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Abstract

Gaussian process (GP) models are widely used to perform Bayesian nonlinear re-

gression and classification — tasks that are central to many machine learning prob-

lems. A GP is nonparametric, meaning that the complexity of the model grows as

more data points are received. Another attractive feature is the behaviour of the

error bars. They naturally grow in regions away from training data where we have

high uncertainty about the interpolating function.

In their standard form GPs have several limitations, which can be divided into

two broad categories: computational difficulties for large data sets, and restrictive

modelling assumptions for complex data sets. This thesis addresses various aspects

of both of these problems.

The training cost for a GP has O(N3) complexity, whereN is the number of training

data points. This is due to an inversion of the N × N covariance matrix. In this

thesis we develop several new techniques to reduce this complexity to O(NM2),

whereM is a user chosen number much smaller thanN . The sparse approximation

we use is based on a set of M ‘pseudo-inputs’ which are optimised together with

hyperparameters at training time. We develop a further approximation based on

clustering inputs that can be seen as a mixture of local and global approximations.

Standard GPs assume a uniform noise variance. We use our sparse approximation

described above as a way of relaxing this assumption. By making a modification

of the sparse covariance function, we can model input dependent noise. To han-

dle high dimensional data sets we use supervised linear dimensionality reduction.

As another extension of the standard GP, we relax the Gaussianity assumption of

the process by learning a nonlinear transformation of the output space. All these

techniques further increase the applicability of GPs to real complex data sets.

We present empirical comparisons of our algorithms with various competing tech-

niques, and suggest problem dependent strategies to follow in practice.
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Outline

Gaussian processes (GPs) define prior distributions on functions. When combined

with suitable noise models or likelihoods, Gaussian process models allow one to

perform Bayesian nonparametric regression, classification, and other more com-

plex machine learning tasks. Being Bayesian probabilistic models, GPs handle the

uncertainty inherent in function modelling from noisy data, and give full proba-

bilistic predictions or ‘error bars’. Chapter 1 gives an overview of Gaussian process

modelling, with a focus on regression, but also briefly discussing classification and

other tasks.

One of the main problems with applying GPs successfully in machine learning is

the computational difficulties for large data sets. GP training scales cubically with

the number of training data points N , and predictions are quadratic in N . Given

the plethora of large data sets being currently collected, especially for web-based

applications, this is a big problem for GP methods. GPs in their standard form have

therefore been limited in their applicability to data sets of only several thousand

data points.

Chapter 2 discusses methods to deal with this problem. In this chapter we give a

review of previous approximation techniques, and we introduce the sparse pseudo-

input Gaussian process (SPGP) which we proposed in [Snelson and Ghahramani,

2006a]. The SPGP consists of an approximation based on a small set of M pseudo-

inputs, which are then optimised to find the best solution. The training and pre-

diction costs are then reduced respectively to O(NM2) and O(M2). We explain the

relationship between this new method and the many similar previous approaches,

both from a theoretical and empirical point of view. From a theoretical perspective

we present minimal KL divergence arguments for the SPGP approximation to the

GP, and we highlight some of the deficiencies of previous approximations. Empir-

ically we demonstrate strategies for obtaining the best performance when we care

most about reducing training time or reducing prediction time.
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OUTLINE

All the approximation methods we discuss in chapter 2 can be considered global

approximations, in the sense that they use a small number of support points to

summarise all N training points. In chapter 3 we examine the use of local GP ap-

proximations for dealing with the same computational problem. The basic idea is

an old one: to break the input space down into smaller regions and use local pre-

dictors for each region, thereby saving computation by only utilising nearby data

points. We then propose a new method that is a combination of the local type of

approximation and the global type of chapter 2, and we show how it can be natu-

rally derived as an extension of the theoretical framework for GP approximations

presented by Quiñonero Candela and Rasmussen [2005]. We examine the types of

data that are best dealt with by a local approach or by a global approach. The new

approximation we present subsumes both types of method. This chapter is based

on [Snelson and Ghahramani, 2007].

In chapter 4 we increase the range and complexity of data sets that can be handled

by the SPGP that we presented in chapter 2. One of the problems with the SPGP

in its initial form is that the optimisation of the pseudo-inputs becomes unfeasible

for very high dimensional input spaces. We address this problem by learning a low

dimensional projection of the input space within the model. The pseudo-inputs

then live in this low-dimensional space. This can be seen as a particular super-

vised dimensionality reduction for regression. We then examine the capabilities of

the SPGP for modelling input dependent noise, or heteroscedasticity. The SPGP

covariance function, as well as being computationally efficient, is inherently more

flexible than the underlying GP in this regard. We also develop a simple extension

of the SPGP that further improves its ability to model heteroscedasticity, and we

test the methods in an environmental modelling competition. This chapter is based

on [Snelson and Ghahramani, 2006b].

In chapter 5 we make another extension of the GP to increase its modelling flex-

ibility. One limitation with GP regression is the Gaussianity assumption of the

process itself. There are many types of data that are not well modelled under this

assumption. One simple example is data naturally specified in positive quanti-

ties. Standard practice is to apply some sort of preprocessing transformation before

modelling. We present a simple extension of the GP that learns such a transforma-

tion as part of the probabilistic model itself, transforming to a space where the data

is modelled well by a GP. This gives rise to a process which is non-Gaussian in

the original data space, and further increases the applicability of GPs to real world

modelling and machine learning tasks. This chapter is based on [Snelson et al.,

13



OUTLINE

2004].

Finally we conclude and suggest some ideas for future work in chapter 6. Ap-

pendix A explains some notation used throughout the thesis, and appendix B pro-

vides some mathematical background. Both may be useful to those unfamiliar with

GP models.
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Chapter 1

Introduction to Gaussian processes

1.1 A brief history of Gaussian processes

The Gaussian process (GP) is a simple and general class of probability distributions

on functions. When viewed in this general setting, Gaussian processes of many

types have been studied and used for centuries. The well known Wiener process

[e.g. Papoulis, 1991] is a particular type of Gaussian process. However this thesis

is concerned with the more specific use of Gaussian processes for prediction. The

setting we will be considering is that of regression — prediction of a continuous

quantity, dependent on a set of continuous inputs, from noisy measurements.

The history of the use of Gaussian processes for prediction is still a long one. Prob-

ably due to the most widely studied Gaussian processes being stochastic processes

in time (e.g. the Wiener process), Gaussian processes were first used for time series

prediction. Work in this area dates back to the 1940’s [Wiener, 1949, Kolmogorov,

1941].

Gaussian processes have been widely used since the 1970’s in the fields of geostatis-

tics and meteorology. In geostatistics, prediction with Gaussian processes is termed

kriging, named after the South African mining engineer D. G. Krige by Matheron

[1973]. Naturally in spatial statistics the inputs to the process are the two or three

space dimensions.

GPs were then applied by statisticians to the slightly more general multivariate

input regression problem [e.g. O’Hagan, 1978]. It is fair to say however that their

widespread use in statistics is still largely confined to the spatial statistics sub-field.

15



CHAPTER 1. INTRODUCTION TO GAUSSIAN PROCESSES

This thesis is concerned with the use of GPs for prediction in a machine learning

context. Whilst the core problem of regression is a standard statistical one, machine

learning problems have directed researchers to use and develop GPs along slightly

different lines. Williams and Rasmussen [1996] first described Gaussian process

regression in a machine learning context. At that time neural networks [e.g. Bishop,

1995] were in vogue as general purpose function approximators, and Williams and

Rasmussen [1996] were partly inspired by the link shown by Neal [1996] between

GPs and neural networks.

Over the past decade or so, there has been much work on Gaussian processes in

the machine learning community. The definitive book on GPs in the context of

machine learning is the recent one by Rasmussen and Williams [2006], and most

of the material covered in this introductory chapter, and a lot more, can be found

there.

1.2 The regression problem

Machine learning problems can be broadly divided into three fundamental classes:

supervised learning, unsupervised learning, and reinforcement learning. See [e.g.

Hastie et al., 2001, MacKay, 2003] for textbooks describing the field as a whole.

The most widely studied and easiest of these tasks is supervised learning, which

concerns learning a relationship from inputs to targets (or outputs). Supervised

learning may be further subdivided into two primary tasks: classification and re-

gression. In classification the outputs are discrete labels, whereas in regression the

outputs are continuous variables.

In their simplest form Gaussian process models are used for regression, and this

thesis will concentrate on the regression task. Although the regression problem is

one of the simplest and most general statistical problems, it is at the core of many

machine learning tasks. Reliable general methods for regression are therefore of

prime importance to the field as a whole, and can be utilised inside more complex

and specific learning tasks. Gaussian processes have been developed beyond the

basic regression model to be used in classification [e.g. Williams and Barber, 1998,

Kuss and Rasmussen, 2005], and even unsupervised learning [e.g. Lawrence, 2005]

and reinforcement learning [e.g. Engel et al., 2003] contexts. Although this thesis

will not specifically cover these extended models, much of what we will develop

can be applied to these more complicated tasks too.

16



CHAPTER 1. INTRODUCTION TO GAUSSIAN PROCESSES

In a regression task we have a data set D consisting ofN input vectors x1,x2, . . . ,xN

(of dimension D) and corresponding continuous outputs y1, y2, . . . , yN . We assume

the outputs are noisily observed from an underlying functional mapping f(x). The

object of the regression task is to estimate f(x) from the data D. Clearly without

further assumptions this problem is ill-defined, and moreover we are dealing with

noisy data. Therefore any approach we might take is an exercise in reasoning under

uncertainty. For this reason, we really want not just a single estimate of f(x), but a

probability distribution over likely functions. A Gaussian process regression model

is a fully probabilistic Bayesian model, and so it allows us to do just this. This is in

contrast to many other commonly used regression techniques, which only provide

a best estimate of f(x).

A Gaussian process defines a probability distribution on functions p(f). This can

be used as a Bayesian prior for the regression, and Bayesian inference can be used

to make predictions from data:

p(f |D) =
p(D|f)p(f)

p(D)
. (1.1)

This is a high level description of how a GP solves the regression problem outlined

above, giving us probabilistic predictions of possible interpolating functions f .

1.3 Gaussian process definition

A Gaussian process is a type of continuous stochastic process, i.e. it defines a prob-

ability distribution for functions [e.g. Papoulis, 1991]. Another way to think of

this is as a set of random variables indexed by a continuous variable: f(x). Sup-

pose we choose a particular finite subset of these random function variables f =

{f1, f2, . . . , fN}, with corresponding inputs (indices) X = {x1,x2, . . . ,xN}. In a GP,

any such set of random function variables are distributed multivariate Gaussian:

p(f |X) = N (µ,K) , (1.2)

where N (µ,K) denotes a Gaussian distribution with mean µ and covariance K.

The final requirement is that these Gaussian distributions are consistent; that is the

usual rules of probability apply to the collection of random variables, e.g. marginal-

isation:

p(f1) =

∫

df2 p(f1, f2) . (1.3)

17



CHAPTER 1. INTRODUCTION TO GAUSSIAN PROCESSES

A GP is a conditional probabilistic model. This means that the distribution on the in-

puts p(x) is not specified, and only the conditional distribution p(f |X) is modelled.

For this reason, throughout the thesis we will often drop the explicit notational

conditioning on the inputs, with the understanding that the appropriate inputs are

being conditioned on: p(f) ≡ p(f |X). For further notational devices used through-

out the thesis see appendix A.

1.4 Covariances

To specify a particular GP prior, we need to define the mean µ and covariance K

of equation (1.2). The GPs we will use as priors will have a zero mean. Although

this sounds restrictive, offsets and simple trends can be subtracted out before mod-

elling, and so in practice it is not. It is worth noting however, that the posterior GP

p(f |D) that arises from the regression is not a zero mean process (see section 1.5.1).

The important quantity is the covariance matrix K. We construct this from a co-

variance function K(x,x′):

Kij = K(xi,xj) . (1.4)

This function characterises the correlations between different points in the process:

K(x,x′) = E [f(x)f(x′)] , (1.5)

where E denotes expectation and we have assumed a zero mean. We are free in our

choice of covariance function, so long as the covariance matrices produced are al-

ways symmetric and positive semidefinite (v⊤Kv ≥ 0, ∀v). Specifying the covari-

ance matrix K via a covariance function guarantees the consistency requirement of

section 1.3.

The particular choice of covariance function determines the properties of sample

functions drawn from the GP prior (e.g. smoothness, lengthscales, amplitude etc).

Therefore it is an important part of GP modelling to select an appropriate covari-

ance function for a particular problem. An important aspect of GP research is the

development of different more flexible covariance functions. In fact it is one of

the goals of this thesis to develop a particular class of flexible and computationally

efficient covariance functions. However as a starting point there are a number of

well known and widely used covariances which we discuss in the next sections.

The class of covariances we will develop in this thesis are built from one of these

18



CHAPTER 1. INTRODUCTION TO GAUSSIAN PROCESSES

simpler covariances.

1.4.1 The squared exponential (SE) covariance

The SE covariance function is the most widely used in machine learning. It pro-

vides very smooth sample functions, that are infinitely differentiable:

KSE(r) = a2 exp

(

− r2

2λ2

)

, (1.6)

where r = ‖x−x′‖. The SE covariance is stationary (a function of x−x′ — invariant

to translations) and more specifically isotropic (a function of r — invariant to both

translation and rotation).

The two hyperparameters a and λ govern properties of sample functions. a controls

the typical amplitude and λ controls the typical lengthscale of variation. We refer

to any hyperparameters of a covariance function collectively as the vector θ. Fig-

ure 1.1 shows three sample GP functions using the SE covariance, with (a) and (b)

using different lengthscale and amplitude hyperparameters. A function is created

in practice by finely discretising the input space and drawing a sample from the

multivariate Gaussian equation (1.2) with zero mean µ = 0 (see section B.2 for im-

plementation details). We see that the samples are very smooth functions which

vary around the f = 0 axis due to the zero mean.

The smoothness of the sample functions arises from the form of the covariance

equation (1.6). Function variables close in input space are highly correlated, whereas

function variables far apart relative to the lengthscale λ are uncorrelated. A criti-

cism of the SE covariance is that it may be unreasonably smooth for some realistic

regression tasks. For this reason some practitioners prefer the Matérn class of co-

variance (see section 1.4.2).

The structure of the covariance can also be understood visually by plotting the

values in the covariance matrix as colours in an image. This is done in figure 1.2. A

1D input space has been discretised equally, and the covariance matrix constructed

from this ordered list of inputs is plotted.1 The region of high covariance appears

as a diagonal constant width band, reflecting the local stationary nature of the SE

covariance. Increasing the lengthscale λ increases the width of the diagonal band,

as points further away from each other become correlated.

1The ordering is necessary for visualising the structure, and so this demonstration is only possible
in 1D.
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(a) Lengthscale λ = 5, amplitude a = 1
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(b) Lengthscale λ = 1, amplitude a = 0.5

Figure 1.1: Three sample GP functions with the SE covariance
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Figure 1.2: The SE prior covariance matrix for a set of equally spaced ordered
points. Magenta indicates high covariance, and cyan low.

1.4.2 The Matérn covariance

KMat(r) = a2 21−ν

Γ(ν)

(√
2νr

λ

)ν

Kν

(√
2νr

λ

)

, (1.7)

where Kν is a modified Bessel function, Γ(·) is the Gamma function, and a, ν, and

λ are hyperparameters.

The Matérn covariance is isotropic, and again hyperparameters a and λ control

amplitude and lengthscale respectively. ν controls how rough the sample functions

are. In fact for ν → ∞ we regain the SE covariance, but for finite ν the sample

functions are significantly rougher than those from the SE.

The special case of ν = 1/2 gives the exponential covariance, and the well known

Ornstein-Uhlenbeck process [Uhlenbeck and Ornstein, 1930]. Figure 1.3 shows

sample functions from the OU process, with lengthscale and amplitude parame-

ters the same as in figure 1.1a. Comparing the two, we can see how much rougher

functions the Matérn covariance produces.

1.4.3 Nonstationary covariances

We briefly list a few examples of common nonstationary covariances. The linear

covariance produces straight line sample functions, and using it in GP regression

is therefore equivalent to doing Bayesian linear regression (see section 1.6):

KLin(x,x′) = σ2
0 + σ2

1xx′⊤ . (1.8)
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Figure 1.3: Three sample GP functions with the Matérn covariance, ν = 1/2, length-
scale λ = 5, amplitude a = 1

The periodic covariance can be used to generate periodic random functions (1D):

KPer(x, x
′) = exp

(

−2 sin2
(

x−x′

2

)

λ2

)

(1.9)

The Wiener process, or continuous time Brownian motion, is a one-dimensional

nonstationary GP:

KWien(x, x′) = min(x, x′) , x, x′ ≥ 0 . (1.10)

A nonstationary neural network covariance function can be constructed as a limit

of a particular type of neural network with an infinite number of hidden units

[Williams, 1998].

There are many other examples of covariance functions, both stationary and non-

stationary. It is also possible to combine covariances in sums, products and con-

volutions to obtain more flexible and complex processes. See [Rasmussen and

Williams, 2006] for further details.
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1.5 Gaussian process regression

So far we have defined a Gaussian process, and we have seen how the choice of co-

variance function leads to different typical sample functions from the GP. Within

a class of covariance function, a small number of hyperparameters control global

properties such as lengthscale and amplitude. Our task is to use GPs to do regres-

sion. To do this we use the GP to express our prior belief about the underlying

function we are modelling. We define a noise model that links the observed data to

the function, and then regression is simply a matter of Bayesian inference.

We start with the zero mean GP prior on the function variables:

p(f) = N (0,K) . (1.11)

We assume that the observed data y is generated with Gaussian white noise around

the underlying function f :

y = f + ǫ , E [ǫ(x)ǫ(x′)] = σ2δxx′ , (1.12)

where σ2 is the variance of the noise, and δ is the Kronecker delta.2 Equivalently,

the noise model, or likelihood is:

p(y|f) = N (f , σ2I) , (1.13)

where I is the identity matrix. Integrating over the unobserved function variables

f gives the marginal likelihood (or evidence):

p(y) =

∫

df p(y|f)p(f)

= N (0,K + σ2I) .

(1.14)

1.5.1 Prediction

For this section refer to section A.2 and section A.3 for a more detailed explana-

tion of data point and covariance matrix notation used. Suppose we have our N

training input and output pairs (X,y), together with a set of T input locations XT

2We have used a slight abuse of notation when using the Kronecker delta with continuous indices
x and x′. We mean that δ = 1 only when x and x′ refer to the same data point. Otherwise δ = 0,
even if we happened to sample two data points at exactly the same x location. This reflects the fact
that the noise is independent for each data point.
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at which we want to make predictions — the test inputs. These variables are all

observed. We also have some sets of unobserved variables: the latent function

variables at both training and test locations, and the test outputs themselves. We

refer collectively to groups of these points as: (X, f ,y) = ({xn}, {fn}, {yn})N
n=1, and

(XT , fT ,yT ) = ({xt}, {ft}, {yt})T
t=1. We first note the joint training and test prior:

p(f , fT ) = N (0,KN+T ) , (1.15a)

KN+T =

[

KN KNT

KTN KT

]

. (1.15b)

Inclusion of the noise model gives the joint distribution on training and test outputs

(from equation (1.14)):

p(y,yT ) = N (0,KN+T + σ2I) . (1.16)

The predictive distribution is obtained by conditioning on the observed training

outputs (and using the inverse of a partitioned matrix identity of section B.1.2):

p(yT |y) = N (µT ,ΣT ) , (1.17a)

µT = KTN [KN + σ2I]−1y

ΣT = KT − KTN [KN + σ2I]−1KNT + σ2I .
(1.17b)

Notice how the predictive mean and variance (µT ,ΣT ) in equation (1.17b) are con-

structed from the blocks of the GP prior covariance KN+T of equation (1.15b). This

construction will be useful to remember later on when forming the predictive dis-

tribution for various GP approximations.

It is important to appreciate that equation (1.17) is a correlated prediction. As well

as giving you the mean and marginal variance at each test point, it tells you the

predictive correlations between any pair of test outputs. In fact, the GP predictive

distribution is actually a full Gaussian process in its own right, with a particular

non-zero mean function and covariance function:3

µ(x) = KxN [KN + σ2I]−1y

Σ(x,x′) = K(x,x′) − KxN [KN + σ2I]−1KNx′ .
(1.18)

Refer to section A.3 to explain the slight abuse of covariance notation in equa-

3Actually, as written here without the noise, this is the posterior process on f rather than y:
p(f(x)|y).
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Figure 1.4: The GP predictive distribution. The single test point predictive distri-
bution (1.19) is shown as mean and two standard deviation lines in black and grey
respectively. A sample function from the full posterior process (1.18) is shown in
green.

tion (1.18).

Whilst these predictive correlations are potentially useful for some applications, it

is often just the marginal variances (diag ΣT ) that are computed and used as mea-

sures of predictive uncertainty. In this case it is sufficient to consider a single gen-

eral test input x∗, at which the predictive mean and variance is:

µ∗ = K∗N [KN + σ2I]−1y

σ2
∗ = K∗ − K∗N [KN + σ2I]−1KN∗ + σ2 .

(1.19)

Computing the inverse of KN + σ2I costs O(N3). We see that the mean predic-

tion is simply a weighted sum of N basis functions: µ∗ = K∗Nα, where α =

[KN + σ2I]−1y. Therefore, if we precompute α the mean prediction per test case

costs only O(N). For the variance no such precomputation can be done, and the

cost is O(N2) per test case. The most stable and efficient method of implementa-

tion of equation (1.19) is via Cholesky decomposition of the covariance matrix (see

section B.2 for details).

Figure 1.4 shows a plot of the GP predictive distribution for a simple 1D data set
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using SE covariance. The hyperparameters are assumed known and given. Mean

and two standard deviation lines (equation (1.19)) are plotted in black and grey,

and this will be the standard way of showing GP predictions throughout the thesis.

Note that this prediction includes the noise variance (p(y∗|y)). A sample function is

also plotted from the posterior process (equation (1.18)) in green. This is noise free

(p(f(x)|y)). Notice how the sample function varies around the mean function, and

we can imagine how averaging many such sample functions would give rise to the

mean function. The plot shows how the predictive variance grows in regions away

from training data until it reachesK(x,x)+σ2 (in the case of a stationary covariance

such as SE,K(x,x) is a constant, a2). It is evident by looking at equation (1.19) how

the local nature of the covariance function causes this to happen. The property

of increasing predictive uncertainty away from training data is an intuitive and

desirable property of GPs.

1.5.2 Hyperparameter learning

One of the major advantages of GPs over other methods is the ability to select co-

variance hyperparameters from the training data directly, rather than use a scheme

such as cross validation. The reason we can do this is because the GP is a full prob-

abilistic model. Ideally we would like to place a prior and compute a Bayesian

posterior p(θ|y) on hyperparameters. However this is not analytically tractable

in general. Instead we can use the marginal likelihood (equation (1.14)) as an ap-

propriate cost function. More specifically we minimise the negative log marginal

likelihood L with respect to the hyperparameters of the covariance θ (including the

noise variance σ2):

L = − log p(y|θ)

=
1

2
log detC(θ) +

1

2
y⊤C−1(θ)y +

N

2
log(2π) ,

(1.20)

where C = KN + σ2I.

As with any other procedure where we are optimising parameters using the train-

ing data we have to worry about overfitting. As we have seen in section 1.4, covari-

ance functions tend to have a small number of hyperparameters controlling broad

aspects of the fitted function, and therefore overfitting tends not to be a problem.

Secondly, we are not optimising the function variables f themselves, but rather inte-

grating over their uncertainty. The GP hyperparameter optimisation takes place at

a higher hierarchical level, and hence is sometimes referred to as type II maximum
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likelihood.

The minimisation of the negative log marginal likelihood of equation (1.20) is a

non-convex optimisation task. However gradients are easily obtained and there-

fore standard gradient optimisers can be used, such as conjugate gradient (CG)

techniques or quasi-Newton methods. To compute the derivatives a few matrix

identities from section B.1.3 are useful, and for implementation section B.2 is again

relevant. The precise details will of course depend on the choice of covariance

function. The cost of computing the log marginal likelihood and gradients is again

dominated by the inversion of the covariance matrix C.

Local minima can be a problem, particularly when there is a small amount of data,

and hence the solution ambiguous. In this situation local minima can correspond

to alternative credible explanations for the data (such as low noise level and short

lengthscale vs. high noise level and long lengthscale). For this reason it is often

worth making several optimisations from random starting points and investigating

the different minima.

1.5.3 Automatic relevance determination

One can make an anisotropic (but still stationary) version of the SE covariance (sec-

tion 1.4.1) by allowing an independent lengthscale hyperparameter λd for each in-

put dimension:

KSE-ARD(x,x′) = a2 exp

[

−1

2

D∑

d=1

(
xd − x′d
λd

)2
]

. (1.21)

When combined with the techniques of section 1.5.2 for determining hyperparam-

eters, this covariance is said to implement automatic relevance determination [Neal,

1996]. If a particular input dimension d has no relevance for the regression, then

the appropriate lengthscale λd will increase to essentially filter that feature out. This

is because the evidence will suggest that the underlying function is very slowly

varying in the direction of that feature. This means that alternative ad-hoc feature

selection methods are not necessary.

We will use this ARD version of the SE covariance throughout the thesis to illus-

trate our examples and in experiments. However most of the methods we develop

apply generally with any choice of covariance function, such as those discussed in

section 1.4.
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1.6 Relation to Bayesian linear regression

In the first part of this chapter we have described GPs as priors directly on the

space of functions, specified with a suitable covariance function. This viewpoint

is sometimes referred to as the function space viewpoint, and is arguably the most

intuitive way to understand GPs. However, there is an alternative way of viewing

GPs called the weight space viewpoint, which is closely related to the well known

Bayesian generalised linear regression model.

Suppose we define our function to be a weighted sum of a set of M basis functions:

f(x) =

M∑

m=1

wmφm(x) = w⊤φ(x) . (1.22)

If we now place a Gaussian prior on the weights:

p(w) = N (0,Σw) , (1.23)

then we have equivalently defined a Gaussian process prior on the function f with

covariance function:

K(x,x′) = E [f(x)f(x′)]

= φ⊤(x)Σwφ(x′) .
(1.24)

This type of GP is called degenerate because it can always be converted back to the

weight space viewpoint and represented with a finite set of basis functions. The

covariance function (1.24) is of rankM , meaning that any covariance matrix formed

from this covariance function will have maximum rank M . The linear covariance

function mentioned in section 1.4.3 is exactly of this type.

As we have seen, the function space viewpoint allows us to specify a covariance

function directly, rather than in terms of basis functions. However Mercer’s theo-

rem [e.g. Schölkopf and Smola, 2002] tells us that we can still decompose the co-

variance function in terms of its eigenfunctions and eigenvalues, theoretically at

least:

K(x,x′) =

∞∑

i=1

λiψi(x)ψi(x
′) . (1.25)

In this way we convert back to the weight space viewpoint, in the sense that we

now have a description in terms of basis functions like in equation (1.24). If the sum

of equation (1.25) has a finite number of elements, then we have a degenerate GP,
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but for general covariance functions (e.g. SE) the sum will have an infinite number

of elements with possibly no analytical expressions for the eigenfunctions, and the

GP is said to be non-degenerate. It is this type of GP that we are most interested in,

since they are nonparametric flexible models for functions.

From a practical computational point of view, let us suppose we have a degenerate

GP with M basis functions, and N training data points. We know that to make

predictions we must invert the N ×N covariance matrix KN + σ2I. If N < M then

it is most efficient to invert this directly at a cost of O(N3).4 However, if N > M ,

it is best to do the regression in the weight space viewpoint. The covariance matrix

formed from equation (1.24) can be written KN = VV⊤ where V is the N × M

matrix ΦΣ
1
2
w, and the matrix inversion lemma (section B.1.1) provides the link:

(VV⊤ + σ2IN)−1 = σ−2IN − σ−2V(σ2IM + V⊤V)−1V⊤ . (1.26)

Note that the RHS of equation (1.26) only involves inverting anM×M matrix rather

than N × N . Any evaluation needed for prediction is then dominated by the cost

of constructing V⊤V which is O(NM2). Put simply, if N > M linear regression

should be solved in the traditional way, not via the GP formulation.

Of course, for the non-degenerate case that we are most interested in we do not

have a choice of practical solution method. If we tried to convert to the weight

space viewpoint then we would be trying to invert an infinite dimensional matrix!

In fact in this way we see the power of GPs (and kernel methods in general)5 —

we are effectively utilising an infinite set of basis functions but with finite compu-

tation. This type of model is called a nonparametric model because the complexity

of the solution is increasing as we receive more data (we can see this by looking for

example at the GP predictive mean in equation (1.18) which is a weighted sum of

N kernel evaluations). This nonparametric property is desirable because it means

that we are not limited in function complexity as we receive more data. However

the price we pay is a cubic scaling in N rather than linear if we were to stick to a

fixed finite set of basis functions.

4Construction of the covariance matrix would be more expensive at O(MN2).
5The GP is a particular type of probabilistic kernel method. The GP covariance matrix can also be

called a kernel matrix. The general GP can be regarded as ‘kernelised’ Bayesian linear regression, by
the process described in this section. See [e.g. Schölkopf and Smola, 2002] for more details on kernel
methods.
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1.7 Gaussian process classification

In this thesis we focus on Gaussian process regression, but GPs have been applied

successfully to classification too, and for completeness we briefly discuss this here.

In a classification task we have discrete outputs, e.g. binary y = ±1, rather than

continuous. A GP classification model uses a Gaussian process prior p(f) for an

underlying function f(x), just as for regression. However, instead of the Gaus-

sian regression noise model equation (1.13), a discrete distribution is obtained by

squashing the function f through e.g. a sigmoid:

p(y = +1|f(x)) = σ(f(x)) . (1.27)

The non-Gaussian likelihood of equation (1.27) causes a problem: we cannot in-

tegrate out the unknown function variables f analytically as we did to compute

the marginal likelihood in equation (1.14). The usual method for dealing with this

problem is to make a Gaussian approximation to the posterior p(f |y). For exam-

ple, Williams and Barber [1998] use the Laplace approximation that approximates

p(f |y) around its mode. Kuss and Rasmussen [2005] show empirically that the EP

approximation [Minka, 2001] is more accurate. The EP approximation is an iter-

ative algorithm that approximates each data point likelihood term p(yn|fn) by a

scaled Gaussian in f , thereby giving an overall Gaussian approximation to p(f |y).

Other approaches include the variational methods of Gibbs and MacKay [2000] and

Girolami and Rogers [2006].

The need for approximation is not specific to classification, and applies equally to

any non-Gaussian likelihood, e.g. a heavy tailed regression noise model.
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Chapter 2

Computationally efficient

Gaussian processes

One of the fundamental problems we try to address in this thesis is the computa-

tional difficulties of applying Gaussian processes to large data sets. This is a prob-

lem particularly apparent in the machine learning field where large data sets are

commonplace. The full procedure of GP regression consists of three stages, which

we will call hyperparameter training, precomputation, and testing. Hyperparam-

eter training is usually performed by the optimisation of the marginal likelihood

as outlined in section 1.5.2. Each gradient computation requires inversion of the

covariance matrix KN + σ2I, and hence cost will be O(N3× number of gradient

evaluations in the optimisation).

We define the precomputation stage to include any computations that can be done

given a set of fixed hyperparameters but before seeing any test data. The O(N3)

inversion of the covariance matrix is again the dominant part of this stage. If the

hyperparameter learning has been done as described above, then these two stages

may as well be amalgamated and called ‘training’. However it is sometimes use-

ful to make computational comparisons where the hyperparameters have perhaps

been obtained in a different way, or are even given a priori. In this case then the

precomputation stage alone is the relevant one. In fact some authors, particularly

from the kernel machines literature [e.g. Smola and Bartlett, 2001], call this stage

training.

Finally we have the testing stage, where we make predictions at a set of T test

points. As explained in section 1.5.1, after the precomputation stage, each predic-
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tion costs O(N2) leading to an overall test cost of O(N2T ).

For a large training set both the training and test times become prohibitively ex-

pensive due to the poor scaling with N . As we saw in section 1.6 the reason for the

poor scaling is the desirable nonparametric nature of the GP itself. Therefore we

seek methods that overcome the computational difficulties whilst still preserving

the desirable properties of the GP.

The cost time of relevance depends very much on the particular application. The

user may be concerned with the total training and test time. Alternatively the user

may be able to afford a very large offline training time, but requires fast online

predictions. As we shall see different methods will be suitable for these different

requirements.

2.1 Summary of previous approaches

There has been a lot of work done over the past two decades that attempts to ad-

dress the computational problem, by developing efficient approximations to the

full Gaussian process. Although the approaches have been developed from differ-

ent angles, many are closely related to each other. We will examine some of the

approximations in much more detail later, but here we give a high level overview.

2.1.1 Subset of data (SD)

The most obvious and simplest technique to reduce computation is to ignore a large

part of the training data! A GP prediction is made based only on a subset of size

M of the training data. We call this technique subset of data (SD). Whilst it seems

too obvious and simple to be worthy of much mention, it is after all the bench-

mark against which other techniques must be compared. In fact, in some cases it

may be the best one can do, because it has no extra overhead compared to some

of the more sophisticated approximations, both in terms of computation and mem-

ory. For highly redundant data sets, where extra data points bring very little extra

information about the function, then there is no point wasting computation on a

sophisticated approximation for little gain in performance.

SD also serves as a prototype for most of the other techniques as it highlights the

different options that are available. The reason for this is that most of the more

sophisticated approximations are also based on a subset of the training data just
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like SD; the difference being that these approximations also include some informa-

tion from the rest of the training data. We can therefore use SD to outline three

important steps relevant to all the GP approximations:

Subset selection

When using SD we clearly have a choice of selecting the subset of M data points

from the total N training points. The simplest scheme is to choose randomly, and

due to its negligible overhead it is often very effective. However more sophisticated

schemes can be used based on various information criteria that score how much one

learns about the function by including a point into the subset. The informative vector

machine [Lawrence et al., 2003] is an example of the SD method using a differential

entropy score for subset selection.1

As explained above, for more sophisticated approximations that we will discuss

the same choice exists. In this context the subset is variously known as the active

set, the support set, or the inducing set. Again we may choose randomly, or use

other information based selection criteria.

Hyperparameter selection

For SD we will generally obtain hyperparameters by maximising the SD marginal

likelihood, or in other words the GP marginal likelihood on the subset:

pSD(yM) = N (0,KM + σ2I) . (2.1)

We could however choose to use more sophisticated GP marginal likelihood ap-

proximations, that take into account all of the training data.

Prediction

Having obtained hyperparameters and made a choice of subset, we can choose

an approximation to make predictions. For SD this is simply the GP predictive

1Although not a GP model, an SVM can be similarly seen as a method for selecting a subset of
data on which a predictor is based.

33



CHAPTER 2. COMPUTATIONALLY EFFICIENT GAUSSIAN PROCESSES

distribution based solely on the subset (from equation (1.19)):

µSD
∗ = K∗M [KM + σ2I]−1yM

(σ2
∗)

SD = K∗ − K∗M [KM + σ2I]−1KM∗ + σ2 .
(2.2)

We can see that even for something as trivial as SD, various different strategies exist

to balance predictive performance against computation. Which strategy will be

best depends a lot on the requirements of the user in terms of training versus testing

time as discussed at the beginning of section 2.1. For example, a more sophisticated

subset selection method could be chosen at the expense of greater training time but

improved test performance for given test time. We do not even have to choose the

same subset for hyperparameter learning as for prediction. To save on training time

a smaller subset could be used to determine hyperparameters, with extra points

being included for the prediction stage. If using a subset selection method, we also

have the tricky issue of whether and how to interleave hyperparameter learning

with the subset selection until some sort of convergence.

The reason we exhaustively list such options for SD is that all of the above applies

to more sophisticated approximations too. In practice the best choices depend very

much on the particular data and priorities of the user, and individual empirical

trials are probably the best way to sort this out. The purpose of this thesis is not

to attempt an exhaustive empirical comparison with all approximations and all

strategies. Rather we will present new approximations and options, and suggest in

which regimes they will be most useful.

2.1.2 Low rank approximations

At a high level, most of the more sophisticated approximations that have been de-

veloped can be understood as some kind of reduced rank approximation to the co-

variance matrix:

KN ≈ VV⊤ , (2.3)

where V is an N ×M matrix. We know from the discussion of the relationship be-

tween GPs and linear models in section 1.6 that this is equivalent to approximating

the full non-degenerate GP with a finite (M dimensional) degenerate linear model.

From this discussion, and via the matrix inversion lemma equation (B.1), we also

know how the computational saving is made. The training cost is reduced from

O(N3) computation to O(NM2). Similarly prediction time is reduced to O(M2)

34



CHAPTER 2. COMPUTATIONALLY EFFICIENT GAUSSIAN PROCESSES

per test point after precomputation.

The success of such a low rank type approximation depends on the fact that for

typical covariances (e.g. SE, section 1.4.1), the eigenvalue spectrum decays fairly

rapidly (reflecting the smoothness of the prior). One might think of trying to di-

rectly find a low rank approximation to KN by doing an eigendecomposition and

keeping the M leading eigenvalues. However this does not really help us because

the eigendecomposition itself is O(N3) in general. Instead a subset of the input

points (just like in SD) is used as a basis for a low rank construction, with these

M points determining the regions in input space where the approximation is good.

One particular construction which forms the heart of many of these GP approxima-

tion methods is the Nyström construction:

KN ≈ KNMK−1
M KMN , (2.4)

where KNM is the covariance between the training points and the subset (see sec-

tion A.3). This construction can be derived from various different angles [Smola

and Schölkopf, 2000, Williams and Seeger, 2001], but one way of understanding it

is as approximating the eigendecomposition discussed above. In fact we will use

this construction so much that we use a separate symbol for this low rank covari-

ance:

Q(x,x′) = KxMK−1
M KMx′ . (2.5)

Here we have used a small abuse of notation (see section A.3) to refer to the covari-

ance function Q(x,x′) rather than the covariance matrix of equation (2.4).

The subset of regressors (SR) approximation consists of the degenerate GP usingQ as

its covariance function. The fact that this approximation can be derived in various

ways, and that there exist different strategies for choosing the subset, means that

it appears in various guises in the literature [e.g. Wahba, 1990, Poggio and Girosi,

1990]. Smola and Bartlett [2001] use SR in conjunction with a greedy forward selec-

tion method to choose the subset.

From the discussion of linear models in section 1.6 it should be clear that there is

something unsatisfactory about approximating the full non-degenerate GP with a

degenerate one as SR does. We lose some of the power of full nonparametric mod-

elling, where the complexity of the function grows with more data. See [Quiñonero

Candela, 2004] for more details. As we shall see in section 2.3.2, this is a big prob-

lem for SR because it gives rise to far too small predictive variances in regions away

from subset points.
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The projected process (PP) approximation is a fix to this problem: whilst based on the

same low rank Nyström construction of equation (2.4), it is not strictly a degenerate

process. It does still however have some technical problems which we discuss in

section 2.3.8. Seeger et al. [2003] use PP with a greedy forward selection method

based on information gain, and Keerthi and Chu [2006] use PP with a matching

pursuit algorithm for selecting the subset.

A general term for these type of approximations is sparse Gaussian processes. This

is slightly misleading, as the matrices involved are not sparse but low rank. How-

ever, it does convey the idea that the approximations are based on a small subset of

the training data points.

2.1.3 Other approaches

The sparse online GP methods of Csató and Opper [2002], Csató [2002] are closely

related methods to those of section 2.1.2, which process data sequentially, and are

designed to deal with non-Gaussian likelihoods such as for classification. We will

discuss the relationships in more detail in section 2.3.7, but we note that the ap-

proximation presented in [Csató, 2002], when applied to regression, is a sequential

version of PP.

The Bayesian committee machine (BCM) [Tresp, 2000] is another approach to speed

up GP regression based on partitioning the data set. It is related to the low rank

approximations of section 2.1.2, but has a somewhat different flavour. It is transduc-

tive rather than inductive, meaning that the approximation used is dependent on

the test inputs, therefore requiring one to know the test inputs in advance of train-

ing/precomputation. The principal problem with the method is a high test cost

of O(NM) per test case, rather than the O(M2) of the approaches of section 2.1.2.

However the BCM can be modified to be used in an inductive way, and we will

discuss this further in chapter 3.

Gibbs [1997] used an approach based on early stopping in an iterative conjugate

gradient (CG) solution to the equation (KN + σ2I)a = y. The problem with this is

that it still scales quadratically in N . Recently Yang et al. [2005] have proposed the

improved fast Gauss transform (IFGT) to speed up these CG iterations to give a linear

scaling with N . Other recent methods that also rely on speeding up kernel matrix-

vector products within CG include [Gray, 2004, Shen et al., 2006, de Freitas et al.,

2006]. This type of method shows some promise, but at present it is not feasible for

more than a few input dimensions, and the speedups seem very sensitive to par-
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ticular lengthscale regimes. Also hyperparameter optimisation is complicated and

predictive variances expensive to obtain, when using CG iteration based methods.

2.2 The sparse pseudo-input Gaussian process (SPGP)

It should be clear from section 2.1 that for the purpose of analysis it makes sense

to distinguish between the actual approximation and the other aspects of strategy

that go with it, such as determination of the subset. This is because often we can

mix and match strategies with approximations depending on what suits. However

in the literature this has not been done in general, with individual papers tend-

ing to recommend both a particular approximation and a particular technique for

subset selection. This has made the literature somewhat confusing to read as a

whole. In [Snelson and Ghahramani, 2006a] we contributed to this confusion by

doing exactly the same! We suggested a method that consisted both of a particular

approximation and a new way of obtaining a subset. These two parts of the SPGP

can be considered independently for the most part. However there is a lot of in-

tuition to be gained by considering the original derivation of the SPGP as a whole

as presented in [Snelson and Ghahramani, 2006a]. In this chapter we will therefore

first present the SPGP as a complete model, as it was originally derived. We will

then analyse and compare the purely technical aspects of the approximation itself

with others such as SR and PP, independently of the subset selection. To do this we

will make use of the framework suggested by Quiñonero Candela and Rasmussen

[2005] for comparing the theoretical aspects of the different approximations.

In order to derive a model that is computationally tractable for large data sets, but

which still preserves the desirable properties of the full GP, we examine in detail

the single test point GP predictive distribution equation (1.19):

µ∗ = K∗N [KN + σ2I]−1y

σ2
∗ = K∗ − K∗N [KN + σ2I]−1KN∗ + σ2 .

Consider the mean and variance of this distribution as functions of x∗, the new in-

put. Regarding the hyperparameters as known and fixed for now, these functions

are effectively parameterised by the locations of the N training input and output

pairs, X and y. The intuition behind the SPGP is that we can replace the real data

set D by a pseudo data set D̄ of parameters, and use the GP predictive distribution

from this pseudo data set as a parameterised model likelihood. The computational
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efficiency of the model will arise because we will use a pseudo data set of size

M ≪ N : pseudo-inputs X̄ = {x̄m}M
m=1 and pseudo-outputs f̄ = {f̄m}M

m=1. We

have denoted the pseudo-outputs f̄ instead of ȳ because as they are not real ob-

servations, it does not make sense to include a noise variance for them. They are

therefore equivalent to the latent function variables f . The bar notation just serves

to emphasise that these variables are not observed data, but nevertheless live in

the same spaces as their equivalents f and X. The actual observed output value

will of course be assumed noisy as before. These assumptions therefore lead to the

following single data point likelihood:

p(y|x, X̄, f̄) = N
(
KxMK−1

M f̄ , Kxx − KxMK−1
M KMx + σ2

)
, (2.6)

where KxM is the covariance between the input x and the pseudo-inputs X̄, and

KM is the self covariance of the pseudo-inputs (see section A.3 for details on covari-

ance notation). Notice this likelihood is just the GP predictive distribution equa-

tion (1.19) with the real data set replaced by the pseudo-data set and with no noise

on the pseudo-outputs.

This can be viewed as a standard regression model with a particular form of param-

eterised mean function and input-dependent noise model. We assume the output

data are generated i.i.d. given the inputs, giving the complete data likelihood:

p(y|̄f) =
N∏

n=1

p(yn |̄f)

= N
(
KNMK−1

M f̄ , diag(KN − QN) + σ2I
)
,

(2.7)

where we have dropped the explicit conditioning on the relevant inputs from the

notation. We also see the first instance of the low rank covariance QN ≡ KNMK−1
M KMN ,

discussed in section 2.1.2, arising naturally in the derivation of the SPGP.

Learning in the model involves finding a suitable setting of the parameters — in

this case an appropriate pseudo-data set that explains the real data well. However

rather than simply maximise the likelihood with respect to X̄ and f̄ it turns out

that we can integrate out the pseudo-outputs f̄ . We place a Gaussian prior on these

pseudo outputs:

p(̄f) = N (0,KM) . (2.8)

This is a very reasonable prior because we expect the pseudo-data to be distributed

in a very similar manner to the real data, if they are to model them well. However,

we could consider different priors here to obtain more complex models. For exam-
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ple, we could use a different kernel or different hyperparameters. It is not easy to

place a prior on the pseudo-inputs and still remain with a tractable model, so we

will find these by maximum likelihood (ML). For the moment though, consider the

pseudo-inputs as known.

Now that the model is fully specified we can apply Bayesian reasoning to fill in the

rest of the details. Since all the distributions involved are Gaussian this ends up be-

ing simple matrix algebra. First we find the SPGP marginal likelihood by integrating

equations (2.7) and (2.8) over the pseudo-outputs:

p(y) =

∫

d̄f p(y|̄f)p(̄f)

= N
(
0, QN + diag(KN − QN) + σ2I

)
,

(2.9)

where we have used the Gaussian identity (B.11). This should be compared to the

full GP marginal likelihood of equation (1.14). We can see that the SPGP marginal

likelihood can be obtained by replacing the full GP covariance matrix KN by the

low rank covariance QN everywhere except on the diagonal. On the diagonal the

SPGP marginal likelihood covariance matches exactly.

To obtain the predictive distribution we first find the joint p(y∗,y) and then condi-

tion on the observed outputs y. The joint is exactly the marginal likelihood equa-

tion (2.9) extended to one new point (x∗, y∗). When we condition on the outputs

(and use equation (B.4)), we get the SPGP predictive distribution:

p(y∗|y) = N (µ∗, σ
2
∗) (2.10a)

µ∗ = Q∗N [QN + diag(KN − QN) + σ2I]−1y

σ2
∗ = K∗ − Q∗N [QN + diag(KN − QN) + σ2I]−1QN∗ + σ2 .

(2.10b)

The forms of equations (2.9) and (2.10b) are written in such a way as to make it

easy to compare to the equivalent equations (1.14) and (1.19) for the full GP. How-

ever, for implementation these need converting with the matrix inversion lemma

because as written they still involve the inversion of N ×N matrices. The way this

works is very similar to the method of converting degenerate GPs as discussed in

section 1.6. The difference is that here the covariance matrix is not simply low rank,

but rather low rank plus a diagonal: QN + Λ + σ2I, where Λ = diag(KN − QN).
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The matrix inversion lemma (B.1) applied here is therefore:

[
KNMK−1

M KMN + (Λ + σ2I)
]−1

=

(Λ + σ2I)−1 − (Λ + σ2I)−1KNMB−1KMN(Λ + σ2I)−1 , (2.11)

where B = KM +KMN(Λ+σ2I)−1KNM . The reason that this remains computation-

ally feasible is that the inversion of Λ + σ2I is only O(N) because it is diagonal. To

obtain the modified form of the SPGP predictive distribution we substitute equa-

tion (2.11) into equation (2.10), and make various simplifications using the substi-

tution KMN(Λ + σ2I)−1KNM = B − KM . This finally gives:

µ∗ = K∗MB−1KMN(Λ + σ2I)−1y

σ2
∗ = K∗ − K∗M(K−1

M − B−1)KM∗ + σ2 .
(2.12)

Computational cost is dominated by the matrix multiplication KMN(Λ+σ2I)−1KNM

in the calculation of B which is O(NM2). Just as for the full GP we observe that

the mean predictor of equation (2.12) is just a weighted sum of basis functions.

However, here there are only M basis functions in the sum, rather than N : µ∗ =

K∗Mα. Comparing this mean predictor to the SD mean predictor of equation (2.2),

we see that they both consist of weighted sums ofM basis functions. The difference

is that the SPGP weights α take into account information from all data points y,

rather than a subset. Once precomputations have been done, the mean prediction

per test case is only O(M), for both SD and SPGP. Similar reasoning shows that the

variance predictions cost O(M2) per test case. Implementation of equation (2.12)

can be done using Cholesky decompositions throughout (section B.2).

2.2.1 Determination of pseudo-inputs and hyperparameters

The reason we chose the term pseudo-inputs for the support set X̄ on which the

SPGP approximation is built, is to emphasise that they are to be simply viewed

as parameters of the model to be learnt. This is in contrast to previous similar

approaches discussed in section 2.1.2, which built approximations based on a strict

subset of the data set. With this viewpoint in mind, a natural way to learn these

parameters is to maximise the SPGP marginal likelihood equation (2.9), just like we

do to learn hyperparameters in a GP. In fact the pseudo-inputs can be considered as

extra hyperparameters, especially when we note that the SPGP is in fact equivalent
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to a GP with a particular covariance function:

K̃SPGP(x,x′) = Q(x,x′) + δxx′ [K(x,x) −Q(x,x)] , (2.13)

where δ is the Kronecker delta as used in equation (1.12). We could have simply

posited this specially designed covariance function, and then derived the marginal

likelihood equation (2.9) and the predictive distribution equation (2.10) from the

usual GP equations. The SPGP covariance function K̃SPGP is constructed from an

underlying covariance function K (quite possibly stationary), but it is heavily pa-

rameterised by the locations of the pseudo-inputs X̄ (via Q) and is itself nonsta-

tionary. It is therefore a flexible covariance function, with computational efficiency

built in. The SPGP is not however simply a degenerate GP of the type discussed in

section 1.6, due to the extra delta function part of the covariance of equation (2.13).

We can therefore jointly maximise the marginal likelihood with respect to both the

pseudo-inputs and hyperparameters (X̄,θ) by gradient ascent. The details of the

gradient calculations are long and tedious and are presented in appendix C. The

exact form of the gradients will of course depend on the functional form of the

covariance function chosen, but our method will apply to any covariance that is

differentiable with respect to the input points. The derivatives with respect to all

pseudo-inputs can be computed in O(NM2 +NMD) time.

Since we now haveMD+ |θ| parameters to fit, instead of just |θ| for the full GP, one

may be worried about overfitting. However, consider for now fixing the hyperpa-

rameters, and look at the case where we let M = N and X̄ = X — the pseudo-

inputs coincide with the real training inputs. At this point the SPGP marginal like-

lihood is equal to that of a full GP. This is because at this point KMN = KM = KN ,

and therefore QN = KN . Similarly the predictive distribution equation (2.10) also

collapses to the full GP predictive distribution equation (1.19). In fact it is easy to

show that if we then keep on adding more pseudo-inputs, i.e. let X̄ = {X,X+} for

any extra points X+, then still QN = KN . The extra points are entirely redundant

if we already have pseudo-inputs covering all training inputs. These facts help us

intuit that placing a pseudo-input anywhere is always beneficial in terms of getting

closer to the full GP solution. It never hurts to have too many pseudo-inputs, other

than via a wastage of resources if they are overlapping (approximately to within a

lengthscale of each other). One of the major advantages of the SPGP is that by al-

lowing the pseudo-inputs to vary continuously away from the training data points,

we try to make the best use of the limited resources when M ≪ N , to obtain better

solutions than the more restrictive strict subset based methods.

41



CHAPTER 2. COMPUTATIONALLY EFFICIENT GAUSSIAN PROCESSES

A second major advantage of the SPGP is the ability to smoothly optimise both hy-

perparameters and pseudo-inputs together. With other subset selection techniques,

you are forced to try to interleave subset selection with gradient based hyperpa-

rameter learning. Each time the subset is updated, the optimisation landscape for

hyperparameter learning is altered discontinuously. Seeger et al. [2003] discusses

problems getting this technique to reliably converge to suitable hyperparameter

values due to these discontinuities in the learning. The SPGP is a neat way to avoid

these problems.

However, the interplay between pseudo-input and hyperparameter learning is a

complicated one. The SPGP covariance is fundamentally more flexible than the full

GP. In the discussion above we argued that you can never have too many pseudo-

inputs. However, when we consider learning both hyperparameters and pseudo-

inputs, overfitting effects can sometimes occur, due to the interplay between them.

On the other hand this extra flexibility can afford advantages too, with some data

sets being better modelled by the SPGP than the original full GP. We will discuss

these issues further in chapter 4.

A disadvantage of this type of pseudo-input learning is that if either the number of

pseudo-inputs M or input dimension D is very large then the optimisation space

may be impractically big for gradient methods. We present some solutions to this

problem in chapter 4. The optimisation task is of course non-convex, and so we

have local optima problems. However, as we shall show by experiment, the ob-

vious sensible initialisation of pseudo-inputs randomly to data inputs gets around

this problem to a large degree.

An example of pseudo-input and hyperparameter optimisation

Figure 2.1 shows the SPGP predictive distribution for a simple 1D example, both

before and after pseudo-input and hyperparameter optimisation. In figure 2.1a,

the pseudo-inputs have all been initialised close to the centre of the range in an

adversarial position for demonstration. The pseudo-inputs determine the regions

in which the SPGP predictions are good, and hence it is only in the centre of the

range that the predictions are reasonable. The predictions are made poorer because

the hyperparameters have also been initialised to unsuitable values: the amplitude

and lengthscale are too big and the noise level is too small.

Figure 2.1b shows the SPGP prediction after joint optimisation of pseudo-inputs

and hyperparameters. The hyperparameters have adjusted to suitable values, and
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amplitude lengthscale noise

(a) SPGP predictions before optimisation. The pseudo-inputs are initialised adversarially to-
wards the centre of the range.

amplitude lengthscale noise

(b) SPGP predictions after pseudo-input and hyperparameter optimisation.

Figure 2.1: SPGP predictions before and after pseudo-input and hyperparameter
optimisation. The locations of pseudo-inputs are marked as back crosses; their
y positions are irrelevant. The values of hyperparameters are displayed as the
lengths of the blue bars.
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the pseudo-inputs have spread themselves along the range of the data, so that pre-

dictions are good everywhere. The predictions are close to those of a full GP with

only 15 pseudo-inputs used. The desirable characteristics of the full GP, such as the

growing predictive variances away from data, are preserved by the SPGP predic-

tive distribution.

Of course in this simple 1D example it would be very easy to spread 15 pseudo-

inputs roughly evenly along the input range beforehand, with no need for any

optimisation. However, the cases we are really interested in have higher dimen-

sional input spaces where it would require far too many pseudo-inputs to tile the

space densely and evenly. In this case the optimisation is a way of finding a best

configuration under the limited resources.

2.2.2 Relation to RBF networks

The idea of basis functions with movable centres (like pseudo-inputs) dates back

to radial basis function (RBF) networks [Moody, 1989]. Using our notation, an RBF

predictor is of the form:

f(x∗) =
∑

m

K(x∗, x̄m)αm , (2.14)

for some weights α and SE kernel K. In an adaptive RBF one could move the basis

function centres x̄m continuously perhaps by a least squares cost function. In this

respect one could regard the SPGP mean predictor equation (2.12) as a certain type

of adaptive RBF, with α = B−1KMN(Λ + σ2I)−1y.

However, the fundamental difference is that the SPGP has sensible predictive vari-

ances akin to a GP, and because it is a full probabilistic model, it has a principled

method for selecting pseudo-inputs and hyperparameters. A Bayesian RBF net-

work could be made by placing a Gaussian prior on the weights α. However this

would lead to exactly the type of degenerate GP discussed in section 1.6. In fact

with a particular Gaussian prior this would generate exactly the subset of regres-

sors (SR) approximation discussed in section 2.1.2. Unfortunately as we see in sec-

tion 2.3.2 SR does not have the type of predictive variances we want, because of

this degeneracy. We could perhaps regard the SPGP as a Bayesian adaptive RBF

network with sensible variances!
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2.3 Theoretical comparison of approximations

In section 2.2 we presented a description of the SPGP, based on the intuitive idea of

a pseudo-dataset parameterising a GP based model, and the subsequent learning

of these parameters. However, as we alluded to, we can also view the SPGP as two

rather separate methods. The first is the particular form of the SPGP approximation

as summarised by the SPGP covariance function equation (2.13). The second is the

determination of pseudo-inputs as a continuous optimisation task, based on the

SPGP marginal likelihood. These two ideas can be used independently if required.

For example, the SPGP approximation can be used in a standalone way by choosing

the pseudo-inputs as a random subset of the training data, or even with a greedy

subset selection technique. Equally the method of gradient based pseudo-input

optimisation could be applied to some previous approximations such as SR or PP.

In this section, we examine the properties of the approximation itself, independent

of how the pseudo-inputs are found, and we compare the approximation to others

in the literature such as SR and PP. To do this we will utilise the framework of

Quiñonero Candela and Rasmussen [2005], which brings together these approxi-

mations into one theoretical formalism. Whilst the derivation of the SPGP approx-

imation under this framework is essentially the same as presented in section 2.2,

the emphasis is different. Under this framework the emphasis is on how close the

approximation is to the full GP.

The starting point to any of the approximations is a set of inducing inputs X̄ =

{x̄m}M
m=1. Quiñonero Candela and Rasmussen [2005] introduced this blanket term

to refer either to a subset of the training inputs (‘active set’ or ‘support set’), or to

continuous ‘pseudo-inputs’ as we use in the SPGP. We will also adopt this termi-

nology as then it is quite clear that we could be talking about either type. The point

is that in terms of the mathematical forms of the approximations, the locations of

the inducing inputs are irrelevant.

Throughout this section we will illustrate the different approximations by plotting

their predictions on the same simple 1D dataset in figure 2.2. Only a very small

number of inducing inputs have been chosen, randomly from the training inputs,

so that some of the failure modes of the approximations are highlighted. Suitable

hyperparameters are assumed known, and the same hyperparameters and induc-

ing inputs used for all the approximations. Figure 2.2a shows the full GP solution

for comparison.
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(a) GP

(b) SD (c) SR

(d) PP (e) FIC

Figure 2.2: Comparison of predictions of different GP approximations. Predictions
are plotted with inducing inputs marked as black crosses.
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The simplest way of using the inducing points is to use them as the training data in

SD as described in section 2.1.1. The SD solution is shown in figure 2.2b, with the

data points upon which it is based highlighted with blue crosses. Based on such a

small number of points the SD prediction is very poor. The solution is clearly very

affected by the x locations of the chosen points. However not only that: in a noisy

regime, at a given x location the choice of individual points can skew the mean

prediction up or down by a large amount. In summary, SD cannot gain advantage

of the averaging effect of all the available data. For the same reason the predictive

variances are generally too large. Of course the SD solution could be substantially

improved by a better choice of points, but the point here is to highlight what hap-

pens in less than optimal situations, which is generally the case when we have

limited resources.

2.3.1 A unifying framework

The framework of Quiñonero Candela and Rasmussen [2005] looks at how the set

of inducing points can be used to approximate the full GP prior p(f , fT ) over train-

ing and test function variables. Given a set of inducing inputs, the GP prior can be

split into two parts:

p(f , fT ) =

∫

d̄f p(f , fT |̄f) p(̄f) , (2.15)

where the inducing variables f̄ are marginalised out. No approximation has been

made in this step. In the first stage to all the approximations, Quiñonero Candela

and Rasmussen [2005] make the approximation that f and fT are conditionally in-

dependent given f̄ :

p(f , fT ) ≈ q(f , fT ) =

∫

d̄f q(fT |̄f) q(f |̄f) p(̄f) . (2.16)

We will examine this assumption in more detail in chapter 3. Here the prior on

the inducing variables is exact: p(̄f) = N (0,KM). The various different sparse ap-

proximations are then derived by making additional approximations to the training

and test conditionals q(f |̄f) and q(fT |̄f). First we should note that the exact forms

of these two conditionals are simply the noiseless correlated GP predictors (equa-

tion (1.17b)):

p(f |̄f) = N
(
KNMK−1

M f̄ , KN − QN

)
(2.17a)

p(fT |̄f) = N
(
KTMK−1

M f̄ , KT − QT

)
. (2.17b)
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2.3.2 Subset of regressors (SR)

The subset of regressors (SR) approximation is derived in this framework by using

deterministic approximations (delta functions) for the conditionals:

q(f |̄f) = N
(
KNMK−1

M f̄ , 0
)

(2.18a)

q(fT |̄f) = N
(
KTMK−1

M f̄ , 0
)
. (2.18b)

The exact means from equation (2.17) are retained, but the covariances are entirely

dropped. Whilst it seems strange in this framework to use deterministic approxi-

mations, SR was not originally derived in this way. However it is exactly the drop-

ping of these covariances that causes problems for SR.

When we integrate out the inducing variables f̄ in equation (2.16), we arrive at the

SR approximate prior:

qSR(f , fT ) = N (0, K̃SR
N+T ) (2.19a)

K̃SR
N+T =

[

QN QNT

QTN QT

]

. (2.19b)

As we stated in section 2.1.2, this also corresponds to a degenerate GP with covari-

ance function Q(x,x′).

Figure 2.2c shows the SR prediction for the same 1D data set as discussed earlier

for SD. The SR mean predictor is for the most part very good in comparison to SD,

because it takes advantage of the averaging effect over all the training data. The

approximation is still governed by the location of the inducing points, so in areas

away from them, the mean prediction can be poor (tends back to zero mean). The

big problem with SR is that the predictive variance is small away from inducing

inputs (tends to the noise level σ2). This is disastrous, because the regions away

from inducing inputs are precisely the regions where the approximation is poor,

and hence uncertainty should be high. Figure 2.2c shows data points falling well

outside the two standard deviation predictive envelopes. This problem is caused

by the deterministic nature of the approximations of equation (2.18), because uncer-

tainty that should be present is not included. It is also essentially the same problem

as faced by any degenerate GP, or finite linear model, as compared to the full non-

parametric GP.

Quiñonero Candela and Rasmussen [2005] suggest renaming these different ap-
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proximations with more descriptive names relating to their approximation frame-

work. Under this scheme SR becomes the Deterministic Inducing Conditional approx-

imation (DIC).

2.3.3 Projected process (PP)

The PP approximation solves some of the problems of SR, by reinstating the test

conditional covariance. The training conditional remains deterministic like SR:

q(f |̄f) = N
(
KNMK−1

M f̄ , 0
)

(2.20a)

q(fT |̄f) = p(fT |̄f) . (2.20b)

Again, whilst it seems strange to leave the training conditional deterministic, PP

was not originally derived in this way (see section 2.3.6).

When we integrate out the inducing variables f̄ (equation (2.16)), we arrive at the

PP approximate prior:

qPP(f , fT ) = N (0, K̃PP
N+T ) (2.21a)

K̃PP
N+T =

[

QN QNT

QTN KT

]

. (2.21b)

Notice how the test self covariance block of the PP prior covariance is now exact:

KT . This ensures that the PP predictive distribution has full variance away from

inducing inputs. Figure 2.2d demonstrates this effect showing that PP has much

more desirable predictive variances than SR. The predictive means of SR and PP

are exactly the same. However the remaining deterministic training approximation

equation (2.20a) causes PP to ‘break’ in the low noise regime (see section 2.3.8).

PP has exactly the same marginal likelihood as SR:

qPP/SR(y) = N (0,QN + σ2I) . (2.22)

Since the training and test variables are treated differently under PP, unlike SR it

does not correspond to a GP model with a particular covariance function. Under

Quiñonero Candela and Rasmussen [2005]’s naming scheme PP becomes Determin-

istic Training Conditional (DTC).

49



CHAPTER 2. COMPUTATIONALLY EFFICIENT GAUSSIAN PROCESSES

2.3.4 The fully independent (training) conditional (FI(T)C)

approximation

FIC is the approximation we developed for the SPGP as described in section 2.2, re-

named according to Quiñonero Candela and Rasmussen [2005]’s naming scheme.

To derive FIC within this framework, we make the approximation that the func-

tion variables in both the training and test conditionals of equation (2.17) are fully

independent:

q(f |̄f) =
∏

n

p(fn |̄f) (2.23a)

q(fT |̄f) =
∏

t

p(ft |̄f) . (2.23b)

Note that the independence approximation is a way of reinstating part of the lost

training conditional covariance of PP, whilst keeping the model tractable. If no

independence approximation were made we would be back to inverting the full

training covariance KN + σ2I. We are retaining the marginal variances in the con-

ditionals, but dropping any correlations (replacing the full conditional covariance

with a diagonal one). This independence approximation is equivalent to the i.i.d.

assumption we made in the earlier derivation of the SPGP in section 2.2.

With these approximations we compute the integral of equation (2.16) to obtain the

FIC approximate prior distribution:

qFIC(f , fT ) = N (0, K̃FIC
N+T ) (2.24a)

K̃FIC
N+T =

[

QN + diag[KN − QN ] QNT

QTN QT + diag[KT − QT ]

]

. (2.24b)

Notice that since the training and test variables are treated in exactly the same way,

there was no need in this case to first separate them out as in equation (2.16).

All function variables are conditionally independent given f̄ . Therefore, as we

noted in the derivation of the SPGP (equation (2.13)), the FIC approximation corre-

sponds to a standard GP model with a particular covariance function: K̃FIC(x,x′) =

Q(x,x′) + δxx′ [K(x,x)−Q(x,x)]. In contrast to PP, the delta correction means that

all the marginal variances of the FIC prior match the full GP exactly: K(x,x).

The FIC predictive distribution is formed from the blocks of equation (2.24b) in the
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same way as equation (1.17) for the full GP:

p(yT |y) = N (µFIC
T ,ΣFIC

T ) , (2.25a)

µFIC
T = QTN [K̃FIC

N + σ2I]−1y

ΣFIC
T = K̃FIC

T − QTN [K̃FIC
N + σ2I]−1QNT + σ2I .

(2.25b)

The FITC approximation differs slightly from FIC in that only the training condi-

tional is factorised. The test conditional remains exact:

q(f |̄f) =
∏

n

p(fn |̄f) (2.26a)

q(fT |̄f) = p(fT |̄f) . (2.26b)

The FITC predictive distribution is therefore identical to FIC apart from the approx-

imate K̃FIC
T being replaced with the exact KT in the predictive covariance. However

the difference is only apparent if you want to make correlated predictions. Since the

diagonal of K̃FIC
T is exact (diag K̃FIC

T = diag KT ), the marginal predictive variances

of FITC and FIC are exactly the same. In either case therefore the FI(T)C single test

case predictive distribution is exactly as reported in equation (2.10) for the SPGP:

µFIC
∗ = Q∗N [K̃FIC

N + σ2I]−1y (2.27a)

(σ2
∗)

FIC = K∗ − Q∗N [K̃FIC
N + σ2I]−1QN∗ + σ2 . (2.27b)

Figure 2.2e shows the FI(T)C predictions on the 1D example. In this case the pre-

dictions are very similar to PP, but this is not always the case (see section 2.3.8).

Whilst it is perhaps a little tedious to have gone through two derivations with

essentially the same content in this section and in section 2.2, the different em-

phases have their own merits. The original SPGP derivation inspired the treatment

of the pseudo-inputs as parameters. This framework of Quiñonero Candela and

Rasmussen [2005] is the more useful for theoretical comparison to other approxi-

mations. We suggest that the term FIC or FITC is adopted when referring purely to

the approximation, and the term SPGP is reserved for the entire process of the FIC

approximation together with gradient based pseudo-input learning.
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(a) A sample from a GP prior (magenta line) generated in two stages.
First the inducing variables are sampled (red dots), and then the
rest of the sample is generated from the conditional.

(b) The FIC factorised conditional approximation is represented by the
mean and two standard deviation envelopes.

Figure 2.3: Two stage sampling methods for a full GP and FIC
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(a) Covariance of the GP
prior

(b) Covariance of the condi-
tional p(f(x)|̄f)

(c) FIC diagonal approxima-
tion to the conditional

= +

(d) FIC approximate covariance, as constructed from the low rank and diagonal parts. This is
a graphical representation of: K̃FIC(x,x′) = Q(x,x′) + δ

xx
′(K(x,x) − Q(x,x)).

Figure 2.4: Graphical representation of various covariances from the FIC derivation

2.3.5 A graphical derivation of FIC

For intuition and understanding it is useful to view some of the covariances in-

volved in the derivation of FIC in a graphical form, just as we showed the full

GP prior covariance in figure 1.2. To start with consider the following two stage

process for generating a sample function from a GP prior. We first pick a set of

inducing inputs X̄ and generate corresponding inducing variables f̄ from the prior

p(̄f). Secondly we generate the rest of the sample function from the posterior pro-

cess p(f(x)|̄f). This is shown in figure 2.3a, where we have chosen inducing inputs

in two clumps for the purposes of illustration. This is a graphical representation

of equation (2.15), and of course the sample is a true sample from the original GP

prior.

Figure 2.4b shows a plot of the covariance of the conditional p(f(x)|̄f). We can see

that in comparison to the prior GP covariance figure 2.4a, the two clumps of induc-

ing points remove two chunks of covariance, corresponding to these regions of high

certainty. In the derivation of FIC it is this covariance matrix that is approximated

by its diagonal in equation (2.23). This covariance approximation is displayed in
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figure 2.4c, and represented in figure 2.3b by the mean and two standard deviation

lines.

In the final stage of the derivation we integrate over the unknown inducing vari-

ables f̄ to get the FIC approximate prior of equation (2.24). The FIC prior covariance

is represented graphically in figure 2.4d, showing how it is broken down into a very

low rank part and a diagonal part. Notice how the low rank part (Q) contributes

two chunks of covariance in the regions of the inducing points, and the diagonal

part adds a ‘correction’ to ensure that the diagonal of the final approximation is

exact. This plot enables us to graphically understand how the positions of the in-

ducing points control the regions of correlations in the prior.

2.3.6 Optimal KL derivations

Within the framework discussed in the previous sections it seems fairly clear that

the FIC approximation is ‘closer’ to the full GP than PP, in the sense that PP throws

away relevant uncertainty whereas FIC partly retains it. Can this be justified a little

better theoretically?

The Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951] is a natural mea-

sure of ‘closeness’ for probability distributions (see section B.4). Therefore when

analysing approximations it is natural to ask which approximation is closer under

KL to the exact. In the framework discussed in the previous sections we have the

exact GP prior p(f , f̄) = p(f |̄f)p(̄f), where here we are changing notation slightly us-

ing f to refer to any function variables, training or test. The approximations made

are all of the form q(f , f̄) = q(f |̄f)p(̄f). In other words the prior on the inducing

variables is kept exact, and some form of approximation made to the conditional.

The FIC approximation can be derived as minimising KL[p(f , f̄)‖q(f , f̄)] subject to

the independence constraint q(f |̄f) =
∏

i qi(fi |̄f), where the minimisation is over all

qi.
2 The solution is simply qi(fi |̄f) = p(fi |̄f), i.e. approximate the full conditional

with a product of single variable conditionals, as in equation (2.23). If no factori-

sation constraint were applied, then of course the solution would just be the exact

GP. Therefore under this KL measure FIC is strictly closer to the full GP than PP

(or SR).

It turns out that the PP approximation can also be derived using an optimal KL

argument [see Seeger et al., 2003]. Firstly, PP was derived as a likelihood approxima-

2We thank Peter Sollich for pointing out this fact.

54



CHAPTER 2. COMPUTATIONALLY EFFICIENT GAUSSIAN PROCESSES

tion, rather than as an approximation to the prior. Therefore to follow the argument

we need to also consider the outputs y, and the full joint p(f , f̄ ,y). This joint can be

rewritten: p(y|f)p(f |̄f)p(̄f). The exact likelihood p(y|f) is simply the noise around

the function: N (f , σ2I). To get PP we approximate p(y|f) by a distribution that is

restricted only to depend on f̄ : q(y|̄f). Then if we minimise the KL the ‘wrong’

way around, KL[q(f , f̄ ,y)‖p(f , f̄ ,y)], we get the solution q(y|̄f) = N (E [f |̄f ], σ2I).

We can see how this is essentially equation (2.20a) of PP with the noise included.

In this case no factorisation constraint is necessary — the fact that the exact likeli-

hood p(y|f) is already factorised (white noise) ensures that the approximation will

be too.

To summarise: the exact joint may be written p(y|f) p(f |̄f) p(̄f). The approximations

are then:

Method Approximation KL minimisation

FIC p(y|f) ∏

i qi(fi |̄f) p(̄f) (p to q)

PP q(y|̄f) p(f |̄f) p(̄f) (q to p)

We feel that the optimal KL argument for PP is unnatural. Firstly the KL diver-

gence is the ‘wrong’ or variational way around, which means that the approximate

distribution is being averaged over, rather than the exact. Secondly, the likelihood

seems the wrong place to be making the approximation, as it is simply the addi-

tion of white noise. It is not this term which makes GP regression computationally

intensive, but rather the full correlations in the GP prior. The conditional indepen-

dence approximation in FIC breaks some of these correlations and seems a cleaner

way to achieve computational tractability.

2.3.7 Sparse online Gaussian processes

Csató and Opper [2002], Csató [2002] presented sparse GP methods that process

data sequentially (online) and that were particularly designed to approximate non-

Gaussian likelihoods. These methods are also based on a subset of data points,

and so are naturally related to the ones we have discussed. The methods process

one data point at a time and consist of a Gaussian projection to deal with the non-

Gaussianity of the likelihood, and a projection onto a sparse model to limit compu-

tation. Clearly the first projection is exact in the case of regression with Gaussian

noise. Csató [2002] rarely discusses the batch regression case as opposed to the

sequential classification case, however the method is equivalent to PP in the batch
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regression case. This can be seen by referring to section 4.5 of Csató [2002]’s the-

sis, which is the one place where he makes a direct comparison with batch regres-

sion, and where the equations given are the PP equations. The sparsity projection

presented in Csató [2002] uses essentially the same KL derivation as presented in

section 2.3.6 to derive PP.

It has only very recently become clear that FITC is in fact a batch version of the

online scheme presented in [Csató and Opper, 2002]. Superficially [Csató, 2002]

appears to be an extended version of [Csató and Opper, 2002], and hence [Csató

and Opper, 2002] had been previously taken as being equivalent to PP also. How-

ever the sparsity projection in [Csató and Opper, 2002] is actually slightly different

to that in [Csató, 2002], and is in fact equivalent to a KL (p to q) projection not (q

to p). Unfortunately it has taken a long while for the equivalence to FITC to be

realised, partly due to the presentation and derivation styles being so different be-

tween [Csató and Opper, 2002] and [Snelson and Ghahramani, 2006a, Quiñonero

Candela and Rasmussen, 2005]. It is clear now that Csató [2002], Csató and Opper

[2002] are the originators of both the PP and FITC approximations, albeit in sequen-

tial form. Although Csató and Opper [2002] use the FITC approximation, they do

not seem to consider the FITC marginal likelihood for adjustment of hyperparam-

eters.

We briefly try to give a high level correspondence between Csató and Opper [2002]’s

online scheme and the KL derivation of FITC presented in section 2.3.6. We do this

by interpreting Csató and Opper [2002]’s online scheme in the language of this

thesis. Csató and Opper [2002] consider projections onto a sparse posterior process:

q(fT |yn) =

∫

d̄f p(fT |̄f)qn(̄f) , (2.28)

where qn(̄f) is a Gaussian approximate posterior at the inducing points, having

currently observed n training points. Notice that this essentially corresponds to the

conditional independence assumption between training and test points of equa-

tion (2.16). Starting with the exact prior q0(̄f) = p(̄f), at each step of the online

scheme a new training point is included with the current approximation: p̂(̄f |yn+1) ∝
p(yn+1 |̄f)qn(̄f). Then moments are matched at the inducing points between p̂(̄f |yn+1)

and the new approximate posterior qn+1(̄f).
3 In the regression case of course this

moment matching is exact, but the important point is that the sequential processing

has induced a factorisation assumption equivalent to the one in section 2.3.6, and

3This type of online posterior update is known as assumed density filtering (ADF), and is the single
sweep precursor to the expectation propagation (EP) algorithm discussed in section 1.7.
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the moment matching is equivalent to minimising KL (p to q). In the regression case

therefore, after all N data points have been processed, the approximate posterior

is:

qN (̄f) ∝
N∏

n=1

p(yn |̄f)p(̄f) . (2.29)

This leads to the posterior process (from equation (2.28)):

q(fT |y) ∝
∫

d̄f p(fT |̄f)
N∏

n=1

p(yn |̄f)p(̄f) , (2.30)

which is exactly the FITC approximation. Although the correspondence seems

clear with hindsight, the presentation we have just given is quite different to that

in [Csató and Opper, 2002].

2.3.8 Low noise problems for PP

The fact that PP was derived in section section 2.3.6 as a likelihood approxima-

tion, i.e. an approximation to the noise distribution, may suggest that things might

go wrong in low noise situations. There are two different aspects to look at: the

marginal likelihood approximation, and the predictive distribution. Consider fig-

ure 2.5 which shows some data drawn from a low noise GP. Also plotted are the

two standard deviation lines of marginal likelihood variance,4 for the full GP, SR,

PP, and FIC, with some centrally placed inducing points. We see that the full GP

and FIC have lines of constant variance (K(x,x) + σ2), whereas the PP (and SR)

lines decay to the noise level away from the inducing points. Therefore in the low

noise regime, the data shown has a tiny probability of being drawn under the PP

marginal likelihood equation (2.22). Although the FIC marginal likelihood equa-

tion (2.9) lacks correlations away from inducing points, at least the variances are

correct, and therefore the probability of the data being drawn is still reasonably

high. Empirically we can observe that the value of the FIC marginal likelihood is

much closer to the full GP for the low noise data of figure 2.5:

Approximation log likelihood

GP 534

FIC 142

PP (SR) -1.14 ×105

4The marginal likelihood variance is the diagonal of the training covariance matrix plus noise.
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Figure 2.5: Comparison of marginal likelihood approximations in low noise regime.
Plotted are the two standard deviation lines of the marginal likelihood variance.
Grey, dashed = full GP and FIC. Blue, solid = PP and SR.

Figure 2.5 shows the inducing inputs clustered in the centre of the input range.

Of course with enough inducing inputs covering the entire input space then both

FIC and PP marginal likelihoods tend to the GP marginal likelihood, for reasons

discussed in section 2.2.1. However in a realistic situation this is unlikely to be the

case due to limited resources.

The second aspect of the approximation is the predictive distribution. Figure 2.2

shows the FIC and PP predictive distributions extremely similar to one another.

However, again in the low noise regime the situation changes. Figure 2.6 is essen-

tially the same plot with close to zero noise data. We see that PP catastrophically

‘breaks’ because at the locations of the inducing points, it makes predictions with

almost zero variance ‘off’ the data. The problem is not the zero variance — the

places with inducing points are exactly the locations where the function should

be known with certainty (since there are also data points here in this example).

The problem is that the PP mean function does not pass through these data points.

Incidentally the SR prediction is even worse as it predicts with zero variance every-

where.

A further surprise when comparing figures (b) and (e) is that the FIC solution is

exactly the same as SD in this regime, although further theoretical analysis below
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(a) GP

(b) SD (c) SR

(d) PP (e) FIC

Figure 2.6: Comparison of predictions of different GP approximations in a low
noise regime. Predictions are plotted with inducing inputs marked as black crosses.
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shows that in fact this must be the case. The FIC/SD solution also has zero vari-

ance predictions at the inducing points, but the data points at these positions are

all exactly interpolated by the mean function (as we know must be the case for SD).

What is happening with FIC is that the extra uncertainty in the model allows it to

completely ignore the data away from the inducing inputs, and the solution col-

lapses to SD. With PP the mean solution continues to be influenced by other data

around the inducing inputs, and so the solution breaks. Clearly in this zero noise

situation using FIC is an expensive way of doing SD! However, in more intermedi-

ate situations we know that FIC is a safe approximation that does not break, unlike

PP.

For the reasons given here concerning low noise problems with PP, and for the

fact that FIC can be considered a closer approximation to the full GP as outlined

in section 2.3.6, we suggest that the FIC approximation is used in preference to PP

in all cases. There is very little difference in cost of implementation, so as far as

we can see there is no good reason to continue to use PP. The decision of whether

to use the full SPGP method of choosing pseudo-inputs is a further one to make,

and we shall empirically evaluate this in the experiments. However, as we stated

before one can always choose to use the FIC approximation standalone from the

SPGP, using whatever inducing point selection method is preferred.

Collapse of FIC to SD in zero noise

In this section we show that under a few reasonable assumptions all ‘non-broken’

approximations must collapse to SD in the zero noise limit. Suppose we have a

GP approximation that is based on a set of M inducing inputs. We assume the

predictive mean function will take on the following form:

µ(x) = KxMTMNyN , (2.31)

for some TMN that is only a function of the data inputs and inducing inputs, not

a function of the outputs yN . This type of mean function is common to all the

different sparse approximations.

Consider the case where the inducing inputs are a subset of the training inputs.

Suppose that the predictive variance reduces to the noise level at the inducing in-

puts: σ2
M = σ2. If we are in a noiseless regime, then this assumption implies we

predict with total confidence at a point where we have an observed data point and
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an inducing input. Again, this property is common to all the sparse approxima-

tions.

For the predictive distribution not to be broken in the noiseless regime, we must

therefore require that the mean function passes exactly through the data points at

the inducing inputs:

µM ≡ yM (2.32)

⇒ KMTMNyN = yM

⇒ KMTMMyM + KMTM(N\M)y(N\M) = yM

⇒ (KMTMM − I)yM + KMTM(N\M)y(N\M) = 0 .

Here we have split the data points into those with inducing inputs, and those with-

out. Since this expression must hold for any setting of yN , and since TMN is not a

function of yN , the above matrix coefficients must be zero:

KMTMM − I ≡ 0 (2.33)

⇒ TMM = K−1
M

and

KMTM(N\M) ≡ 0 (2.34)

⇒ TM(N\M) = 0 .

Plugging these results back into equation (2.31) gives the predictive mean:

µ(x) = KxMK−1
M yM , (2.35)

which is exactly the noiseless subset of data (SD) predictive mean.

The same type of argument can be made for the predictive (co)variance. We assume

that the predictive (co)variance takes the following form:

Σ(x,x′) = K(x,x′) − KxMUMMKMx′ + σ2δxx′ , (2.36)

for some UMM which could depend on all N training inputs. This is the case for

PP/FIC. When σ2 = 0, again making the assumption that the predictive (co)variance

61



CHAPTER 2. COMPUTATIONALLY EFFICIENT GAUSSIAN PROCESSES

must vanish at the inducing inputs (ΣM ≡ 0) implies:

KM − KMUMMKM ≡ 0 (2.37)

⇒ I − UMMKM = 0

⇒ UMM = K−1
M .

Plugging this back into equation (2.36) gives exactly the noiseless SD predictive

(co)variance. Essentially the noiseless regime constrains the systems of equations

so much so that the only solution is to ignore all data points apart from the ones at

the inducing points, and to interpolate these data points exactly as SD does.

In the noisy regime (σ2 6= 0), then the predictive mean need not pass exactly

through the data points at the inducing inputs i.e. equation (2.32) does not hold.

Similarly equation (2.37) does not hold because ΣM 6= σ2I — we would expect it to

have full covariance structure.5

In the noiseless regime there are only a few ways in which the predictive distribu-

tion could not reduce to SD. Firstly, we may not want the assumption ΣM ≡ 0 to

hold. However this would be slightly strange — given we have an observation, an

inducing input in the same place, and zero noise, then it seems reasonable to pre-

dict with total confidence there. Secondly we may move the inducing inputs away

from the training data. Now SD does not make sense. This is exactly what happens

when training the SPGP with gradients. Thirdly, we may come up with alternative

sparse approximations that do not have equation (2.31) and equation (2.36) as the

functional forms for their predictive mean and variance.

2.4 Classification

The GP approximations that we have discussed in this chapter can also be applied

to speed up GP classification. The extra complication is that they have to be em-

bedded inside an expectation propagation (EP) approximation to deal with the non-

Gaussian likelihood, as discussed in section 1.7. The IVM [Lawrence et al., 2003] can

be considered as the SD approximation inside an EP approximation, together with

a greedy forward selection algorithm for choosing the subset (that does depend on

all the data). Csató [2002], Csató and Opper [2002]’s sparse online Gaussian pro-

cesses can be seen as implementing PP and FITC for classification as discussed in

5Only the marginal predictive variances are constrained in the noisy case: Σmm = σ2.
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section 2.3.7. Originally these were single sweep online algorithms, but later Csató

[2002] did convert to the multiple sweep EP versions. Seeger [2003] also uses the

PP approximation with EP for classification.

It would even be possible to extend the SPGP method of optimising pseudo-inputs

using gradients of the approximate marginal likelihood from EP. Recently Seeger

et al. [2007] have argued much more in favour of the IVM for classification rather

than any more sophisticated approximation such as PP or FITC. Their main argu-

ment is that the IVM only requires M EP ‘site’ approximations rather than the full

N that are needed by the more accurate PP or FITC. We certainly agree that im-

plementing the SPGP for classification is expensive in this regard — each gradient

computation requires running EP until convergence at all N sites. However, the

cruder approximation of the IVM with its forward selection algorithm still causes

problems for hyperparameter learning. The SPGP would benefit from its smooth

joint optimisation of pseudo-inputs and hyperparameters. It will be interesting fu-

ture work to see if the SPGP for classification is worthwhile or whether the costs of

the EP updates are too prohibitive.

2.5 Results

In this section we present some results for the FIC approximation and the SPGP.

Since our goal is to achieve the best performance on a test set for a given com-

putation time, we show graphs of test error vs. time. The implementations were

done in MATLAB,6 and experiments made on the same 2.4 GHz machine. We use

the SE-ARD covariance function equation (1.21) throughout. Optimisations were

made using a standard conjugate gradient optimiser.

2.5.1 Datasets and error measures

We test our methods on three different regression data sets, whose properties are

summarised in table 2.1. These are data sets that have been used in the literature to

test GP methods before, and so we have preserved the splits of training and test sets

to allow direct comparison. SARCOS is a data set used by Rasmussen and Williams

[2006], and before that by Vijayakumar et al. [2002].7 The task is to learn the inverse

6Dominant computations such as Cholesky decompositions use the appropriate efficient LAPACK
routines.

7The data is available at http://www.gaussianprocess.org/gpml/data/.
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Data set SARCOS KIN40K Abalone

Input dimension (D) 21 8 8
Training set size (N ) 44,484 10,000 3,133
Test set size (T ) 4,449 30,000 1,044

Table 2.1: Properties of the data sets

dynamics of a robot arm — to map from the 21 dimensional joint position, velocity,

and acceleration space to the torque at a single joint. This is a highly nonlinear

regression problem.

KIN40K is a similar data set, with the object to predict the distance of a robot arm

head from a target, based on an 8 dimensional input space consisting of joint po-

sitions and twist angles. This data set has been used by Schwaighofer and Tresp

[2003] and by Seeger et al. [2003] to assess GP approximations.8 It is also a highly

nonlinear data set.

Abalone [Blake and Merz, 1998] is a smaller data set,9 that is actually small enough

to be handled in reasonable time by a full GP. However it is a different type of

data set from the previous two, and illustrates some useful results. The object is to

predict the age of abalone from 8 physical measurements.

We use two error measures on the test sets. The first is mean squared error (MSE),

which only depends on the mean µ∗ of the predictive distribution:

MSE =
1

T

T∑

t=1

(yt − µt)
2 . (2.38)

For KIN40K we scale this MSE by 1
2 to allow comparison to Seeger et al. [2003]. The

second error measure we use is negative log predictive density (NLPD) which also

takes into account the predictive variance σ2
∗ :

NLPD =
1

T

T∑

t=1

[
(yt − µt)

2

2σ2
t

+
1

2
log(2πσ2

t )

]

. (2.39)

Just like for MSE, smaller is better for NLPD.

8The data is available at http://ida.first.fraunhofer.de/˜anton/data.html.
9The data is available at http://www.ics.uci.edu/˜mlearn/MLSummary.html.
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2.5.2 Prediction times

In section 2.1 we discussed how we may require different strategies depending on

whether prediction cost or training cost is the more important factor to the user. In

this section we test one of these extremes by looking at performance as a function

purely of prediction time. The aim is to assess firstly whether the FIC approxima-

tion of section 2.3.4 performs better than the baseline SD method of section 2.1.1,

and secondly whether the SPGP method of finding pseudo-inputs (section 2.2.1)

performs better than random subset selection.

To make this comparison we use a ‘ground truth’ set of hyperparameters that are

obtained by maximising the SD marginal likelihood on a large subset of size 2,048,

for all three data sets. Since we are assessing pure prediction times here, we do not

worry about the training cost of the hyperparameter learning. Section 2.5.3 looks

at this cost.

Figure 2.7 shows plots of test MSE or NLPD vs. total test prediction time (after any

precomputations) on the three data sets of section 2.5.1, for three different methods.

The first method is SD, with points plotted as blue traingles. We vary the size of

the subset M in powers of two from M = 16 to M = 4, 096,10 and the subset is

chosen randomly from the training data. The FIC approximation is plotted as black

stars, and uses exactly the same random subset as SD as its inducing inputs. Finally

we show the pseudo-input optimisation of the SPGP as the red squares, where the

initialisation is on the random subset.11 This pseudo-input optimisation does not

include the joint hyperparameter optimisation as discussed in section 2.2.1. Here

we want to separate out these two effects and just show how the pseudo-input

optimisation improves FIC with random subset selection. In this section all three

methods rely on the same ‘ground truth’ hyperparameters.

Figure 2.7 helps us assess which method one should choose if one wants to obtain

the best performance for a given test time. Curves lying towards the bottom left

of the plots are therefore better. This type of requirement would occur if you had

an unlimited offline training time, but you need to make a rapid series of online

predictions. Since prediction time for all these methods only depends on the sub-

set/inducing set size, and is O(M2) per test case, these plots also essentially show

how performance varies with subset size.

10For Abalone the final point is the entire training set of size 3,133.
11For FIC and SPGP we stop at a smaller maximum subset size than SD, depending on the data set,

due to the training or precomputation costs becoming unreasonably large.
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(b) SARCOS. NLPD.
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(c) KIN40K. MSE.
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(d) KIN40K. NLPD.
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(e) Abalone. MSE.

10
−3

10
−2

10
−1

10
0

10
1

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

prediction time/s

N
L

P
D

(f) Abalone. NLPD.

Figure 2.7: Test error vs. prediction time for the three data sets SARCOS, KIN40K,
and Abalone. Blue triangles: SD + random subset. Black stars: FIC + random
subset. Red squares: SPGP (with fixed hyperparameters). The different plotted
points were obtained by varying M , the size of the subset or number of inducing
points.
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Figures 2.7 (a)–(d) show qualitatively similar trends for the highly nonlinear data

sets of SARCOS and KIN40K. Firstly the FIC approximation is significantly better

than SD for the same random subset. Using information from all the training data

clearly helps as compared to throwing it away. These plots then show that opti-

mising inducing inputs with the method of the SPGP makes a further significant

improvement in accuracy for a given cost. The SPGP is able to achieve very high

accuracy for only a small inducing set. The complexity of these data sets means

that there is not much of a saturation effect — as the subset size is increased or

more time is spent then performance keeps increasing. Using the SPGP however

helps drive towards saturation much earlier.

Figures (e) and (f) show slightly different effects for Abalone. The main difference

is that there is a definite saturation effect. This data set is very likely to be much sim-

pler than SARCOS and KIN40K, and so a maximum performance level is reached.

However for SD we still require a relatively large subset to reach this saturation.

This is in contrast to FIC and the SPGP, which reach this saturation with only a tiny

inducing set of M = 32. Here the full GP performance is matched, and so there is

no point increasing the inducing set size further. Prediction times are consequently

extremely fast. In this case optimising inducing points with the SPGP does not

improve much beyond random, apart from a slight bettering of NLPD.

In summary, if you want to get the most out of a set of inducing inputs, then you

should use the FIC approximation and optimise them with the SPGP. The caveat

of course is that the SPGP optimisation is a much more expensive operation than

random subset selection, and we also have hyperparameter training to take into

account. These issues are addressed in the next section.

2.5.3 Training times

In this section we investigate the opposite regime to section 2.5.2. We look at

performance as a function of training time exclusively. We want to compare FIC

with random subset selection to the full SPGP optimisation. At first sight it seems

that FIC will be a clear winner because random selection is so much cheaper than

pseudo-input optimisation. However, the advantage of the SPGP is that it can ob-

tain hyperparameters at the same time as pseudo-inputs, using the SPGP marginal

likelihood. In section 2.5.2 we used ‘ground truth’ hyperparameters obtained by

training SD on a very large subset. This ‘ground truth’ hyperparameter training is

very expensive. It would not be particularly fair to FIC to simply add on this train-
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ing time, because perhaps we can get away with finding hyperparameters from a

much smaller subset.

The various strategies available for hyperparameter learning make comparison dif-

ficult. We decided to test one reasonable strategy for FIC: for each value of M in

the FIC approximation we obtain hyperparameters by training SD on the same size

subset. However, a problem with using SD to find hyperparameters is that if M is

too small there is simply not enough data to determine reasonable hyperparame-

ters, and we get very poor results. We set a threshold of M = 256, below which this

strategy for FIC is not viable. We therefore tested this strategy with M = 256, 512,

1024, and 2048. For the SPGP there is no such complication: we simply optimise the

SPGP marginal likelihood jointly to find both pseudo-inputs and hyperparameters.

Figure 2.8 shows that even when looking purely at training times, the SPGP optimi-

sation is not as expensive as might be first thought when hyperparameter learning

is factored into the comparison. However it is fair to say, at least for SARCOS and

KIN40K, that FIC with random selection is probably the better strategy. This means

that if you want to get the best accuracy for a given training time, and you do not

care about prediction time, then you should use SD to first find hyperparameters,

and then use the FIC approximation with the same random inducing set. By fol-

lowing this strategy though you sacrifice speed in the predictions. For Abalone

we see the saturation effect again, but also a curious rising SPGP NLPD line which

we discuss in the next section.

We could have investigated total training and test time, rather than each individ-

ually. However the total training and test time is not really meaningful when the

overall data set has been split arbitrarily into training and test sets for the purposes

of testing machine learning methods. It very much depends on the application as

to whether figure 2.7 or figure 2.8 is the more relevant figure.

In some low dimensional problems it may be possible to avoid the marginal like-

lihood based hyperparameter learning by using cross validation to choose them

instead. However for any reasonably sized input space, when we use the SE-ARD

covariance with a lengthscale per dimension, the number of hyperparameters is

simply too big to use CV.
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(b) SARCOS. NLPD.
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(c) KIN40K. MSE.
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(d) KIN40K. NLPD.
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(e) Abalone. MSE.
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(f) Abalone. NLPD.

Figure 2.8: Test error vs. training time for the three data sets SARCOS, KIN40K,
and Abalone. Black stars: FIC + random subset. Blue circles: SPGP, including
hyperparameter learning. The different plotted points were obtained by varying
M , the size of the subset or number of inducing points.
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2.5.4 SPGP hyperparameters

A further point which figure 2.7 and figure 2.8 somewhat obscure, is whether the

SPGP marginal likelihood gives better hyperparameters than the ‘ground truth’. In

figure 2.9 we replot the SPGP test errors as a function of the number of pseudo-

inputs M . We replot the red squares from figure 2.7 showing the SPGP with opti-

mised pseudo-inputs but fixed ‘ground truth‘ hyperparameters. We replot the blue

circles from figure 2.8 showing the SPGP with both pseudo-inputs and hyperpa-

rameters optimised.

The results for NLPD are clear. Using the SPGP marginal likelihood to learn hy-

perparameters jointly with pseudo-inputs offers a significant performance increase

for the same inducing set size, compared with obtaining hyperparameters using a

large SD. Though the ‘ground truth’ hyperparameters were obtained from an SD

of size 2,048, the SPGP marginal likelihood uses all training data even when M is

small, and therefore extra benefit is obtained. Interestingly this seems to come at

expense of a slightly worse MSE for both KIN40K and Abalone. If you care about

the quality of your predictive variances then SPGP hyperparameter optimisation is

clearly worthwhile.

The final interesting observation is the rising line of blue circles on figure 2.9f for

Abalone NLPD, as the number of pseudo-inputs is increased. What seems to

be happening is that the SPGP is able to find a higher likelihood solution with a

smaller set of pseudo-inputs, and that this is leading to better performance than

even a full GP. When the number of pseudo-inputs is increased, local minima pre-

vent the SPGP from finding such a good solution, and the error rises back towards

that of the full GP. This is an example of the ability of the SPGP to model some data

better than a full GP due to the inherent extra flexibility in the SPGP covariance. We

discuss this at length in chapter 4.

2.5.5 Other subset selection methods

To give an idea of how the SPGP pseudo-input optimisation performs compared

to other subset selection methods in the literature, we reproduce some plots from

Seeger et al. [2003] in figure 2.10.12 This shows test MSE for KIN40K using a set

of ‘ground truth’ hyperparameters, just as in figure 2.7c except with a different

range of M . Figure 2.10a shows Seeger et al. [2003]’s very cheap info-gain selection

12We would like to thank the authors Seeger et al. [2003] for allowing us to use their figure.
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(e) Abalone. MSE.
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Figure 2.9: Test error vs. number of pseudo-inputs for the three data sets SARCOS,
KIN40K, and Abalone. Red squares: SPGP with fixed ‘ground truth’ hyperparam-
eters. Blue circles: SPGP with both pseudo-inputs and hyperparameters optimised.
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Figure 2.10: Comparison of SPGP to subset selection methods. Plotted is test MSE
for the KIN40K data set as a function ofM . (a) shows Seeger et al. [2003]’s info-gain
selection method, and (b) shows Smola and Bartlett [2001]’s selection method, us-
ing the PP approximation. Overlaid as the red squares is the SPGP. The horizontal
lines are the performance of a subset of data (SD) of size 2000. Hyperparameters
are fixed as ‘ground truth’ for all three methods.

method, and figure 2.10b shows Smola and Bartlett [2001]’s more expensive selec-

tion method, in conjunction with the PP approximation of section 2.3.3. We overlay

the SPGP results onto these plots as red squares.

We see that the SPGP gradient optimisation provides a significant increase in per-

formance over the subset selection methods, for a given size of inducing set M .

The SPGP also has the advantages of hyperparameter optimisation as discussed in

section 2.5.4, as compared to the problematic interleaving of subset selection and

hyperparameter learning as discussed in [Seeger et al., 2003]. We also note that

Keerthi and Chu [2006] use a similar selection method to Smola and Bartlett [2001]

that gives comparable performance but is cheaper to implement.

2.6 Remarks

In this chapter we have introduced a new technique for speeding up Gaussian pro-

cess regression. The SPGP consists of both a new batch regression approximation

FIC, and a gradient method for selecting the inducing inputs. We have justified

theoretically why FIC makes a closer approximation to the full GP than other ap-

proximations such as SR and PP, and we have highlighted several problems with

these previous approaches. We have shown how the pseudo-inputs of the SPGP
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can be seen as extra parameters in a more complex flexible covariance function,

which can therefore be optimised using the SPGP marginal likelihood.

Experimental results show that this pseudo-input optimisation achieves very high

accuracy for a given inducing set size. Therefore the SPGP is particularly useful

if one cares about prediction costs. Experiments also show that jointly learning

hyperparameters and pseudo-inputs is a reliable way to get high accuracy pre-

dictions, especially in terms of predictive variances. This SPGP hyperparameter

learning also avoids the complications and unreliabilities inherent in other hyper-

parameter training strategies. These strategies include the interleaving of subset

selection and hyperparameter learning in subset selection methods, and also the

pre-learning of hyperparameters using a GP on a large subset of data.
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Chapter 3

Local and global Gaussian process

approximations

In chapter 2 we examined a class of approximations based on a set of inducing in-

puts, and we looked at a method for choosing inducing inputs based on continuous

optimisation. We could refer to this class of approximations as global, because the

M support points are essentially summarising all N data points.

There is a rather different type of approach which has been somewhat forgotten as

a way of speeding up GP regression. This is a local type of approximation, where

only training data points nearby to the test point in question are used to make

a prediction. In this chapter we examine the regimes in which a local or global

approximation is most suitable. For example, a very complex ‘wiggly’ data set

may not be well summarised by a small number of inducing points, and a local

regression scheme may be faster and more accurate.

A natural question to ask is whether there is an approximation that combines the

best of both worlds: a combination of a local and global approximation that will

be suitable for all regimes. In this chapter we develop such an approximation,

and show how it can be derived from a natural extension of the approximation

framework of Quiñonero Candela and Rasmussen [2005] outlined in section 2.3.1.

This chapter is based on Snelson and Ghahramani [2007].

Throughout this chapter, we assume we have already obtained suitable hyperpa-

rameters for the covariance function, and we just concern ourselves with examining

the nature of the approximations themselves.
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(a) Long lengthscale — FI(T)C (b) Short lengthscale — FI(T)C

(c) Short lengthscale — local GPs (d) Clumped training inputs

Figure 3.1: 1D comparison of local and global GP approximations. Mean predic-
tions and two standard deviation error lines are plotted, as black dashed lines for
FI(T)C and red solid lines for local GPs. For FI(T)C the x positions of the induc-
ing inputs are marked by black crosses. In (c) and (d) the local training blocks are
demarcated by alternating the colors of the data points.

3.1 Local or global approximations

To understand the regimes in which a global approximation such as FI(T)C works

well and not so well, it is simplest to look at an example. Figure 3.1a shows some

sample data drawn from a GP with a fairly long lengthscale relative to the input

point sampling. The FI(T)C prediction is plotted, using just 10 evenly spaced in-

ducing inputs. The approximation is clearly extremely good — a full GP predic-

tion looks essentially identical. Figure 3.1b shows the same number of data points

drawn from a GP with a much shorter lengthscale. The FI(T)C prediction is plotted

again using only 10 inducing inputs, and is clearly much worse, particularly in the

gaps between inducing inputs. The training and prediction costs for the examples

in figure 3.1a and figure 3.1b are exactly the same. In this simple example, we could
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just increase the number of inducing inputs in figure 3.1b to take into account the

extra complexity of the function. However, in a more realistic problem we may not

be able to afford the extra cost to do this. For a very complex function we may

find ourselves needing almost as many inducing inputs as data points to model the

function well, and that takes us back towards O(N3) complexity. Although each

inducing input only affects predictions in a local region around itself, we refer to

this type of approximation as global because all N data points contribute to each

prediction made, via the inducing points.

An alternative type of approach to the data in figure 3.1b is to use a series of local

GPs. This approach is shown in figure 3.1c. The training points are grouped into

blocks of 10 points each, and independent GP predictors formed from each of the

blocks. The nearest block’s GP is used to predict at a given test point. This is a

particular unsmoothed example of local nonlinear regression, similar in flavor to e.g.

LOESS [Cleveland and Devlin, 1988, Grosse, 1989]. It is also a trivial unsmoothed

example of a mixture of GP experts [Rasmussen and Ghahramani, 2002]. Viewed as

an approximation to a GP, it is taking advantage of the fact that typical covariance

functions like the squared exponential of equation (1.6) are local in nature.

The independence between the blocks leads to the discontinuous nature of the pre-

diction in figure 3.1c, but if we ignore the ugly aesthetics, the prediction is actually

a much better fit than that of figure 3.1b. If as in this illustration we choose equal

block sizes of size B, then the training cost is O(N/B × B3) = O(NB2), and pre-

diction cost per test case is O(B2).1 For figures (b) and (c) we chose B = M = 10,

so the costs are essentially equivalent. In this regime therefore the local type of

approximation is the more efficient option.

Apart from the ugly discontinuities, the local GP approach would actually work

pretty well for the longer lengthscale example of figure 3.1a. However there are

certainly situations where the local approach can be poor. Figure 3.1d shows some

data where the training inputs have been sampled in a non-uniform manner. Such a

situation often happens in real world examples due to artifacts in the data collection

process, and is more pronounced in high dimensions. In this situation, if we take

the clusters as separate blocks and use the local GP approach the extrapolation

between clusters is very poor, because the blocks are all independent from each

other. The FI(T)C predictions are much better because they take into account the

correlations between the clusters and extrapolate well.

1This ignores the clustering cost (see section 3.2.3).
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3.2 A combined local and global approximation

With the discussion of the previous section in mind, it would be nice to have an

approximation that combined the ideas of both the global and local approaches,

so that it would be suitable to use in all regimes. In this section we develop such

an approximation and show how it is naturally derived as an extension of the the-

oretical framework of section 2.3.1. To lead into this we review one further GP

approximation, which we omitted from our discussion in chapter 2, that has some

local aspects.

3.2.1 The partially independent training conditional (PITC)

approximation

In their unifying paper, Quiñonero Candela and Rasmussen [2005] suggest a fur-

ther improved approximation to FI(T)C, which they call the partially independent

training conditional (PITC) approximation. It also turns out to be a more general

inductive form of the BCM [Tresp, 2000, Schwaighofer and Tresp, 2003], which we

discussed briefly in section 2.1.3. The BCM can be seen as a special case of PITC

with the inducing inputs chosen to be the test inputs.

Rather than assume complete training conditional independence as in FITC equa-

tion (2.26a), PITC only assumes partial independence. The training points are

grouped into ‘blocks’ or ‘clusters’ {XBs , fBs}S
s=1, and conditional independence is

only assumed between blocks:

q(f |̄f) =
∏

s

p(fBs |̄f) (3.1a)

q(fT |̄f) = p(fT |̄f) . (3.1b)

As in FITC, the test conditional (3.1b) remains exact. Assuming these approximate

conditionals leads to the PITC training and test covariance:

K̃PITC
N+T =

[

QN + bkdiag[KN − QN ] QNT

QTN KT

]

. (3.2)

This covariance is shown in a more pictorial manner in figure 3.2b, and can be

compared to FITC in figure 3.2a. We see that it is not just the diagonal that is exact,

but rather blocks of the diagonal are exact.
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Figure 3.2: FITC, PITC, and PIC approximate prior covariances
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The predictive distribution for a single test point becomes:

p(y∗|y) = N (µPITC
∗ , (σ2

∗)
PITC) , (3.3a)

µPITC
∗ = Q∗N [K̃PITC

N + σ2I]−1y

(σ2
∗)

PITC = K∗ − Q∗N [K̃PITC
N + σ2I]−1QN∗ + σ2 ,

(3.3b)

where K̃PITC
N = QN + bkdiag[KN −QN ]. Just as for FI(T)C the PITC mean predictor

is simply a weighted sum of M basis functions. The cost per test case is therefore

exactly the same: O(M) for the mean and O(M2) for the variance. How about the

precomputations? The cost to invert K̃PITC
N +σ2I depends on the sizes of the blocks

{Bs}. There is no requirement for the blocks to be of equal size, but for simplicity

suppose they all have size B. Then for the same reasons as in section 3.1, the extra

precomputations cost O(NB2) (we must invert KBs − QBs + σ2I for each block).

At training time the blocks need to be chosen in some way. Typical covariance func-

tions used for regression, such as the squared exponential, are local in nature. The

covariance between two points decays to zero as the points are separated farther

apart in input space. This means that it makes sense to cluster points into local

blocks in input space, so as to gain most advantage from the blocked approxima-

tion. We will discuss particular clustering schemes in section 3.2.3.

The PITC approximation certainly has the flavour of trying to combine a local ap-

proximation with a global one. Figure 3.3 shows a 1D example of the predictive

distributions of FI(T)C and PITC, with the inducing inputs randomly placed. Fig-

ure 3.3a shows that the FI(T)C approximation is poor away from the locations of the

inducing points — the predictive variances grow large and the mean tends back to-

wards zero. Based on our earlier arguments that the blocked PITC approximation

is closer to the full GP than FI(T)C, we might expected PITC to do much better in

figure 3.3b. In fact this is not the case — the predictive distribution is almost iden-

tical to FI(T)C, even though we have blocked the training points perfectly into 20

blocks of 10 points based on their ordering along the x axis. Why is this the case?

The answer is easy to see by referring back to the PITC predictive distribution of

equation (3.3). Looking at the mean prediction: it is still just a weighted sum of

basis functions centered on the same inducing points as in FI(T)C. The blocking

has only altered the weights slightly. Fundamentally, when the basis functions are

local such as the squared exponential, PITC is as incapable of modelling well away

from inducing inputs as FI(T)C.

We see that PITC does not have the local characteristics we are looking for in its
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(a) FI(T)C

(b) PITC

Figure 3.3: One dimensional comparison of FI(T)C and PITC predictions. The in-
ducing inputs are chosen randomly from the training input points, and are the same
for both (a) and (b). For PITC the blocks are denoted by alternating the colours of
the data points, blue and magenta. Here there are 20 blocks, each with 10 data
points.
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predictions. The fact that it gives very similar predictions to FI(T)C is the reason

why we did not include the approximation in chapter 2 — it does not seem worth

the extra overhead of the blocking for negligible gain in predictive accuracy.

3.2.2 The partially independent conditional (PIC) approximation

In this section we develop a new approximation that successfully combines the

ideas of the global and local approximations. Another way to understand why the

PITC predictions are not much different to FI(T)C is to look again at the PITC prior

covariance of figure 3.2b. The structure of this covariance is such that the training

inputs have been blocked separately from the test inputs — the test inputs have

effectively been placed in a block of their own. This means that the PITC approxi-

mation cannot be considered a GP model with a particular covariance function, as

the decision of which block in which to place an input depends on whether that in-

put is a training input or test input. The consequence of this separation of training

and test inputs into different blocks is that they only interact with each other via

the M inducing inputs. This in turn leads to the predictive distribution being very

similar to FI(T)C, and largely governed by the positioning of the inducing inputs.

The separation of the test points into their own block came about because of the

first assumption about sparse GP approximations made by Quiñonero Candela

and Rasmussen [2005]: the conditional independence of training and test points,

denoted f ⊥ fT |̄f , in equation (2.16). To derive a new approximation we relax this

assumption and consider what happens if we block the joint training and test con-

ditional. We treat the training and test inputs equivalently, and group them into

blocks according only to their x positions. For ease of notation, and because we

will only use the marginal predictive variance, we consider a single test input x∗.

Suppose that on the basis of its position this test input was grouped with training

block BS . Then the approximate conditional is:

p(f , f∗ |̄f) ≈ q(f , f∗ |̄f) = p(fBS
, f∗ |̄f)

S−1∏

s=1

p(fBs |̄f) . (3.4)

It seems logical to follow the naming convention introduced by Quiñonero Can-

dela and Rasmussen [2005], and call this approximation the partially independent

conditional (PIC) approximation. The PIC training and test covariance is:

K̃PIC
N+T = QN+T + bkdiag[KN+T − QN+T ] . (3.5)
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This can be seen pictorially, and with a single test point for clarity, in figure 3.2c.

Notice that unlike PITC, PIC can correspond to a standard GP with a particular

covariance function. For example, suppose we divided the input space up into dis-

joint regions before seeing any data. Then if two points (training or test) fall into the

same region they are placed in the same block. This corresponds to the following

covariance function:

K̃PIC(x,x′) = Q(x,x′) + ψ(x,x′)[K(x,x′) −Q(x,x′)] , (3.6a)

where ψ(x,x′) =







1 if x,x′ are in the same region

0 otherwise
. (3.6b)

In practice typical clustering schemes we will use will rely on all the training data

to define regions in input space, and so will not technically correspond to the co-

variance function of equation (3.6). At a high level though, equation (3.6) is a good

description of the PIC covariance.

For ease of notation when discussing the predictive distribution, we refer to the

training block that the test point x∗ belongs to asB. As shorthand for all the training

points excluding B, we use /B. The PIC single test point predictive distribution is:

p(y∗|y) = N (µPIC
∗ , (σ2

∗)
PIC) , (3.7a)

µPIC
∗ = K̃PIC

∗N [K̃PITC
N + σ2I]−1y

(σ2
∗)

PIC = K∗ − K̃PIC
∗N [K̃PITC

N + σ2I]−1K̃PIC
N∗ + σ2 ,

(3.7b)

where K̃PIC
∗N = [Q∗/B , K∗B] (see figure 3.2c).

Let us look first at the mean predictor µPIC
∗ . Part of the mean predictor, which we

define p = [K̃PITC
N + σ2I]−1y, is exactly the same as for PITC (3.3). We can expand

µPIC
∗ further:

µPIC
∗ = Q∗/Bp/B + K∗BpB

= K∗Mβ + K∗BpB ,
(3.8)

where the weights β = K−1
M KM/Bp/B. We therefore see that the mean is a weighted

sum of basis functions centered at the M inducing inputs and at the training inputs

in block B. This has the desired feature of being a combination of a local and

global predictor. The local information comes from the block B that the test point

is assigned to, and the global information comes via the inducing points. A similar
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interpretation can be applied to the variance.

Referring to equation (3.5) or figure 3.2c, we see that there are now two limiting

processes that will return us to the full GP. If there are N inducing points placed

exactly on the training points, then Q = K, and therefore K̃PIC
N+T = KN+T . Similarly

if we decrease the number of blocks until we have only one block, then K̃PIC
N+T =

KN+T . In a practical situation we can push towards both these limits as far as our

computational budget will allow.

Taking these limits in the opposite direction gives us some further insight. If we

take all the block sizes to one (or equivalently if the points within a block are far

separated from each other), then we recover FIC. If we take the number of inducing

points to zero (or equivalently move them all far away from the data), then Q → 0.

Referring to figure 3.2c, we see that all the blocks become completely decoupled

from each other. We are left with the purely local GP predictor of section 3.1, where

only the points in the test point’s block are used to make the prediction. We can

also see this from equation (3.8), since pB → [KB + σ2I]−1yB.

FI(T)C and PITC both had O(M) and O(M2) costs per test point for predicting the

mean and variance respectively, after precomputations. How about PIC? Looking

at equation (3.8), at first it seems that prediction will be too expensive because of

the product Q∗/Bp/B. In general /B will be close in size to N , and so O( /B) will be too

expensive. However, we can rewrite equation (3.8) again:

µPIC
∗ = K∗MK−1

M KM/Bp/B + K∗BpB

= K∗M

(
K−1

M KMNp
︸ ︷︷ ︸

wM

−K−1
M KMBpB

︸ ︷︷ ︸

wB
M

)
+ K∗BpB , (3.9)

where wM =
∑S

s=1 wBs
M . Hence we can precompute p, then precompute wBs

M for

each block, and finally precompute wM . Having done this the cost per test case

at test time will be O(M + B) for the mean. We can play a similar trick for the

variance, which then costs O
(
(M +B)2

)
.

KL divergences and graphical covariances

It should be fairly clear that we can extend the optimal KL derivation of FIC as

presented in section 2.3.6 to PIC. We follow exactly the same argument, but al-

ter the factorisation constraint to be slightly less restrictive. Rather than the fac-

torisation constraint being over single data points, it is over blocks. We minimise
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= +

Figure 3.4: Graphical representation of PIC approximate covariance, as constructed
from the low rank and block-diagonal parts.

KL[p(f , f̄)‖q(f , f̄)] subject to the independence constraint q(f |̄f) =
∏

s qs(fBs |̄f), where

the minimisation is over all qs. The solution is simply qs(fBs |̄f) = p(fBs |̄f). Here f

refers to any type of function variable, both training and test — they are treated

equally.

In figure 2.4d we showed a graphical representation of the construction of the FIC

approximate covariance, for a particular choice of inducing inputs in two clumps.

We can also do the same for PIC, and this is shown in figure 3.4. The only difference

is that the diagonal is replaced by a block diagonal, and hence it becomes closer to

the GP prior covariance. We can also see how part of the band of covariance is filled

in by blocks and part is filled in by inducing points.

3.2.3 Clustering schemes

We need a scheme for clustering possibly high dimensional training inputs into

blocks for the PIC approximation. We then need to be able to quickly assign a new

test point to a block at test time. We do not want too costly a method, especially

because even if the clustering is poor we still ‘fall back’ on FIC. We suggest two

simple schemes. The more complicated one is farthest point clustering [Gonzales,

1985]. The number of clusters S is chosen in advance. A random input point is

picked as the first cluster center. The farthest point from this is chosen as the next

center. The farthest point from both of these is chosen as the next, and so on, until

we have S centers. Then each point in the training set is assigned to its nearest

cluster center. At test time, a test point is simply assigned to the nearest cluster

center. We also consider an even simpler algorithm which we call random clustering.

It is exactly as above except that the cluster centers are picked randomly (without

replacement) from the training input points.
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The naive costs for these algorithms are O(NS) training time and O(S) test time

per test case. However with suitable data structures (e.g. KD-trees [Preparata and

Shamos, 1985]) and implementation these costs can be reduced to O(N logS) and

O(logS) [Feder and Greene, 1988].

The rough difference between the two is that farthest point clustering leads to

regions of fairly equal dimension in input space, but not necessarily equal block

sizes Bs if the input distribution is non-uniform. Random clustering leads to more

uniform block sizes, but these may not correspond to similar dimensions in input

space.

3.3 Results

The first thing to note is that PIC subsumes both the local GP approach and FI(T)C.

By varying the number of inducing inputs and the size of the blocks we can obtain

an approximation that is close to one or the other.

3.3.1 One dimensional examples

In a one dimensional example it is easy to form a perfect clustering into evenly

sized clusters. This is what we did for PITC in figure 3.3b. However to more re-

alistically show what might happen in higher dimensions, we apply the technique

of random clustering as mentioned in section 3.2.3 to cluster points in the same

1D example of figure 3.5. In figure 3.5a we show what happens when you use the

purely local GP, i.e. there are no inducing points. The general trend is pretty good,

but there are some very big artifacts at the boundaries of the blocks, especially for

blocks that just contain a few points. Figure 3.5b shows what happens when we

introduce a few random inducing points, and use the PIC approximation. Where

the inducing points are present the local boundary artifacts are smoothed over, and

where inducing points are not present, the local prediction takes over. Essentially

the global and local approximations complement each other to produce a predic-

tive distribution very close to that of a full GP. Referring back to figure 3.3a, we see

how much better PIC is doing compared to FI(T)C with the same inducing points.

The type of regime in which the combined PIC approach has a significant advan-

tage over either one or the other can be seen by examining the failure modes as we

did in section 3.1. Referring back to figure 3.1: FI(T)C fails for complex functions
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(a) local GPs

(b) PIC

Figure 3.5: One dimensional example comparing local GPs and the PIC approxi-
mation. The inducing inputs for PIC are chosen randomly from the training input
points. The blocks are denoted by alternating the colours of the data points, blue
and magenta. Here the blocks were determined using random clustering.
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where we cannot afford to tile the space with inducing inputs; local GPs fail when

we need to do extrapolation well. Figure 3.6 shows another illustrative 1D example

where these problems are solved by the combined approach. In figure 3.6a the local

GP approach works well apart from in the extrapolation between the two groups of

data points. This can be completely fixed by the PIC approximation in figure 3.6b

with the addition of a few well placed inducing points. The FI(T)C prediction based

on these inducing points alone is shown in figure 3.6c. We see that the PIC predic-

tor is a combination of the best parts of the local GP and FI(T)C predictors of (a) and

(c). In order to do well using FI(T)C alone we would need to tile the space densely

with inducing points.

In a real world example, to obtain the maximum advantage from PIC, it would be

useful to have schemes to place the inducing points in optimal locations. We could

attempt to maximise marginal likelihood as in the SPGP, or we could use simpler

heuristics to place the inducing inputs well. We will have to leave a full evaluation

of such procedures to future work.

3.3.2 Real world examples

As real world examples we use the same three data sets we tested in section 2.5.

We measure test set error as a function of computation time for the three methods:

FI(T)C, local GPs, and PIC. Since it is not the goal of this chapter to investigate hy-

perparameter learning and inducing point selection, we simply use ‘ground truth’

hyperparameters obtained by training a GP on a large subset of the training data,

and we use inducing points optimised as in the SPGP. The computation time re-

ported is the combined precomputation and prediction time on the test sets. For

local GPs and PIC, the time includes the extra clustering time, which was simply

done by the random clustering method discussed in section 3.2.3. Points on the er-

ror/time plots of figure 3.7 were then obtained by varying the number of inducing

points for FI(T)C, the number of blocks for local GPs, and both for PIC.

The three different data sets show three different behaviours. Firstly figures (a)

and (b) show clearly that the local GP method is superior for SARCOS. Using only

small block sizes, we can achieve an extremely low MSE and NLPD, comparable to

FI(T)C with a large number of inducing inputs. The intuition for this is that SARCOS

is a very complex nonlinear dataset similar in regime to figures 3.1b and 3.1c, and

for the same reasons as there, the local GPs outperform FI(T)C. The combined PIC

approximation also benefits from the blocking and performs well, but the inducing
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(a) local GPs

(b) PIC

(c) FI(T)C

Figure 3.6: 1D comparison of local, combined, and global GP approximations.
Mean predictions and two standard deviation error lines are plotted, as black
dashed lines for FI(T)C, red solid lines for local GPs, and blue solid lines for PIC.
In (a) and (b) the blocks are not marked for clarity, because they are very small.
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(c) Abalone. MSE.
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(e) KIN40K. MSE.
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(f) KIN40K. NLPD.

Figure 3.7: Test set error vs. computation time. Blue circles: FI(T)C, red stars: local
GPs, black crosses: PIC. Points are obtained by varying the number of inducing
points, or number of blocks, or both (for PIC).
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points do not add any accuracy in this case.

Figures 3.7c and 3.7d show almost the opposite effect for Abalone. The FI(T)C

approximation is able to achieve high accuracy using only a few inducing points,

and so it is far faster than local GPs. The Abalone data set is much simpler than

SARCOS, and so it is very well modelled by FI(T)C with only a few inducing points,

in a similar way to figure 3.1a.

We show the results for KIN40K in figures 3.7e and 3.7f, on a slightly more densely

sampled scale to highlight the differences in the methods. Figure 3.7e shows FI(T)C

and local GPs performing very similarly in terms of MSE, with the combined PIC

approach giving a small but significant gain. Figure 3.7f shows PIC and local GPs

performing well in terms of NLPD error, with FI(T)C performing worse. This data

set is clearly somewhere in between SARCOS and Abalone in complexity, in a

regime where the combined PIC approximation is useful.

A further regime in which we might expect the local approach to perform less well

is for higher dimensional input spaces, where the nearby points alone cannot pro-

vide enough information. We confirmed this hypothesis for the 106 dimensional

Temp data set, which we use in chapter 4, where FI(T)C easily outperformed a local

GP approach.

As we have seen, which approximation to use very much depends on the type of

data. The advantage of PIC is that you are guarded against both failure modes

of the individual local or global style approximations. We might expect further

advantages for PIC when we select inducing points in conjunction with the blocks,

but this is beyond the scope of this thesis.

3.4 Remarks

In this chapter we have developed a computationally efficient approximation that

combines the advantages of the local regression/experts approach with the global

inducing input based approach. From a theoretical point of view, PIC in some

sense completes the sequence of approximations as set out in the framework of

Quiñonero Candela and Rasmussen [2005].

From a practical point of view, we have explored the different types of regimes

in which either the local or the global based approximations are more efficient,

and we have demonstrated situations where the combined PIC method improves
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upon both of these. In practice the PIC approximation allows a user to vary the

number of clusters and the number of inducing inputs to find the best performance.

There are several interesting future directions to pursue, for example to try to learn

inducing inputs in relation to the clustering, perhaps by the maximization of the

PIC marginal likelihood.

The original local GP expert approach of Rasmussen and Ghahramani [2002] was

not designed with computational efficiency in mind, but rather to develop non-

stationarity by allowing different regions to have different hyperparameters, e.g.

lengthscales. It might be possible to develop a PIC-like model which allows dif-

ferent hyperparameters for the individual blocks, whilst still maintaining the natu-

rally computationally efficient structure.

One important lesson from this chapter is not to assume that the global style of

inducing point based approximation, which dominates the GP approximation lit-

erature, will necessarily be the best approach to every data set.
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Chapter 4

Variable noise and dimensionality

reduction

In this chapter we return to the SPGP we developed in section 2.2, and look at

a few simple extensions that can be made. This chapter is based on Snelson and

Ghahramani [2006b].

One limitation of the SPGP is that learning the pseudo-inputs becomes impractical

for the case of a high dimensional input space. For M pseudo-inputs and a D

dimensional input space we have a continuous M × D dimensional optimisation

task. In this chapter we overcome this limitation by learning a projection of the

input space into a lower dimensional space. The pseudo-inputs live in this low

dimensional space and hence the optimisation problem is much smaller. This can

be seen as performing supervised dimensionality reduction.

We also examine the ability of the SPGP to model data with input-dependent noise

(heteroscedasticity). In section 2.2.1 we already hinted that the SPGP covariance

function could be viewed as inherently more flexible than the original GP, with

further advantages other than a purely computational device. Heteroscedastic re-

gression is something that is very difficult to achieve with a standard GP without

resorting to expensive sampling [Goldberg et al., 1998]. In this chapter we explore

the capabilities of the SPGP for heteroscedastic regression tasks, and we develop

a further extension of the model that allows an even greater degree of flexibility

in this regard. We do this by learning individual uncertainty parameters for the

pseudo-inputs.
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4.1 Dimensionality reduction

The SPGP improves the accuracy of its approximation by adjusting the positions

of the pseudo-inputs to fit the data well. However a limitation of this procedure is

that whereas the standard GP only had a small number |θ| of parameters to learn,

the SPGP has a much larger number: MD + |θ|. Whilst we can adjust the number

of pseudo-inputs M depending on our time available for computation, if we have

a high dimensional (D) input space the optimisation is impractically large. In this

section we address this problem by learning a low dimensional projection of the

input space.

In order to achieve this dimensionality reduction we adapt an idea of Vivarelli and

Williams [1999] to the SPGP. They replaced the ARD lengthscale hyperparameters

λ in the SE-ARD covariance function equation (1.21) with a general positive definite

matrix W, in order to provide a richer covariance structure between dimensions:

K(x,x′) = a2 exp

[

−1

2
(x − x′)⊤W(x − x′)

]

. (4.1)

W need not be totally general — it can be restricted to be low rank by decomposing

it as W = P⊤P, where P is a G × D matrix and G < D. This is clearly exactly

equivalent to making a linear low dimensional projection of each data point xnew =

Px, and has the covariance function:

K(x,x′) = a2 exp

[

−1

2

(
P(x − x′)

)⊤
P(x − x′)

]

. (4.2)

We use exactly this covariance structure for dimensionality reduction in the SPGP.

However the SPGP covariance function equation (2.13) is constructed from covari-

ances between data-points and pseudo-inputs K(x, x̄), and from the covariances

of the pseudo-inputs themselves K(x̄, x̄′). The projection means that we only need

to consider the pseudo-inputs living in the reduced dimensional (G) space. Finally

we therefore use the following covariances:

K(x, x̄) = a2 exp

[

−1

2
(Px − x̄)⊤(Px − x̄)

]

(4.3)

K(x̄, x̄′) = a2 exp

[

−1

2
(x̄ − x̄′)⊤(x̄ − x̄′)

]

, (4.4)

where x̄ is a G dimensional vector. Note that it is not necessary to introduce ex-
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tra lengthscale hyperparameters for the pseudo-inputs themselves because they

would be redundant. The pseudo-inputs are free to move, and the projection matrix

P can scale the real data points arbitrarily to ‘bring the data to the pseudo-inputs’.

Setting aside computational issues for the moment it is worth noting that even with

G < D the covariance of equation (4.2) may be more suitable for a particular data

set than the standard ARD covariance equation (1.21), because it is capable of mix-

ing dimensions together. However this is not our principal motivation. The SPGP

with ARD covariance has MD+D+ 2 parameters to learn, while with dimension-

ality reduction it has (M +D)G+ 2. Clearly whether this is a smaller optimisation

space depends on the exact choices forM andG, but we will show on real problems

in section 4.3 that G can often be chosen to be very small.

To clarify: the training procedure for the dimensionality reduced SPGP (SPGP+DR)

is to maximise the marginal likelihood of equation (2.9) using gradients with re-

spect to the pseudo-inputs X̄, the projection matrix P, the amplitude a, and the

noise σ2.1 The procedure can be considered to perform supervised dimensionality

reduction — an ideal linear projection is learnt for explaining the target data. This is

in contrast to the many unsupervised dimensionality reduction methods available

(e.g. PCA), which act on the inputs alone.

4.2 Variable noise

Although GPs are very flexible regression models, they are still limited by the

form of the covariance function. To model more complex data than simple sta-

tionary processes we require more complex covariance functions. There has been

some work done to develop particular classes of nonstationary covariance func-

tions [Higdon et al., 1999, Paciorek and Schervish, 2004], especially with regard to

variable lengthscales. Goldberg et al. [1998] modelled input dependent (variable)

noise using an additional GP to represent the noise process, but this requires ex-

pensive sampling.

Although the SPGP was not originally designed for modelling nonstationarity or

variable noise, the SPGP covariance function equation (2.13) is a particular type of

nonstationary covariance that arises naturally from the low rank construction. It is

therefore interesting to evaluate whether the SPGP can actually handle some type

1The gradient derivations are a minor modification of the SPGP gradients presented in ap-
pendix C.
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(a) GP
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(b) SPGP
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(c) SPGP+HS. The size of a blue cross is a func-
tion of the inverse uncertainty associated with that
pseudo-input.

Figure 4.1: The predictive distributions after training on a synthetic heteroscedas-
tic data set are shown for the standard GP, SPGP, and SPGP+HS. x locations of
pseudo-inputs are shown as blue crosses (the y positions are not meaningful).
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of data better than the original GP. In other words we can take the view of the

SPGP not as an approximation, but as a more flexible GP in its own right.

Figure 4.1 shows a simple 1D data set with a variable noise level. Figure 4.1a shows

the standard GP solution with SE covariance, with the hyperparameters optimised.

The SE covariance is stationary with a global noise level, so the fit to the data is poor.

Figure 4.1b shows the SPGP solution to the same data set, where the pseudo-inputs

have also been optimised.2 Although the SPGP also has a single global noise level

σ2, the predictive variances will only drop to this level in regions close to pseudo-

inputs. Away from pseudo-inputs the predictive variance rises to a2 + σ2 because

correlations cannot be modelled in these regions. During training, the SPGP can ad-

just its pseudo-inputs to take advantage of this by-product of the non-stationarity

of the sparse covariance function. By shifting all the pseudo-inputs to the left in

figure 4.1b, the SPGP models the variable noise vastly better than the standard GP

does in figure 4.1a.

However the SPGP solution in figure 4.1b is still not entirely satisfactory. By mov-

ing all the pseudo-inputs to the left to model the variable noise, the correlations

that are still present in the data towards the right cannot be modelled. There are no

pseudo-inputs present there to handle the correlations. We propose a further exten-

sion to the SPGP model to get around these problems and improve the modelling

capabilities of the SPGP.

We introduce extra uncertainties associated with each pseudo-point. This means

altering the covariance of the pseudo-points in the following way:

KM → KM + diag(h) , (4.5)

where h is a positive vector of uncertainties to be learnt. These uncertainties allow

the pseudo-inputs to be gradually ‘switched off’ as the uncertainties are increased.

If hm = 0 then that particular pseudo-input behaves exactly as in the SPGP. As

hm grows, that pseudo-input has less influence on the predictive distribution. This

means that the pseudo-inputs’ role is not ‘all or nothing’ as it was in the SPGP. A

pseudo-input can be partly turned off to allow a larger noise variance in the predic-

tion whilst still modeling correlations in that region. As hm → ∞, the pseudo-input

is totally ignored. We refer to this heteroscedastic extension as the SPGP+HS.

2It should be said that there are local optima in this problem, and other solutions looked closer
to the standard GP. We ran the method 5 times with random initialisations. All runs had higher
likelihood than the GP; the one with the highest likelihood is plotted.
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x

y

Figure 4.2: Sample data drawn from the SPGP+HS marginal likelihood for a partic-
ular choice of pseudo-input locations (blue crosses), hyperparameters, and pseudo
uncertainties. The size of a blue cross is related to the inverse of the uncertainty
associated to that pseudo-input.

Figure 4.2 shows sample data drawn from the marginal likelihood of the SPGP+HS

model, where the components of h have been set to three different values. These

values are indicated by the sizes of the blue crosses representing the pseudo-inputs

– a larger cross means a lower uncertainty. Notice the different noise regimes in the

generated data.

To train the model, we follow the same procedure as earlier – we include h as

extra parameters to be learned by gradient based maximum likelihood. We tested

this on the synthetic data of figure 4.1, and the predictive distribution is shown

in figure 4.1c. Now the pseudo-inputs do not all have a tendency to move to the

left, but rather the right-most ones can partly turn themselves off, enabling the

correlations present towards the right of the data set to be modelled very well.

Our visual intuition is borne out when we look at negative log predictive density

(NLPD, with smallest being best) and mean squared error (MSE) scores on a with-

held test set for this data set. These are shown below. On NLPD the GP does badly,

the SPGP better, but the new method SPGP+HS does best of all, because it models

the noise process well. The SPGP is not so good on MSE, because it is forced to

sacrifice modeling the correlations on the right side of the data set.

Method NLPD MSE

GP 3.09 14.16

SPGP 2.74 16.98

SPGP+HS 2.57 14.37
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Data set Temp SO2 Synthetic

Dimension (D) 106 27 1
Training set size 7117 15304 256
Validation set size 3558 7652 128
Test set size 3560 7652 1024

Table 4.1: Properties of the competition data sets

4.3 Results

We decided that an ideal test bed for the SPGP and its extensions considered in

this chapter would be the data sets of the WCCI-2006 Predictive Uncertainty in

Environmental Modeling Competition, run by Gavin Cawley.3 Some of the data

sets have a fairly large number of dimensions (>100), and Gavin Cawley suggested

that heteroscedastic modelling techniques are likely to be necessary to perform well

on this environmental data. The competition required probabilistic predictions and

was to be scored by NLPD on a withheld test set. Unfortunately by the time the

competition closed we had only made a submission on one data set (Temp), on

which we scored first place. However since then, we have experimented further

with our methods on the data sets, and Gavin Cawley kindly agreed to evaluate

several more submissions on the test sets, which we report here.

Some properties of the data sets we considered are shown in table 4.1.4 Most of the

results shown in the following sections are obtained by training on the training set

only and evaluating on the validation set. This is because the test set targets are not

publicly available. These results serve as useful comparisons between our different

methods. However some results were obtained by training on the training and

validation sets, before being sent to Gavin Cawley for evaluation on the withheld

test set. With these results we can see how our methods fare against a host of

competing algorithms whose performance is shown on the competition web site3.

3http://theoval.sys.uea.ac.uk/competition/
4The competition also had a further data set Precip, which we have not considered. This is

because a histogram of the targets showed a very large spike at exactly zero, which we felt would be
best modeled by a hierarchy of a classifier and regressor. The SO2 data set was somewhat similar but
not nearly so extreme, so here we could get away with a log(y + a) preprocessing transform.
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4.3.1 Temp data set

The targets of the Temp data set are maximum daily temperature measurements,

and are to be predicted from 106 input variables representing large-scale circula-

tion information. We conducted a series of experiments to see how dimensionality

reduction performed, and these are presented in table 4.2a. To compare, we ran the

standard SPGP with no dimensionality reduction (which took a long time to train).

Although the dimensionality reduction did not produce better performance than

the standard SPGP, we see that we are able to reduce the dimensions from 106 to

just 5 with only a slight loss in accuracy. The main thing to notice is the training and

test times, where reducing the dimension to 5 has sped up training and testing by

an order of magnitude over the standard SPGP.5 Clearly some care is needed in se-

lecting the reduced dimension G. If it is chosen too small then the representation is

not sufficient to explain the targets well, and if it is too large then there are probably

too many parameters in the projection P to be fit from the data. Cross-validation is

a robust way of selecting G.

Of course a much simpler way of achieving a linear projection of the input space

is to do PCA before using the standard SPGP on the smaller dimensional space.

In this case the projection is made completely ignoring the target values. The idea

behind the SPGP+DR is that the target values should help in choosing the projec-

tion in a supervised manner, and that better performance should result. To test this

we used PCA to reduce the dimension to 5, before using the SPGP. The results

are shown in table 4.2a as well. We see that the SPGP+PCA performs significantly

worse than the SPGP+DR both on NLPD and MSE scores. The equivalent reduc-

tion to 5 dimensions using the SPGP+DR does not cost too much more than the

PCA method either, in terms of training or test time.

Our entry to the competition was made by using the SPGP+DR with dimension-

ality reduction to G = 5, and M = 10 pseudo-inputs. We trained on the training

set and validation sets, and obtained test set NLPD of 0.0349 and MSE of 0.066,

which placed us first place on the Temp data set on both scores (see the competition

web site3). This provides justification that the SPGP+DR is a very competitive al-

gorithm, managing to beat other entries from MLPs to Support Vector Regression,

and requiring little training and test time.

We then decided to investigate the heteroscedastic capabilities of the SPGP, and the

5The actual training and test times are affected not just by the number of parameters to be opti-
mised, but also by details of the gradient calculations, where memory/speed trade-offs have to be
made. We have tried to implement both versions efficiently.
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SPGP+HS extension proposed in section 4.2. Table 4.2a reports the performance

of the SPGP+HS when combined with a dimensionality reduction to G = 5. In

this case the extension did not perform better than the standard SPGP. However,

it could be that either the Temp data set is not particularly heteroscedastic, or that

the SPGP itself is already doing a good job of modelling the variable noise. To

investigate this we trained a standard GP on a small subset of the training data

of 1000 points. We compared the performance on the validation set to the SPGP

(M = 10) trained on the same 1000 points. Since the SPGP is an approximation to

the GP, naı̈vely one would expect it to perform worse. However the SPGP (NLPD

0.16, MSE 0.08) significantly outperformed the GP (NLPD 0.56, MSE 0.11). The

SPGP does a good job of modelling heteroscedasticity in this data set — something

the GP cannot do. The SPGP+HS proposed in section 4.2 could do no better in this

case.

Of course the gradient optimisation of the likelihood is a difficult non-convex prob-

lem, with many local minima. However the performance seems fairly stable to re-

peated trials, with relatively low variability. For initialising P we used a random

set of orthogonal projections. We then initialised X̄ by projecting a random subset

of the input data using P.

4.3.2 SO2 data set

For the SO2 data set the task is to forecast the concentration of SO2 in an urban

environment twenty-four hours in advance, based on current SO2 levels and me-

teorological conditions. The results presented in table 4.2b show a similar story to

those on the Temp data set. In this case there are a very large number of data points,

but a smaller number of dimensions D = 27. Although in this case it is perfectly

feasible to train the SPGP in a reasonable time without dimensionality reduction,

we decided to investigate its effects. Again we find that we can achieve a signifi-

cant speed up in training and testing for little loss in accuracy. When we compare

reducing the dimension to 5 using PCA to using the SPGP+DR, we again find that

PCA does not perform well. There is certainly information in the targets which is

useful for finding a low dimensional projection.

We also tested the SPGP+HS (with no dimensionality reduction), and we see sim-

ilar, perhaps slightly better, performance than the standard SPGP. We therefore

decided to compile a competition submission using the SPGP+HS, training on the

training and validation sets, to give to Gavin Cawley for evaluation on the test set.
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Validation Time /s

Method NLPD MSE Train Test

SPGP 0.063 0.0714 4420 0.567
+DR 2 0.106(2) 0.0754(5) 180(10) 0.043(1)
+DR 5 0.071(8) 0.0711(7) 340(10) 0.061(1)
+DR 10 0.112(10) 0.0739(12) 610(20) 0.091(1)
+DR 20 0.181(5) 0.0805(7) 1190(50) 0.148(1)
+DR 30 0.191(6) 0.0818(7) 1740(50) 0.206(3)
+HS,DR 5 0.077(5) 0.0728(3) 360(10) 0.062(3)
+PCA 5 0.283(1) 0.1093(1) 200(10) 0.047(2)

(a) Temp. M = 10 pseudo-inputs used.

Validation Time /s

Method NLPD MSE Train Test

SPGP 4.309(2) 0.812(1) 890(40) 0.723(6)
+DR 2 4.349(1) 0.814(2) 80(5) 0.165(2)
+DR 5 4.325(1) 0.815(4) 160(5) 0.233(1)
+DR 10 4.323(3) 0.809(5) 290(15) 0.342(2)
+DR 15 4.341(3) 0.803(6) 400(10) 0.458(5)
+DR 20 4.350(3) 0.807(2) 530(15) 0.562(4)
+HS 4.306(1) 0.809(2) 860(30) 0.714(4)
+PCA 5 4.395(1) 0.855(2) 170(10) 0.255(3)

(b) SO2. M = 20 pseudo-inputs used.

Table 4.2: Results showing NLPD and MSE score (smaller is better) on the valida-
tion sets of two competition data sets, Temp and SO2. Times to train on the training
set and test on the validation set are also shown. SPGP indicates the standard
SPGP, +DR G indicates dimensionality reduction to dimension G, +HS indicates
the heteroscedastic extension to the SPGP has been used, +PCA G means PCA to
dimension G before standard SPGP. Where possible trials were repeated 5 times
and standard errors in the means have been reported – numbers in parentheses
refer to errors on final digit(s).

101



CHAPTER 4. VARIABLE NOISE AND DIMENSIONALITY REDUCTION

We scored an NLPD of 4.28, and MSE of 0.82. Had we managed to submit this entry

to the competition before the deadline, we would have been placed second on this

data set, again showing the competitiveness of our methods. This time when a GP

is compared to the SPGP on a subset of training data of size 1000, the performance

is very similar, leading us to suspect that there is not too much to be gained from

heteroscedastic methods on this data.

4.3.3 Synthetic data set

The final competition data set is a small 1D data set particularly generated to test

heteroscedastic methods. Figure 4.3 shows plots of the data, and the predictive dis-

tributions obtained using a GP, a standard SPGP, and the SPGP+HS. These plots

show again that the SPGP itself is very capable of modelling certain types of het-

eroscedasticity. The SPGP+HS creates a very similar predictive distribution, but

is able to refine it slightly by using more pseudo-inputs to model the correlations.

Both of these look much better than the GP. We sent submissions of all three meth-

ods to Gavin Cawley for him to evaluate on the test set. Either the SPGP (NLPD

0.380, MSE 0.571), or the SPGP+HS (NLPD 0.383, MSE 0.562), would have been

placed first under NLPD score. In contrast the GP (NLPD 0.860, MSE 0.573) per-

formed poorly on NLPD score as expected. So again we have further evidence that

the SPGP can be a very good model for heteroscedastic noise alone. The SPGP+HS

extension may improve matters in certain circumstances — here it actually seems

to slightly improve MSE over the SPGP, just as we saw for the synthetic data set of

section 4.2.

4.3.4 Motorcycle data set

We finally tested our methods on a data set from Silverman [1985] — data from

a simulated motorcycle accident. This is a very small (133 points) 1D data set,

which is known for its non-stationarity. We removed 10 random points for testing,

trained on the remainder, repeated the procedures 100 times, and the results are

shown below. Here we have to report a failure of our methods. The SPGP does

not do much better than a standard GP because it cannot deal with this degree of

non-stationarity. The SPGP+HS fails completely because it overfits the data badly.

The reason for the overfitting is a bad interaction between all the hyperparameters,

where the lengthscale is driven too small, and the pseudo-noise parameters allow
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Figure 4.3: The predictive distributions on the competition Synthetic data set are
shown for the standard GP, SPGP, and SPGP+HS.
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the predictive distribution to pinch in on some individual training data points. Es-

sentially, for such a small data set, we have allowed too much flexibility in our

covariance function for all the hyperparameters to be fitted using maximum likeli-

hood.

Method NLPD MSE

GP 4.6 2.6 ×102

SPGP 4.5 2.6 ×102

SPGP+HS 11.2 2.8 ×102

4.4 Remarks

In this chapter we have demonstrated the capabilities of the SPGP and its exten-

sions for modelling data sets with a wide range of properties. The original SPGP

could handle data sets with a large number of data points. However it was im-

practical for data sets with high dimensional input spaces. By learning a linear

projection we achieve supervised dimensionality reduction, and greatly speed up

the original SPGP for little loss in accuracy. We also have shown the advantage

of this supervised dimensionality reduction over the obvious unsupervised linear

projection, PCA.

We have also investigated the use of the SPGP for modelling heteroscedastic noise.

We find that the original SPGP is a surprisingly good model for heteroscedastic

noise, at least in the predictive uncertainty competition data sets. We have also

developed an extension of the SPGP more specifically designed for heteroscedastic

noise, which although not improving performance on the competition data sets,

should provide advantages for some types of problem. However the increase in

flexibility to the covariance function can cause overfitting problems for certain data

sets, and it is future work to improve the robustness of the method. We could

certainly try various forms of regularization and even full Bayesian inference.

Since these extensions are based on the efficient SPGP covariance function, compu-

tational tractability is retained first and foremost.
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Chapter 5

Warped Gaussian processes

Chapters 2 and 3 were concerned with purely computational improvements to GPs.

Chapter 4 was based on computationally efficient methods, but also concerned the

development of more flexible GP models. In this chapter we continue this theme

by developing another method to increase the flexibility of GPs. This chapter is

based on Snelson et al. [2004].

In their simplest form GPs are limited by their assumption that the observation data

is distributed as a multivariate Gaussian, with Gaussian noise. Often it is unrea-

sonable to assume that, in the form the data is obtained, the noise will be Gaussian,

and the data well modelled as a GP. For example, the observations may be positive

quantities varying over many orders of magnitude, where it makes little sense to

model these quantities directly assuming homoscedastic Gaussian noise. In these

situations it is standard practice in the statistics literature to take the log of the data.

Then modelling proceeds assuming that this transformed data has Gaussian noise

and will be better modelled by the GP. The log is just one particular transformation

that could be done; there is a continuum of transformations that could be applied

to the observation space to bring the data into a form well modelled by a GP. Mak-

ing such a transformation should really be a full part of the probabilistic modelling;

it seems strange to first make an ad-hoc transformation, and then use a principled

Bayesian probabilistic model.

In this chapter we show how such a transformation or ‘warping’ of the observation

space can be made entirely automatically, fully encompassed into the probabilistic

framework of the GP. The warped GP makes a transformation from a latent space

to the observation, such that the data is best modelled by a GP in the latent space.
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It can also be viewed as a generalisation of the GP, since in observation space it is a

non-Gaussian process, with non-Gaussian and asymmetric noise in general.

5.1 Warping the observation space

In this section we present a method of warping the observation space through a

nonlinear monotonic function to a latent space, whilst retaining the full probabilis-

tic framework to enable learning and prediction to take place consistently. Let us

consider a vector of latent observations z and suppose that this vector is modelled

by a GP with Gaussian noise of variance σ2:

p(z|θ) = N (0,C) , (5.1)

where C(θ) = K + σ2I, and θ is the vector of hyperparameters. Alternatively we

may consider the negative log marginal likelihood Lz equation (1.20):

Lz = − log p(z|θ)

=
1

2
log detC +

1

2
z⊤C−1z +

N

2
log(2π) .

(5.2)

Now we make a transformation from the true observation space to the latent space

by mapping each observation through the same monotonic function f ,

z = f(y;Ψ) , (5.3)

where Ψ parameterises the transformation.1 We require f to be monotonic and

mapping on to the whole of the real line; otherwise probability measure will not be

conserved in the transformation, and we will not induce a valid distribution over

the observations y. Including the Jacobian term that takes the transformation into

account, the negative log likelihood L now becomes:

L = − log p(y|θ,Ψ)

=
1

2
log detC +

1

2
f(y)⊤C−1f(y) −

N∑

n=1

log
∂f(y)

∂y

∣
∣
∣
∣
yn

+
N

2
log(2π) ,

(5.4)

1We could have defined the transformation the other way around. The choice comes down to
whether you want to evaluate the inverse function in training or for prediction. With this choice, the
inverse function is needed for prediction (see section 5.1.2). We will not in general have an analytic
form for the inverse, so the decision slightly affects the training vs. test computation times.
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where f(y) is the vector [f(y1), f(y2), . . . , f(yN)].

5.1.1 Training the warped GP

Learning in this extended model is achieved by simply taking derivatives of the

negative log likelihood function equation (5.4) with respect to both θ and Ψ pa-

rameter vectors, and using a gradient optimisation method to compute maximum

likelihood parameter values. In this way the form of both the covariance matrix and

the nonlinear transformation are learnt simultaneously under the same probabilis-

tic framework. Since the computational limiter to a GP is inverting the covariance

matrix, adding a few extra parameters into the likelihood is not really costing us

anything. All we require is that the derivatives of f are easy to compute (both with

respect to y and Ψ), and that we don’t introduce so many extra parameters that

we have problems with over-fitting. Of course a prior over both θ and Ψ may be

included to compute a MAP estimate, or the parameters could be integrated out

using a sampling technique with associated extra cost.

5.1.2 Predictions with the warped GP

For a particular setting of the covariance function hyperparameters θ (for example

θML), in latent variable space the predictive distribution at a new point is just as for

a regular GP (equation (1.19)), except the observations have been passed through

the nonlinearity f :

p(z∗|y,θ,Ψ) = N
(
µz
∗, (σ

z
∗)

2
)
, (5.5a)

µz
∗ = K∗N [KN + σ2I]−1z

= K∗N [KN + σ2I]−1f(y) ,

(σz
∗)

2 = K∗ − K∗N [KN + σ2I]−1KN∗ + σ2 .

(5.5b)

To find the predictive distribution in the observation space we pass that Gaussian

back through the nonlinear warping function, giving

p(y∗|y,θ,Ψ) =
f ′(y∗)

√

2π(σz
∗)

2
exp

[

−1

2

(
f(y∗) − µz

∗

σz
∗

)2
]

. (5.6)

The shape of this distribution depends on the form of the warping function f , but

in general it may be asymmetric and multimodal.
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If we require a point prediction to be made, rather than the whole distribution over

y∗, then the value we will predict depends on our loss function. If our loss function

is absolute error, then the median of the distribution should be predicted, whereas

if our loss function is squared error, then it is the mean of the distribution. For a

standard GP where the predictive distribution is Gaussian, the median and mean

lie at the same point. For the warped GP in general they are at different points. The

median is particularly easy to calculate:

ymed
∗ = f−1(µz

∗) . (5.7)

Notice we need to compute the inverse warping function. In general we are un-

likely to have an analytical form for f−1, because we have parameterised the func-

tion in the opposite direction. However since we have access to derivatives of f , a

few iterations of Newton’s method with a good enough starting point is enough.

It is often useful to give an indication of the shape and range of the distribution

by giving the positions of various ‘percentiles’. For example we may want to know

the positions of ‘2σ’ either side of the median so that we can say that approximately

95% of the density lies between these bounds. These points in observation space are

calculated in exactly the same way as the median - simply pass the values through

the inverse function:

ymed±2σ
∗ = f−1(µz

∗ ± 2σz
∗) . (5.8)

To calculate the predictive mean, we need to integrate y∗ over the density of equa-

tion (5.6). Rewriting this integral back in latent space we get:

E [y∗] =

∫

dzf−1(z)Nz

(
µz
∗, (σ

z
∗)

2
)

= E [f−1] .

(5.9)

This is a simple one dimensional integral under a Gaussian density, so Gauss-

Hermite quadrature [e.g. Press et al., 1992] may be used to accurately compute it

with a weighted sum of a small number of evaluations of the inverse function f−1

at appropriate places.

5.1.3 Choosing a monotonic warping function

We wish to design a warping function that will allow for complex transformations,

but we must constrain the function to be monotonic. There are various ways to do
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this, an obvious one being a neural-net style sum of tanh functions,

f(y;Ψ) =
I∑

i=1

ai tanh (bi(y + ci)) ai, bi ≥ 0 ∀i , (5.10)

where Ψ = {a,b, c}. This produces a series of smooth steps, with a controlling the

size of the steps, b controlling their steepness, and c their position. Of course the

number of steps I needs to be set, and that will depend on how complex a function

one wants. The derivatives of this function with respect to either y, or the warping

parameters Ψ, are easy to compute. In the same spirit, sums of error functions, or

sums of logistic functions, would produce a similar series of steps, and so these

could be used instead.

The problem with using equation (5.10) as it stands is that it is bounded; the inverse

function f−1(z) does not exist for values of z outside the range of these bounds.

As explained earlier, this will not lead to a proper density in y space, because the

density in z space is Gaussian, which covers the whole of the real line. We can fix

this up by using instead:

f(y;Ψ) = y +

I∑

i=1

ai tanh (bi(y + ci)) ai, bi ≥ 0 ∀i . (5.11)

which has linear trends away from the tanh steps. In doing so, we have restricted

ourselves to only making warping functions with f ′ ≥ 1, but because the ampli-

tude of the covariance function is free to vary, the effective gradient can be made

arbitrarily small by simply making the range of the data in the latent space arbi-

trarily big.

A more flexible system of linear trends may be made by including, in addition to

the neural-net style function equation (5.10), some functions of the form:

g(y) =
1

β
log

[

eβm1(y−d) + eβm2(y−d)
]

m1,m2 ≥ 0 . (5.12)

This function effectively splices two straight lines of gradientsm1 andm2 smoothly

together with a ‘curvature’ parameter β, and at position d. The sign of β determines

whether the join is convex or concave.
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Figure 5.1: A 1D regression task. The black dotted lines show the true generating
distribution, the blue dashed lines show a GP’s predictions, and the red solid lines
show the warped GP’s predictions.

5.2 A 1D regression task

A simple 1D regression task was created to show a situation where the warped GP

should, and does, perform significantly better than the standard GP. 101 points,

regularly spaced from −π to π on the x axis, were generated with Gaussian noise

about a sine function. These points were then warped through the function y =

z1/3, to arrive at the dataset y which is shown as the dots in figure 5.1a.

A GP and a warped GP were trained independently on this dataset using a con-

jugate gradient minimisation procedure and randomly initialised parameters, to

obtain maximum likelihood parameters. For the warped GP, the warping function

equation (5.11) was used with just two tanh functions. For both models the SE

covariance function equation (1.6) was used. Hybrid Monte Carlo was also imple-

mented to integrate over all the parameters, or just the warping parameters (much

faster since no matrix inversion is required with each step), but with this data set

(and the real data sets of section 5.3) no significant differences were found from

ML.

Predictions from the GP and warped GP were made, using the ML parameters. The

predictions made were the median and 2σ percentiles in each case, and these are

plotted as triplets of lines on figure 5.1a. The predictions from the warped GP are
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Figure 5.2: Warping functions learnt for the four regression tasks carried out in this
paper. Each plot is made over the range of the observation data, from ymin to ymax.

found to be much closer to the true generating distribution than the standard GP,

especially with regard to the 2σ lines. The mean line was also computed, and found

to lie close, but slightly skewed, from the median line.

Figure 5.1b emphasises the point that the warped GP finds the shape of the whole

predictive distribution much better, not just the median or mean. In this plot, one

particular point on the x axis is chosen, x = −π/4, and the predictive densities

from the GP and warped GP are plotted alongside the true density (which can be

written down analytically). Note that the standard GP must necessarily predict a

symmetrical Gaussian density, even when the density from which the points are

generated is highly asymmetrical, as in this case.

Figure 5.2a shows the warping function learnt for this regression task. The tanh

functions have adjusted themselves so that they mimic a y3 nonlinearity over the

range of the observation space, thus inverting the z1/3 transformation imposed

when generating the data.

5.3 Results for some real data sets

It is not surprising that the method works well on the toy dataset of section 5.2

since it was generated from a known nonlinear warping of a smooth function with

Gaussian noise. To demonstrate that nonlinear transformations also help on real

data sets we have run the warped GP comparing its predictions to an ordinary GP

on three regression problems. These data sets are summarised in table 5.1 which

shows the range of the targets (ymin, ymax), the number of input dimensions (D),

and the size of the training and test sets (N , T ) that we used.

The dataset Creep is a materials science set, with the objective to predict creep
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Dataset D ymin ymax N T

Creep 30 18 MPa 530 MPa 800 1266
Abalone 8 1 yr 29 yrs 1000 3177
Ailerons 40 −3.0 × 10−3 −3.5 × 10−4 1000 6154

Table 5.1: Properties of the data sets

rupture stress (in MPa) for steel given chemical composition and other inputs [Cole

et al., 2000].2 With Abalone the aim is to predict the the age of Abalone from

various physical inputs [Blake and Merz, 1998]. Ailerons is a simulated control

problem, with the aim to predict the control action on the Ailerons of an F16 aircraft

[Camacho, 2000].3

For datasets Creep and Abalone, which consist of positive observations only,

standard practice may be to model the log of the data with a GP. So for these

datasets we have compared three models: a GP directly on the data, a GP on the

fixed log-transformed data, and the warped GP directly on the data. The predictive

points and densities were always compared in the original data space, accounting

for the Jacobian of both the log and the warped transforms. The models were run as

in the 1D task: ML parameter estimates only, SE-ARD covariance (equation (1.21)),

and warping function equation (5.11) with three tanh functions.

The results we obtain for the three datasets are shown in table 5.2. We show three

measures of performance over independent test sets: mean absolute error, mean

squared error, and the mean negative log predictive density (NLPD) evaluated at

the test points. This final measure was included to give some idea of how well the

model predicts the entire density, not just point predictions.

On these three sets, the warped GP always performs significantly better than the

standard GP. For Creep and Abalone, the fixed log transform clearly works well

too, but particularly in the case of Creep, the warped GP learns a better transfor-

mation. Figure 5.2 shows the warping functions learnt, and indeed figure 5.2b and

figure 5.2c are clearly log-like in character. On the other hand figure 5.2d, for the

Ailerons set, is exponential-like. This shows the warped GP is able to flexibly

handle these different types of data sets. The shapes of the learnt warping func-

tions were also found to be very robust to random initialisation of the parameters.

Finally, the warped GP also makes a better job of predicting the distributions, as

2Materials Algorithms Project (MAP) Program and Data Library. http://www.msm.cam.ac.

uk/map/entry.html.
3L. Torgo. http://www.liacc.up.pt/˜ltorgo/Regression/.
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Dataset Model Absolute error Squared error NLPD

Creep GP 16.4 654 4.46
GP + log 15.6 587 4.24
warped GP 15.0 554 4.19

Abalone GP 1.53 4.79 2.19
GP + log 1.48 4.62 2.01
warped GP 1.47 4.63 1.96

Ailerons GP 1.23 × 10−4 3.05 × 10−8 -7.31
warped GP 1.18 × 10−4 2.72 × 10−8 -7.45

Table 5.2: Results of testing the GP, warped GP, and GP with log transform, on three
real datasets. The units for absolute error and squared error are as for the original
data.

shown by the difference in values of the negative log density.

5.4 Remarks

We have shown that the warped GP is a useful extension to the standard GP for re-

gression, capable of finding extra structure in the data through the transformations

it learns. From another viewpoint, it allows standard preprocessing transforms,

such as log, to be discovered automatically and improved on, rather than be ap-

plied in an ad-hoc manner.

Of course some data sets are well modelled by a GP already, and applying the

warped GP model simply results in a linear ‘warping’ function. It has also been

found that data sets that have been censored, i.e. many observations at the edge

of the range lie on a single point, cause the warped GP problems. The warping

function attempts to model the censoring by pushing those points far away from

the rest of the data, and it suffers in performance especially for ML learning. To

deal with this properly a censorship model is required.

As a further extension, one might consider warping the input space in some non-

linear fashion. In the context of geostatistics this has actually been dealt with by

Schmidt and O’Hagan [2003], where a transformation is made from an input space

which can have non-stationary and non-isotropic covariance structure, to a latent

space in which the usual conditions of stationarity and isotropy hold.

Gaussian process classifiers can also be thought of as warping the outputs of a GP,
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through a mapping onto the (0, 1) probability interval. However, the observations

in classification are discrete, not points in this warped continuous space. Therefore

the likelihood is different. Diggle et al. [1998] consider various other fixed nonlinear

transformations of GP outputs.

The warped GP is just one way in which to relax the strict Gaussianity assump-

tions of the standard GP. The warped GP takes both the process and the noise,

and passes them together through a nonlinear deterministic function. The major

advantage of this is that it is very cheap to apply — hardly more expensive than

the original GP. This type of all encompassing preprocessing transformation will

not be suitable for all data. For example, some data may be much better modelled

by a GP with a non-Gaussian noise model. Alternatively one can imagine making

a nonlinear transformation to a GP before adding the noise. The problem with any

of these alternatives is that they inevitably require costly approximations due to

non-Gaussian high dimensional integrals. Finally, problems with input-dependent

noise are better dealt with by the techniques discussed in chapter 4. Of course the

warped GP need not be applied in a standalone way, and can be used in conjunc-

tion with many other GP modelling techniques.
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Chapter 6

Discussion

In this thesis we have examined and developed a variety of techniques to deal

with two general problems in Gaussian process modelling: their computational

expense for large data sets, and their lack of flexibility to model different types of

data. We now summarise the main contributions of the thesis and discuss some

opportunities for future work based on these ideas.

In chapter 2 we developed the sparse pseudo-input Gaussian process (SPGP), based

on a pseudo data set parameterising a GP approximation. This consisted of a new

batch regression approximation for GPs coupled together with an evidence based

gradient optimisation to find the locations of the pseudo-inputs and hyperparam-

eters. We compared and contrasted this method to previous sparse GP approxi-

mations, both from a theoretical and from an empirical point of view. We found

that the gradient optimisation of the SPGP gives very accurate solutions for a given

number of pseudo-inputs, making it very suitable for applications where fast pre-

dictions are paramount. We also found another major advantage was the ability to

reliably choose hyperparameters as part of the same smooth optimisation, and that

these hyperparameters gave better results than preselecting them by training a GP

on a large subset of data.

From a theoretical point of view we discussed the unifying framework for GP ap-

proximations of Quiñonero Candela and Rasmussen [2005], and how the SPGP

approximation fits into the framework as ‘FITC’. We then showed how FITC can

be derived as a minimal KL (p to q) approximation with a conditional factorisation

assumption. We discussed the equivalence of FITC as a batch version of Csató and

Opper [2002]’s sparse online learning scheme, and argued how this equivalence
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arises theoretically. We then illustrated the ‘breaking’ of the similar projected pro-

cess (PP) approximation in the low noise regime, and we argued how this arises

from the minimal KL (q to p) derivation as opposed to FITC’s (p to q).

In terms of future work, there are still many areas to be addressed. From a the-

oretical point of view we saw how the PP approximation goes wrong in the low

noise regime. However we also saw how the FITC approximation avoids this by

collapsing onto the subset of data solution. Whilst it is good that FITC is a safe

approximation, we would really like to do better than subset of data in this situa-

tion. The essential problem is that FITC is completely constrained in this situation

— it is tied down at the inducing inputs. An interesting question is whether a dif-

ferent category of approximations can be developed that do not fall under these

constraints.

From an empirical point of view more work needs doing to compare the inducing

point based approximations discussed in this thesis, to approximations such as the

IFGT [Yang et al., 2005] which seek to make fast matrix vector products embed-

ded within CG. Whilst there are known limitations with these methods it would

be very worthwhile to do a full empirical study to compare and assess in which

regimes they work well. An interesting line of thought in this direction is to ac-

tually to combine a matrix vector product approximation with an inducing point

based approximation such as FITC. One advantage of the matrix vector product ap-

proximations is that they do have some forms of error guarantees, i.e. a tolerance

can be set. However, these guarantees are made on the results of the matrix vector

products, and it is difficult to relate them to actual quantities of interest such as the

predictive distribution and marginal likelihood. The SPGP, like all inducing point

based approaches, requires a choice of the number of pseudo-inputs. The good

thing is that this choice is directly related to computation, but unfortunately we do

not have accuracy guarantees. It would be interesting to look at more automated

ways of choosing the number of pseudo-inputs.

As we discussed previously, it would be interesting to test the SPGP methods for

other non-Gaussian likelihoods and noise models. Whilst the FITC approximation

has been used for classification by Csató and Opper [2002], the full SPGP method

of learning pseudo-inputs and hyperparameters using gradients of the marginal

likelihood has not been fully investigated.1 It remains to be seen if the refinement of

the locations of the pseudo-inputs is as useful for classification as it is for regression.

1We are aware of some unpublished work by Andrew Naish-Guzman that partly addresses this.
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In chapter 3 we compared local type approximations to the global inducing point

based ones, and we examined for which types of data they are most appropriate.

The local type of approximation has been somewhat forgotten as a specific means

of speeding up GP models, but it can be surprisingly effective, especially for low

dimensional highly complex data sets. The inducing point based global approxima-

tion such as FITC is more suited to smoother higher dimensional data sets where

global correlations and extrapolations are very important. We then developed a

combined local and global approximation that can be seen as a direct extension

of the framework of Quiñonero Candela and Rasmussen [2005], where we have re-

laxed the assumption that the training and test variables are conditionally indepen-

dent. We showed how this PIC approximation drastically improves the predictions

of the previously proposed PITC approximation, and subsumes both the purely

local and purely global approaches.

There are many ideas for future directions associated with this work. Firstly we

have not yet investigated choosing the local clusters in conjunction with the induc-

ing points for the combined PIC approximation, perhaps based on the PIC marginal

likelihood, or on heuristics. We feel this may improve the performance of PIC fur-

ther over the purely local and purely global approaches. To complete the picture

we could also try to choose hyperparameters from the PIC marginal likelihood.

One of the reasons the global approach sometimes suffers in comparison to the

local one, is that it unnecessarily computes covariances between inducing points

and data points far away from each other, when their covariance is essentially zero.

It would be interesting to investigate hierarchical type approximations where not

only are the data points clustered, but the inducing points themselves are clus-

tered, such that the only covariances computed are to their local regions. In a sense

this idea has the same flavour as combining a fast matrix vector product approx-

imation with an inducing point based one, as discussed above. A final idea, not

purely along computational lines, is to try to develop PIC-like covariance functions

that are naturally efficient, but also allow different region-specific properties such

as varying lengthscales. This would nicely align with the original motivations for

local GP experts of Rasmussen and Ghahramani [2002].

In chapter 4 we extended the modelling capabilities of the SPGP by learning a low-

dimensional projection to deal with high dimensional data sets, and by learning

uncertainties for the pseudo-variables to deal with heteroscedastic data sets. In fact

we found that the originally SPGP was surprisingly flexible with regard to variable

noise, even without the extension. This can be understood by viewing the SPGP
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covariance function as a heavily parameterised non-stationary flexible covariance,

which is naturally efficient by construction. For data that is not well modelled by

a simple underlying stationary GP with fixed noise level, we gain a lot more than

computational efficiency by using the SPGP. For the dimensionality reduction we

showed that computation can be dramatically reduced by learning a supervised

projection to a much lower dimensional space than the original, often for little loss

in accuracy.

It is true that the variable noise with the SPGP is a useful bi-product of the sparse

approximation, rather than an explicitly designed property, although this is some-

what addressed by the extended model. It would be interesting to compare with

more specific heteroscedastic models such as Goldberg et al. [1998]. The problem

is that such models tend to be computationally intractable for anything but very

small data sets, whereas the SPGP is of course efficient by construction.

In chapter 5 we developed the warped Gaussian process — a method for automati-

cally learning a nonlinear preprocessing transformation to handle data better that is

not well modelled initially by a GP. Examples of such data include output distribu-

tions that are naturally skewed, or perhaps specified only on the positive real line.

The advantage of the warped GP is that the preprocessing is not ad-hoc such as a

simple log transformation, but is considered as a full part of the probabilistic model.

We showed that on a variety of real data sets different types of transformations can

be learnt, from exponential-like to log-like, with corresponding improvements in

performance. An attractive feature of the warped GP is that it is computationally

cheap to apply. As we discussed in section 5.4, further work might include combi-

nation with an input warping for non-stationarity, and also combination with some

of the sparse GP methods discussed earlier in the thesis.

In summary, this thesis provides a set of useful techniques that both approximate

and extend Gaussian processes, allowing them to be applied to a greater range of

machine learning problems. In all our methods we have sought to preserve the

important aspects of Gaussian processes, namely that they are fully probabilistic

nonlinear nonparametric models, allowing flexible modelling whilst handling un-

certainty in data.
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Notation

A.1 General

N (µ,Σ) multivariate normal distribution with mean µ

and covariance Σ

E [f ] expectation of f under p(f)

I identity matrix

tr(A) trace of a matrix A

|A| determinant of a matrix A

KL[p(x)‖q(x)] the Kullback-Leibler divergence between probability

distributions p and q

diag(A) diagonal matrix formed from the leading diagonal of A

A.2 Data points

We denote a D dimensional input point as a vector x, and a scalar valued output

as y. In a standard regression problem, we have a training data set D consisting of

N pairs of inputs and outputs, and a corresponding test data set DT :

D = {xn, yn}N
n=1 , (A.1a)

DT = {xt, yt}T
t=1 . (A.1b)

When working with GPs we assume there is an underlying noise-free latent func-

tion f(x) that we are modelling. At each observation in the training or test set there
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is therefore a latent function variable which we denote fn or ft.

The SPGP of section 2.2 is based on a set of M pseudo-points. We highlight these

pseudo-points with a bar to distinguish them from real data points: {x̄m, f̄m}M
m=1.

We never need to consider an equivalent noisy pseudo-output ȳm.

It is helpful to be able to refer collectively to the inputs and outputs of these data

sets:

X = {xn}N
n=1 f = {fn}N

n=1 y = {yn}N
n=1 (A.2a)

XT = {xt}T
t=1 fT = {ft}T

t=1 yT = {yt}T
t=1 (A.2b)

X̄ = {x̄m}M
m=1 f̄ = {f̄m}M

m=1 . (A.2c)

The PI(T)C approximation of section 3.2 requires that training points are grouped

into disjoint clusters or ‘blocks’:

XBs ⊂ X =
S⋃

s=1

XBs fBs ⊂ f =
S⋃

s=1

fBs

S∑

s=1

Bs = N . (A.3)

In keeping with past GP references we refer to a single general test point as (x∗, f∗, y∗).

A.3 Covariances

We need to be able to construct covariance matrices and vectors from various com-

binations of training, test and pseudo- inputs. The starting point is the covariance

functionK(x,x′), which maps two arbitrary input points to a real number. Our no-

tation uses K to represent any covariance matrix that is directly constructed from

the covariance function, but with different indices to show which two sets of input

points are involved. For example, the (N ×M) rectangular covariance matrix be-

tween training points and pseudo-points is denoted KNM . It is constructed from

the covariance function:

[KNM ]nm = K(xn, x̄m) , (A.4)

or, with some abuse of notation, KNM = K(X, X̄). The indices N and M are really

shorthand for the two sets of input points X and X̄, but they also allow us to easily

read off the size of any given covariance matrix.

Rather than use transpose symbols we simply swap the indices: K⊤
NM ≡ KMN , since
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Notation Size Covariance between Transpose notation

KN N ×N X ↔ X KN

KM M ×M X̄ ↔ X̄ KM

KNM N ×M X ↔ X̄ KMN

KBsM Bs ×M XBs ↔ X̄ KMBs

KnM 1 ×M xn ↔ X̄ KMn

KTN T ×N XT ↔ X KNT

K∗M 1 ×M x∗ ↔ X̄ KM∗

KxM 1 ×M x ↔ X̄ KMx

Table A.1: Covariance matrix notation

the covariance function is a symmetric function. To save some further space, we

contract the two indices of square or self covariances to one index, e.g. KNN ≡ KN .

Sometimes we only need to specify a covariance vector rather than a full matrix.

For example, the (M × 1) covariance between all pseudo-points and one training

point, which we denote KMn. The lower case n indicates that we are referring to a

single training point xn, rather than the whole set X.

Often we need only refer to a single general test point of arbitrary location. We de-

note such a test point (x∗, f∗, y∗), in keeping with past GP references. Covariances

that refer to this single test point have starred indices, e.g. KN∗.

Finally, we occasionally need to abuse notation further to preserve the function part

of the covariance function in a concise notation. For example, we use KxM as short-

hand for the vector function [K(x, x̄1),K(x, x̄2), . . . ,K(x, x̄M)]. Here KxM is strictly

regarded as a function of x, not just a simple vector. As an example of this use, we

define the ‘low-rank’ covariance function Q:

Q(x,x′) = KxMK−1
M KMx′ . (A.5)

Any covariance matrix Q constructed from (A.5) will have maximum rank M .

We summarize all this information in table A.1 by giving some common examples

of covariance matrices and their properties.
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Mathematical background

B.1 Matrix identities

B.1.1 Matrix inversion lemma

The matrix inversion lemma is also known as the Woodbury, Sherman and Morri-

son formula:

(A + UBU⊤)−1 = A−1 − A−1U(B−1 + U⊤A−1U)−1U⊤A−1 , (B.1)

where A and B are invertible square matrices of possibly different sizes, and V is

a rectangular matrix. The equivalent relation for determinants is:

|A + UBU⊤| = |A| |B| |B−1 + U⊤A−1U| . (B.2)

B.1.2 Inverse of a partitioned matrix

If a symmetric invertible matrix A and its inverse are partitioned:

A =

[

F G

G⊤ H

]

, A−1 =

[

F̃ G̃

G̃⊤ H̃

]

, (B.3)

122



APPENDIX B. MATHEMATICAL BACKGROUND

where F and F̃ are square matrices of the same size etc. Then these submatrices

may be expressed:

F̃ = F−1 + F−1GMG⊤F−1

G̃ = −F−1GM

H̃ = M ,

(B.4)

where M = (H − G⊤F−1G)−1.

B.1.3 Matrix derivatives

Suppose we have a matrix A which is a function of a parameter θ. The derivative

of the inverse matrix w.r.t. θ is:

∂

∂θ
A−1 = −A−1∂A

∂θ
A−1 , (B.5)

where ∂A

∂θ is the matrix of elementwise derivatives of A. If A is positive definite

symmetric, the derivative of the log determinant is:

∂

∂θ
log|A| = tr(A−1∂A

∂θ
) . (B.6)

B.2 Cholesky decompositions

When implementing Gaussian processes and their approximations we are always

faced with inversion of a symmetric positive definite matrix A. However we rarely

require the inverse A−1 itself. Common forms we require are y⊤A−1y, A−1y and

|A|, for some vector y. The most computationally stable and efficient way to obtain

these forms is via Cholesky decomposition:

A = LL⊤ , (B.7)

where L is a triangular matrix called the Cholesky factor. This operation is also

known as the matrix square root. It has the same order cost as matrix inversion

O(N3), but is actually cheaper in terms of constant factors.
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The symmetric form y⊤A−1y can be rewritten:

y⊤A−1y = y⊤(LL⊤)−1y

= y⊤L−⊤L−1y

= ‖L−1y‖2 .

(B.8)

The vector L−1y can be easily found in O(N2) time by forward substitution be-

cause L is triangular. If we require A−1y then we make a further back substitution:

L−⊤(L−1y). The determinant |A| can be easily found because |A| =
∏

n L2
nn.

If the matrix A is a noiseless covariance matrix, it is sometimes necessary to add a

small ‘jitter’ to its diagonal, to make the Cholesky decomposition well conditioned:

A + ǫI. In practice this jitter can be made small enough so that any differences in

results are negligible.

A further use for the Cholesky decomposition is to generate a sample from the

multivariate Gaussian distribution: N (µ,Σ). First factorise Σ = LL⊤, and then a

sample f is made from f = µ + Lu, where u is a sample from N (0, I).

B.3 Gaussian identities

Suppose we have a Gaussian distribution on y, with a mean that is a linear function

of some other random variables f :

p(y|f) = N (Vf ,A) . (B.9)

Then suppose we have a zero mean Gaussian distribution on f :

p(f) = N (0,B) . (B.10)

The following identity is useful:

p(y) =

∫

df p(y|f)p(f)

= N (0,A + VBV⊤) .

(B.11)
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B.4 KL divergence

The Kullback-Leibler (KL) divergence between two probability densities p(x) and

q(x) is:

KL[p(x)‖q(x)] =

∫

dx p(x) log
p(x)

q(x)
. (B.12)

It is asymmetric, and hence we use the shorthand (p to q) to refer to the KL as above.
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Appendix C

SPGP derivatives

C.1 SPGP marginal likelihood

Our aim in this section is to maximise the SPGP marginal likelihood equation (2.9)

with respect to hyperparameters θ and pseudo-inputs X̄. We first define the diag-

onal matrix Γ:

σ2Γ = diag(KN − QN) + σ2I . (C.1)

This scaling of Γ with the noise seems to help stability somewhat. With this defini-

tion we restate the SPGP marginal likelihood:

p(y) = N (0,QN + σ2Γ) . (C.2)

We want to minimise L = − log p(y). Therefore:

2L = log|QN + σ2Γ|
︸ ︷︷ ︸

2L1

+y⊤(QN + σ2Γ)−1y
︸ ︷︷ ︸

2L2

+N log 2π . (C.3)

Equation (C.3) is not in a computationally efficient form and needs to be rewritten

with the matrix inversion lemma equation (B.1) and its equivalent for determinants

equation (B.2). We deal first with L1:

2L1 = log|KM + σ−2KMNΓ−1KNM ||K−1
M ||σ2Γ|

= log|A| − log|KM | + log|Γ| + (N −M) log σ2 ,
(C.4)
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where A = σ2KM + KMNΓ−1KNM .1 Now L2:

2L2 = σ−2y⊤(Γ−1 − Γ−1KNMA−1KMNΓ−1)y . (C.5)

For the actual implementation we use the Cholesky decompositions (see section B.2)

of all the square symmetric matrices involved, e.g. A = A
1
2 A

⊤
2 . The equivalent for

Γ is simply the square-root because it is diagonal. The advantage for the derivation

is that the symmetric nature of the quadratic form equation (C.5) can be empha-

sised:

2L2 = σ−2
(
‖
¯
y‖2 − ‖A−

1
2

¯
KMN

¯
y‖2

)
, (C.6)

where we have defined
¯
y = Γ−

1
2 y and

¯
KNM = Γ−

1
2 KNM . Finally we combine

equation (C.4) and equation (C.6) to obtain the negative log marginal likelihood:

L = L1 + L2 +
N

2
log 2π . (C.7)

C.2 Derivatives

We now take the derivative of L with respect to a general arbitrary parameter (a

hyperparameter or element of a pseudo-input vector).2 We start by differentiating

equation (C.4) using the identity equation (B.6), ignoring the noise variance σ2 for

now:

2L̇1 = tr
(
A−

1
2 ȦA−

⊤
2
)
− tr

(
K

−
1
2

M K̇MK
−

⊤
2

M

)
+ tr

(
Γ−

1
2 Γ̇Γ−

1
2
)

= tr
(
A−

1
2 ȦA−

⊤
2
)
− tr

(
K

−
1
2

M K̇MK
−

⊤
2

M

)
+ tr

¯̄
Γ̇ ,

(C.8)

where we have used the dot notation as a shorthand for derivative, and we have

defined
¯̄
Γ̇ = Γ−

1
2 Γ̇Γ−

1
2 . We next differentiate equation (C.6):

L̇2 = σ−2
[

−1
2
¯
y⊤

¯̄
Γ̇

¯
y +

(
A−

1
2

¯
KMN

¯
y
)⊤

(
1
2A

−
1
2 ȦA−

⊤
2
(
A−

1
2

¯
KMN

¯
y
)

− A−
1
2

¯
K̇MN

¯
y + A−

1
2

¯
KMN

¯̄
Γ̇

¯
y
]

, (C.9)

1To compare to section 2.2, A = σ2B and σ2Γ = Λ + σ2I.
2For an alternative derivation of the gradients see [Lawrence, 2007], where the FITC approxima-

tion is used within the GPLVM for dimensionality reduction and visualisation on large data sets.
There the matrix chain rule is used to break the derivation down into simpler stages.
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where
¯
K̇NM = Γ−

1
2 K̇NM . To complete the derivative of L we need Ȧ and Γ̇:

Ȧ = σ2K̇M + 2 sym
(
K̇MNΓ−1KNM

)
− KMNΓ−1Γ̇Γ−1KNM

= σ2K̇M + 2 sym
(

¯
K̇MN

¯
KNM

)
−

¯
KMN

¯̄
Γ̇

¯
KNM .

(C.10)

Γ̇ = σ−2 diag
(
K̇N − 2K̇NMK−1

M KMN + KNMK−1
M K̇MK−1

M KMN

)
(C.11)

⇒
¯̄
Γ̇ = σ−2 diag

(

¯̄
K̇N − 2

¯
K̇NMK−1

M ¯
KMN +

¯
KNMK−1

M K̇MK−1
M ¯

KMN

)
, (C.12)

where sym(B) = (B + B⊤)/2. By substituting equation (C.10) and equation (C.12)

into equation (C.8) and equation (C.9) we have the derivative for L in terms of

the covariance derivatives K̇M , K̇NM , and diag(K̇N). K̇M and K̇NM are of course

functions of both the hyperparameters and the pseudo-inputs. diag(K̇N) is sim-

ply a function of the hyperparameters. Notice that the sym can be dropped from

equation (C.10) when it is substituted in either equation (C.8) and equation (C.9).

C.3 Kernel derivatives

The kernel derivatives K̇M , K̇NM , and diag(K̇N) with respect to the hyperparam-

eters θ are generally easy to compute. For example let us consider the amplitude

hyperparameter a of the SE covariance equation (1.6):

∂

∂a2
K(xn, x̄m) =

1

a2
K(xn, x̄m) (C.13)

⇒ K̇NM =
1

a2
KNM . (C.14)

Similarly K̇M = 1
a2 KM and diag(K̇N) = I. In practice we differentiate with respect

to log a2 so that unconstrained optimisation may be used. Derivatives with respect

to other hyperparameters are also straightforward.

Derivatives with respect to the pseudo-inputs are made slightly more complicated

by the fact that an element of KNM and KM is only a function of one or two pseudo-

inputs. Consider the function that is defined by taking the derivative of the kernel

function with respect to a single dimension d of its first argument: ∂K
∂xd (x,x′). Then

the derivative of KNM with respect to a single dimension of a single pseudo-input

x̄d
m′ is:

∂Knm

∂x̄d
m′

= δmm′
∂K

∂xd
(x̄m′ ,xn) . (C.15)
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The delta function indicates that only the m′ column of K̇NM is non-zero. Similarly

for K̇M :
∂Kmm′

∂x̄d
m′′

= δmm′′
∂K

∂xd
(x̄m′′ , x̄m′) + δm′′m′

∂K

∂xd
(x̄m′′ , x̄m) . (C.16)

Here only the m′′ row and column of K̇M are non-zero. When equations (C.15) and

(C.16) are substituted in (C.8), (C.9), (C.10), and (C.12), the delta functions cause

various contractions to occur.

C.4 Noise derivative

We have left the noise derivative to last because it is actually simpler than the other

hyperparameter derivatives, since it is not a kernel parameter. It is best derived

directly from equation (C.3), before applying the matrix inversion lemma:

2
∂L1

∂σ2
= tr(QN + σ2Γ)−1

= σ−2 tr(Γ−1 − Γ−1KNMA−1KMNΓ−1)

= σ−2 tr(Γ−1) − σ−2 tr(
¯̄
KNMA−1

¯̄
KMN) ,

(C.17)

where we have used ∂
∂σ2 (σ2Γ) = I. Similarly:

2
∂L2

∂σ2
= −‖(QN + σ2Γ)−1y‖2

= −σ−4‖(Γ−1 − Γ−1KNMA−1KMNΓ−1)y‖2

= −σ−4
(
‖
¯̄
y‖2 + ‖

¯̄
KNMA−1

¯
KMN

¯
y‖2 − 2

¯
y⊤

¯
KNMA−1

¯̄
KMN

¯̄
y
)
.

(C.18)

C.5 Derivative costs

There is a precomputation cost of O(NM2) for any of the derivatives. After this

the cost per hyperparameter is O(NM) in general. Since the pseudo-inputs are

treated as extra hyperparameters, and since they constitute MD parameters in to-

tal, one might think that the cost for all pseudo-input derivatives would therefore

be O(NM2D). However, as described in section C.3, the pseudo-inputs are special

in that they only affect certain rows and columns of KM and KNM . All pseudo-

input derivatives can actually be obtained in O(NMD), after precomputation of

O(NM2).
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