
Flexible Abstraction Heuristics for Optimal Sequential Planning

Malte Helmert
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

helmert@informatik.uni-freiburg.de

Patrik Haslum∗
NICTA & Australian National University

Locked Bag 8001
Canberra ACT 2601, Australia
Patrik.Haslum@nicta.com.au

Jörg Hoffmann
DERI

University of Innsbruck
Technikerstraße 21a

6020 Innsbruck, Austria
joerg.hoffmann@deri.at

Abstract

We describe an approach to deriving consistent heuristics for
automated planning, based on explicit search in abstract state
spaces. The key to managing complexity is interleaving com-
position of abstractions over different sets of state variables
with abstraction of the partial composites.
The approach is very general and can be instantiated in many
different ways by following different abstraction strategies.
In particular, the technique subsumes planning with pattern
databases as a special case. Moreover, with suitable abstrac-
tion strategies it is possible to derive perfect heuristics in a
number of classical benchmark domains, thus allowing their
optimal solution in polynomial time.
To evaluate the practical usefulness of the approach, we per-
form empirical experiments with one particular abstraction
strategy. Our results show that the approach is competitive
with the state of the art.

Introduction

In contrast to tremendous improvements in the scaling be-
haviour of satisficing planners (as evidenced by the results
of recent planning competitions) and planning systems that
minimize so-called “parallel length” (Kautz, Selman, &
Hoffmann 2006), the problem of optimal sequential plan-
ning, i. e. finding a plan with a minimal number of actions,
remains very challenging.

The only known approach to optimal planning that is gen-
erally viable is search, in one form or another. The most
important general method for improving the efficiency of
search for optimal solutions is the use of admissible heuris-
tics, i. e. lower bound functions on the distance to the nearest
solution in the search space. There are of course numer-
ous other ways to enhance the efficiency of search proce-
dures for optimal planning: Compacting the representation
of sets of states, using data structures such as BDDs, and
using external storage permits larger search spaces to be ex-
plored (Edelkamp 2005). Clever branching strategies, for
example using a constraint representation, help focus search
on the relevant choice points, thus reducing branching fac-
tor and/or solution depth (Grandcolas & Pain-Barre 2007;

∗NICTA is funded through the Australian government’s backing
Australia’s ability initiative.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Vidal & Geffner 2006). These improvements, however, are
not enough to replace heuristics as a corner-stone of opti-
mal planning. Moreover, improvements to heuristics and to
other aspects of search complement each other.

A useful heuristic function must be efficiently computable
(at most low order polynomial time) as well as accurate. Im-
proving the accuracy of a heuristic function, without wors-
ening its computational properties, usually translates di-
rectly into faster search for optimal solutions. This is pre-
cisely the contribution of this paper: We describe a way
of deriving more accurate admissible heuristics for forward
search, at a reasonable computational cost.

Our heuristics are abstraction heuristics, meaning the
heuristic value is the optimal cost of the solution to an ab-
straction of the planning task. An abstraction is a mapping
that reduces the size of the state space, by “collapsing” sev-
eral states into one. By making the abstract space small
enough, it becomes feasible to find the optimal solution by
blind search. Distances in the abstract space are computed in
a preprocessing phase and stored in memory, so that heuris-
tic evaluation during search can be done by a simple lookup.

A particular form of abstraction heuristics, known as pat-
tern databases (PDBs) have been shown to be very useful
in several hard search problems, including optimal planning
(Culberson & Schaeffer 1998; Edelkamp 2001). The ab-
straction mappings underlying PDB heuristics for planning
are projections, which ignore completely all but a subset of
the state variables of the planning task (known as the “pat-
tern”): states that do not differ on the chosen variables are
identified in the abstract space. This limits the representa-
tional power of PDB heuristics: in some planning tasks the
abstraction that would be most useful as a heuristic can not
be represented as a PDB (of reasonable size). Heuristics
based on abstractions more general than projections have
been used in some applications, but so far not for planning
(Hoffmann et al., 2006, consider a form of non-projection
abstractions, but do not use them to derive heuristics).

Recently, Dräger, Finkbeiner & Podelski (2006), in the
context of verification of systems of concurrent automata,
presented a method to construct abstractions that combine
information about all state variables. The computational fea-
sibility of this approach rests on interleaving composition
with abstraction of the partial composites. The greater flexi-
bility offered by not restricting abstractions to be projections

176

is a mixed blessing. It does, as we show, allow very accurate
heuristics to be obtained from relatively small abstractions.
However, the problem of selecting from the vast number of
possible abstractions a good one, which is hard already for
PDB heuristics, becomes even harder. A good abstraction
strategy is vital for the approach to be practical.

We generalize the method of Dräger et al. to the problem
of optimal planning, using the SAS+ representation, and in-
vestigate various refinements of their abstraction strategy. In
particular, we show that good – in some domains even per-
fect – heuristics can be obtained using a simpler strategy
for the order of composition but a more refined strategy for
simplifying the intermediate abstractions. We also present
the first evidence that, with an appropriate abstraction strat-
egy, this approach does in fact lead to better heuristics than
using only projections, as done in PDBs. We prove that
the framework subsumes PDBs, including additive PDBs,
and that in certain domains, for which planning is known to
be tractable, it can construct and succinctly represent per-
fect heuristics, i. e., heuristics that give exact estimates of
goal distance for all reachable states. Experimentally, we
show that our abstraction strategy frequently results in bet-
ter heuristics than the currently best known method for au-
tomatically constructing PDB heuristics.

The next two sections formally introduce planning prob-
lems and their abstractions. We then discuss the computa-
tion of abstractions in general and the specific strategy we
use. Finally, we provide theoretical and experimental re-
sults, demonstrating the effectiveness of the approach.

Background

We consider optimal planning in the classical setting, using
the SAS+ representation of planning tasks. A task speci-
fied in STRIPS or PDDL can be converted to SAS+ repre-
sentation automatically (Helmert 2006a). In this paper, we
assume that the objective is to minimize plan length. We re-
mark that our methods generalize easily to the case of mini-
mizing the sum of non-negative action costs.

Definition 1 SAS+ planning task.
A SAS+ planning task or SAS+ task for short is a 4-tuple
Π = 〈V,O, s0, s�〉 with the following components:

• V = {v1, . . . , vn} is a set of state variables, each with an
associated finite domain Dv .
A partial variable assignment over V is a function s on
some subset of V such that s(v) ∈ Dv wherever s(v) is
defined. If s(v) is defined for all v ∈ V , s is called a state.

• O is a set of operators, where an operator is a pair
〈pre, eff〉 of partial variable assignments called precon-
ditions and effects, respectively.

• s0 is a state called the initial state, and s� is a partial
variable assignment called the goal.

The semantics of a planning task are given by mapping it to
a transition graph. (Transition graphs are often called tran-
sition systems; we call them graphs to emphasize their inter-
pretation as (labelled) digraphs.) Searching in this transition
graph corresponds to forward state space search.

Definition 2 Transition graphs and plans.
A transition graph is a 5-tuple T = 〈S, L,A, s0, S�〉, where
S is a finite set of states, L is a finite set of transition labels,
A ⊆ S × L × S is a set of (labelled) transitions, s0 ∈ S is
the initial state, and S� ⊆ S is the set of goal states.

A path from s0 to any s� ∈ S� following the transitions
of T is a plan for T . A plan is optimal iff the length of the
path is minimal.

We denote the transition graph associated with a SAS+ plan-
ning task Π by T (Π). Its states are the states of the task, i. e.
complete assignments of values to variables, and the graph
has an edge, labelled by o ∈ O, from s to s′ if o is applicable
in s and applying the operator to s leads to s′. A solution to
the planning task is a path through this graph.

The transition graph of Π can also be viewed as the syn-
chronized product of transition graphs defined over variables
in the planning task. With this in mind, the similarity with
the concurrent automata model used by Dräger et al. is easy
to see. However, SAS+ operators allow for more general
forms of synchronization. Some care must be taken in defin-
ing the transition graphs of individual variables to ensure
that their product really is isomorphic to T (Π). Exactly how
this is done is described in the next section.

Abstractions

Abstractions of transition graphs are at the core of our ap-
proach to constructing heuristics. Abstracting means ignor-
ing some information or some constraints to obtain a more
“coarse grained”, and typically smaller, version of the tran-
sition graph. Abstraction has the important property that it
preserves paths in the graph. This is what makes it suitable
as a way to define admissible heuristics. Formally, abstrac-
tion of transition graphs is defined as follows:

Definition 3 Abstraction.
An abstraction of a transition graph T = 〈S, L,A, s0, S�〉
is a pair A = 〈T ′, α〉 where T ′ = 〈S′, L′, A′, s′0, S

′
�〉 is

a transition graph called the abstract transition graph and
α : S → S′ is a function called the abstraction mapping,
such that L′ = L, 〈α(s), l, α(s′)〉 ∈ A′ for all 〈s, l, s′〉 ∈ A,
α(s0) = s′0, and α(s�) ∈ S′

� for all s� ∈ S�.
If the abstract transition graph contains no transitions or

goal states in addition to those required by the above defini-
tion, A is called a homomorphism.

Note that abstraction is transitive: if 〈T ′, α′〉 is an abstrac-
tion of a transition graph T , and 〈T ′′, α′′〉 is an abstraction
of T ′, then 〈T ′′, α′′ ◦ α′〉 is also an abstraction of T .

When the abstraction mapping is not relevant, we iden-
tify an abstraction with its abstract transition graph. In the
case of homomorphisms, we may also identify an abstrac-
tion with its abstraction mapping, since the mapping com-
pletely determines the abstract graph.

Definition 4 Abstraction heuristic.
Let Π be a SAS+ task with state set S, and let A = 〈T , α〉
be an abstraction of its transition graph.

The abstraction heuristic hA is the function which as-
signs to each state s ∈ S the length of the shortest path, in
T , from α(s) to any goal state of T .

177

The value of hA(s) is a lower bound on the length of the
shortest path from s to any goal state in T (Π). Thus, hA
is an admissible and consistent heuristic for forward state
space search. This is true of abstraction heuristics in general,
not only abstractions of planning tasks. It follows from the
simple fact that abstractions preserve edges in the transition
graph: every path in T (Π) is also a path in A, so the shortest
path in the latter can not be longer than the shortest path in
the former. The converse is not necessarily true, as there
may be a shorter path to a goal state in A than in T (Π), so
hA will typically underestimate the real solution length.

The above definition does not specify how, for a given
state, the value of hA is computed. In the general setting of
domain-independent planning, the only realistic possibility
is by searching the transition graph of the abstraction. For
pattern database heuristics, an exhaustive search of each ab-
straction is done as a preprocessing step, and goal distances
for all abstract states are stored in memory. We follow the
same approach. As mentioned in the introduction, the ab-
straction heuristics previously considered in planning, i. e.
PDBs, are based on a particular type of abstractions, namely
projections. Formally, these are defined as follows.

Definition 5 Projection.
Let Π = 〈V,O, s0, s�〉 be a SAS+ task with state set S, and
let V ⊆ V be a subset of its variables.

A homomorphism on T (Π) defined by a mapping α such
that α(s) = α(s′) iff s(v) = s′(v) for all v ∈ V is called a
projection onto variable set V , written as πV .

If V is a singleton set, π{v} is called an atomic projection,
also written πv .

The relationship between PDBs and our more general form
of abstraction heuristics is further discussed later on.

For readers familiar with the concept of the domain tran-
sition graph (DTG) of a SAS+ variable, we remark that the
transition graph of an atomic projection onto a variable v is
not identical to the DTG of v. This is because the transition
graph of πv has edges representing the effect of any operator
on v, including operators that have no effect on v.

The abstractions we base our heuristics on are constructed
by interleaving composition of abstractions with further ab-
straction of the composites. Composing here means the stan-
dard operation of forming the synchronized product, for-
mally defined as follows.

Definition 6 Synchronized product.
Let A′ = 〈〈S′, L, A′, s′0, S

′
�〉, α′〉 and A′′ = 〈〈S′′, L, A′′,

s′′0 , S′′
� 〉, α′′〉 be abstractions of a transition graph T .

The synchronized product of A′ and A′′ is defined as
A′ ⊗ A′′ = 〈〈S, L,A, s0, S�〉, α〉, where S = S′ × S′′,
〈(s′, s′′), l, (t′, t′′)〉 ∈ A iff 〈s′, l, t′〉 ∈ A′ and 〈s′′, l, t′′〉 ∈
A′′, s0 = (s′0, s

′′
0), S� = S′

� ×S′′
� , and α : S → S is defined

by α(s) = (α′(s), α′′(s)).

The synchronized product of two abstractions of a transition
graph T is again an abstraction of T . This is an immedi-
ate consequence of the definitions. Forming the product is
an associative and commutative operation, modulo isomor-
phism of transition graphs.

As we earlier hinted, the synchronized product of all
atomic projections of a SAS+ task Π is equal to the full tran-
sition graph T (Π). In other words, the atomic projections
are a complete representation of Π, from which T (Π) can be
reconstructed by synchronized product operations. To show
this, we first need to introduce the following concept of in-
dependence for abstractions.

Definition 7 Relevant variables, orthogonal abstractions.
Let Π be a planning task with variable set V , and let A =
〈T , α〉 be an abstraction of T (Π).

We say that A depends on variable v ∈ V iff there exist
states s and s′ with α(s) 	= α(s′) and s(v′) = s′(v′) for all
v′ ∈ V \ {v}. The set of relevant variables for A, written
varset(A), is the set of variables in V on which A depends.

Abstractions A and A′ are orthogonal iff varset(A) ∩
varset(A′) = ∅.

Clearly, projections satisfy varset(πV) = V , so projec-
tions onto disjoint variable sets are orthogonal. Moreover,
varset(A⊗A′) = varset(A) ∪ varset(A′).

Theorem 8 Products of orthogonal homomorphisms.
Let Π be a SAS+ task, and let A and A′ be orthogonal ho-
momorphisms of T (Π). Then A⊗A′ is a homomorphism of
T (Π).

For space reasons, we omit the proof. We remark that the
theorem does not hold if A and A′ are not required to be or-
thogonal, and that it does not hold if the SAS+ task contains
conditional effects.1

It is now easy to prove that the transition graph of a SAS+

task is isomorphic to the synchronized product of the atomic
abstractions of all its variables, i. e. that T (Π) =

⊗
v∈V πv .

By definition, the abstraction mapping of the product is a bi-
jection. By Theorem 8, the abstraction is a homomorphism.
These two facts together imply the desired equivalence.

A Generic Abstraction Algorithm

Atomic projections and synchronized products can fully
capture the state transition semantics of a SAS+ task. How-
ever, for all but trivial tasks we cannot explicitly compute
the product of all atomic projections: At some point, the ab-
stract transition graphs become too large to be represented
in memory. In the case of PDB heuristics, the memory limit
translates into an effective limit on the number of variables
that can be included in any single projection.

In contrast, the approach we pursue in this paper com-
putes abstractions based on the full variable set. To do so,
we maintain a pool of (orthogonal) abstractions, which ini-
tially consists of all atomic projections. We then repeatedly
perform one of two possible operations until only a single
abstraction remains:

• Two abstractions can be merged (i.e., composed) by re-
placing them with their synchronized product.

1The latter is a consequence of how we have defined the tran-
sition graph of a SAS+ task, in particular the fact that edges are
labelled only by operator names. In a task with conditional effects,
transition labels must be extended with information about which
effects are active in the transition.

178

generic algorithm compute-abstraction(Π, N):
abs := {πv | v is a variable of Π}
while |abs| > 1:

Select A1,A2 ∈ abs.
Shrink A1 and/or A2 until size(A1)·size(A2) ≤ N .
abs := (abs \ {A1,A2}) ∪ {A1 ⊗A2}

return the only element of abs

Figure 1: Algorithm for computing an abstraction for plan-
ning task Π, with abstraction size bound N . (The size of an
abstraction is the number of abstract states.)

• An abstraction can be shrunk (i.e., abstracted) by replac-
ing it with a homomorphism of itself.

To keep time and space requirements under control, we en-
force a limit on the size of the computed abstractions, spec-
ified as an input parameter N . Each computed abstraction,
including the final result, contains at most N states. If there
are more than N states in the product of two abstractions
A1 and A2 (i. e., if the product of their state counts exceeds
N), either or both of the abstractions must be shrunk by a
sufficient amount before they are merged. The general pro-
cedure is shown in Fig. 1. Note that the procedure has two
important choice points:

• merging strategy: the decision which abstractions A1 and
A2 to select from the current pool of abstractions.

• shrinking strategy: the decision which abstractions to
shrink and how to shrink them, i. e. which homomorphism
to apply to them.

We refer to the combination of a particular merging and
shrinking strategy as an abstraction strategy. To obtain a
concrete algorithm, we must augment the generic abstrac-
tion algorithm in Fig. 1 with an abstraction strategy.

Assuming that N is polynomially bounded by the input
size (e. g., a constant) and that the abstraction strategy is
efficiently computable, computing the abstraction requires
only polynomial time and space. As argued previously, the
resulting abstraction heuristic is admissible and consistent.

Even though these important properties hold indepen-
dently of the choice of abstraction strategy, selecting a suit-
able strategy is of paramount importance, as it determines
the quality of the resulting heuristic. In the following sec-
tion, we introduce one particular abstraction strategy, which
we use for experimentally evaluating the approach.

An Abstraction Strategy

The abstraction strategy we consider in this section makes
use of two pieces of information: the merging strategy is
based on connectivity properties of the causal graph of the
SAS+ task, and the shrinking strategy relies on shortest dis-
tances in the abstract transition graphs. We will now explain
both components in detail.

Merging Strategy

The merging strategy we use is a special case of what we call
a linear merging strategy. A linear strategy always main-

tains a single non-atomic abstraction called the current ab-
straction. Initially, the current abstraction is an atomic pro-
jection. In each iteration, the current abstraction is merged
with an atomic projection to form the new current abstrac-
tion, until all atomic projections have been considered. At
any point throughout the merging process, there is thus only
one abstraction which is not an atomic projection, and a set
of atomic projections which still need to be merged into it.

Dräger et al. use a non-linear merging strategy, but one
that still has the property that each atomic abstraction is
considered only once. A linear strategy is simpler and, we
believe, achieves equally good results. In particular, in do-
mains for which we prove the existence of a strategy yield-
ing a perfect heuristic, linear strategies suffice.

A linear strategy is defined by the order in which atomic
projections are merged into the current abstraction. We de-
termine this order by following two simple rules:

1. If possible, choose a variable from which there is an arc in
the causal graph to one of the previously added variables.

2. If there is no such variable, add a variable for which a
goal value is defined. (In particular, choose a goal variable
initially, when there are no previously added variables.)

Both rules are fairly intuitive: Goal variables are clearly im-
portant because they are the only ones for which πv has non-
zero goal distance, and causally connected variables are the
only ones which can increase the heuristic estimates of the
current abstraction. (We also experimented with the oppo-
site order of rules, i. e. first adding all goal variables and then
causally connected variables, with slightly worse results.)

When neither rule applies, there are no variables left
that either have defined goal values or are relevant for the
achievement of a goal. In other words, only irrelevant vari-
ables are left, and the remaining variables can be ignored. In
our case, this situation does not arise because the PDDL-to-
SAS+ translator removes irrelevant variables.

In many situations, the two rules are not sufficient for de-
ciding which variable to add next, because there are several
matching candidates. In this case, we choose the candidate
with the “highest level” according to the ordering criterion
used by Fast Downward (Helmert 2006a).

Shrinking Strategy

To keep the size of the synchronized product A⊗A′ below
the bound N , we may need to shrink A or A′ before com-
puting the product. The shrinking strategy decides which of
A and A′ to shrink and how to shrink them.

Regarding the which question, we take the simple ap-
proach of always shrinking the current (non-atomic) ab-
straction. Our intuition is that atomic abstractions are typi-
cally much smaller and thus contain fewer states that can be
abstracted without losing significant information. Clearly,
more elaborate strategies are possible.

As for how, we need an algorithm that accepts an abstrac-
tion A and target size M and computes a homomorphism of
A with M abstract states. In our case, we set M = � N

size(A′)�
to ensure that the following synchronized product operation
respects the size limit N .

179

Shrinking an abstraction of size M ′ to size M can be un-
derstood as a sequence of M ′ −M individual simplification
steps, combining two abstract states in each step. Formally,
this is equivalent to applying M ′ − M homomorphisms in
sequence, each of which maps two abstract states s and s′ to
a new abstract state {s, s′} while leaving all other abstract
states intact, mapping them to themselves. Adopting this
view, we can describe a shrinking strategy by stating which
pair of abstract states s and s′ it chooses to combine when-
ever shrinking is necessary.

A first, very simple idea is to combine states arbitrarily,
i. e., to select s and s′ by uniform random choice. We did
a few experiments with this approach, which led to terrible
performance. A key reason for this is that combining two
randomly selected nodes frequently leads to short-cuts in the
abstract transition graph: If s is close to the initial state and
s′ is close to a goal state, then combining s and s′ introduces
a short path from the initial state to the goal which did not
previously exist.

This problem can be avoided by only combining states
with identical goal distance. We say that the h-value of
an abstract state s is the length of a shortest path from s
to some abstract goal state, in the abstract transition graph.
Similarly, the g-value of s is the length of a shortest path
from the abstract initial state to s, and the f -value is the
sum of the g- and h-values. A shrinking strategy is called
h-preserving if it only combines vertices with identical h-
values, g-preserving if it only combines vertices with identi-
cal g-values, and f -preserving if it is both h-preserving and
g-preserving.

It is easy to prove that if A′ is an abstraction of A pro-
duced by an h-preserving shrinking strategy, then hA′

=
hA, i. e., both abstractions represent the same heuristic. (Of
course, A may nevertheless contain relevant information not
contained in A′, leading to a difference in heuristic qual-
ity when computing the synchronized product of A or A′
with another abstraction.) Similarly, g-preserving abstrac-
tions preserve distances from the abstract initial state to any
abstract state s, which are lower bounds for the distances
from the concrete initial state to any concrete state mapped
to s by the abstraction.

We are interested in preserving h- and g-values (and
thus f -values) because the f -value of an abstract state is
a lower bound on the f -values associated with the corre-
sponding nodes in A∗ search. The A∗ algorithm expands all
search nodes n with f(n) < L∗ and no search node with
f(n) > L∗, where L∗ is the optimal solution length for the
task. Thus, abstract states with high f -values are expected to
be encountered less often during search, so combining them
is less likely to lead to a loss of important information.

In summary, we are interested in preserving h- and g-
values, and we prefer to combine states with high f -values.
To achieve these goals, we use the following strategy for se-
lecting the states to combine:

1. Partition all abstract states into buckets. Two states are
placed in the same bucket iff their g- and h-values are
identical. We say that bucket B is more important than
bucket B′ iff the states in B have a lower f -value than the

states in B′, or if the f -values are equal and the states in
B have a higher h-value.

2. If there is any bucket which contains more than one state,
select the least important such bucket and combine two of
its states, chosen uniformly at random.

3. Otherwise, all buckets contain exactly one state. Combine
the states in the two least important buckets.

The third rule usually comes into play only if the target
abstraction size M is very low. As long as it does not trig-
ger, the strategy is f -preserving. We remark that the order-
ing by f -values in the first rule has a very beneficial impact
on performance, while the tie-breaking criterion (consider-
ing high h-value states more important) is less critical. We
have observed similar, but slightly worse performance with
the opposite tie-breaking criterion. This concludes the dis-
cussion of our abstraction strategy.

Representational Power

We identified some interesting theoretical properties of our
framework, taking the form of representational power re-
sults: Which heuristic quality can be achieved in principle,
when suitable abstraction strategies are chosen? Our results
reinforce the motivation for linear and f -preserving abstrac-
tion strategies, introduced in the previous section. For lack
of space, we describe the results informally. Formal proofs
will be made available in a long version of the paper.

Comparison to Additive Pattern Databases

We have previously observed that our abstraction heuristics
are a generalization of pattern database heuristics: The PDB
heuristic hP of a pattern P ⊆ V is identical to the heuristic
hπP of the projection πP .

However, PDB heuristics are not limited to the use of a
single pattern P . To achieve better heuristic quality, many
patterns are typically considered, which can be combined
by taking the maximum of individual heuristic estimates, or,
in some cases, by taking their sum. Taking the maximum
of individual estimates is of course also possible in our ap-
proach if we compute several abstractions (as we will see in
the experimental evaluation, this is sometimes beneficial).
Considering sums, two patterns P and P ′ are additive iff
hP + hP ′ ≤ h∗, i. e., their sum is admissible. In most plan-
ning domains, exploiting additive patterns is critical for the
succinct representation of high-quality heuristics.

A simple sufficient condition for additivity of patterns,
identified by Edelkamp (2001), is that no operator affects
variables in both patterns. Under the same condition, any ab-
stractions A and A′ with varset(A) ⊆ P and varset(A′) ⊆
P ′ are additive, i. e., hA + hA′ ≤ h∗ – simply because any
abstraction A is an abstraction of πvarset(A).

More interestingly, additivity is automatically captured
by our abstraction approach, provided that we limit our-
selves to h-preserving abstractions. Let P and P ′ be ad-
ditive patterns, let A be any h-preserving abstraction of πP ,
let A′ be any h-preserving abstraction of πP ′ , and let B be
any h-preserving abstraction of A⊗A′. Then hB dominates
the sum of the pattern database heuristics, hP +hP ′

. Hence

180

additivity is captured “automatically” in the sense that, for
every sum of concisely representable additive pattern heuris-
tics, there exists a dominating abstraction heuristic that also
has a concise representation. The reason is that every oper-
ator sequence defining a goal path from some abstract state
of B can be partitioned into two disjoint operator sequences
representing corresponding goal paths in A and A′.

Domain-Specific Quality Bounds

Another way of studying the representational power of a
class of heuristics is by considering domain-specific quality
bounds. In particular, we are interested in domains for which
the perfect heuristic h∗ can be represented as a polynomial-
time computable abstraction heuristic.

Clearly, this can only be possible in planning domains
which admit polynomial-time optimal solution algorithms.
Helmert (2006b) identifies six such domains in the IPC
benchmark set, namely GRIPPER, MOVIE, PSR, SCHED-
ULE, and two variants of PROMELA. Of these six domains,
all but PSR have polynomial-time abstraction strategies for
computing perfect abstraction heuristics. (We do not have a
positive or negative result for PSR, but believe that no per-
fect polynomial-sized abstraction heuristics exist.) More-
over, the results still hold when only allowing linear merging
and f -preserving shrinking strategies, reinforcing our intu-
ition that these classes of abstraction strategies are useful.

To give an example, a perfect abstraction heuristic for
GRIPPER can be obtained as follows. Start with the vari-
ables for the robot position and for the gripper hands. Merge
these without any shrinking. Then include all ball variables,
in an arbitrary order. Combine any two states iff they agree
on the status of robot and gripper hands, as well as on the
numbers of balls in each room.

In contrast, PDB heuristics (with maximization and sum-
ming) cannot succinctly represent perfect heuristics in any
of these domains apart from the trivial MOVIE. In the GRIP-
PER domain, for example, there exists no polynomial-sized
family of PDBs which can guarantee a heuristic value of at
least (2

3 + ε)h∗, for any ε > 0.2

Experimental Evaluation

Encouraging theoretical results do not necessarily imply that
an algorithm can be made to work well in practice. To evalu-
ate the practical usefulness of our abstraction heuristics, we
conducted an empirical study on six domains from the IPC
benchmark suite which are known to be hard for optimal
planners. We use the abstraction strategy introduced earlier,
which we refer to as “LFPA” (for linear, f -preserving ab-
straction) throughout this section. We implemented LFPA
within a standard heuristic forward search framework, using
the A∗ algorithm with full duplicate elimination.

There are two guiding questions for our study. Firstly, is
a heuristic planner based on our flexible abstraction heuris-
tics competitive with the state of the art in sequentially op-

2Any single pattern may contain only a logarithmic number of
balls; and the patterns are not additive if more than one of them
contains the robot position variable. Hence, the robot moves are
considered for only a logarithmic number of balls.

timal planning? To answer this question, we compare to
two baseline approaches, namely blind search (A∗ with a
heuristic function which is 0 for goal states and 1 other-
wise) and the hmax heuristic (Bonet & Geffner 2001). These
two heuristics were both implemented within the same plan-
ning system as LFPA, to allow a fairly unbiased compar-
ison. We also compare to the BFHSP planner (Zhou &
Hansen 2006), which was the best-performing sequentially
optimal planner at IPC4. Finally, for those benchmarks in
our collection which were part of the IPC5 benchmark suite
(PIPESWORLD-TANKAGE and TPP), we compare to the of-
ficial competition results for the participating sequentially
optimal planners, FDP (Grandcolas & Pain-Barre 2007) and
MIPS-BDD (Edelkamp 2005).

Considering the close relationship of our approach to pat-
tern databases, the second guiding question is: Can our
flexible abstraction heuristics result in better planner per-
formance than heuristics based on a carefully selected set
of pattern databases? To answer this question, we com-
pare to the automatic pattern selection approach of Haslum
et al. (2007), which together with Edelkamp’s approach
(Edelkamp 2006) defines the state of the art in planning with
pattern databases. Here, we are interested in more detailed
results, so we do not just compare total runtime, but also
preprocessing time for computing the heuristic, number of
node expansions during search, and search time.

Both our and the pattern database approach require – or at
least significantly benefit from – some parameter tuning. In
our case, we manually chose an appropriate value for the ab-
straction size bound N on a per-domain basis. In two of the
six domains, it also proved slightly beneficial to compute
several abstractions and use the maximum of their heuris-
tic estimates. In these cases, we computed three abstraction
heuristics. (For the second and third abstraction, the merg-
ing strategy randomizes the variable order so as to obtain
substantially different abstractions in each pass.) The pa-
rameter tuning for the pattern selection approach we com-
pare to was also performed on a per-domain basis.

Full experimental results are shown in Table 1.3 In each
domain except LOGISTICS and PSR, all tasks that can be
solved by any of the planners are included in the table.
For LOGISTICS, we omit four easy tasks solved by all ap-
proaches, and for PSR, we only report the five hardest tasks.
Empty entries in the table denote tasks that were not solved
by the respective technique except for the FDP and MIPS
planners in the PIPESWORLD-NOTANKAGE, SATELLITE,
LOGISTICS and PSR domains, where no data was available.

Our first observation is that the overall performance of
LFPA (left half of Table 1) is excellent. There is only a single
instance which can be solved by another planner but not by
LFPA (TPP-08 solved by MIPS-BDD), and not a single in-
stance which can be solved by another heuristic search plan-
ner but not by LFPA, as MIPS-BDD uses symbolic breadth-
first search. Many tasks are only solved by LFPA; to the
best of our knowledge, this is the first time these tasks are
solved by a domain-independent sequentially optimal plan-

3The experiments were conducted on a machine with a 3.066
GHz CPU, using a 1.5 GB memory limit and 30 minute timeout.

181

inst. L∗ LFPA PDB blind hmax BFHSP FDP MIPS

PIPESWORLD-NOTANKAGE: N = 2500
01 5 0.07 5.34 0.00 0.00 0.05
02 12 0.55 6.83 0.02 0.02 0.10
03 8 1.47 10.44 0.03 0.03 0.15
04 11 1.24 16.52 0.18 0.19 0.20
05 8 5.59 31.72 0.19 0.18 0.31
06 10 5.30 38.56 0.82 0.96 0.58
07 8 23.37 85.90 1.02 0.61 1.21
08 10 5.23 194.04 5.97 4.77 1.86
09 13 10.89 215.89 145.11 88.91 102.33
10 18 113.18 617.12 1486.97
11 20 7.22 380.44 7.12 18.46 147.34
12 24 13.09 568.38 25.50 72.41
13 16 10.51 600.05 6.13 8.08
14 30 231.49 1239.93
15 26 32.15 1433.73 63.10 131.06
17 22 107.21
21 14 12.92 2.41 3.05
23 18 41.76 303.25
24 24 313.44
PIPESWORLD-TANKAGE: N = 1000
01 5 1.00 10.59 0.00 0.00 0.15 0.05 1.09
02 12 1.91 20.48 0.01 0.04 0.20 0.41 1.32
03 8 3.99 99.27 1.45 1.60 5.21 2.17 7.98
04 11 9.98 244.80 5.66 17.56 20.44 27.75 17.22
05 8 8.68 162.32 0.34 1.97 5.04 1.27 10.09
06 10 17.43 409.57 1.63 8.17 16.35 8.57 22.78
07 8 25.84 379.66 1295.05 12.41 142.11
08 11 43.70 1092.63
11 22 26.22 795.34 55.91 436.65
13 16 70.14
15 30 161.29
21 14 52.79 121.27 736.92 375.14
31 39 50.36 24.53 673.47
SATELLITE: N = 10000 (3 abstractions)
01 9 0.01 0.27 0.00 0.00 0.03
02 13 0.08 0.32 0.01 0.01 0.08
03 11 3.16 2.10 0.30 0.18 0.16
04 17 6.92 11.54 9.34 6.26 3.08
05 15 47.74 110.33 119.45
06 20 21.19 634.77 707.85 265.45
LOGISTICS: N = 200000
4-0 20 0.10 3.21 0.09 0.06 0.11
4-1 19 0.09 5.48 0.08 0.04 0.16
5-0 27 0.87 16.75 1.12 1.03 2.41
5-1 17 0.88 4.58 0.22 0.09 0.18
6-0 25 3.65 16.48 5.96 3.34 3.62
6-1 14 3.85 3.16 0.28 0.06 0.11
7-0 36 24.56 91.12
7-1 44 26.84 156.28
8-0 31 37.09 79.49
8-1 44 40.77 160.02
9-0 36 55.47 127.52
9-1 30 53.42 92.85
10-0 45 117.46 497.51
10-1 42 129.97 405.24
11-0 48 129.82 377.28
11-1 60 284.91
12-0 42 185.90 545.76
12-1 68 221.51
PSR: N = 200000
29 21 3.47 255.47 2.30 3.66 1.43
36 22 67.94 1026.39 16.82 27.49 25.15
40 20 38.29 1309.36 11.91 15.11 7.94
48 37 36.16 787.37 457.08
49 47 67.75
TPP: N = 50000 (3 abstractions)
01 5 0.00 0.01 0.00 0.00 0.02 0.00 0.86
02 8 0.00 0.33 0.00 0.00 0.04 0.00 0.86
03 11 0.01 0.52 0.00 0.00 0.04 0.00 0.86
04 14 0.04 1.74 0.00 0.00 0.07 0.03 0.90
05 19 5.83 3.44 0.24 0.24 0.74 1.59 0.99
06 25 106.45 173.66 350.84 3.93
07 34 602.66 22.11
08 40 35.07

inst. L∗ LFPA PDB
Th nodes Ts Th nodes Ts

PIPESWORLD-NOTANKAGE: N = 2500
01 5 0.07 0 0.00 5.32 0 0.02
02 12 0.54 598 0.01 6.81 0 0.02
03 8 1.47 7 0.00 10.40 10 0.04
04 11 1.20 2093 0.04 16.46 158 0.06
05 8 5.58 88 0.01 31.64 9 0.08
06 10 5.25 1483 0.05 38.48 16 0.08
07 8 23.36 203 0.01 85.78 0 0.12
08 10 5.20 475 0.03 193.92 0 0.12
09 13 6.12 128236 4.77 215.69 0 0.20
10 18 8.09 3002505 105.09 616.82 457 0.30
11 20 4.49 186040 2.73 379.14 9360 1.30
12 24 4.27 638241 8.82 564.35 40470 4.03
13 16 10.19 18946 0.32 599.19 862 0.86
14 30 6.04 13554766 225.45 1215.31 192184 24.62
15 26 18.95 723424 13.20 1427.60 36387 6.13
17 22 16.90 3960903 90.31
21 14 12.75 7607 0.17
23 18 31.19 351982 10.57
24 24 28.53 9399079 284.91
PIPESWORLD-TANKAGE: N = 1000
01 5 1.00 0 0.00 10.55 0 0.04
02 12 1.89 695 0.02 20.44 0 0.04
03 8 3.84 1522 0.15 98.92 15 0.35
04 11 8.59 27933 1.39 244.31 791 0.49
05 8 8.52 584 0.16 161.94 13 0.38
06 10 17.03 2458 0.40 409.17 27 0.40
07 8 24.99 2066 0.85
08 11 23.41 113187 20.29
11 22 6.21 894491 20.01 771.20 69689 24.14
13 16 24.78 991522 45.36
15 30 18.14 6177384 143.15
21 14 49.58 51569 3.21
31 39 21.54 1358979 28.82
SATELLITE: N = 10000 (3 abstractions)
01 9 0.01 0 0.00 0.26 28 0.01
02 13 0.08 0 0.00 0.30 324 0.02
03 11 3.16 0 0.00 1.87 2243 0.23
04 17 6.92 0 0.00 8.47 19523 3.07
05 15 32.14 86958 15.60 14.28 264551 96.05
06 20 15.20 45809 5.99 14.57 1435962 620.20
LOGISTICS: N = 200000
4-0 20 0.10 0 0.00 3.20 0 0.01
4-1 19 0.09 0 0.00 5.47 0 0.01
5-0 27 0.87 0 0.00 16.74 0 0.01
5-1 17 0.88 0 0.00 4.56 0 0.02
6-0 25 3.65 0 0.00 16.47 0 0.01
6-1 14 3.85 0 0.00 3.14 0 0.02
7-0 36 24.56 0 0.00 90.97 832 0.15
7-1 44 26.84 0 0.00 153.09 17258 3.19
8-0 31 37.08 0 0.01 79.33 832 0.16
8-1 44 40.77 0 0.00 158.83 4160 1.19
9-0 36 55.47 0 0.00 127.28 1120 0.24
9-1 30 53.41 0 0.01 92.81 0 0.04
10-0 45 108.57 0 8.89 480.88 40288 16.63
10-1 42 105.66 0 24.31 384.78 58720 20.46
11-0 48 128.95 0 0.87 354.02 55072 23.26
11-1 60 128.55 2608466 156.36
12-0 42 169.61 0 16.29 522.71 53552 23.05
12-1 68 164.63 0 56.88
PSR: N = 200000
29 21 3.47 0 0.00 255.43 124 0.04
36 22 67.80 1061 0.14 1026.20 139 0.19
40 20 37.87 3171 0.42 1308.62 1709 0.74
48 37 36.16 0 0.00 787.09 1623 0.28
49 47 62.13 233779 5.62
TPP: N = 50000 (3 abstractions)
01 5 0.00 0 0.00 0.00 5 0.01
02 8 0.00 0 0.00 0.33 8 0.00
03 11 0.01 0 0.00 0.52 11 0.00
04 14 0.04 0 0.00 1.73 18 0.01
05 19 5.83 0 0.00 3.10 6790 0.34
06 25 98.79 12121 7.66 11.96 1288743 161.70
07 34 150.46 3610376 452.20
08 40

Table 1: Left: Runtimes of optimal planners across the test domains. Column inst. denotes problem instance, column L∗
optimal solution length. Other columns denote runtimes of different sequentially optimal heuristics and planning systems,
including our LFPA heuristic. (For FDP and MIPS, results are only available for PIPESWORLD-TANKAGE and TPP.)
Right: Detailed comparison between abstraction and pattern database (PDB) heuristics. Th is the time to compute the heuristic;
nodes is number of nodes expanded to prove the optimal lower bound; Ts is search time.
Each domain is shown with the abstraction size bound N and the number of abstractions computed, if larger than 1.

182

ner. The only approach that appears generally competitive is
the pattern database heuristic.

For the pattern database approach, it is worth looking at
the data in a bit more detail (right half of Table 1). In general,
LFPA tends to outperform PDB with respect to runtime and
number of instances solved.

Interestingly, we can identify two groups of domains ex-
hibiting different behaviour. In the PIPESWORLD domains,
LFPA solves significantly more instances, but on the set
of commonly solved instances, PDB tends to require much
fewer node expansions. In contrast, in SATELLITE, LOGIS-
TICS, and TPP, LFPA solves the same or only a few more
instances, but expands significantly fewer nodes (in PSR the
behaviour is somewhat mixed).

While these observations appear somewhat contradictory,
they have a common explanation. Using only projections,
PDBs allow abstract spaces to be more compactly repre-
sented, and therefore they allow the use of larger abstrac-
tions. But there comes a point when this compactness is not
enough to capture even the smallest projection that would be
required to obtain a useful heuristic. The LFPA abstractions,
on the other hand, have to be smaller (much smaller, in some
cases), but are better suited to capture “some but not all” of
the relevant information.

Depending on the nature of the domain, the above has
different effects. In the PIPESWORLD domains, the LFPA
abstractions have to be very small to be feasible (note in
Table 1 that N = 2500 and N = 1000 for these two do-
mains). Hence PDB does much better on small problems,
exploiting large abstractions giving near-perfect heuristics.
In larger problems, however, the relevant projections of the
state space become too large to be adequately captured by
PDBs, so that search performance quickly deteriorates. This
deterioration happens a bit more slowly for the LFPA ap-
proach, which can still capture some relevant information
despite its small abstractions.4

In SATELLITE, LOGISTICS, and TPP, it appears that good
PDB heuristics require huge abstractions even in small prob-
lems. This is easiest to see in SATELLITE, where each goal
(“having a picture”) corresponds to a large disjunction of
options (“take picture with camera A on satellite X”, “take
picture with camera B on satellite Y”, . . .): unless a pattern
contains all these options, there is always a short-cut in the
corresponding PDB (an option whose critical preconditions
have been abstracted away). LFPA can ameliorate these dif-
ficulties by combining options that are equivalent (cf. the
perfect abstraction heuristic for GRIPPER); but this is not
enough to scale much further than PDB heuristics.

We would overstate our results if we claimed that LFPA
is superior to a well-chosen PDB heuristic. But we can cer-
tainly observe that our approach is competitive – or more
than that – with the current state of the art for automatically
derived PDBs, and optimal sequential planning in general.

4It should be noted that, when the PDB approach fails, it is of-
ten due to the pattern selection technique taking too long. If we
extend the timeout to two hours, the PDB algorithm can solve four
additional instances in PIPESWORLD-NOTANKAGE and five addi-
tional instances in PIPESWORLD-TANKAGE, closely approaching
the number of tasks solved by LFPA in these domains.

Conclusion
Planning heuristics based on abstract transition graphs are a
powerful tool for optimal sequential planning. They share
the strengths of pattern database heuristics while alleviating
the combinatorial explosion problem that arises as the num-
ber of variables in a pattern increases.

In the context of this general framework, we described a
concrete strategy, LFPA, which generates abstractions of a
particular kind. We showed that the representational power
of the framework in general exceeds that of PDB heuris-
tics, and that an implementation of LFPA is very competitive
with the state of the art in sequentially optimal planning.

Significant improvements are still possible. In particular,
our current shrinking strategy only takes into account graph
distances, completely ignoring graph labels in the decision
of how to simplify an abstraction. Developing more elabo-
rate abstraction strategies thus remains an exciting topic for
future research.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Di-
rected model checking with distance-preserving abstrac-
tions. In Proc. SPIN-2006, 19–34.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001, 13–24.
Edelkamp, S. 2005. External symbolic heuristic search
with pattern databases. In Proc. ICAPS 2005, 51–60.
Edelkamp, S. 2006. Automated creation of pattern
database search heuristics. In Proc. MoChArt-2006, 121–
135.
Grandcolas, S., and Pain-Barre, C. 2007. Filtering, decom-
position and search space reduction for optimal sequential
planning. In Proc. AAAI 2007.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and
Koenig, S. 2007. Domain-independent construction of
pattern database heuristics for cost-optimal planning. In
Proc. AAAI 2007, 1007–1012.
Helmert, M. 2006a. The Fast Downward planning system.
JAIR 26:191–246.
Helmert, M. 2006b. Solving Planning Tasks in Theory and
Practice. Ph.D. Dissertation, Albert-Ludwigs-Universität
Freiburg.
Hoffmann, J.; Sabharwal, A.; and Domshlak, C. 2006.
Friends or foes? An AI planning perspective on abstraction
and search. In Proc. ICAPS 2006, 294–303.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. Satplan:
Planning as satisfiability. In IPC-5 planner abstracts.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint
programming. Artificial Intelligence 170(3):298–335.
Zhou, R., and Hansen, E. A. 2006. Breadth-first heuristic
search. Artificial Intelligence 170(4–5):385–408.

183

