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Synopsis 
A model for the flexibility of DNA is proposed that is based on discrete variations in 

the direction of propagation in going from one subunit to the next. Expansion of the 
local free energy in terms of the local bending gives a Gaussian distribution function. 
The assumption of the independence of local bends on neighbors lead to very simple 
formulae for the persistence length and the characterist.ic ratio. Emphasis, however, is 
placed on the application of the formulae for molecules of finite size where the persistence 
length and C, are not defined. The formulae are worked out for two models, which 
should serve as limits for the real physical situation. 

The manner in which one deals with the hydrodynamical properties of 
locally stiff , but very long, molecules such as double-stranded DNA 
depends markedly on chain length. For short lengths (which nevertheless 
have large axial ratios) the molecule is representable as a rigid cylinder or 
ellipsoid. Distances between points on the molecule are calculable from the 
rise per residue and the number of intervening residues. When the mole- 
cule is very long, as it is when the molecular weight is lo7 or greater, the 
Kuhn limit of a Gaussian distribution is eventually reached, and distances 
between sequentially widely separated groups are obtainable from random 
chain formulas. 

On the other hand, when the length of the molecule is of the order of one 
or two persistence lengths, the method of interpretation is far from estab- 
lished. Since this is the molecular weight range that results from the 
sonication of DNA, the problem has considerable relevance to experimental 
work. We have encountered this difficulty in interpreting the streaming 
linear dichroism of DNA systems in the length region 1000-2000 A. The 
simple models described below were developed to aid in the interpretation 
and visualization of such systems. These models deal with discrete units of 
the DNA helix rather than the continuum models, which are prevalent in 
the field. The purpose is to develop the hydrodynamic properties in 
terms of the same kind of structural parameters as are employed in the 
analysis of the conformation and spectra of DNA. 

TWO MODELS FOR THE BENDING OF DNA 

The semiflexible chain is assumed to consist. of a series of discrete links, 
which we identify with the base pairs and their ribose phosphate moieties. 
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The propagation associated with the zth link will be designated by a vector 
1,. In the undistorted helix, all of the 1, are colinear and coincide with the 
helix axis. Because of thermal fluctuations, there will be local distortions 
from regularity, which cause a local bending of the molecule with the re- 
sult that the ith link is no longer in the same direction as the i - 1 link 
but deviates by an angle e,. 

The question arises as to whether the local direction of propagation has 
any meaning in a structure that is subject to arbitrary distortions at  every 
linkage. There are a number of ways in which the local sense of propaga- 
tion of the helix can be defined. The most convenient method will ulti- 
mately depend on the mechanical details of the bending mechanism, which 
is at  present unknown. If i t  is the B helix of DNA, a vector perpendicular 
to the base planes provides such a definition. If the base planes are twisted, 
the least square plane can serve instead. More generally, if the bond angles, 
bond lengths, and dihedral angles of a complete unit of a chain molecule are 
fixed, a helix is determined with a given direction and rise per residue.' For 
distorted systems, these parameters may be used to determine the local 
vector I t .  Other ways involving a local principal axis of inertia, etc., are 
also possible. The main point is that the concept can be made physically 
meaningful and the appropriate method can be eventually decided by 
convenience. 

We offer two models for the probability of local bending of a DNA 
molecule. In the first (the hinge model) we assume that between each 
consecutive pair of subunits there is a preferred axis of bending that is 
perpendicular to the helix axis. Possible modes of change in direction of the 
local axis are folding into the large and small grooves, sliding of base pairs 
on one another, or changes in conformation of the ribose phosphate chain, or 
combinations of these motions. For small bending about the axis, the local 
change in free energy caused by the distortion can be expanded in a Taylor 
series in er 

The disappearance of the first derivative in the second form of Eq. (1) arises 
from the condition of equilibrium of the helix. Powers of Oi2 higher than 
the second have been dropped. One consequence of this is the automatic 
assumption that the energy versus e curve is symmetrical. While this is not 
a necessary property of the model, the arbitrary addition of skewness to the 
local distribution would involve parameters for which there is no hope of 
experimental determination at the present time. Another assumption in 
Eq. (1) is that the links can be treated as independent of one another. The 
generalization of the model to include interaction amongst the links will be 
brought out in the final discussion. 
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Utilizing Eq. ( 2 )  in the Boltzmann factor for the ith link we find 

where P(&) is the probability of angle e,, N is a normalizing coefficient, and 
ai = gi"/RT = l / A i 2  where A,  is the standard deviation of e,. From this 
Gaussian distribution we can calculate average values 

and 

(cos Of) = exp [ - '/zai] = exp [ - A,2/2] .  (5) 

The odd moments of O r  vanish. (sin 0,) involves confluent hypergeometric 
functions but will not be necessary in our analysis though it does appear in 
matrix methods of chain generation. In particular 

(le,l) = 8 Ai and (etz) = At2. 
U 

In calculating these averages the range of integration has been extended 
to infinity, thereby assuming that large angles are sufficiently improbable 
that they contribute little to the integration. Apart from this mathe- 
matical approximation, there is the physical aspect of the problem, which 
would dictate solvent penetration and an entirely new mechanism for bend- 
ing through wide angles. This subject will be taken up again at the end of 
the next section. 

In the second model (the random 4 model), it is assumed that there is no 
preferred local axis of bending so that for a given er all the values of the 
longitudinal angles 4, are equally likely. Assuming the same kind of energy 
dependence on et as before, the probability distribution function takes the 
form exp [ - ( a , e i 2 ) / 2 ]  sin er where sin ei is the latitudinal weighting function. 
One can now calculate the moments of O r ,  (cos "O,), (sin "e,), etc. in 
terms of confluent hypergeometric functions or incomplete gamma functions. 
Though these functions have been tabulated, they are not particularly con- 
venient to use. Since the present analysis will only require (cos e,), a 
formalism will be used that provides this average value in a simple way. 
Instead of expanding the local free energy g, in terms of e,, we expand it in 
terms of sin ( e i / 2 ) .  Temporarily suppressing the subscript i 
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Now 

and 

so 
Ag = 29" sin2 f?/2 7 g"(1 - cos 8). (8) 

Calculation shows that the factor (1 - COB e) in Eq. (8) differs from 02/2 in 
Eq. (2) by one part in a thousand a t  e = 5" and three parts in a thousand a t  
6 = 10". There is a no a priori reason for supposing Eq. (2) to be 
superior to Eq. (8). Using Eq. (8) 

1 cos 0 ea sin Ode 

(COS e) = (9) s,' ea cos 8 sin 8d.e 

= Goth u - l / a  L(u) 
where L(a) is the Langevin function and a = g'/RT as before. 

CHAIN STATISTICS 

Three experimental quantities that are used to characterize the mode of 
propagation of flexible chains are the persistence length P,, the rms end-to- 
end distance h = (h2)li2, and the radius of gyration R,. The persistence 
length is defined as the average sum of the projections of all bonds (includ- 
ing the first) on the first bond of the chain2 

n 

where h is the end-to-end vector given by h = lr, 1 is the length of each 

link, and 81k is the angle between the kth link and the first link. For Eq. 
(10) to provide an adequate definition of the persistence length, n must be 
sufficiently large that there is no correlation between the first and final links 
so that the series converges before the end of the molecule is reached. 
Since this condition will frequently not be met in DNA systems of interest, 
we define the "persistence" of a chain of n links by Eq. (10). The per- 
sistence length is then P,. 

In both of the models discussed in the previous section, the projection of 
bond i + 1 on bond i is in the direction of bond i. That is, all components 
perpendicular to the previous bond average to zero. For the hinge model 
this is true because positive and negative values of er + 1 are equally likely; 
it is true for the random C#J model because the average value of cos C#J and sin C#J 

1=1 
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are zero. As a result, matrix methods need not be employed and the aver- 
k 

age value of cos elk is given by (cos elk) = ~ ( O S  *). We have already 
i = 2  - -  

assumed that the er are independent of one another. We now assume as 
well that all the gr" are the same. If this is not true because of base pair 
sequeiice, then g" must be understood as an average value for the chain. 
With ILhese assumptions, all the averages in the product are identical so that 
(cos el ,) = (cos O ) k - l .  This gives for the persistence P ,  

1 -  

where a = (cos 0). 
length is given by 

For a long enough chain an -t 0 and the persistence 

P ,  = 1/(1 - a). (12) 

The value of n required for this convergence increases with the stiffness of 
the chain. 

The mean square chain length (h2) is given by 

(h2) = (h.h) = ((Zli.Zlj)) 

= nPC, 
1 - a 12 (1 - a)2 

where C, is the characteristic ratio for n links (Flory, 1969). For n large this 
becomes 

(14) 
l + f f  (h2) = n12 ~ = nE2C,. 
1 - a  

Finally for the radius of gyration 

RC2 = !? [(&)(%) n + 2  - a 

6 n + l  1 -  (n + 1)(1 - 

] (15) 
2a3(1 - an) 

n(n + 1)2(1 - a)4 
- 2a2 

+ (n + 1)2(1 - 4 3  

and for n large 

Equations (11)-(16) are now standard in the field. (See the monographs 
of Volkenstein3 or Flory2 for original references.) a is normally a fixed bond 
angle rather than a small angle produced by structural fluctuations. 

As an initial attempt a t  applying the results of the previous section, we 
will assume that the only operative mechanism for DNA flexibility is small 
local bending between adjacent links. (This hypothesis probably does not 
apply to long DNA molecules as will be discussed shortly.) With this 
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assumption (cos 0) can be evaluated via Eqs. (12), (14), and (16) from the 
experimental determination of P ,  or C,. We have 

1 - - 
1 - L(a) 

or 

c, = Fa! -k a = coth(A2/4) 

hinge model (174 

random (17b) 

hinge model 

random 4. (18) 

Recent estimates of P ,  for DNA range from 500 k4 to 1700 For 
persistence lengths as long as 500 8, PJ3.45 is in the neighborhood of 150; 
(cos e) is sufficiently close to unity that the linear expansion of the expo- 
nential in Eq. (17a) produces an error of less than 1%. The Langevin func- 
tion in Eq. (17b) can be replaced by (1 - l/a) to very high accuracy. Thus 

1 I 

103 Id I 

Fig. 1 (continued) 
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Contour length, A 

(b  1 
Fig. 1. Log-log plot of rms end-to-end distance h and radius of gyration RG as function 

of contour length for DNA's with persistence lengths of 500 and 1700 1. Dashed line 
starting on upper right of curve for h has slope of l/* and represents Kuhn limit of Gauss- 
ian behavior. Dashed line on lower left has slope of unity and represents limit of com- 
pletely rigid rod. Only mechanism considered in constructing figures is small local 
bending. Length of link taken to be 3.45 b. 

2 29" 
- - hinge model 

1 _ -  - P m  

I 1 - (1 - A2/2) A' RT 

random 4. (19) 
P, 1 - 9" - a = -  - =  

E 1 - (1 - l/a) RT 
For the hinge model g" is calculated to be 43.5 and 148 kcal/rad2 a t  300°K 
for a persistence length of 500 and 1700 A, respectively. For the random 4 
model g" is doubled, i.e., 87 and 296 kcal/rad2. The factor of 2 represents 
the fact that with identical 9" the random 4 model will have larger values of 
(cos 6) because of the extra degree of freedom. e = 0 is the most probable 
value for the hinge model; it is not for the random 4 model. 

Corresponding to  the cases of Eq. (19), we find that 
49 " 

C ,  = Goth A2/4 E 4/A2 = - RT (204 
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If qK is purely energetic, P, and C, should diminish with increasing T. 
In  the unlikely event that it is purely entropic, there would be no tempera- 
ture coefficient. On the basis of temperature studies, Gray and Hearst6 
have concluded that the enthalpy of bending is positive and accompanied by 
a small negative entropy. 

There may be restrictions on the range of applicability of the above 
formulae. Theoretical and experimental results are in opposition to the 
uninterrupted propagation of DNA helices as flexible rods. On the experi- 
mental side the exchange of interior hydrogen atoms for deuterium' or the 
reaction of the interior hydrogen of adenine8 with formaldehyde indicates a 
transient rupture of the ideal order of the Watson-Crick helix. These 
internal relaxations have been called breathing modes by von Hippel and co- 
workers. Their presence is in complete consistency with the prediction of 
Landau and Lifschitzg that ordered phases of linear structures should be 
finite in length. 

The extent to which these breathing modes provide an additional mecha- 
nism for DNA flexibility is unknown at  present, though their contribution 
should be negligible for low molecular weight. Quantitative estimates of 
the frequency of breathing modes along the chain and of their inherent 
flexibility will be required to settle this problem. Since measurements of 
the persistence length of DNA still vary, we have calculated (h2)>'/* and R, 
as a function of contour length for P ,  = 500 and 1700 A, which appear to be 
the lower and upper limits of contemporary investigations. The results are 
shown in Figure 1. Using the values of (cos 0) appropriate for these 
persistence lengths, P, and C,  have been plotted as a function of n in 
Figure 2. Extensive experimental results with relatively short DNA mole- 
cules together with comparison with curves of this kind should eventually 
provide an estimate of the flexibility of DNA in the absence of highly flexible 
loops. The values of (cos 0) and (0) associated with these curves are given 
in Table I. 

DISCUSSION 
It is rather likely that a realistic model for DNA bending should include a 

dependence of the restoring force q" on 4 as well as on 0. If q K  is twofold 
symmetric in 4 so that the restoring force for 4 + a equals the restoring 
force for 4, transverse contributions of propagation vectors will average to 
zero. In this case, the value for P,/l and C ,  should lie within the twofold 
variation in models depicted by Eqs. (19) and (20), since these span situa- 
tions from total restriction of 4 to a uniform distribution of 4. Conse- 
quently, RT(P,/l) is a measure of an effective restoring force averaged over 
4. For the random 4 model or hinge model, this is equal to the value of g" 
or twice its value, respectively. 

Of models previously proposed in the literature, the present work bears 
the strongest resemblance to that of Landau and Lifschitzg who considered 
a continuous thin rod subject to curvature as a result of thermal fluctua- 
tions. The local energy of bending was considered to be proportional to 
the square of the local curvature vector, i.e., proportional to the square of 
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Fig. 2. Plot of C,  and P ,  as function of number of units in chain for same conditions 
Dashed lines indicate asymptotic as Fig. 1. 

limits for infinite chains. 
P ,  is in angstroms and C,, is dimensionless. 

Note that C.  is changing significantly for quite long chains. 
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TABLE I 
Values of Parameters for the Two Models and Two Values for P ,  

P ,  = 1700A P ,  = 500A 

(161) tbl) 
(cose)  (deg) C, g'/RT (cose)  (deg) C, gX/RT 

Hinge Model 0.993 5 . 4  289 72.5 0.998 2 . 9  985 246 
Random 4 0.993 6 . 0  289 145 0.998 3 . 2  985 493 

the reciprocal of the local radius of curvature. The random 4 model 
discussed above is essentially a discrete version of the Landau-Lifschitz 
model. The introduction of realistic molecular features does not add any 
mathematical complexity to the treatment. 

It has not seemed desirable to propose models that go too far beyond the 
refinement of experimental results. When and if it becomes necessary, a 
number of refinements can be considered. If the angles are not inde- 
pendent but there are cross terms in the energy involving products such as 
l ~ 6 & ~ + l ,  the resulting quadratic form can be diagonalized using standard 
formulae. The shape of the molecule will then be given as a linear combina- 
tion of normal modes of distortion. Also, there is no reason why the 
equilibrium value of 6 need be 0. For other types of chain, the local free 
energy is given by (k/2) (6 - 60)' in the parabolic approximation. If 60is not 
zero, the results come out in terms of hypergeometric functions but this is no 
serious handicap since a table appropriate for this application could be 
easily constructed. For the case of DNA, the chief obstacle in the way of 
application of the formulae is the necessity for unscrambling contributions 
of local small distortions and breathing modes as factors that determine 
molecular length and shape. It is hoped that the application of the formu- 
lae given above to experiments on short chains, not long enough for the 
presence of breathing modes, will help in the resolution of the two effects. 

This research was supported in part by Grant GB-27399x2 of the National Science 
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