
Flexible and Formal Modeling of Microprocessors
with Application to Retargetable Simulation by Wei
Qin and Sharad Malik

EE 249 Paper Presentation
Wenchao Li

Fall 2007

Outline

� Introduction
� Motivation
� Prior Work

The Operation State Machine (OSM) � The Operation State Machine (OSM)
Model

� Case Studies
� Conclusion

Outline

� Introduction
� Motivation
� Prior Work

The Operation State Machine (OSM) � The Operation State Machine (OSM)
Model

� Case Studies
� Conclusion

Introduction

� Microprocessor = Instruction-set-
architecture (ISA) + Microarchitecture.

� Instruction-set-simulator emulates the
functionality of programs.functionality of programs.

� Microarchitecture simulator provides
performance metrics.

Introduction contd.

� Important characteristics for a high
quality microarchitecture simulation
framework:
- Efficient
- Expressive
- Declarative
- Productive

Outline

� Introduction
� Motivation
� Prior Work

The Operation State Machine (OSM) � The Operation State Machine (OSM)
Model

� Case Studies
� Conclusion

Motivation

� Growth in application-specific processors
demands a retargetable modeling
framework that is capable of accurately
capturing complex process behavior and capturing complex process behavior and
generating efficient simulators.

� Simulation techniques in the
microarchitecture modeling domain is not
mature.

Yea, dammit,
platform-based
design again!

Outline

� Introduction
� Motivation
� Prior Work

The Operation State Machine (OSM) � The Operation State Machine (OSM)
Model

� Case Studies
� Conclusion

Prior Work

� Operation-centric:
- nML, ISDL, EXPRESSION.

� Hardware-centric:
- MIMOLA, HASE, SystemC, Asim, Liberty;- MIMOLA, HASE, SystemC, Asim, Liberty;
- UPFAST.

� Other formalism:
- LISA
- BUILDABONG
- SimpleScalar

Outline

� Introduction
� Motivation
� Prior Work

The Operation State Machine (OSM) � The Operation State Machine (OSM)
Model

� Case Studies
� Conclusion

OSM

� Why the heck do we need another
model?

- Microprocessor specifications can be
partitioned into:partitioned into:

1. Operation layer
2. Hardware layer

- Existing frameworks focuses on one or the
other, or has limited flexibility.

- So?

OSM

� OSM aims to provide clean and formal
semantics to distinguish these two layers and
at the same time model complex interactions
between the two. This also helps to
orthogonalize design considerations.orthogonalize design considerations.

The OSM Model

Operation Layer

Multiple edges arbitrated
by static priorities

Token buffer for
allocated resources

…

� Multiple state machines are coordinated by a
director to avoid non-determinism.

The OSM Model

Hardware Layer

� In the OSM model, we model the resources as
tokens. A token manager manages one or
more closely related tokens. It can grant a
token to, or reclaim a token from an OSM
upon request. Token managers may check the upon request. Token managers may check the
identity of the requesting OSMs when making
decisions.

The OSM Model

Language

� Token Manager Interface (TMI).
� Token transactions:

- Allocate: transaction of exclusive resources;
Inquire: transaction of non-exclusive - Inquire: transaction of non-exclusive
resources;

- Release: opposite of allocate;
- Discard: reset.

Scheduling OSMs (sequential)

Deadlocks from
cyclic resource
dependency is
considered
pathological.

Simulating OSMs

OSM MoC is embedded inside the DE schduler.

Modeling Hazards

� Structure hazard
� Data hazard
� Variable latency
� Control hazard� Control hazard

OSM of a 5-stage pipelined RISC processor

Outline

� Introduction
� Motivation
� Prior Work

The Operation State Machine (OSM) � The Operation State Machine (OSM)
Model

� Case Studies

Case Studies

� StrongARM: a five-stage pipelined
implementation of the Advanced RISC
Machine architecture.

� PowerPC 750: a dual-issue out-of-order � PowerPC 750: a dual-issue out-of-order
superscalar processor.

StrongARM

� The resulting simulator runs at 650k
cycles/sec compared to 550k cycles/sec by
SimpleScalar.

� Model validated against an iPAQ-3650 PDA Model validated against an iPAQ-3650 PDA
containing a SA-1100.

PowerPC 750

� Validated against a SystemC based model
using a benchmark mix from MediaBench and
SPECint 2000, and found that differences in
timing are within 3% in all cases.

� OSM simulator runs at 250k cycles/sec, 4
times of the SystemC model.

Productivity

Lines of
code

SA-1100 PowerPC
750

OSM Total 3032 5004

SimpleScal
ar/SystemC

4633 16000

About 60% of the source code for the OSM model is dedicated
to instruction decoding and OSM initialization, which can be
automatically synthesized through the use of
an architecture description language. Most hardware modules
and their TMIs were reused across the two targets.

Outline

� Introduction
� Motivation
� Prior Work

The Operation State Machine (OSM) � The Operation State Machine (OSM)
Model

� Case Studies
� Conclusion

Conclusion

� Where the paper succeeds:
- OSM as an efficient retargetable simulator

generation framework for different microprocessor
architecture including scalar, superscalar, very-
long-instruction-word and multi-threaded (add tag). long-instruction-word and multi-threaded (add tag).

� Where the paper fails:
- Architecture description language can be derived

by not done (the declarative criterion).
- Mentioned OSM as ASM but how to do successive

refinement is not clear.

Q & A

Thank you.Thank you.

