
HAL Id: hal-00477904
https://hal.archives-ouvertes.fr/hal-00477904

Submitted on 30 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexible access control policy for SCOOP
Piotr Nienaltowski

To cite this version:
Piotr Nienaltowski. Flexible access control policy for SCOOP. Formal Aspects of Computing, Springer
Verlag, 2008, 21 (4), pp.347-362. 10.1007/s00165-008-0072-9. hal-00477904

https://hal.archives-ouvertes.fr/hal-00477904
https://hal.archives-ouvertes.fr

DOI 10.1007/s00165-008-0072-9
BCS © 2008
Formal Aspects of Computing (2009) 21: 347–362

Formal Aspects
of Computing

Flexible access control policy for SCOOP

Piotr Nienaltowski

Praxis High Integrity Systems Limited, 20 Manvers Street, Bath BA1 1PX, UK

E-mail: piotr.nienaltowski@praxis-his.com

Abstract. The SCOOP model extends Eiffel to support the construction of concurrent applications with little
more effort than sequential ones. The model provides strong safety guarantees: mutual exclusion and atomicity
at the routine level, and FIFO scheduling of clients’ calls. Unfortunately, in the original proposal of the model
(SCOOP 97) these guarantees come at a high price: they entail locking all the arguments of a feature call, even
if the corresponding objects are never used by the feature. In most cases, the amount of locking is higher than
necessary. Additionally, a client that holds a lock on a given processor cannot relinquish it temporarily when the
lock is needed by one of its suppliers. This increases the likelihood of deadlocks; additionally, some interesting
synchronisation scenarios, e.g. separate callbacks, cannot be implemented. We propose two refinements of the
access control policy for SCOOP: a type-based mechanism to specify which arguments of a routine call should
be locked, and a lock passing mechanism for safe handling of complex synchronisation scenarios with mutual
locking of several separate objects. When combined, these refinements increase the expressive power of the model,
give programmers more control over the computation, and enable more potential parallelism, thus reducing the
risk of deadlock.

Keywords: Concurrency; Object-oriented programming; Design by Contract; SCOOP; Attached types;
Locking; Callbacks

1. Introduction

The SCOOP model, initially proposed by Meyer [Mey97] and subsequently refined and implemented in [Nie07],
offers a disciplined approach to building high-quality concurrent systems. The idea of SCOOP is to take object-
oriented programming as given, in a simple and pure form based on the concepts of Design by Contract (DbC)
which have proved highly successful in improving the quality of sequential programs [Mey92], and extend them
in a minimal way to cover concurrency and distribution. Concurrency in SCOOP relies on the basic mechanism
of object-oriented computation: the feature call. Each object is handled by a processor—a conceptual thread of
control—referred to as the object’s handler. All features of a given object are executed by its handler, i.e. only one
processor is allowed to access the object. Several objects may have the same handler; the mapping between an
object and its handler does not change over time. If the client and the supplier objects have the same handler, the
feature call is synchronous; if they have different handlers, the call becomes asynchronous, i.e. the computation on
the client’s handler may move ahead without waiting. Objects handled by different processors are called separate;
objects handled by the same processor are non-separate. A processor, together with the object structure it handles,
forms a sequential system. Therefore, every concurrent system may be seen as a collection of interacting sequential
systems; conversely, a sequential system may be seen as a particular case of a concurrent system (with only one
processor).

Correspondence and offprint requests to: P. Nienaltowski, E-mail: piotr.nienaltowski@praxis-his.com

348 P. Nienaltowski

Fig. 1. Greedy locking

Since each object may be manipulated only by its handler, there is no object sharing between different threads of
execution (no shared memory). Given the sequential nature of processors, this results in the absence of intra-object
concurrency: there is never more than one action performed on a given object at a given time. Therefore, programs
are data-race-free by construction. Locking is used to eliminate atomicity violations, i.e. illegal interleaving of calls
from different clients. For a feature call to be valid, it must appear in a context where the client’s processor holds
a lock on the supplier’s processor. Locking is achieved through the refined mechanism of feature application: the
processor executing a routine blocks until the processors handling the objects represented by the actual arguments
have been locked (atomically) for its exclusive use; the routine serves as a critical section. Since a processor may be
locked by at most one other processor at any time, and all feature calls to objects handled by the same processor
are executed in a FIFO order, no harmful interleaving occurs.

The lock-based access control policy provides strong safety guarantees but the price to pay is relatively high:
all arguments of a feature call have to be locked, even if they are never used by the feature as targets of calls.
Such unnecessary locking limits parallelism and increases the likelihood of deadlocks. Furthermore, a client
holding a lock cannot relinquish it temporarily when the lock is needed by one of its suppliers. As a result, certain
interesting concurrency scenarios require convoluted implementation patterns; other scenarios, e.g. separate
callbacks, cannot be implemented at all. We propose two ways of relaxing the strict locking policy to solve the
above problems: (1) a type-based mechanism to specify which arguments of a routine call should be locked, and
(2) a lock passing mechanism, related to that introduced in [BPJ07], for safe handling of mutual locking between
several separate objects.

The rest of the article is organised as follows. Section 2 analyses the access control policy of SCOOP and
introduces the mechanism for selective locking. (The problems of precondition weakening and precursor calls
discussed there are not concurrency-specific; their analysis and the proposed solutions may be regarded as contri-
butions to DbC in general.) Sect. 3 introduces the lock-passing mechanism; Sect. 4 discusses its importance for
proofs of software correctness. Section 5 presents related work. Finally, Sect. 6 concludes and points out future
research directions.

In the rest of this article, we refer to the original model proposed in [Mey97] as SCOOP 97, and to the refined
model presented in [Nie07] simply as SCOOP.

2. Eliminating unnecessary locks

The access control policy of SCOOP 97 requires all formal arguments of a feature to be reserved before the feature
is applied, as expressed by the Feature Application Rule (Definition 1). The processor applying the feature to a
target object blocks until all the processors handling the actual arguments have been reserved.

Definition 1 (Feature application rule) Before a feature is applied, its formal arguments must be reserved by the
supplier’s handler, and its precondition must hold.

But this rule is too restrictive, as illustrated in Fig. 1. The handlers of x, y, and z must be locked on behalf of
the executing processor before the body of r is executed (some precondition must also hold before executing

Flexible access control policy for SCOOP 349

r but for the moment we will ignore this requirement; we will come back to it in Sect. 2.2). Is it really necessary
to lock all the arguments? The body of r contains two calls on x, therefore x needs to be locked. There is no
way around it: we must ensure that no other processor is currently using x. On the other hand, y only appears
as source of an assignment; no calls on y are made. Similarly, z only appears as source of an assignment and as
actual argument of a feature call. It seems that only the processor that handles x needs to be locked; locking y
and z is not necessary because the body of r does not perform any calls on them.

The greedy locking policy has several drawbacks. Most importantly, it increases the danger of deadlocks: the
more resources a routine requires, the more likely it is to end up in a deadlock. It also reduces opportunities for
parallelism and makes it impossible to pass references around without locking the corresponding objects; as a
result, programmers have insufficient control over the locks.

2.1. Relaxed locking policy based on attached types

Our solution to the above problems relies on the use of attached types recently introduced in Eiffel1 [ECM05,
ISO06]. Every type is declared either as “attached” or as “detachable”: an attached type guarantees that the
corresponding values are never void. The default case is attached, e.g. x: X means “x is of type attached X”;
detachable types accept Void as legal value. Detachable types are marked with ‘?’, e.g. y: ?Y means “y is of type
detachable Y”. A qualified call x.f (a) is valid only if the type of x is attached. The type rules of SCOOP cater
for attached types and allow an attachment (assignment or argument passing) from the attached version of a type
to the detachable version but not the other way round (unless a dynamic check of non-voidness is performed); see
[Nie07, Chapter 6]. Attached types can be used to specify which arguments of a routine should be locked. We only
require that processors handling the objects represented by attached formal arguments of a routine be locked;
those handling detachable formal arguments are not locked. This new semantics of attached and detachable types
is not a mere “hack” to optimise locking. It follows the intuitive understanding of call validity in SCOOP: a client
is allowed to perform a feature call if and only if the target is non-void and the client has exclusive access to the
target’s processor, as expressed by the Call Validity Rule [Nie07, Definition 6.5.3].

The refined Feature Application Rule below captures precisely the necessary and sufficient conditions for a
safe application of features.

Definition 2 (Feature application rule (refined)) Before a feature is applied, its attached formal arguments must be
reserved by the supplier, and its precondition must hold.

This rule, combined with the Call Validity Rule, ensures atomicity: a routine r represents a critical section
with respect to all the processors that handle its attached formal arguments. All the calls on targets handled
by those processors within the body of r are guaranteed to be handled atomically; calls nested in the bodies
of the routines called in r, however, are not guaranteed to be atomic, unless their target is controlled in r; see
Definition 6. Therefore, the notion of atomicity used here is slightly weaker than the common understanding
of the term. (Atomicity is usually understood as the complete absence of interference from other concurrently
executing processors.)

Let us rewrite the example from Fig. 1 to make use of the new mechanism. Figure 2 shows an optimised
version of the routine r. Following Definition 2, the handler of x is locked before r is executed because x is an
attached formal argument; the handlers of y and z are not locked because y and z are detachable.

The new rule for feature application gives programmers an increased control over locking: it allows a precise
specification of resources needed by a routine, and it enables the implementation of interesting scenarios that used
to be impossible (or very difficult) to implement. It is now possible to pass around a reference without locking
the corresponding object.

One can observe the increased potential for parallelism in the above example: since the handlers of y and z
are not locked, other clients may use them while r is being executed. There is no harmful interference between
these clients and the processor executing r because the latter never performs any calls on y or z. Therefore, the
increased amount of parallelism does not compromise safety guarantees.

The relaxed locking policy turns out to solve yet another problem of SCOOP 97: the unclear semantics of
void actual arguments passed to a routine expecting separate formals. Should such arguments be locked? If yes,
how? A void argument represents no object, therefore there is no handler to be locked. So maybe they should be

1 Spec♯ has a similar type mechanism: non-nullable types [FL03].

350 P. Nienaltowski

Fig. 2. Selective locking

seen as erroneous? But sometimes it is necessary to pass Void as argument! With the new semantics of attached
types, the problem disappears: only detachable arguments can be void but they are not locked anyway.

2.2. Support for inheritance and polymorphism

To be usable in practice, the refined locking mechanism must be compatible with inheritance, polymorphism, and
dynamic binding. Clients must not be deceived in the presence of polymorphic calls, i.e. the safety guarantees
should be preserved even if a redefined version of a feature is applied instead of the original version assumed by
the client. In Eiffel, covariant redefinition of argument types is allowed, provided that the redefined arguments
are declared as detachable. The rule for result types is less strict: the redefined type has to conform to the original
one but does not need to be marked as detachable [ECM05, Rule 8.14.4 /VNCS/].

Indeed, redefinition of a result type from detachable to attached does not cause any problems: if a client
assumes the result to be detachable, providing an attached result simply gives a stronger guarantee. Similarly,
redefinition of a formal argument from attached to detachable is safe. The client has to use an attached actual
argument as required by the original signature; the redefined feature may choose to expect less and only require a
detachable argument. The argument is not locked—although the signature of the original feature suggests it—but
this causes no harm for the client. On the contrary: the amount of locking is reduced, so the client needs to wait
less than with the original feature. (Strictly speaking, the amount of locking is not higher than in the original
feature.)

Definition 3 (Feature redefinition rule (tentative)) The return type of a feature may be redefined in a descendant
from detachable to attached. The type of a formal argument may be redefined from attached to detachable.

The routine r in Fig. 2 is a valid redefinition of the original routine from Fig. 1 because the original version
takes two arguments of type separate Y and separate Z whereas the redefined version takes arguments of type
?separate Y and ?separate Y respectively; this is consistent with Definition 3.

The above rule seems to capture the necessary requirements for safe redefinition of features. There are, however,
two outstanding problems:

• The use of Precursor calls: calls to the inherited version of a feature are not always valid in the redefined
body.

• The inherited precondition and postcondition clauses that involve calls on the redefined arguments may
become invalid.

Consider the feature r in Fig. 3 to be a redefined version of r from Fig. 1. The redefined version lists the
precondition new precondition. This weakens the requirements put on clients: the precondition is
understood as some precondition or else new precondition. The body of r follows a simple pattern: if
new precondition holds, some particular actions are taken; otherwise, the original version is called through
Precursor (x, y, z). But the precursor call is rejected by the compiler because the types of actual arguments y
and z (?separate Y and ?separate Z) do not conform to the types of the corresponding formals (separate Y
and separate Z respectively) in the original feature. To perform a call to Precursor, explicit downcasts (object

Flexible access control policy for SCOOP 351

Fig. 3. Problem with Precursor calls

Fig. 4. Correct use of Precursor

tests) should be applied to y and z, as illustrated in Fig. 4 (see [Nie07, Chapter 6] for a detailed discussion of the
object test mechanism in SCOOP).

While the problem of invalid precursor calls is easy to detect (it amounts to a simple type-check) and to
deal with, the problem of contract inheritance is trickier. Consider again the programming pattern used in
Fig. 3. The else branch is taken if some precondition holds (because we know that new precondition
is false and some precondition or else new precondition holds); but this assumption is only valid if
some preconditiondoes not involve calls onyor z. What happens if such calls do appear insome precondition?
For example, take some precondition to be x.is empty and y.is empty. What is the meaning of y.is empty
in the context where y becomes detachable? The call y.is empty is valid only if the type of y is attached, which
obviously is not the case in the redefined version of r. Nevertheless, in the context of the original routine where
y was attached, it was a valid call. It seems that, due to the redefinition of formal arguments from attached to
detachable, it is possible to invalidate inherited assertions that involve calls on redefined arguments. There are
two alternative ways to prevent it:

1. Assume that all inherited assertions involving calls on detachable formal arguments hold vacuously. For
example, if y is detachable, x.is empty and y.is empty simply reduces to True.

2. Prohibit the redefinition of formal arguments appearing as targets of feature calls in preconditions or post-
conditions.

The first solution is compatible with the DbC rule for preconditions: inherited preconditions may be weakened.
Unfortunately, it is unsound since it generally weakens the postcondition (even if one requires the new postcon-
dition to imply the original one only for pre-states that satisfy the old precondition [PHM99, Par05]). The second
solution does not suffer from that drawback. However, it forces programmers to preserve the attached type of
a formal argument even if the redefined version of the routine does not rely on any properties of that argument
anymore. It might have no importance in the sequential context but in a concurrent context, where detachability
implies less locking, such a restriction is burdensome. Essentially, once a formal argument has been used in a
precondition or a postcondition, it cannot be redefined from attached to detachable in descendants; there is no
possibility to reduce the locking requirements of the routine.

In practice, we may expect that an attached separate formal argument involved in a postcondition will never
be redefined into a detachable one, simply because all redefined versions of a routine have to satisfy at least the

352 P. Nienaltowski

original postcondition: there is no way to satisfy that postcondition without the guarantee that no other clients
change the state of the object represented by the formal argument. Such a guarantee may only be obtained by
locking the argument for the duration of the call, which requires the argument to be declared as attached. On the
other hand, a routine that does not lock the given formal argument and needs no assumptions about its state may
simply ignore the precondition clauses concerning that argument, i.e. assume them to be trivially true. Therefore,
the two solutions presented above can be combined to yield the refined Feature Redefinition Rule below.

Definition 4 (Feature redefinition rule (refined)) The return type of a feature may be redefined from detachable to
attached. The type of a formal argument may be redefined from attached to detachable, provided that no calls
on that argument appear in the inherited postcondition.

The Inherited Precondition Rule (Definition 5) clarifies the meaning of inherited precondition clauses.

Definition 5 (Inherited precondition rule) Inherited precondition clauses involving calls on a detachable formal
argument hold vacuously.

This rule puts a higher burden on the redefined version of a routine: if the inherited precondition involves calls
on an argument that has been redefined into detachable, the new routine body can make weaker assumptions but
must give the same (or stronger) guarantees.

2.3. Discussion

Besides the solution presented here, we considered two alternative ways of specifying which formal arguments
should be locked. The first option is a compiler optimisation based on the Business Card Principle of SCOOP 97
[Mey97]: if the body of r does not perform any calls on x, then the processor handling x does not need to be
locked before r is executed. This is decided by the compiler; programmers need no additional type annotations.
Unfortunately, this solution is not acceptable for at least three reasons:

• Programmers have no control over locking: the locking behaviour depends on the actual version of the routine
chosen at run time.

• Without looking at the implementation of the feature, a client cannot see whether a formal argument is locked
or not; the interface is not precise enough to infer all the necessary information. This violates the principle of
information hiding.

• The client might be deceived because a redefined version of the feature may lock an argument that the original
version does not lock.

The second alternative relies on the extensive use of preconditions. To lock the processor handling a formal
argument x, an assertion of the form is reserved (x) or—in a more object-oriented style—x.is reserved,
must appear in the precondition clause of the enclosing routine.

r (x: separate X; y: separate Y; z: separate Z)
require

is reserved (x)

Such assertions force the processor executing r to block until the corresponding formal arguments are reserved
on behalf of that processor. This solution is compatible with polymorphism and dynamic binding: removing
is reserved (x) from the redefined precondition eliminates the lock requirement on x. Nevertheless, the
“locking” part of the redefined precondition should shadow the original one rather than being or-ed with it;
this obfuscates the resulting precondition. Also, this solution is too verbose; it is much easier to read and write
crisp code like

s (x, y, z: separate X; a: ?separate A)
do

...
end

than clumsy code like

Flexible access control policy for SCOOP 353

Fig. 5. Deadlock caused by cross-client locking

s (x, y, z: separate X; a: separate A)
require

is reserved (x)
is reserved (y)
is reserved (z)

do
...

end

In summary, attached types provide a sound solution which also integrates best with other object-oriented
mechanisms and is easy to grasp and apply in practice.

3. Lock passing

The next refinement of the access control policy is to make it possible for clients to relinquish their locks tem-
porarily and pass them to a supplier. The mechanism presented here relies on the selective locking introduced in
Sect. 2: clients use attached and detachable types to decide whether lock passing should take place. The proposed
mechanism allows the implementation of interesting synchronisation scenarios, e.g. separate callbacks, without
compromising the atomicity guarantees. We generalise the semantics of argument passing in a way that accom-
modates the lock passing mechanism and ensures the soundness of the proof technique for SCOOP programs
developed in [Nie07, NMO08].

3.1. Need for lock passing

In SCOOP 97, a routine holds exclusive locks on its separate suppliers (which have to be formal arguments of
the routine) during the execution of its body. This policy ensures that, between two consecutive calls issued by
a client, no other client can jump in and modify the state of the supplier object. Such a guarantee is convenient
for reasoning about concurrent software but it may limit unnecessarily the expressiveness of the model and
increase the likelihood of deadlocks. Figure 5 illustrates a typical problem caused by cross-client locking. The
calls x.f, x.g, and y.f are asynchronous because f and g are commands so the client does not wait for their
completion. Following the Wait by Necessity principle [Car93], the client only waits for the result of the query
call x.some query. Unfortunately, this causes a deadlock because x’s handler is not able to evaluate some query
before finishing all the previously requested calls on x; one of these calls, x.g (y), needs a lock on y’s handler,
currently held by the client. But the client cannot unlock y before finishing r’s body. So, the client is waiting for
x’s handler and vice-versa; none of them will ever make any progress. (This anomaly was first identified by Phil
Brooke and later addressed in a semantic study of SCOOP 97 [BPJ07] using a different lock-passing approach;
see Sect. 5 for a comparison.)

In fact, getting into a deadlock situation is even simpler; no cross-client locking is necessary. It suffices to pass
Current as actual argument of a separate query call, as illustrated in Fig. 6. Since feature h called on x needs to
lock the processor that handles Current, it will block until that processor can be reserved. But it will never be
the case because the client is waiting for the completion of h; hence the client’s handler is not idle and cannot be
reserved. Again, we have a deadlock; this time, it is caused by a callback (or rather a “lock-back”) of x’s handler
on Current’s handler. The body of h does not even need to perform any real callback to cause a deadlock!

354 P. Nienaltowski

Fig. 6. Deadlock caused by a callback

Meyer [Mey97] suggests solving the callback problem by applying the Business Card Principle, discussed
earlier, which stipulates that clients may only pass a reference to Current to features that do not lock the
corresponding formal argument, i.e. whose body does not contain any calls on that argument. Unfortunately, the
principle actually prohibits separate callbacks rather than accommodating them.

3.2. Mechanism

In the two examples above, a deadlock occurs at the moment when the client waits for one of its suppliers. Since
the client is waiting, it does not perform any operations. Therefore, it makes no use of the locks it holds. If the
client could temporarily pass the lock on y (in Fig. 5) respectively on Current (in Fig. 6) to its supplier x, the
supplier would be able to execute the requested feature, return the result, and let the client continue, thus avoiding
the deadlock. This basic idea is simple but, besides solving the problem of cross-client locking and separate
callbacks, the lock passing mechanism has to satisfy additional requirements:

• It must not compromise the atomicity guarantees.
Sound reasoning about feature calls is only possible if other clients do not interfere, i.e. the accesses to a given
object are atomic. This immediately rules out a solution whereby a client passes a lock on an object to a
supplier and then continues its own execution: it would be impossible to decide statically how the client’s and
the supplier’s calls on the locked object are ordered. As a result, neither the client nor the supplier would be
able to ensure the correctness of their calls. Additionally, assertions involving calls on the concerned object
would not be usable.

• Clients must be able to decide whether to pass or not to pass a lock.
It must be clear from the program text whether lock passing occurs. The mechanism should be controlled by
clients, i.e. they should have the choice to pass or not to pass a lock to a supplier that needs it. Letting a supplier
snatch a lock without asking for the client’s permission is unacceptable; it complicates the reasoning about
programs and it may lead to an arbitrary interleaving of accesses to the locked object, thus compromising
atomicity.

• The mechanism should increase the expressiveness of the language, not restrict it.
Lock passing should enable the implementation of additional interesting synchronisation scenarios not sup-
ported in the basic model. On the other hand, all scenarios implementable in the basic model should be
expressible in the extended framework as well.

• The solution must be simple and well integrated with other language mechanisms.
The solution must be sound in the presence of polymorphism and dynamic binding; it has to be compatible
with the rules of DbC as well.

We propose the following solution: if a feature call x.f(a1, ..., an) occurs in the context of the routine r
where some actual argument ai is controlled, i.e. ai is attached and locked by r (see Definition 6 below), and
the corresponding formal argument of f is declared as attached, the client’s handler (the processor executing r)
passes all currently held locks (including the implicit lock on itself) to the handler of x, and waits until f has
terminated. When the execution of f has completed, the client’s handler gets back the locks and resumes its own
computation.

Definition 6 (Controlled expression) An expression exp is controlled if and only if exp is attached, i.e. statically
known to be non-void, and either (a) exp is non-separate, or (b) exp is handled by the same processor as some
formal argument of the routine r in which exp appears.

Let’s see how our mechanism solves the problems of cross-client locking and separate callbacks. Feature r in
Fig. 7 is identical with feature r from Fig. 5 but, thanks to lock passing, it does not deadlock: the call x.g (y) is

Flexible access control policy for SCOOP 355

Fig. 7. Cross-client locking without deadlock

Fig. 8. Callback without deadlock

executed synchronously, with the client passing all its locks to x for the duration of g. No deadlock occurs when
the client evaluates x.some query because the handler of x is not blocked anymore; the execution of x.g (y)
has terminated so x.some query can be applied. Similarly, the routine s in Fig. 8 does not deadlock anymore
because x.h (Current) results in the lock passing which lets x’s handler obtain a lock on Current without
waiting. (In this particular case, the client and the actual argument are both handled by the same processor; every
processor, when non-idle, implicitly holds a lock on itself.)

That last example raises an interesting issue: if the body of h indeed performs a callback, i.e. a call on a target
handled by the processor that has passed its locks, how should such a call be treated? Consider the call c.f (...)
in Fig. 8; does it have the usual asynchronous semantics whereby a request to execute f is queued on c’s handler?
If yes, then the problem of deadlock is not really solved but just postponed. To avoid this, c.f (...) should
be performed synchronously, i.e. scheduled for an immediate execution, so that c’s handler — the one that has
initially passed its locks and is now waiting for the termination of x.h (Current) — has a chance to execute
it. Therefore, the call is separate but synchronous; this may seem a bit disturbing. A closer inspection, however,
reveals the underlying reason for applying this semantics: the target is handled by a processor that holds a lock
on the current processor. This is just like for non-separate calls, where the target’s handler — which happens to be
the current processor itself—holds a lock on the current processor. Therefore, we can generalise the applicability
of the synchronous call semantics to all the calls whose target’s handler holds a lock on the current processor.
(All such calls may be viewed as separate callbacks.) Note that this rule permits nested (or even recursive) lock

356 P. Nienaltowski

passing, i.e. the body of h could involve calls resulting in lock passing whereby the locks obtained at the previous
step are passed further; those features could involve calls with lock passing, and so on. No limit on the depth of
lock passing is imposed; the atomicity guarantees are preserved because the client always blocks. For instance, the
call c.r (Current) in the body of h causes locks to be passed from the handler of x to the handler of c (which
happens to have passed its locks in the previous step) and then may be passed again in the opposite direction as
a result of some call on x in the body of r. When that innermost callback terminates, the locks passed at that
level are revoked from the handler of x, permitting the call c.r (Current) to return, which involves revoking
the locks from the handler of c; in consequence, the body of h and the call x.h (Current) terminate, which
results in the revocation of the locks passed originally to the handler of x.

Two more points need to be clarified. Firstly, whenever the lock passing occurs, the client passes all its locks to
the supplier, not only the locks corresponding to the particular arguments that triggered the mechanism. Such a
generous behaviour of clients eliminates more potential deadlocks than passing just the specific locks. The client
does not use any locks anyway while it is blocked so it does not hurt to pass locks “just in case”. On the contrary,
the supplier might make use of these additional locks in the body of the requested routine that perhaps would
deadlock otherwise. Secondly, the same processor may appear several times in a chain of lock passing, e.g. if Px

passes its locks to Py which then passes its locks to Pz which then passes its locks to Px , then Px holds all the
locks it originally held plus any additional locks acquired underway by Py and Pz . Naturally, passing the locks
back occurs in the reverse order: Px to Pz to Py to Px .

Definition 7 captures the new semantics of the feature call mechanism, reflecting the refined meaning of
argument passing and the additional synchrony requirement; it refines the feature call semantics proposed in
[Nie07, Section 6.1].

Definition 7 (Feature call semantics (refined)) A feature call x.f (a) results in the following sequence of actions
performed by the client’s handler Pc :

1. Argument passing: bind the formal arguments of f to the corresponding actual arguments a. If any attached
formal argument corresponds to a controlled actual argument of a reference type, pass all the currently held
locks (including a lock on Pc) to the supplier’s handler Px .

2. Feature request: ask Px to apply f to x.

(a) Schedulef for an immediate execution by Px and wait until it terminates, if any of the following conditions
holds:

• The call is non-separate, i.e. Pc � Px .

• The call is a separate callback, i.e. Px has previously passed its locks (directly or indirectly) to Pc . (In
other words: Px precedes Pc in a chain of lock passing.)

(b) Otherwise, schedule f to execute after the previous calls on Px .

3. Wait by necessity: if f is a query, wait for its result.

4. Lock revocation: if lock passing occurred in step 1, wait for f to terminate and then revoke the locks from
Px .

3.3. Lock passing in practice

Figure 9 recapitulates the possible type combinations of formal and actual arguments, and the resulting semantics
of argument passing (yes stands for “lock passing takes place”, no stands for “no lock passing”). The example in
Fig. 10 illustrates the possible combinations of separate and non-separate calls with and without wait by necessity
and lock passing. The current object (an instance of C) is handled by the processor Pc , and x, y, my c, and my z
are handled by (different) processors Px , Py , Pmy c , and Pmy z respectively. The calls appearing in the body of
r have the following semantics:

• (Command call my x.f (5)) The call is non-separate because my x is handled by Pc ; the current execution
state is saved on Pc ’s call stack, and my x.f (5) is executed synchronously. No lock passing occurs because
the actual argument is expanded. (Expanded arguments, e.g. integers, are passed by copy and are always
non-separate from the supplier; therefore, they do not require locking.)

Flexible access control policy for SCOOP 357

Fig. 9. Lock passing combinations

Fig. 10. Lock passing example

• (Command call my x.g (x)) Similar to the previous call but lock passing occurs because x is of a reference
type. However, it is vacuous because both the client and the supplier objects are handled by Pc .

• (Query call my x.h (Current)) Similar to the previous call but wait by necessity applies. Lock passing occurs
but is vacuous.

• (Command call x.f (10)) The call is separate because Pc �� Px . No lock passing occurs because the actual
argument is expanded.

• (Command call x.g (my z)) Similar to the previous call. No lock passing occurs because the actual argument
my z is not controlled.

• (Command call x.g (y)) Similar to the previous call but lock passing occurs because the actual argument y
is controlled and the corresponding formal argument is attached. Pc cannot move to the next operation until
Px has serviced all the previous calls in its request queue and terminated the application of x.g (y).

• (Command call x.m (y)) No lock passing occurs because the formal argument a is detachable.

• (Query call x.h (my c)) Wait by necessity applies. No lock passing occurs because the actual argument my c
is not controlled.

• (Query call x.h (Current)) Similar to the previous call but lock passing occurs because the actual argument
Current is controlled.

That last call is particularly interesting because it involves a separate callback: during the application of x.h
(Current), Px performs the call c.f (...) where c is the actual argument of the call x.h (Current). The

358 P. Nienaltowski

Fig. 11. Emulating SCOOP 97 semantics

target of the call c.f (...) is handled by Pc , and Pc precedes Px in the chain of lock-passing (it has just passed
its locks to Px). Therefore, the call is handled as a separate callback (according to step 2a in Definition 7), i.e. Pc

immediately executes the feature requested by Px ; the latter waits until the feature has terminated. It is important
to observe that the request queue of Pc is not involved in handling this request; the feature is handled using
the call stack, just like a non-separate call. That is why Pc ’s queue remains empty throughout the execution of
x.h (Current). (For a detailed discussion on how lock passing is implemented in practice, see [Nie07, Section
11.2.5].)

The lock passing mechanism influences the semantics of feature calls so that certain calls, e.g. x.g (y) in
Fig. 10, have a different meaning in SCOOP than in SCOOP 97. Nevertheless, it is possible to emulate the original
semantics—at a cost of a few additional lines of code—as illustrated in Fig. 11. The original feature g from Fig. 10
has been replaced by a pair of features: g and blocking g. The formal argument of g is now detachable, so the
call x.g (y) does not involve lock passing, even though the actual argument y is controlled. The call to the
auxiliary feature blocking g will later lock y but it does not influence the semantics of x.g (y) as seen by the
client; the call x.g (y) is non-blocking, just as it would be in SCOOP 97. An object test is used in the body of
g for downcasting a detachable type to an attached type.

3.4. Discussion

The proposed mechanism fulfils all the requirements discussed at the beginning of this section. First, it does not
compromise the atomicity because locks are passed to the supplier’s handler only for the duration of a single
feature f; since the client is blocked in the meantime, there is no danger of harmful interleaving with other clients.
Of course, the supplier is free to perform any sequence of calls on the locked objects but the client knows that
all these calls will be executed before its own subsequent calls; additionally, the postcondition of f stipulates
what the supplier may or may not do with these objects. Second, it is clear from the program text whether the
lock passing occurs: the controllability of actual arguments is immediately deducible from their type; the type of
the formal arguments of f is known from f’s signature. Therefore, a client can decide to pass or not to pass its
locks simply by using controlled or uncontrolled actual arguments; alternatively, it may use a feature that takes
detachable formals. Note the absence of lock passing for actual arguments of an expanded type (even though

Flexible access control policy for SCOOP 359

they are always controlled). This reflects the copy semantics of such arguments: the corresponding formals are
bound to copies of actuals. Since these copies are non-separate from the supplier, no lock passing is necessary to
give the supplier the control over them.

Lock passing increases the expressiveness of the programming framework: several scenarios not supported
by SCOOP 97 — including the cross-client locking and separate callbacks illustrated in Figs. 7 and 8—are now
implementable. Section 3.3 demonstrates that the locking policy of SCOOP 97 can be simply emulated in SCOOP;
therefore, the backward compatibility is preserved and the mechanism does not limit the expressive power of our
framework.

4. Impact of lock passing on formal reasoning

The proof technique for SCOOP programs introduced in [Nie07, NMO08] supports sequential-like reasoning
about concurrent code involving asynchronous calls. Essentially, the proof technique follows the traditional
approach to reasoning about feature calls whereby suppliers assume the precondition on entry to the routine
body and must establish the postcondition on exit, whereas clients must establish the precondition before the call
and may assume the postcondition after the call. However, only controlled precondition and postcondition clauses,
i.e. assertions that only involve calls on targets controlled by the client (following Definition 6), are considered.
The proof technique assumes the lock passing mechanism proposed here: indeed, reasoning would be unsound
without it. Consider the proof sketch in Fig. 12. The call x.transfer to (y) is processed synchronously because
y is controlled, so the lock passing occurs. Any calls on y within the body of transfer to are guaranteed to
execute before the subsequent call to y.empty issued by the client. Therefore, the postcondition of transfer to
may be assumed before the call y.empty; this is necessary to prove the correctness of that call and the whole
routine s. Without the lock passing mechanism, the call y.empty could be processed before the calls issued by the
body of transfer to; the assumption y.is full would be false and the call y.empty invalid. In fact, following
SCOOP 97 rules, x would be able to execute transfer to only after the client terminated s and unlocked y;
therefore, y.is full would eventually become true, which contradicts the promise made by s: its postcondition
says that y is empty!

5. Related work

This article extends our previous work on the access control policy for SCOOP [Nie06a] which discussed the use
of detachable types but did not cover the problems related to inheritance and polymorphism; lock passing was
only described shortly, without considering the complex scenarios discussed here. A basic mechanism for shared
locking, based on a refined notion of a pure query and a new semantics for the only clauses (used in the sequential
Eiffel to express the frame properties of features), was presented in [Nie06b]. The mechanism proved unsound
in the presence of polymorphism, therefore we do not consider it here. We are currently refining it to support
inheritance and polymorphism.

Meyer [Mey05] discusses the attached type mechanism, in particular its use for eliminating catcalls. He also
describes the possible application of attached types to concurrency. The problem of contract redefinition in a
concurrent context is not addressed but the article prompted us to have a closer look at the contract inheritance
mechanism. Meyer’s rule for argument redefinition requires a covariantly redefined type of a formal argument
to be marked as detachable [ECM05, Rule 8.14.4 /VNCS/]. Inherited assertions involving calls on detachable
arguments are evaluated using an implicit object test. For example, for attached x and detachable y, the expression

x.is empty and y.is empty

is understood as

x.is empty and ({aux y: Y}y implies aux y.is empty)

hence x.is empty if y is void. Besides being complicated, this solution is inconsistent with DbC: as demonstrated
in Sect. 2.2, it may lead to postcondition weakening. Our Rules 4 and 5 solve this problem: they may be combined
with the Eiffel rule to ensure the consistency with DbC and to simplify the treatment of inherited contracts.
Although initially developed to address a concurrency issue, our technique proves useful in a sequential context
as well.

360 P. Nienaltowski

Fig. 12. Sequential-like reasoning about concurrent code using lock passing

Brooke et al. [BPJ07] discuss lock passing as part of their CSP semantics for SCOOP. There are a number of
differences with respect to our model. First of all, locks are held by calls rather than processors, and passed from
one call to another, e.g. if a calls(x)occurs in the body of r, and rholds a lock onx, then this lock is passed tos (see
Fig. 13). The separateness of a call’s target is irrelevant to lock passing: separate and non-separate calls are treated
alike. This simplifies the CSP semantics considerably but makes the model less practical: the authors demonstrate
that, depending on the overall system configuration, a chain of non-separate calls may lead to deadlock if indirect
lock passing is disallowed; the problem may occur even with unqualified calls, i.e. calls whose target is Current.
(In our model, non-separate calls cannot cause such problems because the client and the supplier are handled
by the same processor, so the supplier has the same set of locks as the client; this behaviour is similar to the
indirect lock passing variant in [BPJ07].) Also, only simple callback scenarios are supported; recursive callbacks
may result in deadlocks when combined with synchronous calls. (Our model permits recursive callbacks without
deadlocking by passing all locks and making these calls synchronous.) Finally, since locks protect single objects
rather than whole processors, it is possible for a call to block waiting for a lock on an object even though the
enclosing call already holds a lock on another object that is non-separate from the former. Figure 13 gives an
example: s(y) may block although it occurs in the body of r already holding a lock on x which is non-separate
from y.

Flexible access control policy for SCOOP 361

Fig. 13. Alternative lock passing model [BPJ07]

The solution proposed in [BPJ07] has an advantage: the potential for parallelism is increased because clients
do not necessarily wait for termination of calls involving lock passing. This means, however, that assertional
reasoning about concurrent code becomes impractical, for reasons outlined in Sect. 4.

6. Conclusions

We have presented two refinements of the access control policy for SCOOP. The selective locking mechanism, based
on the new semantics of attached and detachable types, supports precise specification of locking requirements of
routines, thus eliminating unnecessary synchronisation often exhibited in SCOOP 97 programs. The lock passing
mechanism permits passing locks from clients to suppliers for the duration of a single call. Both mechanisms
greatly improve the flexibility of the model by exploiting the potential parallelism and reducing the danger of
deadlocks, while preserving strong atomicity guarantees offered by SCOOP. The proposed solution allows the
implementation of many synchronisation scenarios that were difficult (or impossible) to express in the original
model; at the same time, all scenarios implementable in the original model can also be expressed in the extended
framework. Both mechanisms support polymorphism and dynamic binding; they are compatible with the general
rules of DbC, and underpin the novel proof technique for concurrent programs described in [NMO08].

We have implemented the flexible access control policy in the scoop2scoopli compiler and the supporting
SCOOPLI library [Nie07]. These tools are now integrated with the EiffelStudio IDE and available for download
at http://se.ethz.ch/research/scoop.html. A soundness proof of the proposed mechanisms is part of the ongoing
work on the formal framework for SCOOP.

Acknowledgements

Bertrand Meyer contributed largely to the development of the attached type mechanism and suggested its possible
application in the context of SCOOP. Bernd Schoeller pointed out the problem of precursor calls in redefined
features with modified types of formal arguments. We are grateful to Phil Brooke, Richard Paige, Jonathan
Ostroff, and Hai Feng Huang for their extensive feedback on the proposed mechanisms. This research work was
conducted as part of the author’s PhD studies at the ETH Zurich, with the support of the Hasler Foundation,
Berne.

References

[BPJ07] Brooke PJ, Paige RF, Jacob JL (2007) A CSP model of Eiffel’s SCOOP. Formal Aspects Comput 19(4):487–512
[Car93] Caromel D (1993) Towards a method of object-oriented concurrent programming. Commun ACM 36(9):90–102
[ECM05] ECMA (2005) ECMA-367: Eiffel analysis, design and programming language. European Association for Standardizing

Information and Communication Systems, June 2005
[FL03] Fähndrich M, Leino KRM (2003) Declaring and checking non-null types in an object-oriented language. In: Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), pp 302–312
[ISO06] ISO (2006) ISO/IEC DIS 25436: Eiffel analysis, design and programming language. In: International Organization for

Standardization, June 2006

http://se.ethz.ch/research/scoop.html

362 P. Nienaltowski

[Mey92] Meyer B (1992) Applying Design by Contract. IEEE Comput 25(10):40–51
[Mey97] Meyer B (1997) Object-oriented software construction, 2nd edn. Prentice Hall, New Jersey
[Mey05] Meyer B (2005) Attached types and their application to three open problems of object-oriented programming. In: European

Conference on Object-Oriented Programming (ECOOP), pp 1–32, July 2005
[Nie06a] Nienaltowski P (2006) Flexible locking in SCOOP. In: International symposium on Concurrency, Real-Time, and Distribution

in Eiffel-like Languages (CORDIE), pp 71–90, York, UK, July 2006
[Nie06b] Nienaltowski P (2006) Refined access control policy for SCOOP. Technical report 511. Computer Science Department, ETH

Zurich, February 2006
[Nie07] Nienaltowski P (2007) Practical framework for contract-based concurrent object-oriented programming. Ph.D Thesis, no.

17061. Department of Computer Science, ETH Zurich (2007)
[NMO08] Nienaltowski P, Meyer B, Ostroff JS (2008) Contracts for concurrency. Formal Aspects Comput (to appear)
[Par05] Parkinson MJ (2005) Local reasoning for Java. Ph.D Thesis, Computer Laboratory, University of Cambridge, UK
[PHM99] Poetzsch-Heffter A, Müller P (1999) A programming logic for sequential Java. LNCS, vol 1576, pp 162–176

Received 12 March 2007

Accepted in revised form 1 January 2008 by P. J. Brooke, R. F. Paige and Dong Jin Song

Published online 14 February 2008

	1 Introduction
	2 Eliminating unnecessary locks
	2.1 Relaxed locking policy based on attached types
	2.2 Support for inheritance and polymorphism
	2.3 Discussion

	3 Lock passing
	3.1 Need for lock passing
	3.2 Mechanism
	3.3 Lock passing in practice
	3.4 Discussion

	4 Impact of lock passing on formal reasoning
	5 Related work
	6 Conclusions
	References

