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‘‘Graz brain–computer interface (BCI)’’ transforms changes in oscillatory

electroencephalogram (EEG) activity into control signals for external devices

and feedback. Steady-state evoked potentials (SSEPs) and event-related desyn-

chronization (ERD) are employed to encode user messages. User-specific setup

and training are important issues for robust and reliable classification. Further-

more, in order to implement small and thus aVordable systems, focus is put on the

minimization of the number of EEG sensors. The system also supports the self-

paced operation mode, that is, users have on-demand access to the system at any

time and can autonomously initiate communication. Flexibility, usability, and

practicality are essential to increase user acceptance. Here, we illustrate the

possibilities oVered by now from EEG-based communication. Results of several

studies with able-bodied and disabled individuals performed inside the laboratory

and in real-world environments are presented; their characteristics are shown and

open issues are mentioned. The applications include the control of neuroprosth-

eses and spelling devices, the interaction with Virtual Reality, and the operation of

oV-the-shelf software such as Google Earth.
ier Inc.

served.
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I. Introduction
A brain–computer interface (BCI) is a communication system that allows the

user to bypass the eVerent pathways of the central nervous system and thus to

directly link the human brain with the machine. The motivation for the develop-

ment of this nonmuscular communication channel is to replace, or at least to

somewhat enhance, the lost motor functions of physically disabled persons with

intact cortical signals. These include individuals suVering from strokes, spinal cord

injuries, or with degenerative diseases like amyotrophic lateral sclerosis. Able-

bodied individuals may find BCI-based communication inaccurate and slow

compared to their intact motor control abilities. The disabled, however, learned

to deal successfully with this technology in their familiar surroundings and to

operate spelling devices (Neuper et al., 2006) or neuroprostheses (Müller-Putz

et al., 2005a; Pfurtscheller et al., 2003). Under circumstances or in environments

where the body behaves diVerently than under usual conditions, for example, as

in space, such an additional ‘‘hands-free’’ communication channel, however, can

be advantageous also for able-bodied users.

Here, we give an overview of Graz-BCI research and illustrate, by means of

diVerent practical applications, the possibilities this kind of technology oVers at
the present time. One major aim of our research is to enhance usability, practi-

cality, and flexibility of BCI-based interaction. Important issues in this context are

the simplification of the hardware and sensor technology, the reduction of the user

training period, and the increased robustness and reliability of the signal proces-

sing methods employed.
II. Graz BCI
Graz BCI is based on the real-time detection and classification of transient

changes in the ongoing electroencephalogram (EEG) (Pfurtscheller et al., 2006).

The EEG signal is in the range of microvolts and consequently is very sensitive to

artifacts, that is, to electromagnetic signals not generated by the brain. The most

frequent artifacts are muscle activity (electromyogram), eye movements (electro-

oculogram), and artificial noise generated by nearby electronic devices (e.g.,

power line interference). Besides artifacts, the nonstationarity and inherent varia-

bility of the EEG signal makes a reliable classification of the underlying brain

activity diYcult.

Steady-state evoked potentials (SSEPs) and event-related desynchronization

(ERD) (Pfurtscheller and Lopes Da Silva, 1999) are two neurophysiological

phenomena used to encode control messages. SSEPs occur when external sensory
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stimuli are presented in such a rapid sequence that the resulting individually

evoked potentials are overlapping and thus reflecting the stimulation frequency

(Regan, 1989). We used visual and somatosensory (tactile) stimuli to evoke

detectable brain responses. ERD and event-related synchronization (ERS)

(Pfurtscheller and Lopes Da Silva, 1999) describe transient changes in on-going

oscillatory EEG activity. ERD means a relative power decrease and ERS means a

power increase in specific spectral components over defined brain areas. Motor

imagery, that is, the mental simulation of movements, is used to induce ERD

and/or ERS in sensorimotor rhythms and is the basis of the ERD–BCI method.

To convey messages, the user generally changes their brain activity either in

response to a cue from the BCI (cue-based BCI) or voluntarily with free will, when

an interaction is required (self-paced BCI). While cue-based BCI follow a fixed

time scheme and accept messages only within a predefined time window following

the cue, self-paced BCIs must continuously analyze the ongoing EEG in order to

autonomously detect these messages (Mason et al., 2007).

To reach a high level of classification accuracy, training with the BCI is

necessary for two reasons: first, to obtain enough EEG-trials in order to set up

the classifier, and second, to enable the user to find the best control strategy (this is

crucial for motor imagery). The standard training procedure employed is to first

adapt the computer to the user’s brain activity by applying machine learning

algorithms to samples of diVerent EEG patterns. Usually statistical classifiers such

as Fisher’s linear discriminant analysis (Duda et al., 2001) are employed. Next

feedback training is performed to enhance and activate these patterns. Finally, the

feedback data are again analyzed and if necessary the classifier is updated.

In this way the brain and the BCI are mutually adapting (Pfurtscheller and

Neuper, 2001; Vidaurre et al., 2006). To make this technology aVordable and

thus also accessible to patients, the requirements during optimization and adap-

tation are not only accuracy and robustness, but also the reduction of the number

of EEG sensors. BCI training may last for hours, weeks, or even longer and

requires ongoing interaction between user and researcher. To facilitate user

training Graz BCI uses telemonitoring (Müller et al., 2003; Neuper et al., 2003),

that is, it provides remote access, audio/video communication capabilities, and

file transfer tools.

Graz BCI is implemented by using Matlab/Simulink-based (MathWorks,

Inc., Natick, MA, USA) rapid prototyping (Guger et al., 2001). The hardware

consists of a commercial biosignal amplifier (Guger Technology, Graz, Austria)

connected to a data acquisition card and a standard personal computer or laptop.

The Graz-BCI open source software package rtsBCI (Scherer et al. 2004b)

includes the modules that have been used to successfully realize the results

presented here. The package is licensed under the GNU Public License (GPL)

and can be downloaded from the BIOSIG homepage that is hosted by the

Sourceforge Web site (http://biosig.sourceforge.net).

http://biosig.sourceforge.net
http://biosig.sourceforge.net
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III. Applications
A. OPERATING A (NEURO)PROSTHETIC HAND—PART I

When individuals gaze at a flickering light source, steady-state visual evoked

potentials (SSVEPs) are evoked over the visual cortex. In our first feasibility study,

four lights, each flickering at a diVerent rate, were used to encode control messages

for an electromechanical hand prosthesis (Müller-Putz and Pfurtscheller, 2008).

One light on the index finger flickering at 6 Hz and one on the pinky finger

flickering at 7 Hz translated to commands for turning the hand in supination and

pronation. Two lights on the wrist (flickering at 8 and 13 Hz) represented the

commands for opening and closing the hand (Fig. 1A). Four naı̈ve able-bodied

subjects followed a given grasping sequence at will. Three out of the four subjects

successfully performed the predefined sequence. Erroneous selections had to be

undone. The fourth subject was not able to obtain SSVEP control. Two bipolar

EEG channels were recorded from four electrodes placed on predefined positions

over the visual cortex. The goal of a recent paper of Müller-Putz et al. (2008) was to

investigate optimal electrode positions by evaluating classification accuracies

from a set of 21 electrode positions placed over the entire occipital cortex. Results

based on data from 10 able-bodied subjects show that the classification accuracy of

individually selected electrode positions is significantly higher than those obtained

with the ‘‘default’’ electrode positions used in the previous study. Furthermore, a

comparison of diVerent signal processing (Müller-Putz 2005a, 2008) methods

suggests that it is possible to detect SSVEPs after a very short training period—

basically it is possible to operate a self-paced BCI after a short calibration period of

1 min (Scherer et al., 2007a).
B. HAPTIC STIMULATION: STEADY-STATE SOMATOSENSORY-EVOKED POTENTIALS

For real-world applications ongoing acoustic stimulation is not practical.

Haptic (sensorimotor) stimulation seems reasonable and thus we researched the

usefulness of tactile stimulation in the resonance-like frequency range of the

somatosensory system (Müller et al., 2001). The right index finger of the user

was stimulated with the individual specific frequency fT1 (range 25–31Hz). The

left index finger was stimulated at fT2 ¼ fT1 � 5 Hz. A sinusoidal waveform was

used to produce a weak tapping stimulation (Fig. 1B). Subjects were asked to focus

their attention on the finger indicated by a visual cue and to count the intermittent

amplitude twitches of the stimulation signal. The purpose of the counting task was

to force the participants to focus on the cued stimulation. Four subjects
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FIG. 1. (A)Handprosthesiswith four light emitting diodes, each associatedwith a control command.

The curves show typical 1-s SSVEP power spectra from one bipolar EEG channel recorded over

visual areas. Gray lines indicate the stimulation frequency and the second and third harmonic.

(B) The principle of SSSEP-based BCIs—modified fromMüller-Putz et al. (2006). (C) Spinal cord injury

(SCI) patient grasping a glass by means of surface functional electrical stimulation (FES). The curves

show (from above) one EEG channel recorded bipolarly over sensorimotor foot representation area, the

15–19 Hz band pass filtered EEG, and the power of the filtered signal averaged over the past 1-s period.

A threshold detector (horizontal gray line) is used to switch between grasp sequences. (D) SCI patient

with implanted neurophrosthesis during a grasp-release performance test.
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participated in these feedback experiments. Two of them were unable to focus

their attention for the entire duration of an experimental session (usually 160

trials). A selection of their runs with good performance, however, leads to oV-line
classification accuracies of about 73%. The performance of the two remaining

subjects was better. One subject increased performance from session to session.
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The online accuracy after three sessions was 71.7%. The last subject was able to

focus attention from the very beginning. Online performances ranged between

79.4 and 83.1% (Müller-Putz et al., 2006). These results suggest that the evoked

responses are stable and can be used to encode control messages.
C. OPERATING A (NEURO)PROSTHETIC HAND—PART II

Functional electrical stimulation (FES) can be applied to paralyzed limbs and

restore motor function. By placing surface electrodes near the motor point of the

muscle, or by implanting subcutaneous electrodes and applying stimulation pulses,

action potentials are elicited which lead to the contraction of the innervatedmuscle

fibers. In two case studies with spinal cord injury (SCI) patients, we successfully

realized self-paced motor imagery-controlled operation of a neuroprosthesis. The

grasp function of the left hand of the first patient (29 year,male, SCI at level C5) was

restored with FES using surface electrodes. During a 4-month ERD–BCI-training

period, the patient learned to induce 17-Hz oscillations by means of foot motor

imagery which became suYciently dominant that a threshold detector could be

used for the realization of a binary control signal (Pfurtscheller et al., 2003). This

trigger signal was used to switch sequentially between grasp phases implemented

using the stimulation unit (Fig. 1C). With this grasp the patient was again able to

hold for example, a drinking glass. The second patient (42 year, male, SCI sub-C5)

had a FreehandW system (Peckam et al., 2001) implanted in his right hand and arm.

Within 3 days of feedback training, he learned to reliably induce an ERD pattern

during left-hand motor imagery and thus to generate a binary control signal

(Müller-Putz et al., 2005a). In this case, the self-paced BCI system emulated the

shoulder joystick which is usually used to operate the FreehandW system. With the

BCI-controlled FreehandW system, the patient successfully executed parts of a

hand-grasp performance test (Fig. 1D). In the first case, one single bipolar EEG

channel, and in the second case, two bipolar EEG channels were recorded from

sensorimotor foot and hand representation areas.
D. THE VIRTUAL KEYBOARD SPELLING DEVICE

For practical applications, however, one binary control signal might not be

suYcient. An increase of the number of brain patterns that can be equally reliably

detected also increases the communication speed. To this end a 3-class self-paced

ERD–BCI was designed and used to operate the ‘‘Virtual Keyboard (VK)’’

spelling device (Scherer et al., 2004a). Users can write text messages by scrolling

through the alphabet and choosing symbols arranged on either side of the screen.

Left hand, right hand, and foot motor imagery were used to move the cursor to
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the left, to the right, and to browse the alphabet, respectively. Figure 2A illustrates

such a selection process. Three bipolar EEG channels were recorded over senso-

rimotor hand and foot representation areas. Results of three able-bodied subjects

operating the VK, two successfully, showed an improvement of the number

of correctly spelled letters per minute � (spelling rate) up to � ¼ 3.38 (average

� ¼ 1.99). In the previous 2-class cue-based version of the VK the ability to

use the VK varied between � ¼ 0.5 and � ¼ 0.85 (Obermaier et al., 2003).

This performance increase already suggests the inherent potential of BCI tech-

nology. Despite the limited information transfer bandwidth, the use of well-

designed human–computer interfaces and optimized selection techniques allowed

user to significantly speed up communication.
E. NAVIGATION IN VIRTUAL ENVIRONMENTS

The 3-class self-paced ERD–BCI allowed users to reliably switch among three

diVerent motor imagery tasks. The classifier, however, was not optimized to

reduce the number of erroneous detections (false positive) during periods when

BCI control was not needed. To this end an additional classifier was trained to

discriminate among the three motor imagery-induced EEG patterns and contin-

uously recorded EEG without motor imagery. Each time the new classifier

detected motor imagery, the class identified by the 3-class classifier was the output

of the BCI; otherwise the output was ‘‘0’’ and no action was triggered. To further

increase the robustness, online methods for eye movement reduction and muscle

artifact detection were incorporated (Scherer et al., 2007b).

To evaluate the new system, a virtual environment that consisted of a number

of labyrinthine arranged hedges with a tree positioned in the middle was created

(Fig. 2B). Objects were initially positioned on fixed locations inside the park and

users had the task of navigating through the virtual world and collecting them

within a time limit. Users could explore the park by moving forward (foot motor

imagery) and turning to the left/right (left-/right-hand motor imagery). No

directions were given; the subjects could freely choose their trajectory. Three

naı̈ve users participated in online experiments. After about 5 h of cue-based,

3-class feedback training, the classification accuracy for each subject reached

80% among the three mental tasks with 17% false positive detections during

longer periods when no messages had to be sent. Two out of three subjects

succeeded in collecting all three objects; one subject succeeded in collecting

only two out of three objects. Figure 2B shows an example of a user chosen

trajectory. Because there were no approved performance measures for self-paced

operation, the participants were asked to self-report their ability to operate the

BCI. The interviews revealed that the ERD–BCI usually detected the control

messages correctly (Scherer et al., 2008).
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et al. (2004a). (B) Screenshot of the virtual environment consisting of a tree and several hedges. The

arrows show the current navigation command (here move forward). The trajectory taken by one

subject is shown in the map on the right side. Modified from Scherer et al. (2008). (C) Screenshot of the

GUI used to operate Google Earth. The user is represented by an icon positioned in the center of the

display. The commands at the user’s disposal are placed around this icon and can be selected by

moving the feedback cursor (dashed line) into the desired direction. A hierarchical four-level selection

procedure allows the user to select the continent, the continental area, the country, and finally to

manipulate the virtual camera. The picture shows the experimental setup during a public perfor-

mance. Modified from Scherer et al. (2007b).
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F. OPERATING OFF-THE-SHELF SOFTWARE

Google Earth (Google Inc., Mountain View, CA, USA) is a popular virtual

globe program that allows easy access to the world’s geographic information.

In contrast to the previously presented applications, the range of functions needed

to comfortably operate the software is much higher and, since users have to wait

an undefined period of time for the response of the software (e.g., the download of

satellite images), a minimization of false positive events is crucial for reasonable

operation. Figure 2C shows a screen shot of the specially designed graphical user

interface and illustrates the principle of interaction. The user, represented by an

icon in the center of the interface, is surrounded by the available commands

which can be selected by moving the cursor toward the desired icon for a

predefined time. The command ‘‘Scroll’’ (foot motor imagery) was used to browse

the available options. As long as this command is enabled, that is, the user

continuously performed motor imagery, the options were scrolling from the

right to the left side of the screen. The available options were arranged in four

levels. These were continent (five options), subcontinent (3–5 options), country (3–

18 options), and camera movement (seven options). This means that first the users

have to select the country and then they can position the camera over the desired

location. The commands ‘‘Select’’ (left-hand imagery) and ‘‘Back’’ (right-hand

imagery) were used to select the current option and to go back to the previous

level, respectively. After each selection, Google Earth’s virtual camera moved to

the selected position. For more details about this interface see http://www.

aksioma.org/brainloop.

After about 6 h of feedback training, one subject, previously participating in

the virtual environment experiment, successfully operated the application in the

lab, as well as in public (Scherer, 2008; Scherer et al., 2007b). The average time

required to get from level 1 to level 4 and thus to select one out of 201 available

options was about 20 s (minimum 12 s).
IV. Discussion
The presented studies document the advancement of Graz BCI and demon-

strate that the system is functioning properly in real-life conditions. The devel-

oped system is small, lightweight, robust, and relatively inexpensive because the

system complexity has been minimized. On the basis of its open system architec-

ture and rapid prototyping environment, it is highly customizable and incorpor-

ating new algorithms is relatively easy. This flexibility and the possibility to

remotely adjust parameters and to change the setup allow fast corrections due

to unforeseen circumstances (e.g., by suddenly appearing electrical interference

http://www.aksioma.org/brainloop
http://www.aksioma.org/brainloop
http://www.aksioma.org/brainloop
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caused by a new artificial ventilation system at the patient’s home). It is also easy

to combine SSVEPs and ERD/ERS to create a hybrid system, or to measure and

process additional biosignals like the electrocardiogram (Pfurtscheller et al., 2008;

Scherer et al., 2007a).

SSEP-based systems are fast and easy to handle, however, external stimuli

are needed. Under some circumstances (e.g., during repair work in outer

space which requires the full visual attention or in situations where the user is

unable to move) it may not be possible to perceive the required stimulus. On the

other hand, motor imagery-based BCIs (ERD–BCI), do not need external

stimulation, but the information-transfer-rate is low and reliable classification is

diYcult. Whether SSEP or ERD is best for a given application must be decided on

a case-by-case basis.

Robustness and on-demand operability are extremely important issues. Proper

artifact handling is mandatory to ensure that the classifier output is based on

voluntary brain activity. So are self-paced operation and self-initiation, that is,

the ability of BCI user to autonomously switch the system on and oV (Scherer et al.,
2007a). The eVort to reduce the number of channels may cause an increase in the

training period. The presented feedback studies, however, prove that the selected

‘‘minimalistic’’ approach achieves satisfactory results within a limited time period.

A larger number of channels potentially result in increased classification perfor-

mances; however, also the probability of electrode failures or of electrode-related

error increases. A recent study by Scherer (2008) has shown that the reduction of

the number of EEG sensors from 30 to 5 decreases the median classification

accuracies, for example, for left hand versus foot motor imagery from 87.1 to

83.2%, that is, only by 4%. Of course higher accuracies result in better perfor-

mances. The operation of the Virtual Keyboard spelling application and Google

Earth, however, clearly indicates the potential of incorporating concepts of the

fields’ human–computer interaction and usability. A sound design of the user

interface and a sophisticated evaluation of the BCI output may help overcome

inaccuracies originated from misclassification and thus supports users and help

them to reduce erroneous selections.

Once the EEG patterns have been established and the ERD–BCI has been

trained, we have found that our system can work reliably for years without the

need for any updates. In the case of our first SCI patient, the oscillations have

been stable for 9 years; Our Google Earth user’s oscillations have been stable

for two years. The long-term stability of trained brain patterns significantly

contributes toward the creation of a more reliable communication.

Astronauts potentially benefit from BCI-based control of devices in situations

where mobility is limited such as during periods of heavy acceleration or during

maintenance repairs in outer space. In the former case the self-paced 3-class

ERD–BCI could be used to browse through several menus and check the status of

the spaceship or execute predefined program sequences; in the latter case a binary
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brain-switch—as developed for neuroprothesis control—could be employed to

sequentially flip through a repair manual. Recently it has been shown that the

detection accuracy of such a brain switch can be increased when including

the post-imagery beta rebound (Pfurtscheller and Solis-Escalante, 2009). Due to

the timing of the post-imagery phenomenon, however, the information transfer

rate is limited to about 15 bits/min. SSVEP–BCIs may be useful to operate the

gripper arm in order to move it closer to the workspace before taking over manual

control for fine-tuning. The required visual stimuli, again, could be switched

on/oV by means of a brain switch.

Another potential field of application for BCI technology is neuromonitoring.

Fatigue, stress, increased work load or other mental states which may make

individuals error-prone could be detected and used to exemplarily adapt the

complexity of the current task or to alert the central station.

For any space application, Graz-BCI system already contains a series of

methods—both signal processing and experimental strategies—that can be used

immediately and can be adapted very easily. The system was engineered so that at

the bedside of a patient, the diVerent options can be tested so that the most

promising can be applied. Equipped with the experience gained during several

months of telemonitoring-based BCI training, a new user can easily be guided

through this process. The analogous remote training from a base station on Earth

to the International Space Station follows directly.
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