (22)

where the first term of the right-hand side of the above equation is
the Hellmann–Feynman contribution to the forces.

Let us now suppose that the KS Hamiltonian and orbitals
are expressed in a basis set, which is complete enough to describe
the orbitals and their derivatives within a targeted accuracy. For
a Daubechies basis in the traditional BigDFT approach, this hap-
pens when the grid spacing h is such as to describe the PSP and
orbital oscillations and the radii λc ,f are such as to contain the
decreasing tails of the wavefunctions. In this case, the norm of ∣χi⟩
can be reduced within the same basis set such as to meet this tar-
geted accuracy. Therefore, the projection of ∣ ∂Ψi

∂Ra
⟩ onto the basis set

used for the calculation can be safely neglected as it is associated
with the same numerical precision. When the basis set is complete

enough to also express ∣ ∂Ψi

∂Ra
⟩, then the atomic forces can be evalu-

ated by the Hellmann–Feynman term only, as the remaining part is
proportional to the desired accuracy.

IV. IMPLEMENTATION IN BigDFT

We have presented so far the way in which the KS operators
can be discretized in Daubechies wavelets. We will now present the
computational approach implemented in BigDFT, starting from the
chosen discretization of the KS orbitals.

A. Nearsightedness and support functions

In our approach, the KS orbitals are expressed as a linear com-
bination of intermediate, possibly minimal, basis functions |ϕα⟩, also
referred to as support functions (SFs),

∣Ψi(r)⟩ ≙∑
α

c
α
i ∣ϕα(r)⟩. (23)
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In other terms, we assume that the density matrix of the system F̂
can be defined from a set of localized SFs as follows:

F̂ ≡ ∑
i

f (ϵi)∣Ψi⟩⟨Ψi∣ ≙ ∑
α,β

∣ϕα⟩Kαβ⟨ϕβ∣, (24)

with a SF overlap matrix Sαβ = ⟨ϕα|ϕβ⟩, which can be chosen to have

a unit diagonal and where Kαβ is the so-called density kernel. This
kernel is related to the density matrix formulation of Hernández and
Gillan28 and has to be thought of as functionally dependent on the
KS Hamiltonian, namely, K = K[HKS]. The density matrix F(r, r′)
decays exponentially with respect to the distance |r − r′| for systems
with a finite gap or for metals at finite temperature;29–35 for met-
als at zero temperature, it decays algebraically.36 Therefore, in these
cases, it can be represented by strictly localized basis functions. A
natural and exact choice for these would be the maximally local-
ized Wannier functions (MLWFs) that have the same exponential
decay.37 In our case, the localized functions are constructed in situ
during the self-consistency cycle in terms of an underlying wavelet
basis set.

A support function ϕα(r) can thus be expanded in the wavelet
basis as follows:

ϕ(r) ≙ ∑
i1 ,i2 ,i3

si1 ,i2 ,i3φi1 ,i2 ,i3(r) + ∑
j1 ,j2 ,j3

7∑
l≙1

d
(ℓ)
j1 ,j2 ,j3

ψ
(ℓ)
i1 ,i2 ,i3
(r). (25)

We have here indicated with φj1 ,j2 ,j3(r) ≙ φ(x − j1)φ(y − j2)φ(z− j3) the tensor product of three one-dimensional scaling functions,

whereas ψ(ℓ)j1 ,j2 ,j3
(r) are the seven tensor products containing at least

one one-dimensional wavelet. The sums over i1, i2, i3 (j1, j2, j3) run
over all grid points where scaling functions (wavelets) are centered.
These points are associated with regions of low and high resolution
levels, as described in Sec. II C.

B. Localization regions

Thanks to the nearsightedness principle, it is possible to define
an approach in which the computational cost is linear scaling (LS)
with respect to the number of atoms, N, rather than the cubic scal-
ing (CS), which arises when extended KS orbitals are used. Such
approaches allow one to go beyond the treatment of a few hundred
atoms as is typically seen with O(N3) DFT approaches and instead
treat systems containing several thousands of atoms. This has the
benefit of also opening up the treatment of new types of materi-
als and simulations using a pure quantum mechanical approach,
as discussed, e.g., in Refs. 38 and 39. The O(N) formalism imple-
mented in the BigDFT code exploits the possibility that, for systems
with a suitable electronic structure, the support functions ϕ can
be optimized while preserving their strict locality, namely, such as
their support is within a pre-defined localization region. A similar
approach is, for example, used in the ONETEP40 and Conquest41

codes.
For large systems where the nearsightedness principle guaran-

tees that a local description of the orbitals is possible, the large num-
ber of degrees of freedom offered by the wavelet basis is a waste. It is
therefore advantageous to build a minimal basis formed of localized
(e.g., atom centered) functions. Of course, these functions will also
be expanded in terms of the underlying wavelet basis, but to strictly
impose locality, they will be expressed only in a subset of this global

basis set. To do so, we set to zero all scaling function and wavelet
coefficients if they lie outside of a sphere with radius Rloc around the
point Rα on which the function is centered,

si1 ,i2 ,i3 ≙ 0⇐ ∣R(i1 ,i2 ,i3) − Rα∣ > Rloc,

dj1 ,j2 ,j3 ≙ 0⇐ ∣R(j1 ,j2 ,j3) − Rα∣ > Rloc.
(26)

Here,R(i1 ,i2 ,i3) is the position of the grid point (i1, i2, i3) andRα is that
of the atom on which the minimal basis function ϕα(r) is centered.
These localization regions can still contain various resolution levels,
as they are constructed on top of the global simulation domain. The
index α is instead used in the following formulas to label kets that
are associated with SFs.

In other terms, instead of working directly with the function
|ϕα⟩, we work with the localized function L

(α)∣ϕα⟩, where the defi-
nition of the localization projector operator in the Daubechies basis
space is as described,

L
(α)
i1 ,i2 ,i3 ;j1 ,j2 ,j3

≙ δi1j1δi2j2δi3j3θ(Rloc − ∣R(i1 ,i2 ,i3) − Rα∣), (27)

fromwhich it becomes apparent that such a projection operatorL(α)

explicitly depends on the localization radius Rloc and the localization
region center Rα. Clearly, if |ϕα⟩ is localized around Rα and Rloc is
large enough, L(α) leaves |ϕα⟩ unchanged and no approximation is
introduced to the KS equations.

It is important to emphasize that since the Daubechies basis set
is independent of Rα, |ϕα⟩ depends on the center of the localization
region by the introduction of the projector L(α),

∣ϕα⟩ ≙ L(α)∣ϕα⟩. (28)

By taking the derivative of this equation with respect to Rβ, it is easy
to find

(1 −L(α))∣ ∂ϕα
∂Rβ
⟩ ≙ δαβ ∂L(α)

∂Rα
∣ϕα⟩. (29)

Let us now employ this result in the calculation of the atomic forces.
When the KS orbitals are expressed in terms of the SFs, the non-
Hellmann–Feynman term can be written as follows:

Fa − F(HF)a ≙ −2∑
αβ

Re(Kαβ)⟨χβ∣ ∂ϕα
∂Ra
⟩, (30)

where the SF residue is

∣χα⟩ ≙ HKS∣ϕα⟩ −∑
jρσ

c
ρ
j ϵjc

σ
j Sσα∣ϕρ⟩. (31)

This result would be completely identical to Eq. (22) when no local-
ization projectors are applied on the SF. Therefore, the only term of
the forces, which cannot be captured by the localization regions, is
the part that is projected outside the localization regions (but still
inside the computational domain of the CS approach). The extra
Pulay term due to the localization constraint is, therefore,

F
(P) ≙ −2∑

αβ

Re(Kαβ)⟨χβ
RRRRRRRRRRR(1 −L

(α))RRRRRRRRRRR
∂ϕα

∂Ra
⟩. (32)
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From Eq. (29), we obtain

F
(P) ≙ −2∑

αβ

Re(Kαβ)⟨χβ
RRRRRRRRRRR
∂L
(α)

∂Ra

RRRRRRRRRRRϕα⟩, (33)

and from Eq. (27), we derive

∂L
(α)

∂Rβ i1 ,i2 ,i3 ;j1 ,j2 ,j3

≙ δαβδi1j1δi2j2δi3j3 R(i1 ,i2 ,i3) − Rα

Rloc

× δ(Rloc − ∣R(i1 ,i2 ,i3) − Rα∣). (34)

Therefore, if the support functions are zero at the border of the
localization region, there is no Pulay term in the atomic forces.

The Hellmann–Feynman force, given by the expression

F
HF
a ≙ −∑

i

fi⟨Ψi

RRRRRRRRRRR
∂H

∂Ra

RRRRRRRRRRRΨi⟩

≙ −∑
α,β

K
αβ⟨ϕα

RRRRRRRRRRR
∂H

∂Ra

RRRRRRRRRRRϕβ⟩, (35)

involves only the functional derivative of the Hamiltonian operator,
which is independent of the localization regions. The CS and the LS
implementations of the atomic forces are therefore identical.

C. Overview of linear scaling algorithm

The BigDFT code may therefore express the solution of the
KS problem in two ways. The traditional approach, which has a
computational overhead that scales cubically with the number of
atoms in the system and, therefore, called the cubic scaling algo-
rithm, expresses directly the KS orbitals Ψi in the wavelet basis. In
this case, only the KS optimization loop is needed, and no localiza-
tion projection operator Lα is considered. The orbitals are directly
labeled by their index i.

The linear scaling approach in BigDFT instead consists of two
optimization loops, as depicted by the flowchart in Fig. 3. The
SF and kernel optimization loops are independent of each other,
with the number of iterations, convergence criteria, etc., specified
independently.

Although additional approximations are introduced in the LS
approach compared to the extended KS orbitals used in the CS
approach, excellent agreement between total energies and forces cal-
culated with the LS and CS approaches has been demonstrated for
a range of materials and system sizes.42,43 A number of examples
are given in Table III. Furthermore, systematic convergence remains
possible—as the value of Rloc is increased, both the total energy and
forces converge toward the CS result. For example, for a fullerene
molecule, it was shown that for SF radii of 7.4 Å, the total energies
agree to within 0.1 meV, while the forces show better than 1 meV/Å
agreement.42 Thus, in addition to the wavelet basis parameters, the
user should take care to ensure the localization radii (which may
be varied independently for different atomic species) that are large
enough for the required accuracy. In some cases, it may also be
desirable to increase the number of SFs per atom, although, in the
majority of cases, a minimal basis is sufficient, e.g., 4 SFs per C/N/O
atom and 1 SF per H atom. Indeed, all the systems in Table III use a
minimal SF basis apart from bulk Si.

FIG. 3. Flowchart summarizing the high-level algorithm used in LS-BigDFT.

Aside from the basic SF parameters, a number of additional
options are available in LS-BigDFT to allow for additional flexi-
bility, such as whether or not to impose orthogonality on the SFs.
Given the number of additional parameter choices compared to the
CS approach, it is worth asking to what extent the choice of com-
putational parameters depends on the system in question. Where a
very high accuracy or optimal parallel performance is required, it
is important to carefully converge with respect to parameters such
as the SF radii. Nonetheless, we have demonstrated that a common
set of parameters may be used to achieve consistent accuracy and
robust performance across a wide range of systems.43 Such parame-
ters might easily be accessed by using the appropriate input profile,
which have been defined to give a suitable set of parameters for a
number of common use-cases.

D. Direct minimization approach

We have seen that the support functions or the KS orbitals are
represented in a Daubechies wavelet basis and are therefore suscep-
tible to be optimized in the LS and CS algorithm, respectively. We
present in the following the main algorithm that is employed for
their optimization.

The KS Hamiltonian HKS[ρ, ρc, λ] is the operator that defines
the band-structure energy functional,

EBS∥λ, ρc, ρ,{ψi}∥ ≙ ∑
i

fi⟨ψi∣HKS∥ρ, ρc, λ∥∣ψi⟩ ≙ tr(F̂ĤKS). (36)

Let us now impose that the wavefunctions have to be orthogonal
with a certain Hermitian metric operator Ŝ∥λ∥ (not to be confused
with the SF overlap matrix), that is, ⟨ψi∣Ŝ∣ψj⟩ ≙ δij. For norm-
conserving PSP, frozen core, and/or all-electron calculations, S is the
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identity operator, whereas it is a non-trivial quantity for projector
augmented wave (PAW)44 and ultrasoft PSPs.

Orthogonality is imposed via the following Lagrangian:

L∥{ψi},Λ∥ ≙ E −∑
ij

Λij(⟨ψi∣Ŝ∥λ∥∣ψj⟩ − δij). (37)

As always for Lagrange multiplier techniques, minimization with
respect to Λ leads to the orthogonality constraint. Only the Her-
mitian part of the matrix of the Lagrange multiplier coefficients
Λij should contribute due to the Hermiticity of Ŝ. Minimization of
this Lagrangian under variation of the KS orbitals ⟨ψi| leads to the
equation

0 ≙ δL

δ⟨ψi∣ ≙ fi∣HKSψj⟩ −∑
j

ΛijŜ∥λ∥∣ψj⟩. (38)

Multiplying Eq. (38) by ⟨ψk| leads to the condition on the Hermi-
tian part of Λik ≙ 1

2(fi + fk)(⟨ψk∣HKSψi⟩ + ⟨ψi∣HKSψk⟩). Convergence
is achieved when the average norm of the Lagrangian derivative is
below a user-defined numerical tolerance.

E. Support function optimization

In principle, the optimization of KS orbitals in the basis of the
support functions should minimize the total energy. This is, in fact,
equivalent to minimizing the band structure energy, i.e.,

min
ϕα
∑
α,β

K
αβ⟨ϕα∣HKS∣ϕβ⟩. (39)

The KS Hamiltonian HKS does not commute with the L(α) opera-
tors. Therefore, when calculating L(α)∣HKSϕβ⟩, the localization con-
straint has to be relaxed before applying the Hamiltonian operator.
Practically, this is done as follows. When applying the Hamilto-
nian, the value of the cutoff radius Rloc must be increased by half
of the convolution filter length times the grid spacing, correspond-
ing to a buffer region of eight grid points around the localization
region. These buffers are initialized to zero, but the convolution will
result in non-zero values in those regions. When the scalar prod-
uct with another basis function is evaluated, it is therefore impor-
tant to keep this buffer zone. Therefore, given a set of truncation
radii Rloc, the KS Hamiltonian can be explicitly evaluated within
the applied truncation scheme, preserving the variationality of the
result.

As discussed, the SFs used in LS-BigDFT are strictly localized
(numerical) functions that are expressed in a Daubechies wavelet
basis. Starting from an atomic orbital (AO) input guess, they are
optimized by minimizing the target function Ω ≙ tr(F̂Ĥc) subject
to the orthonormality condition of the KS orbitals,

⟨Ψi∣Ψj⟩ ≙ ∑
α,β

c
α
i Sαβc

β
j ≙ δij. (40)

The operator Ĥc ≙ ĤKS∥ρ∥ + V̂c is the sum of the density-dependent
KS Hamiltonian plus a confining operator V̂c such that

⟨ϕα∣V̂c∣ϕβ⟩ ≙ δαβ⟨ϕα∣V̂α
c ∣ϕα⟩, (41)

V
α
c (r) ≙ cα∣r − Rα∣4. (42)

We therefore have to minimize the following functional:

Ω ≙ tr(F̂Ĥc) − ∑
α,β,i,j

Λij(cαi cβj ⟨ϕα∣ϕβ⟩ − δij), (43)

where the coefficients Λij are determined by the relation

∑
i,j
c
α
i c
β
j Λij ≙ ∑

ρσ

K
αρ⟨ϕσ ∣HKS∣ϕρ⟩S−1σβ . (44)

Together with this constraint, we impose the localization con-
dition ∣ϕα⟩ ≙ L

(α)∣ϕα⟩ on the SFs. The functional to be minimized
therefore becomes

Ω −∑
α

⟨ϕα
RRRRRRRRRRR1 −L

(α)
RRRRRRRRRRRℓα⟩, (45)

where the components of the vector ∣ℓα⟩ ≙ (1 −L(α))∣ℓα⟩ are the
Lagrange multipliers of the constraints. The stationary condition on

the functional 0 ≙ ∣ δΩ
δ⟨ϕα ∣
⟩ provides the following gradient:

∣gα⟩ ≙ ∑
β

K
αβ
L
(α)

HKS∣ϕβ⟩ −∑
βρσ

K
αρ⟨ϕσ ∣HKS∣ϕρ⟩S−1σβL(α)∣ϕβ⟩

≙ ∑
βρ

K
αρ
S
1/2
ρβ [L(α)HKS∣ϕ̃β⟩ −∑

σ

⟨ϕ̃σ ∣HKS ∣̃ϕρ⟩L(α)∣ϕ̃σ⟩], (46)

which is explicitly localized (∣gα⟩ ≙ L
(α)∣gα⟩). The gradient is here

expressed in terms of the orthogonalized support functions ∣ϕ̃α⟩
≙ S

−1/2
αβ
∣ϕβ⟩. The localization condition can therefore be imposed

more easily by applying the constraint on (quasi-)orthogonal sup-
port functions, i.e., Sαβ = δαβ. This further simplifies the evaluation
of the gradient. To ensure good compromise between locality and
flexibility, in general, the orthogonality is not ensured strictly for
the support functions, but it is inserted in the gradient to provide
a search direction, which optimizes the diagonality of the overlap
matrix.

Such a minimization proceeds applying the same guidelines of
the direct minimization approach of Sec. IV D by assuming unit
values for the occupation numbers. The coefficient cα is dynam-
ically adjusted during the basis set optimization procedure. This
approach has the effect of keeping the SFs confined in their local-
ization regions, centered on the position Rα, while reducing the KS
band structure energy. Usually, the position Rα of support function
α coincides with the position Ra of the atom a, where ϕα is ini-
tially centered at the beginning of the SCF optimization procedure.
To some extent, this enables one to associate ϕα with a particular
atom a.

As illustrated in Fig. 4, this procedure results in a set of SFs,
which have adapted to their local chemical environments. For a
molecular calculation, we therefore obtain aminimal set of molecu-
lar orbitals that, by construction, exactly represent the occupied KS
orbitals. The SF basis also has a non-zero projection to the unoc-
cupied orbitals subspace, although, in general, the unoccupied KS
orbitals are not expected to be well represented. Although the SFs
resulting from LS-BigDFT are entirely numerical and are there-
fore not constrained to any particular form, nonetheless, even in
extended systems, they generally retain some resemblance to AOs
and are thus referred to as, e.g., s-like SFs.
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FIG. 4. Schematic illustrating different
approaches in BigDFT for the exam-
ple of anthracene. Shown as examples
are an extended KS orbital from the
CS approach (left), select unoptimized
AOs used as a starting guess in the LS
approach (center), and select resulting
optimized SFs that constitute an accu-
rate minimal basis in the LS approach
(right). Note that the colors are used
only to highlight different SFs, while the
localization regions are spherical.

F. Preconditioning

As already mentioned, direct minimization of the total energy
is used to find the converged wavefunctions. The gradient gi of the
total energy with respect to the ith wavefunction |Ψi⟩ is given by

∣g̃i⟩ ≙ P( 1
fi

δL

δ⟨ψi∣ ), (47)

where we indicate with P a preconditioning operator that is
employed to facilitate the convergence of the wavefunction. Given
the gradient direction at each step, several algorithms can be used
to improve convergence. In our method, we use either a precondi-
tioned steepest-descent algorithm or a preconditioned Direct Inver-
sion of Iterative Subspace (DIIS) method.45 These methods work
very well to improve the convergence for non-zero gap systems if
a good preconditioner is available.

The preconditioning gradient ∣g̃i⟩ that approximately points
in the direction of the minimum is obtained by solving the linear
system of equations obtained by discretizing the equation

(−1
2
∇2 + aα(r − Rα)4 − εα)∣gprecα ⟩ ≙ −∣gα⟩, (48)

adding an extra term to account for the confining potential if
present, where εα is an appropriate eigenvalue. The values ϵα are
approximate eigenvalues obtained by a subspace diagonalization in
a minimal basis of atomic pseudopotential orbitals during the gen-
eration of the input guess. For the isolated systems, the values of the
ϵα for the occupied states are always negative; therefore, the operator
of Eq. (48) is positive definite.

Equation (48) is solved by a preconditioned conjugate gradient
(CG) method. The preconditioning is done by using the diagonal
elements of the matrix representing the operator 1

2∇2 − ϵ in a scal-
ing function-wavelet basis. The inclusion of the confining potential
adds only a small overhead to the preconditioning equation as it can
be evaluated via wavelet convolutions. The typical number of CG
iterations necessary to obtain a meaningful preconditioned gradient
is 5.

In a direct minimization scheme, the convergence criterion
should then be based on the constrained gradient,

∣gi⟩ ≙ 1
fi

δL

δ⟨ψi∣ ≙ ∣HKSψj⟩ − 1
2
∑
k

(1 + η fk
fi
)(⟨ψk∣HKSψi⟩ + ⟨ψi∣HKSψk⟩),

(49)

which should be zero at the stationary state. Such a definition enables
one to define the direct minimization scheme also for finite tem-
perature occupations or even KS orbitals that do not contribute to
the total energy, as their converged occupation number would be 0.
When both ψi and ψk correspond to occupied states, clearly fk

fi
≙ 1

and we set η = 1. We assume the same limit for the case in which
both states are unoccupied. We also note that, close to convergence,
the Hamiltonian matrix elements are diagonally dominant, i.e., we
expect that ⟨ψi|HKSψk⟩ ≃ δikϵi. For this reason, in order to precondi-
tion the gradient, we set η = 0 when the value f i is smaller than one
half, such as to exclude the contribution of the occupied states from
the gradient of the empty states. The value of η is set to −1 when f i
is occupied and f k ≠ f i, such as to remove the off-diagonal contribu-
tion from the wavefunction update. As already explained, η = 1 in all
the other cases.

G. Density kernel optimization

Given a recipe for optimizing the SFs, the question remains of
how to find the density kernel for a given set of SFs. Three options
are available in BigDFT: diagonalization, direct minimization, and
the Fermi Operator Expansion (FOE). The first two approaches
retain explicit reference to the KS wavefunctions, while FOE works
directly with the density kernel. As such, FOE is the preferred
approach when strict linear scaling behavior is required.

The first approach is straightforward and uses standard linear
algebra routines in LAPACK, or optionally SCALAPACK, to solve
the generalized eigenproblem defined by the SF Hamiltonian and
overlap matrices. Although such an approach is, of course, not linear
scaling, it can be useful as a benchmark approach, while the min-
imal size of the SF basis means that the computational cost is low
compared to diagonalizing in the full wavelet basis.

The direct minimization approach works directly with the KS
wavefunctions but avoids explicit diagonalization by instead min-
imizing the band structure energy, subject to appropriate orthog-
onality constraints, as described in Ref. 42. The direct minimiza-
tion approach does not scale as well with respect to the system
size (see Ref. 42); however, it may nonetheless be preferred to
FOE in certain cases. Notably, a few unoccupied states may be
straightforwardly included in both the SF and kernel optimiza-
tion steps, and so direct minimization is typically used for cases
where it is important to have a SF basis, which is capable of
accurately representing the lowest unoccupied molecular orbital
(LUMO).
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Finally, in the FOE approach,46,47 the density kernel is
expressed as a function of the SF Hamiltonian matrix, i.e., K = f (H),
where f is the Fermi function. The Fermi function is written as an
expansion of Chebyshev polynomials in such a way as to allow the
K to be constructed using only matrix vector multiplications. This is
combined with sparse matrix algebra, as implemented in the CheSS
library,48 resulting in LS behavior, while it can also be used to treat
metallic systems at a (small) finite temperature.49 The finite temper-
ature can also be used to ensure robust convergence even when the
gap of a system closes due to a poor initial guess, bond breaking, or
when computing charged systems.

The LS behavior of BigDFT when using the FOE approach has
been demonstrated for a number of materials, for systems contain-
ing up to tens of thousands of atoms.42,43,49,50 An example is given
in Fig. 17, with further discussion concerning performance consid-
erations such as the crossover point with respect to cubic scaling
BigDFT in Sec. VIII C.

H. Suitability of linear scaling approach

The SF basis of BigDFT offers numerous benefits for linear alge-
bra based code bottlenecks. The in situ optimized approach allows
for the accuracy of a large basis while keeping the number of basis
functions similar to the size of a minimal basis, leading to small
matrices even for large systems. The use of strictly localized, quasi-
orthogonal basis functions further ensures that the matrices used are
sparse and well-conditioned. In Table I, we report the matrix dimen-
sions and sparsities for four different systems: a 1CRN protein51 in
the gas phase, a pentacene cluster, a 1L2Y protein52 in solution, and
a cluster of water molecules.

The benefits of this basis set are further reflected in the spec-
tral quantities of these matrices, as shown in Table II. We see that
the spectral width of the overlap matrix is quite low, reflecting how
well conditioned the basis is. The ratio of the bandgap to the spectral
width of the Hamiltonian is also relatively high, which leads to huge

TABLE I. Matrix properties of four example systems. NNZ refers to the percentage of
non-zero elements in the Hamiltonian (H), overlap (S), and density kernel (K).

System Natoms NSFs H NNZ S NNZ K NNZ

1CRN 642 1 623 22.09 9.40 37.20
Pentacene 6876 19 482 2.89 1.04 5.70
1L2Y 1942 4 045 5.90 2.13 11.57
Water 1719 3 438 9.43 3.43 18.30

TABLE II. Spectral properties of four example systems. The “Gap-to-width” is the ratio
of the bandgap to the spectral width of the Hamiltonian.

System S width H width (eV) Gap (eV) Gap-to-width

1CRN 0.9557 47.0783 1.9977 0.0424
Pentacene 0.9852 42.2971 1.0323 0.0244
1L2Y 0.8936 47.9860 1.3682 0.0285
Water 0.4496 40.8961 7.7297 0.1890

efficiency gains for diagonalization-free methods. The lower the
ratio, the more the polynomials that are required in order to approx-
imate the Fermi function of the Hamiltonian. BigDFT’s matrices
require few polynomials, similar to what would be needed for min-
imal basis calculations with Gaussians or tight binding calculations,
as shown in a head to head comparison when using density matrix
purification techniques.53

Sparse matrices are stored in a custom segment storage format,
which groups together consecutive non-zero values in a matrix row.
This format not only reduces the storage overhead of a matrix but
also can improve the performance of matrix-vector multiplication
by using calls to dense operations. The Hamiltonian matrix is repli-
cated across processes, and columns of the density matrix are dis-
tributed. This data distribution allows each column to be computed
independently to improve parallel performance.

As mentioned in Sec. IV G, the diagonalization free method of
choice in BigDFT is the Fermi operator expansion based on matrix
vector multiplication. This approach is usually far more expensive
than those based on recursive polynomial expansions such as den-
sity matrix purification.54 However, the high sparsity, relatively low
dimension, and good conditioning of BigDFT’s matrices enable a
more tailored choice of algorithm and parallelization scheme. This
novel approach is made possible by the unique properties of the
Daubechies wavelet basis set employed in BigDFT.

V. CUBIC SCALING APPROACH IN BigDFT

We have already introduced the CS approach of BigDFT as the
explicit expression of the KS orbitals in the Daubechies wavelet basis
without localization constraint. Such an approach is very useful as
it provides the complete basis set limit of the (PSP) KS problem
in the absence of localization constraint and with explicit boundary
conditions. This approach presents optimal features of precision vs
computational performance, which may prove useful in many cases.
We here present as an illustration the study of the formation energy
of a defect in a slab-like system with hybrid functionals and with
continuum polarizable models.

A. Case study: Oxygen vacancy formation
energies on the anatase TiO2 (1 0 1) surface

Titanium dioxide (TiO2) has gained interest in recent years for
its applications in clean energy and in carbon-free production of
hydrogen.55 Various technological areas include photoassisted water
splitting,56 photocatalysis,57 solar energy conversion,58 and photo-
electrocatalytic environmental cleanup.59 In particular, its anatase
phase has superior oxidation and photocatalytic properties. The
anatase (1 0 1) surface (A101) is the most stable and, as a conse-
quence, the majority surface for nanocrystals. In order to better
understand the photocatalytic events on anatase surfaces, it is of
utmost importance to comprehend at an atomistic level the rela-
tive energetics of various surface defect configurations as well as
the interactions of ambient molecules with ideal or defective sur-
face sites.60–64 Defects play a key role in photocatalytic processes,65,66

whereas both shallow and deep localized trap states can be intro-
duced by crystal defects into the wide bandgap (3.2 eV) of the anatase
polymorph.67
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From this side, it is important to properly model electronic
states lying at or within the semiconductor bandgap. DFT cal-
culations with the semilocal functional Perdew–Burke–Ernzerhof
(PBE)68 tend to overdelocalize electrons of strongly correlated sys-
tems that feature localized d- or f-orbitals.69 As a consequence, the
bandgap is underestimated and localized states do not fall in between
the valence and conduction states. Electron localization becomes
even more important in nonstoichiometric systems, such as those
containing oxygen vacancies. The additional two electrons of a sur-
face oxygen vacancy may localize on nearby Ti atoms, reducing Ti4+

to Ti3+.70,71 The use of hybrid functionals or the DFT + U approach
has proven to be effective to correct such electron delocalization and
to correctly describe the material properties.72–74

Oxygen vacancies are the main defects at the anatase (1 0 1)
surface, playing a fundamental role in the TiO2 surface reactiv-
ity. Among all possible vacancy configurations at surface sites, the
most stable are represented by an oxygen vacancy at the outermost
twofold coordinated oxygen surface site belonging to the first tri-
layer (named surface vacancy or Vsurf

O ) and an oxygen vacancy at
the bulk lattice site belonging to the second trilayer (named sub-
surface vacancy or Vsub

O ). Both oxygen vacancies are depicted in
Fig. 5. In order to evaluate their relative stability, we extracted

FIG. 5. Depiction of the six trilayer 4 × 1 supercells for the anatase TiO2 (1 0 1)
surface. O: red; Ti: cyan; surface O vacancy Vsurf

O
: green; and subsurface O

vacancy Vsub
O

: brown.

formation energies for the oxygen vacancy from the total energy
of the defective Etot(def) and the stoichiometric Etot(no def) anatase
A101 surface,

Eform(VO) ≙ Etot(def) − Etot(no def) + 1
2
μ(O2). (50)

The chemical potential of μ(O2) is taken to be the total energy of an
isolated O2 molecule.

The anatase TiO2 (1 0 1) surface was modeled with six trilayers
of a 4 × 1 supercell (288 atoms in total) with periodic dimensions
of 15.18 Å and 10.43 Å. Figure 5 shows the whole A101 surface. A
six trilayer slab and a 4 × 1 supercell with a fixed bottom layer have
provided a fully reliable balance between computational efficiency
and accuracy.66,75,76 The 4 × 1 periodicity prevents spurious inter-
actions with periodic images of the defects or the adsorbed organic
molecule in the periodic directions x and y (z is considered orthog-
onal to the surface plane, i.e., along the100 crystal direction). Surface
boundary conditions, where periodic replicas for the atomistic sys-
tem are imposed only on the x and y surface directions, have been
set for all surface calculations. The wavelet basis functions were dis-
tributed on an adaptive uniform mesh with a resolution of h ∶≙ hx
= hy = hz = 0.40 bohr for all calculations. Due to the large sizes of the
system, only the Γ point has been used for the k-space integration
in all geometry optimizations. We employed soft norm-conserving
PSPs including non-linear core corrections10,13 to describe the core
electrons along with a PBE077 functional hybrid XC functional, as
implemented in the LibXC78 library. BigDFT takes advantage of the
highly efficient graphics processing unit (GPU) implementation of a
real-space based algorithm for the evaluation of the exact exchange,
which reduces the cost of hybrid functional calculations in sys-
tematic basis sets, without any approximation, by nearly one order
of magnitude.17 To make energetic comparisons, we performed all
runs with equivalent parameter settings and convergence criteria. All
energetics refer to the final relaxed structures.

Formation energies are 3.17 eV for Vsurf
O , and 2.94 eV for Vsub

O ,
with a difference of 0.23 eV. As a consequence, a subsurface vacancy
is energetically favorable with respect to surface vacancies. A previ-
ous study with a hybrid screened exchange functional reports similar
results, obtaining a difference in stability of 0.30 eV.73 This result
also agrees with previous DFT studies using the PBE functional
where the formation energy of a subsurface vacancy on the anatase
TiO2 (1 0 1) surface was found to be 0.40 eV lower than a defect on
surface sites.27,65,66,73

When the anatase TiO2 (1 0 1) surface interfaces with a wet
environment, the stability of vacancy defects or adsorbed species
lying at the solid/liquid interface can be modified.27 In a recent
study of the interface of water and ethanol with the A101 surface,

27

we show that the proper inclusion of the wet environment in the
methodological scheme is fundamental for obtaining reliable results.
Calculations are based on structure predictions25,26,79 at a DFT level
for molecules interacting with the perfect and defective anatase
(1 0 1) surfaces under both vacuum and wet conditions. The soft-
sphere implicit solvation model is used to describe the polar charac-
ter of the two solvents.20–22 As a result, we find that surface oxygen
vacancies become energetically favorable with respect to subsur-
face vacancies at the solid/liquid interface. This aspect is confirmed
by ab initio molecular dynamics simulations with explicit water
molecules. Ethanol molecules are able to strongly passivate these
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vacancies, whereas water molecules only weakly interact with the
(1 0 1) surface, allowing the coexistence of surface vacancy defects
and adsorbed species. The infrared and photoluminescence spectra
of anatase nanoparticles exposing predominantly (1 0 1) surfaces
dispersed in water and ethanol support the predicted molecular–
surface interactions, validating the whole computational paradigm.

VI. OPPORTUNITIES ARISING FROM LINEAR
SCALING IN WAVELETS

Beyond a means of achieving linear scaling, the localized SF
basis also offers other advantages, both as a tool for analysis and as a
means of further reducing the complexity and thereby the computa-
tional cost of treating large systems. Specifically, the SF basis permits
two separate, but related approaches:

1. the reduction in computational cost by exploiting similarity
between fragments in bothmolecular and periodic systems and

2. the identification and exploitation of independent frag-
ments for building QuantumMechanics/Molecular Modelling
(QM/MM) models.

Both approaches center around a fragment-like description wherein
a system is divided into subsystems, which might or might not con-
sidered to be quasi-independent. Importantly, the SFs can also be
used to define indicators, which enable one to assess the similar-
ity and/or separability of fragments and thereby determine to what
extent such a description is valid. In the following, we describe the
two approaches and their associated indicators.

A. Fragment approach

As discussed above, the SFs facilitate a LS approach such that
simulations of 1000s of atoms are possible. Nonetheless, one might
ask if it is possible to also reduce the prefactor? A significant por-
tion of the computational cost is due to the SF optimization, which
cannot easily be avoided since it is essential for achieving high accu-
racy. However, since the SFs adapt to their chemical environment,
for systems with many SFs in similar environments, one might
imagine taking advantage of this similarity. To this end, we have
developed a fragment-based approach, which is applicable to both
molecular80 and extended systems.50 In both cases, the system is
divided into a number of fragments, which, in themolecular case, are
quasi-independent and, in the extended case, are interacting pseudo-
fragments. If a system has repeated fragments, then one can reduce
the computational cost.

Before further discussing the fragment approach, it is useful to
consider under which circumstances SFs are similar. In other words,
how should one define the (pseudo-)fragments? For weakly inter-
acting supramolecular systems, it is reasonable to assume that the
SFs will be similar between molecules. For example, the SFs asso-
ciated with the O atom in one water molecule within a droplet
are similar to those associated with O atoms in other molecules so
that a water molecule represents a good choice of fragment. For a
periodic solid, on the other hand, one might assume that SFs asso-
ciated with equivalent atoms are in similar environments, e.g., all
Si atoms in bulk Si so that a single Si atom might be treated as
a pseudo-fragment. However, other systems are less intuitive, e.g.,
where there is a defect or an edge. It is therefore useful to have a

quantitative measure of SF similarity. To this end, we use the onsite
overlap matrix,50 defined as

S
onsite
αβ ≡ ⟨RT

Rα→R0ϕα∣RT
Rβ→R0ϕβ⟩, (51)

and in other words, the overlap between two SFs, originally centered
on Rα and Rβ, has been rototranslated by the matrices R and T to
be on a site of center R0. Thus, S

onsite
αβ ≙ 1 implies that ϕα and ϕβ are

identical, having both the same character (s, px, etc.) and the local
chemical environment.

In Fig. 6(a), we show the optimized SFs for a pentacene
molecule, which might be used to generate template SFs for longer
(finite or periodic) acenes. If we consider pairs of C atoms as pseudo-
fragments (with their associated H atoms), then we can define two
inequivalent bulk-like pseudo-fragment types, i.e., which are unaf-
fected by the edges. One can see that SFs near the edges differ from
the equivalent bulk-like fragments, as confirmed by Sonsite [Fig. 6(b)].
We have previously shown that Sonsite is correlated with the error
induced by a given pseudo-fragment setup in quantities such as
the total energy for the examples of SiC nanotubes and defective
graphene.50,81 In other words, the smaller the threshold for 1− Sonsite,
the smaller the error compared to using fully optimized SFs. In this
system, such an approach may be used to determine which frag-
ments may be treated as bulk-like and which correspond to distinct
edge regions. A smaller threshold for (1− Sonsite)max results in larger
edge regions and vice versa, as demonstrated in Fig. 6(d). Finally,
the error induced by a given fragment setup may be tested by retain-
ing correctly optimized SFs for the edge fragments and replacing the
remainder with the bulk-like fragments, as shown in Fig. 6(c). As can
be seen, there is indeed a correlation between the selected threshold
and the induced error. Thus, if one chooses the threshold accord-
ing to the desired accuracy, Sonsite can be used to define a satisfactory
pseudo-fragment setup. For example, in this case, a threshold of 10−3

results in an error of 12 meV/atom. For molecular fragment calcula-
tions, an alternative indicator is more appropriate for informing the
fragmentation of a system. This is presented in Sec. VI B.

Having chosen an appropriate (pseudo-)fragment setup, the
fragment approach consists of three steps:

1. Template calculation: optimize the SFs for each template
fragment T via a full LS calculation.

2. SF replication: replicate the SFs from the template fragments
for the full system, rototranslating as needed to account for
differing orientations between template and system fragments.

3. Full calculation: perform a LS calculation of the full sys-
tem using the replicated SFs keeping the SFs fixed and only
optimizing the density kernel.

The procedure is illustrated in Fig. 7 for both molecular and
extended (pseudo-)fragments. Since the calculation on the full sys-
tem involves the use of a fixed SF basis, significant computational
savings can be made by avoiding the need for SF optimization. Steps
one and three rely only on the standard machinery of LS-BigDFT.
The second step can be automated, given both a means of detecting
and performing the rototranslation. The appropriate rototranslation
is found by defining a cost function,

J(RT→S) ≙ 1
2N

N∑
a≙1
∥RS

a − N∑
b≙1

R
T→S
ab R

T
a ∥2, (52)
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FIG. 6. Schematic illustrating the use of the onsite overlap matrix in setting up a pseudo-fragment calculation starting from a pentacene template calculation, following which
the SFs could be reused for a longer acene. (a) Select optimized SFs and definition of two distinct bulk-like pseudo-fragment types (colored boxes). (b) 1−Sonsiteij vs distance

d along the x-axis, where i runs over SFs associated with atoms in the highlighted fragments of (a) and j is over all SFs. Matrix elements are only shown between SFs
belonging to C atoms with the same y-coordinates and between the same SF type, e.g., s-like with s-like. (c) Error in energy relative to the full linear scaling result for the
fragment setups of (d), where the SFs associated with the edge-like fragments in each setup are the correct optimized SFs and the SFs associated with all other atoms are
those coming from the bulk-like fragments defined in (a). The error bars denote the range of values of (1 − Sonsite)max, which would give the same fragment setup. (d) Different
pseudo-fragment setups, where the threshold determines the extent of the edge fragments: if any values of 1 − Sonsite between a given fragment instance and the equivalent
bulk-like fragment are above the threshold, (1 − Sonsite)max, then that fragment is considered to be distinct and therefore treated as edge-like, otherwise it is considered to be
bulk-like.

where N is the number of atoms in the fragment and R
T(S)
a are

the coordinates of the template (system) fragment. The optimal
transformation may be found by minimizing the cost function.82–84

The rototranslation itself is achieved via an accurate and efficient
wavelet-based interpolation, described in Ref. 80.

So far, we have considered rigid fragments. If there are signifi-
cant deviations between the template and system fragments’ geome-
tries, then the fragments should no longer be treated as the same,
since the associated SFs are not similar. However, we often want to
allow small deformations. Thankfully, the cost function J not only
already takes into account deformations but also provides an indi-
cation of the similarity between fragment geometries. Like Sonsite, J
is correlated with the error induced by a given fragment setup50,81

and can therefore be used as an indicator of whether a given setup
is appropriate. Unlike Sonsite, J requires only atomic information and
so can be calculated without performing a LS calculation. When the

differences between fragments are dominated by the atomic struc-
ture, e.g., in the case of a defect introducing local distortions in a
periodic material, J is therefore particularly useful. As an example,
in Fig. 8, we show the correlation between J and the induced error
for noisy SiC nanotubes, where the template SFs were generated in
a pristine nanotube. As can be seen, despite being based purely on
geometric information, the value of J is indeed a good indicator for
the induced error since it is dominated by the random distortions in
the atomic structure.

The fragment approach has thus far been applied to a range
of molecular and extended systems50,80,81,85 and, provided that an
appropriate fragment setup is chosen, has been shown to give good
accuracy for quantities including densities of states (DoS) [see, e.g.,
Fig. 17(c)], transfer integrals, and total energies. In Table III, we
show the total energies for a range of systems, calculated using cubic,
linear, and fragment approaches. While the induced error relative to
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FIG. 7. Schematic illustrating the fragment approach for molecular and extended
systems. The boxes indicate a (pseudo-)fragment, while the color refers to the
fragment type. (a) Molecular fragment approach: a pentacene molecule used as
a template for a pentacene dimer. (b) Pseudo-fragment approach: a pentacene
molecule used as a template for polyacene. Since the polymer is in periodic
boundary conditions, no edge pseudo-fragments are needed.

FIG. 8. Correlation between the average value of the cost function J and the
induced error for pseudo-fragment calculations of noisy periodic SiC nanotubes,
where the SFs from a pristine nanotube are used as a basis for nanotubes with
varying amounts of random noise. The line represents a linear fit to the data.
Additional details are given in Ref. 50.

fully optimized SFs depends on the system, fragment setup, etc. in
the majority of cases, it is of the order of 10 meV/atom or lower. The
computational cost of the fragment approach also depends strongly
on the system and setup in question, however, as shown in, e.g.,
Figs. 15(d) and 17(a); the computational cost is typically at least five
times lower than for a full linear scaling calculation, and in some
cases, the savings are considerably higher. Finally, we note that the
forces are more sensitive to the calculation setup than the total ener-
gies. In many cases, they are therefore not reliable when using the
fragment approach, and so we have thus far focused on energies
rather than forces.

B. Complexity reduction

In this paper, we have so far shown how BigDFT’s linear scaling
capabilities enable calculations on large systems. Nonetheless, these
calculations remain computationally intense, and it is unrealistic (if
not unnecessary) to expect DFT calculations to replace commonly
used forcefield methods, as a full statistical sampling of a system’s
configuration space (free energy calculations, molecular dynamics,
etc.) remains expensive. It is thus crucial for us to develop analysis
tools that use the results of large scale DFT calculations to gain new
kinds of insights into the emergent properties of systems.

One such tool we have developed in this spirit is a complexity
reduction framework,86,87 which takes large scale calculations and
uses them to decompose systems into coarse grained fragments. This
fragment generation procedure is based on two metrics:

● the purity indicator that measures the quality of a fragment
and● the fragment bond order that quantifies inter-fragment
interactions.

Both of these measures can be cheaply computed directly from the
single particle density matrix and can be used to automatically par-
tition a system into fragments, design embedding environments
for QM/MM type approaches, and produce graph-like views of a
system.

Here, we describe two example applications of this approach.
For the first, we consider the problem of describing the interac-
tion of a molecule with its surrounding solvent environment. While
BigDFT’s implicit solvation model can effectively mimic solvation
effects (Sec. III B) without the need for sampling, it can nonethe-
less be desirable to perform calculations, including explicit sol-
vent molecules, when solvent properties differ significantly near
the surface of the solute (e.g., the role of structural waters in pro-
teins). However, including a large number of solvent molecules
in a system can greatly increase the computational cost. Using
BigDFT’s complexity reduction framework, we can efficiently quan-
tify solute–solvent interactions and use this information to design
minimal solvation shells. Figure 9 shows an example of such a
calculation using an RNA molecule in solution. When the RNA
molecule is computed without the solvent, the dipole is significantly
different from when computed in the solution. To define a suit-
able environment, we compute the fragment bond order between
each solvent molecule and the RNA. We then build an environ-
ment by including all fragments until the sum of the fragment
bond order of the remaining fragments falls below some cutoff. By
including enough solvent molecules (values around 10−3), we can
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TABLE III. Comparison of total energies, E, and root mean squared forces, F, calculated using the cubic, linear, and fragment (“frag”) approaches for a range of systems with
different boundary conditions (“bcs”). The forces are sometimes unreliable in the fragment approach, and so only energies are given. The number of atoms, Natom, is given for
the full system (“sys”), the template (“temp”) calculation, and an individual fragment, while the number of distinct fragment types, Ntype, is also given. The errors in energy and

forces are defined as the error introduced by the additional approximation, i.e., ΔElinear = Elinear
− Ecubic and ΔEfragment = Efragment

− Elinear.

Natom E (eV/atom) ΔE (meV/atom) F (eV/Å) ΔF (meV/Å)

bcs sys temp frag Ntype cubic linear frag linear frag cubic linear linear

Molecular fragments

Pentacene dimera Free 72 36 36 1 −100.97 −100.96 −100.96 7.9 6.3 0.25 0.25 20.8
Anthracene clusterb Free 216 24 24 1 −96.98 −96.96 −96.95 18.7 6.3 1.00 1.00 24.7
CBPc Free 2480 62 62 1 −119.38 −119.36 −119.35 20.1 10.2 0.09 0.07 23.3

Pseudo-fragments

Polyacenea Periodic 60 36 2/4 2 −108.73 −108.72 −108.70 9.1 12.6 0.04 0.03 9.2
Bulk Sid Periodic 512 216 1 1 −191.49 −191.46 −191.46 25.4 5.4 0.00 0.00 2.8
Graphenee Surface 576 112 4 1 −179.13 −179.11 179.11 11.4 3.8 0.01 0.00 13.3
Nanoribbone Surface 576 108 18 1 −178.64 −178.63 −178.63 10.2 0.1 0.06 0.10 35.4
SiC nanotubef Periodic 392 168 28 1 −130.80 −130.79 −130.79 9.6 3.3 0.01 0.01 9.3

168 6 −130.67 44.0
SiC nanotubef Free 392 224 28 8 −130.73 −130.72 −130.71 9.9 7.0 0.00 0.01 12.7

280 10 −130.71 4.8

aCalculations were performed with LDA, h = 0.4 bohr, 4(1) SFs per C(H) atom, and Rloc = 7 bohrs with fragment setups, as depicted in Fig. 7.
bCalculations were performed with PBE, h = 0.4 bohr, 4(1) SFs per C(H) atom, and Rloc = 6 bohrs.
cCalculation details as described in Fig. 17.
dCalculation details as described for PBE calculations in Fig. 15.
eComputational details are given in Ref. 81.
fComputational details are given in Ref. 50.

automatically generate the appropriate environment to reproduce
the dipole.

For our second example, we consider the problem of describ-
ing the active site of a protein. Here, we consider a Laccase enzyme,

which is known to have an active site involving four copper atoms.88

One copper sits alone and is used to oxidize substrates that dock with
the protein. This electron is then transferred to a three copper ring,
where it is finally used to reduce O2 to H2O. A coarse grained view

FIG. 9. The error in the dipole of an RNA molecule when
computed in different solvation environments defined by the
fragment bond order. The value computed using the full
system was 38.8 a.u.
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FIG. 10. A graphic view of the active
site of a Laccase enzyme. Nodes are
defined as the amino acids and copper
atoms, and edges are drawn between
fragments, which share an embedding
environment, as defined by the fragment
bond order measure. Nodes are labeled
by their amino acid type, with the lone
copper labeled CUL and the ring copper
CUR.

of this electron transfer, and knowledge of the participating amino
acids, might gain insight into this mechanism and how this enzyme
might be tuned for applications. To generate such a view, we com-
pute the fragment bond order between those copper atoms and each
of the amino acids of the system. We then construct a graph, where
amino acids and copper atoms are nodes, and edges are defined
using the bond order as a guide, as drawn in Fig. 10.

VII. BigDFT FORMALISM FOR THE STUDY
OF BIOLOGICAL SYSTEMS: APPLICATION
TO SARS-CoV-2 MAIN CONSTITUENTS

Given the critical situation facing the world at the moment,
several researchers belonging to different scientific communities
and groups worldwide are working on SARS-CoV-2, in particu-
lar on the protease and spike protein. The protease is, in fact,
found within the virus core along with the nucleocapsid protein
and RNA. It is an essential enzyme for the life-cycle of the virus
since it produces structural and functional proteins that are required
for the maturation and replication of the virus. As such it is an
important antiviral drug target since if its function is inhibited, the
virus remains immature and non-infectious. Using fragment based
screening, researchers have identified a number of small compounds
that bind in the active-site of the protease, which can be used as a
starting point for the development of protease inhibitors (see, e.g.,
Refs. 89 and 90).

Thanks to the development of the BigDFT code and its LS
approach, we have the possibility to model the electronic structure
of the protease in contact with a potential docked inhibitor and pro-
vide new insights into the interactions of the potential PIs with the
protease by selecting specific amino acids that are involved in the
interaction and characterizing their polarities. This new approach
we propose is complementary to the docking methods used up to
now and based on in silico research of the inhibitor. We have started
a series of calculations, taking advantage of the Protein Data Bank

(PDB) structures available, which will be presented elsewhere. In this
section, our main objective is to show a simplified demonstration
of a computational approach based on the fragmentation approach
described in Sec. VI B, which would be accessible to other scientific
communities, such as biologists or medicinal chemists, who may be
able to extract new ideas from data presented as follows.

A. Fragmentation of biological systems: The main
protease of SARS-CoV-2

Biological systems are naturally composed of fragments such
as amino acids in proteins or nitrogenous bases in DNA. We show
in this example the SARS-CoV-2 main protease (PDB ID 6LU7) in
complex with an N3 inhibitor. Such a structure is made of a dimer
of two identical sub-units, each one with a docked inhibitor. We
made our calculation by presenting only one monomer, made of
4732 atoms, depicted in Fig. 11. Such a biological system is made
of two chains: one associated with the amino acids that belong to the
enzyme and the second associated with the inhibitor.

As already stated, with our approach, we are able to evaluate
whether the amino acid-based fragmentation is consistent with the
QM computational setup. Such a system has already been analyzed
at a QM level of theory with a fragment molecular orbital tech-
nique,91 where the fragmentation of the system has to be imposed
beforehand following chemical intuition. Here, to evaluate the reli-
ability of the model, we have at our disposal the purity indica-
tor that gives us, for each fragment, the level of confidence with
which such a fragment can be considered as an independent unit
of the system. This is an important indicator for the end-user,
as it enables to evaluate the quality of the information associ-
ated with a given fragment. Usually, a cutoff of 0.05 is employed,
which has proven to provide meaningful physico-chemical results
in most circumstances (see Refs. 86 and 87). The representation
of Fig. 11 is instead based on a re-fragmentation with a much
tighter cutoff (0.025), which results in a coarse-grained view of the
system.
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FIG. 11. The atomistic representation of the SARS-CoV-2 main protease monomer
(top) employed in the present case-study, together with the amino acid sequences
(bottom). Here, we see two chains: the main enzyme chain and the amino acid
chain that are associated with the inhibitor (the second AVL sequence). Amino
acids and respective atoms, which belong to the same QM fragment, are colored
with the same color.

B. Population analysis of the system after the QM
calculation: Role of implicit solvation

After a given fragmentation is identified, we know that we may
decompose the system’s observables in terms of the fragments. The
fragment population analysis that has been introduced in Refs. 86
and 87 can then be employed. This would enable the association of
the system constituent values such as the charge state and the polar-
ity with a simple and straightforward interpretation. For instance,
we may extract the charge population on each of the amino acid of
the systems, as depicted in Fig. 12. Thanks to our efficient imple-
mentation of continuum solvents, we are able to perform the same
calculation in the electrostatic cavity to understand the role that the
(implicit) solvent may play in the protonation states of the system’s
residues. Results are shown in Fig. 12, where we see that the amino
acid charge is actually influenced by the presence of the employed
environment.

C. Evaluating the section of the system that interacts
with the inhibitor

We have seen in the Laccase example how a coarse grained view
of the system is important. We have now presented QM observables
on the system’s fragments, which are based on a population analy-
sis of the electronic density of the system, projected on the amino
acid. A novel quantity that our approach enables to address is the
possibility of quantifying the strength of the chemical interaction
between the different fragments. It is possible to select a target region

FIG. 12. Charges on the amino acids calculated by the fragment population anal-
ysis [(a) and (b)] and their difference with respect to implicit solvent calculation,
which is performed with the same technique of the study in Sec. V A in (c) and (d).
For simplicity, we have employed the amino acid-based fragmentation to present
the data.

and identify which fragments of the systems interact by sharing some
electrons with this region. We can reconstruct the fragmentation of
the system in a way such as to focus on the active site in a specific
portion of the protein. In this example, we will focus around the
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FIG. 13. (Top) Value of the fragment bond order between the inhibitor and the
amino acids of the enzymatic sequence. (Bottom) A graphic representation of the
fragments that interact most with the inhibitor, where the amino acids are also
colored by the following charge color code as per Fig. 12.

inhibitor. We show in Fig. 13 which are the sections of the amino
acid sequence that has a non-negligible interaction with the frag-
ments that belong to the chain of the inhibitor. Such representation
can be transformed into a graph-like view like in the case of Fig. 10,
where the interacting fragments may also be characterized by their
QM charge.

VIII. PARALLEL PERFORMANCE AND COMPUTING
ARCHITECTURES

A. CPU performance

BigDFT incorporates a hybrid MPI (Message Passing Inter-
face)/OpenMP parallelization scheme, with parts of the code also
having been ported to GPUs, as described in Sec. VIII B. For both
CS and LS BigDFT, theMPI parallelization is at the highest level with

the KS orbitals or, in the latter case SFs, divided between MPI tasks.
There is therefore a fundamental limit on the number of MPI tasks
that should be used for a given system (proportional to the number
of atoms and k-points), as there should always be at least one orbital
(SF) per MPI task for the cubic (linear) scaling approach. In order
to reduce the MPI communication, two different data distributions
are used to divide the orbitals/SFs among the tasks depending on
the operation involved such that each task is either responsible for a
fixed number of orbitals or for all orbitals, which are defined over a
given set of grid points.

OpenMP is used to parallelize operations at a finer grained
level. This allows the code to scale to a higher number of central
processing unit (CPU) cores and is also important on architectures
where memory is a limiting factor, since the use of OpenMP and a
threaded BLAS library allows all processors on a given node to be
exploited. Further details on the parallelization scheme, including a
discussion of how good load balancing is optimized in the LS case,
are given elsewhere.42,43,92,93

Thanks to the hybrid parallelization approach and the efficient
properties of wavelets, it is possible to simulate up to a few hun-
dred atoms even on a workstation. For example, Fig. 14(a) shows
the timing breakdown for a PBE calculation on 428 atoms of a peri-
odic disordered Ga2O3 structure on a 16 core workstation. Such a
calculation is memory intensive but takes only of the order of an
hour for a single point calculation, with the time dominated by the
linear algebra and convolutions. Therefore, even without supercom-
puter access, CS BigDFT might offer some advantages in terms of
performance. Nonetheless, BigDFT is primarily designed with mas-
sively parallel architectures in mind, and as also shown in Fig. 14(a),
the same calculation takes only a few minutes on 16 nodes of
Archer.

In order to explore the parallel performance in more detail, in
Fig. 15, we show the performance of different modes of BigDFT for
bulk silicon on Archer. Aside from the choice of method, the paral-
lel performance also depends on the system in question, including
the boundary conditions and simulation parameters. Nonetheless,
similar trends will hold. In particular, it can be seen that the hybrid
MPI/OpenMP approach results in good scaling up to a number of
cores, which is significantly higher than would be possible for a pure
MPI approach. Specifically, for Γ-point calculations of large super-
cells, a speedup is achieved up to around 256 nodes. For larger
systems, it is possible to achieve speedups for much larger num-
bers of cores (within a pure CPU approach), for example, speedups
have been demonstrated for more than 20 000 cores for around
14 000 atoms of DNA43 and on more than 65 000 cores for hybrid
functional calculations of 768 atoms of UO2.

50

It is also worth noting the absolute walltime. For bulk Si, 512
atoms are below the crossover point between cubic and linear scaling
BigDFT, i.e., the cubic scaling approach is still faster than the lin-
ear scaling approach. This is because fully periodic systems generally
have a higher crossover point, while a large number of SFs per atom
are required to achieve a reasonable accuracy. Further discussion
on the crossover between cubic, linear, and fragment approaches
is presented in Sec. VIII C. The cubic approach takes less than two
minutes of walltime for a complete single point calculationwith PBE.
In the case of a hybrid functional, this increases significantly; how-
ever, it is nonetheless possible to complete a single point calculation
on such a large supercell in a little more than an hour even within a
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FIG. 14. Performance of cubic scaling BigDFT for different systems, XC functionals, parallelization modes, and architectures. Calculations are at the Γ point only, and walltimes
are for single-point ground state calculations. (a) CPU only PBE timings for 428 atoms of a periodic disordered Ga2O3 structure on a 16 core Intel Xeon 6130 workstation
using 16 MPI tasks and 2 OpenMP threads, compared to 16 nodes on Archer using 6 MPI tasks and 4 OpenMP threads per node. Calculations took 21 self-consistent
iterations to converge. (b) CPU-GPU PBE and PBE0 timings for the TiO2 slab presented in Sec. V A using 144 nodes on Daint (with GPU acceleration for PBE0). The slab
contains 287 atoms (1149 KS orbitals), and the calculations took 12 self-consistent iterations to converge. For the PBE0 calculation, there are 660 675 different solutions of
Poisson’s equation per SCF iteration, but thanks to GPU acceleration, it can nonetheless be executed in less than 10 min. (c) Comparison of the walltime needed to perform
a full SCF loop and to write the support function matrices on the disk for the SARS-CoV-2 main protease calculations that are presented in Sec. VII, made on 8 nodes of the
Rome partition of Irene supercomputer Computing times are similar between vacuum and implcit solvent (IS), even slightly lower for IS, but mostly due to fluctuation in the
network performance.

CPU-only approach. Further savings might be expected in a GPU-
based approach (see Sec. VIII B). The LS walltime is reduced when
the pseudo-fragment approach is used to generate an input guess
from a small molecular cluster, and even further when the SFs from
a smaller supercell are used without further optimization, although
the walltime remains higher than the cubic approach.

B. GPU acceleration

In the past few years, the possibility of using graphics process-
ing units for scientific calculations has increased a lot of interest.
A technology initially developed for home personal computer (PC)

hardware has rapidly evolved in the direction of programmable par-
allel streaming processors. The features of these devices, in particular
the very low price to performance ratio, together with the rela-
tively low energy consumption, make them attractive platforms for
intensive scientific computations.

The operations of BigDFT are well suited for GPU acceleration.
For example, the computational nature of 3D separable convolutions
allows efficient routines, which may benefit from GPU computa-
tional power. The parallelization scheme of BigDFT is also optimal
in this sense: GPUs can be used without affecting the nature of the
communications between the different MPI processes. This is in the
same spirit as the multi-level MPI/OpenMP parallelization. Porting
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FIG. 15. Parallel performance for bulk Si on Archer using 6 MPI tasks and 4 OpenMP threads per node, including walltime, speedup, efficiency, and fit to Amdahl’s law. There
are three LS scenarios: a standard atomic orbital (“AO”) SF input guess, a guess whereby the SFs are generated for a Si atom in the center of an isolated cluster of 17
Si atoms (“Si17”) and for the pseudo-fragment approach with optimized SFs from a 216 atom supercell reused as a fixed basis (“fragment”). h = 0.43 bohr with 9 SFs per
atom and Rloc = 8 bohrs for LS calculations. (a) Cubic scaling PBE calculation in an 8 atom unit cell with 4 × 4 × 4 k-points, (b) cubic scaling PBE calculation in a 512 atom
supercell at the Γ-point, (c) cubic scaling PBE0 calculation in a 512 atom supercell at the Γ-point, and (d) linear scaling PBE calculation in a 512 atom supercell at the Γ-point.
The time is shown for three scenarios, while speedup and efficiency are shown only for the AO case.

has been done within the Khronos’ OpenCL standard, which allows
for multi-architecture acceleration. We have therefore at hand a
multilevel parallelized code, combining MPI, OpenMP, OpenCL,
and CUDA (for the FFT and linear algebra), which can work on
state-of-the-art hybrid supercomputers. Thanks to OpenCL porting,
even heterogeneous architectures are at hand. Further details on the
implementation and performance of BigDFT with GPUs are given
in Refs. 17, 93, and 94.

The operations that have to be explicitly ported to GPUs are
a set of separable three-dimensional convolutions. For a code with
the complexity of BigDFT, the evaluation of the benefits of using a
GPU-accelerated code must be performed at three different levels.

Initially, one has to evaluate the effective speedup provided by
the GPU kernels with respect to the corresponding CPU routines
that perform the same operations. This is the “bare” speedup, which,
of course, for a given implementation, depends on the computa-
tional power that the device can provide. It has to be kept in mind
that vendors, who do not know about the details of the full code, are
only able to provide bare speedups.

At the second level, the “complete” speedup has to be evalu-
ated; the performances of the whole hybrid CPU/GPU code should
be analyzed with respect to the pure CPU execution. Clearly, this
result depends on the actual importance of the ported routines in
the context of the whole code (i.e., following Amdahl’s law). This
is the first reliable result of the actual performance enhancement of

porting the code to GPUs. For a hybrid code that originates from a
single-core CPU program, this is the last level of evaluation.

However, for a parallel code, there is still another step that has
to be evaluated. This is the behavior of the hybrid code in a parallel

FIG. 16. Increase in the code performance with various GPU architectures for the
calculation of the exact exchange operator on a system of 32 water molecules.
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(or massively parallel) environment. Indeed, for parallel runs, the
picture is complicated by two things. First, the management of the
extra level of communication is introduced by the PCI (Peripheral
Component Interconnect)-express bus, which may interact nega-
tively with the underlying code communication scheduling (MPI or
OpenMP, for example). The second is the behavior of the code for a
number of GPU devices, which is lower than the number of CPU
processes that are running. In this case, the GPU resource is not
homogeneously distributed—managing this fact adds an extra level

of complexity. The evaluation of the code at this stage contributes
at the “user level” speedup, which is the actual time-to-solution
speedup. Such considerations are not specific to BigDFT and, thus,
may be useful for any developer of complex codes like those typically
used in scientific computing.

One area where the use of GPUs within BigDFT is particu-
larly advantageous is for hybrid XC functional calculations. Hybrid
functional calculations of periodic solids in systematic basis sets typ-
ically incur a very high computational cost relative to semi-local

FIG. 17. Time and memory scaling for PBE single point calculations of disordered clusters of CBP.85 The DoS is also shown for the different methods; the corresponding
total energies are given in Table III. h = 0.45 bohr with 4 (1) SFs per C/N (H) atom and Rloc = 6 bohrs. Simulations used 48 nodes on Archer with 6 MPI tasks and 4 OpenMP
threads per node. (a) Total walltime. The cost of the template calculation is included in the fragment timings. The crossovers with respect to the cubic approach are at 1068
and 256 atoms for the linear and fragment approaches, respectively. (b) Peak memory usage per MPI. Both linear and fragment approaches have lower memory usage than
the cubic approach even for the single molecule (62 atoms). (c) Occupied DoS for 2480 atoms, alongside the (scaled) single molecule DoS. Gaussian smearing of 0.1 eV
has been applied, and the spectra have been aligned to the HOMO. (d) Depiction of 1 molecule (left) and 4960 atom structure (right) of CBP with C/N/H atoms depicted in
gray/blue/white.
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functionals such that calculations on large systems are prohibitively
expensive in a well converged basis set. The ratio γ of walltimes
between a hybrid functional (e.g., PBE0) and equivalent semi-local
functional (e.g., PBE) thus gives an indicator of the affordability of a
hybrid functional calculation. Using a recently implemented GPU
approach in BigDFT, γ has been shown to be significantly lower
when using GPUs compared to a CPU-only implementation. As
an example, for 324 atoms of UO2 γ = 14.4, while γ = 4.1 in the
equivalent GPU calculation.17 Such an approach enables production
calculations on large systems with hybrid functionals, for example,
the case study on TiO2 presented in Sec. V A. In Fig. 14(b), we show
an example of the timings for this system using both PBE and PBE0.
While the PBE0 calculation incurs a significantly higher cost for both
the Poisson solver and communications, the ratio remains modest.

Another advantage that emerges from the usage of GPU accel-
eration is that the code can benefit from architectural evolutions,
which are still very effective in the domain of GPGPU computing.
As an illustration, we show in Fig. 16 the capability of the code
to be adapted to the different generations of GPU cards by show-
ing the speedup and walltime (in seconds) for the calculation of the
Fock exchange operator for a system of 32 water molecules (128 KS
orbitals) with respect to a single-node calculation with 32 CPU cores.
These runs were accelerated by using 4 GPU cards per node.

C. Scaling with system size

Thanks to both the favorable properties of the wavelet basis set
and the efficient parallelization described above, it is already possi-
ble to treat several hundred atoms using the cubic scaling approach
in BigDFT. It is therefore worth asking the question as to when
it is useful to switch to the LS approach. In other words, where
is the crossover point between the two approaches? As an exam-
ple, we compare the performance of the cubic, linear, and fragment
approaches for 4,4′-N,N′-dicarbazole-biphenyl (CBP), which is a
typical host material for organic LEDs. We consider a number of
disordered clusters of CBP with increasing size. Since the molecules
interact relatively weakly within the cluster and there is only a sin-
gle template repeated many times, this provides an excellent test
case for the fragment approach. Indeed, the fragment approach was
originally motivated by the goal of simulating such systems.85

As shown in Fig. 17, the (occupied) DoS is in remarkable agree-
ment between the three approaches, confirming the suitability of the
fragment approach for treating such types of systems. In Fig. 17,
we also show both the walltime and memory scaling, demonstrat-
ing the expected scaling behavior for each method. Here, we limit
the simulations to around 5000 atoms; however, LS-BigDFT has
been tested for system sizes of around 30 000 atoms. Thanks to both
wavelet properties and efficient parallelization, the cubic approach
is already able to treat more than 2000 atoms. The crossover point
between cubic and linear scaling BigDFT is around 1000 atoms for
the walltime and significantly lower for memory usage, although
these depend strongly on the properties of the system, including
the dimensionality81 and the simulation parameters. As can be seen,
the prefactor for the walltime is significantly lower for the fragment
approach compared to the linear, reducing both the crossover and
the computational cost of treating large systems. There is a small
increase in the memory requirements of a fragment calculation,
which is due to the SF load balancing being less well optimized in
fragment calculations.

IX. SOFTWARE APPROACH

From version 1.8.0 of BigDFT, which can be downloaded using
the command git clone https://gitlab.com/l_sim/bigdft-suite, the
build system of BigDFT has been modified. Instead of building the
code with one single configure line, the code is now built as a suite
of different packages.

In Fig. 18, we see how the BigDFT code is separated into pack-
ages. This figure describes the interdependencies among these pack-
ages. The packages might be separated into upstream contributions
(i.e., not associated with the developers of BigDFT) and native con-
tributions. We have used a build suite tool based on the JHBUILD

project, which is regularly used by developers of the “gnome”
project. We have re-adapted/added some of the functionality of the
JHBUILD package to meet the needs of our package.

The most important upstream packages that are employed in
the BigDFT code are as follows:

libyaml: This library is used to parse the “yaml <http://yaml.org/>”
Markup language, which is used in the BigDFT input
files.

PyYaml: “<https://pyyaml.org/>”: This is a Python module,
which makes it possible to convert Yaml into python
objects. This part is mainly used for postprocessing pur-
poses as the BigDFT logfile also comes in the Yaml
format.

libXC: This library78 handles most of the XC functionals, which
can be invoked from BigDFT runs.

GaIn: This library handles analytic integrals of common oper-
ators between Gaussian functions. It does not perform
low-level operations and can be linked separately.

The native libraries arising from the BigDFT project are the
following:

futile: A library handling most common Fortran low-level
operations, such as memory management, profiling
routines, and I/O operations. It also supports Yaml
output and parsing for Fortran programs. It addi-
tionally provides wrapper routines to MPI and linear
algebra operations. This library is used extensively in
BigDFT packages.

CheSS: A module for performing the Fermi operator expan-
sion via Chebyshev polynomials, released as a separate
project on “Launchpad <https://launchpad.net/chess>”.

psolver: A flexible real-space Poisson solver based on interpo-
lating scaling functions. It constitutes a fundamental
building block of the BigDFT code, and it can also
be used separately and linked to other codes. It also
internally uses the “futile” library for I/O.

libabinit: This is a subsection of files coming from the ABINIT95

software package to which BigDFT has been coupled
since the early days. It handles different parts such
as symmetries, ewald corrections, PAW routines, den-
sity and potential mixing routines, and somemolecular
dynamics minimizers. Some XC functionals, initially
natively implemented in the “ABINIT” code, have
also been coded in this library. This library also uses
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FIG. 18. Interdependencies between the various packages of the BigDFT suite.

the “futile” code through the (experimental) PAW
section.

BigDFT: The core routines of the software suite.
spred: A library for structure prediction tools, which is com-

piled on top of BigDFT routines.

In previous versions of BigDFT, all these different packages were
compiled with the same configuration instructions.With the present
version, each of the code sections described above can be con-
sidered as a separate package (some more are upcoming), which
improvesmodularity between code sections and reduces side-effects.
In addition, each package can now be compiled with different
build and installation instructions, and even using different build
systems.

A. PyBigDFT computational approach

The diverse capabilities of BigDFT can lead to elaborate calcu-
lation workflows as users attempt to study increasingly complex sys-
tems. In particular, when studying large systems, we anticipate users
programmatically designing and refining their systems of interest
over many calculation cycles. To facilitate such complex workflows,
we have introduced high level Python bindings for BigDFT in the
form of PyBigDFT. These bindings focus on input preparation,
running calculations, and post-processing the results.

The fragment capabilities of BigDFT, introduced in Sec. VI,
lead to a three-level view of a system:

● Atoms: the lowest level view of a system. Atoms are
dictionary-like objects. This makes it possible to store any
type of observable computed over the course of a calculation.● Fragments: a list of atoms. Fragments are decorated with
accessors to fragment level observables, as well as methods
for rototranslation.● System: a named collection of fragments.

Helper routines are provided for these data structures such as file
I/O using common formats, interaction with visualization programs,
and conversion to data structures used in other Python libraries
commonly employed in computational chemistry (OpenBabel,96

ASE,97 etc.).
When a system has been built, calculations can then be per-

formed using the following classes:

● Inputfile: while input files for BigDFT are simply Yaml files
and could be stored as a dictionary, the Inputfile class pro-
vides additional helper routines for common calculation
parameters.● Logfile: similar to Inputfile, a Logfile is also just a Yaml
file, and this class exposes that interface along with helper
routines to access commonly used information.
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● SystemCalculator: given an input file and a system, this
class invokes the BigDFT code, and places the results into
a Logfile.

Once a calculation has been completed, quantities of inter-
est can be extracted using the post-processing facilities provided
in PyBigDFT. These post-processing features are a mix of pure
Python routines and wrappers for Fortran utility programs, which
can performmore computationally demanding analysis.We encour-
age users to perform all calculations through these high level bind-
ings, particularly in the form of Python notebooks. This results in
complete, reproducible, and self-documented artifacts to accom-
pany a calculation result, ensuring an increased reliability of any
calculation. To this end, we aim to provide alongside publications
using BigDFT notebooks that reproduce the workflow used, partic-
ularly in the case where new functionalities are introduced (see, for
example, Refs. 50, 87, and 98). The benefits of such an approach go
far beyond reproducibility. Indeed, we do not anticipate that many
readers will simply take a provided notebook, run it, and be satisfied.
Rather, we believe the main benefit of this approach lies in com-
putational continuity. By combining an all in-one-workflow with
PyBigDFT’s built-in features for lazy evaluation, it becomes possible
to quickly build on top of a previous result and to check its reliability
by performing additional predictions and analysis.

X. OVERVIEW OF FUNCTIONALITIES IN BigDFT

A number of functionalities are available within BigDFT,
although some are currently only available within, e.g., CS BigDFT.
The current status of core functionalities is summarized in Table IV,
which also highlights developments that are currently in progress.

Beyond these functionalities, BigDFT has also been widely used
within the context of structure prediction approaches such as min-
ima hopping,79,99 enabled by the programs of the spred library (see
Refs. 26, 27, and 100–114). In such cases, a precise calculation of the
total energies is required for which the CS BigDFT is well suited,
while the parameters used in a typical LS calculation are not suitable
for obtaining accurate energetic orderings where different structures
are very close in energy.43

One active area of development, which is worth highlighting,
is the treatment of excited states. Time-dependent DFT is avail-
able within CS BigDFT,98 although currently only local density
approximation (LDA)115 calculations are possible. Aside from TD-
DFT, constrained DFT (CDFT)116 is also available for the treatment
of charge-transfer (CT) excitations.80 The CDFT implementation
has also been used to calculate on-site energies in a large disor-
dered host–guest supramolecular material typically used for organic
LEDs.85 Work extending the CDFT approach for the treatment of
local excitations (LE) is also currently underway, with the aim of pro-
viding a computationally efficient approach to simulating both CT
and LE states in large systems. Since CDFT has been implemented
within the framework of the fragment approach, this requires the
existence of a fixed SF basis, which has enough degrees of free-
dom to also represent excited states. As discussed in Sec. IV G,
the direct minimization approach can be used to generate a SF
basis, which is capable of representing a few unoccupied states. We
are also exploring other approaches to generating SFs for excited
states.

TABLE IV. Current status of the various core functionalities that are available in
BigDFT.

Cubic Linear Fragment

Parallelization

MPI ✓ ✓ ✓
OpenMP ✓ ✓ ✓
GPU ✓ ×a ×a
Pseudopotentials

GTH/HGH ✓ ✓ ✓
Trouiller Martin norm-conserving In progress
PAW ✓ In progress

Boundary conditions

Free/wire/surface/periodic ✓ ✓ ✓
Non-orthorhombic cells In progress

Electronic structure

k-points ✓ × ×
Metals ✓ ✓ ✓
Spin polarization ✓ ✓ ✓
Functionals

Semi-local functionals ✓ ✓ ✓
Hybrid functionalsb ✓ In progress

Environments

Empirical van der Waals ✓ ✓ ✓
Explicit chargesc ✓ ✓ ✓
External electric fieldd ✓ ✓ ✓
Electrostatic embedding ✓ ✓ ✓
Dynamics

Geometry optimizations ✓ ✓ ×
Molecular dynamics ✓ ✓ ×
Post-processing

Projected densities of states ✓ ✓ ✓
Charge analysis ✓ ✓ ✓
Excitations

Time-dependent DFTe ✓ × ×
Constrained DFT In progress ✓
aPossible but not advantageous (no hot spot operations).
b
Γ-point only.

cMeaningful for free BC only.
dMeaningful in the isolated directions only.
eLDA only.
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XI. PERSPECTIVE

Daubechies wavelets have a number of favorable properties that
make them an ideal basis set for electronic structure calculations. In
this work, we have outlined the use of such a basis set for density
functional theory calculations, as implemented in the open source
BigDFT code. Through examples presented here and referenced
within the text, we have shown how the combination of a wavelet
basis set with an implementation designed for massively parallel
machines allows for efficient and accurate calculations of hundreds
of atoms, even within a traditional cubic scaling approach. Such a
treatment also allows for the simulation of relatively large systems
using hybrid functionals, particularly where GPUs are available,
while the availability of different boundary conditions allows for the
straightforward treatment of molecules, surfaces, and solids. A num-
ber of functionalities are available in BigDFT, including dynamics,
explicit charges and electric fields, and implicit environments, while
there are ongoing developments in, e.g., the treatment of excited
states.

Going beyond the cubic scaling approach, the localized nature
of wavelets is also highly suitable for a linear scaling approach
wherein the nearsightedness of matter is exploited by imposing
localization on the system via the use of a minimal set of localized
support functions. Such an approach further expands the applicabil-
ity of BigDFT to systems containing several thousand atoms and has
been shown to converge reliably for a range of materials. The local-
ized support function based approach may also be further exploited
to define a fragment approach in which the computational cost may
be significantly reduced by exploiting repetition in molecular or
periodic systems.

The treatment of such large systems brings new types of prob-
lems within the reach of first principles simulations. However, such
simulations also bring new challenges, for example, the increased
size of the configuration space associated with complex materials
containing large numbers of atoms. Furthermore, as well as treating
large length scales, it is desirable to treat also long timescales, which
remains unfeasible within a purely quantum mechanical approach
so that QM/MM approaches are required. To this end, the support
function approach allows not only the treatment of large enough sys-
tems to test and validate QM/MMapproaches but can also be used to
analyze and fragment a systemwithout requiring any a priori knowl-
edge of the system. This offers a route to reduce the complexity of
QM calculations of large systems and thereby inform the setup of
multiscale simulations.

In the context of large scale electronic structure simulations, a
wavelet-based approach therefore offers another significant advan-
tage in that it facilitates the implementation of a range of approaches
designed to treat different system sizes, as illustrated in Fig. 19. The
existence of such a comprehensive framework with a single underly-
ing formalism means that each successive approximation is applied
in a systematic and controlled manner. Therefore, one can easily
test and validate the approximations between different levels of the-
ory. For example, QM/MM simulations may be benchmarked with
respect to fragment calculations, which may be compared with full
linear scaling calculations and so on. Furthermore, we have also
introduced a number of indicators, which can be used to predict
whether or not a particular approximation is appropriate for a given
system.

FIG. 19. Illustration of the different approaches available in BigDFT, the approxi-
mations introduced, and approximate applicable length scales.

The development and improvement of a comprehensive multi-
scale framework is an ongoing priority for BigDFT. As with other
developments in BigDFT, a key aspect of this is a module-based
approach that aims toward sustainable software development. In
tandem with the implementation of new approaches, we also aim
to prioritize both accessibility and reproducibility of new function-
alities, by providing jupyter-notebooks demonstrating how such
functionalities may be used via the PyBigDFT interface. Further
information on BigDFT may be found on the website117 and in
the documentation,118 while the code may be downloaded from
GitLab.119
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