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Flexible and Optimal Design of Spherical Microphone
Arrays for Beamforming

Zhiyun Li, Member, IEEE, and Ramani Duraiswami, Member, IEEE

Abstract—This paper describes a methodology for designing a
flexible and optimal spherical microphone array for beamforming.
Using the approach presented, a spherical microphone array can
have very flexible layouts of microphones on the spherical sur-
face, yet optimally approximate a desired beampattern of higher
order within a specified robustness constraint. Depending on the
specified beampattern order, our approach automatically achieves
optimal performances in two cases: when the specified beam-
pattern order is reachable within the robustness constraint we
achieve a beamformer with optimal approximation of the desired
beampattern; otherwise we achieve a beamformer with maximum
directivity, both robustly. For efficient implementation, we also
developed an adaptive algorithm for computing the beamformer
weights. It converges to the optimal performance quickly while
exactly satisfying the specified frequency response and robustness
constraint in each step. One application of the method is to allow
the building of a real-world system, where microphones may
not be placeable on regions, such as near cable outlets and/or a
mounting base, while having a minimal effect on the performance.
Simulation results are presented.

Index Terms—Beamforming, beampattern, directivity index
(DI), optimization, quadrature, spherical microphone array, white
noise gain (WNG).
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I. INTRODUCTION

S
PHERICAL arrays of microphones are recently becoming

a subject of interest as they allow three dimensional sam-

pling of the soundfield, and may have applications in sound-

field capture [14]. The paper [15] presented a first analysis of

such arrays, and showed how sound can be analyzed using them.
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This paper performed an elegant separation of the analysis and

beamforming parts by using a modal beamformer structure. One

implicit aspect of the analysis is that the distribution of micro-

phones on the surface of the sphere seems to be redundant con-

sidering the results achieved. This is because the beamforming

relies on numerical integration ("quadrature") of spherical har-

monics. A quadrature scheme for spherical harmonics usually

includes carefully chosen quadrature points on spherical surface

and a set of optimal quadrature weights. In [15], this is done

using a specified semi-regular distribution of points, which has

two issues.

1) For practical arrays, it may not be possible to place micro-

phones precisely at all the quadrature locations. Moving

even one microphone slightly destroys the quadrature.

2) If higher order beamformers are necessary, quadrature

points may be unavailable.

We discuss these issues further in the paper. Here, we propose

an approach that allows flexible microphone placements. Then

we show how the array can achieve optimal performance.1

This paper is organized into four sections. In Section II, we

present the basic principle of beamforming using a spherical mi-

crophone array. In Section III, we give a theoretical analysis of

the discrete system. This part includes a summary of previous

work and an analysis of the orthonormality error: how it appears,

how it gets amplified, and how it affects array performance. To

cancel the error noise optimally, we propose an improved solu-

tion and compare several design examples including a practical

one. In Section IV, we formulate our optimization problem into

a linear system. We simplify the optimization by using reduced

degrees of freedom (DOFs) for a specified beamforming direc-

tion. The resulting beamformer then is checked against the ro-

bustness constraint. The upper bound of the beampattern order is

derived theoretically. We again use the example from Section III

to demonstrate our simplified optimization. However, for espe-

cially ill-conditioned layouts, the solution can lack robustness.

This limitation is then addressed in Section V by a controlled

trade-off between the accuracy of approximation and a specified

robustness criterion. We formulate this trade-off as a constrained

optimization problem and develop an adaptive implementation.

Our algorithm automatically optimizes in two different situa-

tions: the beampattern with maximum directivity or the desired

beampattern of pre-specified order. Our adaptive implementa-

tion inherits the advantages of the classical ones in [7] and [3].

II. BACKGROUND

The basic principle of a spherical beamformer is to make use

of the orthonormality of spherical harmonics to decompose the

soundfield arriving at a spherical array. The orthogonal compo-

nents of the soundfield are then linearly combined to approxi-

mate a desired beampattern [15].

A. Scattering Theory

Acoustic wave propagation in a homogeneous medium is de-

scribed by the wave equation

(1)

1Some of the results were reported in [13].

Fig. 1. Plane wave incident on a rigid sphere.

where is the pressure, and are the location and time of the

field point, is the Laplacian, and is the speed of sound in the

medium. Upon taking the Fourier transform, in the frequency

domain, the wave equation becomes the Helmholtz equation

(2)

where is the frequency and is the wavenumber.

As denoted in Fig. 1, for a unit magnitude plane wave with

wavenumber incident from direction , the inci-

dent field at an observation point can be expanded

as

(3)

where is the spherical Bessel function of order , is the

spherical harmonics of order and degree . Here, superscript

denotes the complex conjugation. At the same point, the field

scattered by the rigid sphere of radius is [8]

(4)

The total field on the surface ( ) of the rigid sphere is

(5)

(6)

where are the spherical Hankel functions of the first kind.

B. Soundfield Decomposition and Beamforming

Following [15], let us assume that the pressure recorded at

each point on the surface of the sphere , is weighted by

(7)
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Using the orthonormality of spherical harmonics

(8)

the total output from a pressure-sensitive spherical surface

weighted according to (7) is

(9)

This shows the spatial response of the plane wave incident from

for a continuous pressure-sensitive spherical microphone,

is . Since any square integrable function on the

unit sphere can be expanded in terms of complex spherical

harmonics, we can implement arbitrary beampatterns from this

class of functions. For example, an ideal beampattern looking

at the direction can be modeled as a delta function

(10)

which can be expanded into an infinite series of spherical har-

monics

(11)

So the weight at each point to achieve this beampattern is

(12)

The advantage of this system is that it can be steered into any

three-dimensional (3-D) direction digitally with the same beam-

pattern. This is of course for the ideal case of an ideal continuous

microphone array on a spherical surface, and to achieve the ideal

beam pattern we need to perform infinite summations.

III. DISCRETE SPHERICAL ARRAY ANALYSIS

This section also follows [15], but we make the band limit re-

strictions explicit. For a discretely sampled array with micro-

phones mounted at the continuous integrals

are approximated by weighted summations, or quadrature2 [19,

p. 71], as follows:

(13)

where is the quadrature coefficient for at .

is the lesser of the following two values: the first is the max-

imum spatial order of spherical harmonics that can be resolved

2While cubature is sometimes used for representing nodes and weights in two
dimensions, we prefer to use the word quadrature, which is in any case the term
used for still higher dimensions.

by a given array; the second is the maximum order at which

the incoming sound signal shows spatial variability, which in

turn is related to the temporal frequency of the signal as this

specifies the wavenumber. As will be seen from the analysis in

Section III-B, the precise choice of is not critical. is the

order of beamformer. (13) can be solved in the least-squares

sense to minimize the 2-norm of the residues for (13).

Therefore, to approximate the truncated expansion of the

ideal beampattern in (11) to order , which we call the regular

beampattern3 of order , defined as

(14)

The weights to achieve the beampattern (14) are

(15)

To evaluate the robustness of a beamformer, we use the white

noise gain (WNG) [2], usually in decibel scale

(16)

where is the column vector of complex pressure at each micro-

phone position produced by the plane wave of unit magnitude

from the desired beamforming direction and is the column

vector of complex weights for each microphone. WNG defines

the sensitivity on the white noise including the device noise and

implicitly, the microphone position mismatches among other

spatially uncorrelated perturbations. Positive WNG means an

attenuation of white noise, whereas negative means an amplifi-

cation.

To evaluate the directivity of a beampattern, we use the direc-

tivity index (DI) [2], also in decibels, as follows:

(17)

where is the actual beampattern looking at and

is the value in that direction. The DI represents the

ability of the array to suppress a diffuse noise field. It is the ratio

of the gain for the look direction to the average gain over all

directions. If a spherical microphone array can precisely achieve

the regular beampattern of order as in (14), its theoretical DI

is . We will show later that a spherical micro-

phone array doesn’t necessarily always achieve regular beam-

patterns of certain orders, it can also be optimized to achieve the

maximum DI under a specified WNG constraint. In that case, the

resulting beampattern may have irregular shapes other than the

regular beampatterns defined in (14).

3It is also called the plane-wave decomposition pattern in [17], [16].
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A. Previous Work

The previous work can be summarized according to the

choices made for and the optimization method used,

and the constraints enforced.

In [15], are chosen to be unity to provide relative

accuracy for some “uniform” layouts such as the 32 nodes de-

fined by a truncated icosahedron. This straightforward choice

simplifies the computation; however, unity weights do not hold

for “non-uniform” layouts and their use does not leave any other

freedom for optimization of the array beam pattern, such as im-

posing the WNG constraint. In addition, we will see that even

small errors can destroy the beampattern. In [1], several options

are mentioned including equiangular grid layout [10] and an in-

tuitive equidistant layout [6]. The common limitation of those

schemes is that they are inflexible. If a patch of the spherical sur-

face is inappropriate for mounting microphones, the orthonor-

mality error may be large, thereby destroying the beampattern

as the quadrature relation will not hold.

The approach in [11, ch. 3, sec. VI] is equivalent to choosing

to be independent of . The remaining DOFs

are not used to satisfy (13) but maximize the directivity within

a specified WNG constraint.4 The optimization is performed

by using an undetermined Lagrangian multiplier. Since there

is no simple relation between the multiplier and the resulting

WNG, the implementation uses a straightforward trial-and-error

strategy.

B. Orthonormality Error Noise Analysis

Unfortunately, (13) cannot be satisfied exactly for over-deter-

mined or rank-deficient systems in general, which is usually the

case. In addition, the number of equations in (13) for each pair

and depends on . Then, for any choice of ,

we always have

(18)

where is the nonzero error caused by discreteness.

Now, we will see how this error could degrade the perfor-

mance of soundfield decomposition. To extract the component

of order and degree from the soundfield (5), we consider

the quadrature in (9) for , denoting one compo-

nent of at order and degree

(19)

where

(20)

Using discrete points, we have

(21)

4In [11, ch. 3, sec. VI], the beampattern is simplified by assuming it to be
'-independent and therefore m is dropped.

Fig. 2. b (ka) for the first few orders. Given ka; b (ka) decays very quickly
with respect to n.

We notice that

(22)

So, (21) can be rewritten as

(23)

The second term is the noise caused by the scaled orthonor-

mality error . We call it the orthonormality error noise

(OEN) which is possible with any discrete microphone array

layout. To prevent it from damaging the orthonormality we re-

quire to achieve beam patterns of various orders, we require

(24)

So, we get:

(25)

Since decays very quickly with respect to as shown in

Fig. 2, for a given number of microphones and layout, we cannot

decompose the high-order component of soundfield if the condi-

tion (25) fails. In addition, we can see (25) is independent of the

magnitude of the incoming sound wave. This means that even if

the microphones have recorded the high-order components, the

system may be unable to decompose them.

To prevent errors from being amplified, we include the fre-

quency-dependent scale factor

(26)
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Fig. 3. Precision of the quadrature rules provided by the spherical t-design is only guaranteed in the specified band limit.

into (13). The linear system for quadrature coefficients then be-

comes a weighted least-squares problem

(27)

The discrete orthonormalities in (27) that are weighted with

smaller are less important than those with larger

. Since converges to zero when increases

for given , compared with (13), (27) suppresses the orthonor-

malities in the higher orders and adds more accuracy to the

lower orders. In addition, since converges to zero

rapidly with respect to , this weighting also significantly

lessens the sensitivity of the solutions to the choice of only

if is small enough compared with , e.g., for

, will make at least 40dB

below for .

C. Design Examples

A quadrature formula provides locations at which we evaluate

the function and weights to multiply and sum up to obtain the

integral. It was proven that any quadrature formula of order

over the sphere should have more than quadrature

nodes [18], [9]. If the quadrature function is the multiplication of

two band-limited functions up to order , to achieve the exact

quadrature using equiangular layout, we need

nodes [4]. This is too large and redundant for our application.

For special layouts, can be made much smaller. For example,

for a spherical grid which is a Cartesian product of equispaced

grid in and the grid in in which the nodes distributed as

zeros of the Legendre polynomial of degree with respect

to , we need [17]. However, these points are

quite inconveniently distributed. Another special design with

equal quadrature coefficients is called the spherical t-design [9].

While this design achieves exact quadratures, it applies strictly

to band-limited functions and is still large considering our

quadrature function is the multiplication of two band-limited

functions. As shown in Fig. 3, using the 64 node t-design, or-

thonormality errors are extremely small up to order five, but in-

crease significantly above order five.

If we use an approximate quadrature formula, then it may be

possible to reduce . Intuitively, we want the microphones dis-

tributed "uniformly" on the spherical surface. Unfortunately, it

has been proven that only five regular polyhedrons (also called

"Platonic solids") exist: the tetrahedron, cube, dodecahedron,

octahedron, and icosahedron [5]. Semi-regular polyhedrons can

be used also such as the truncated icosahedron used in [15] to

layout 32 microphones. The general problem to distribute arbi-

trary number of points approximately "uniformly" on a spher-

ical surface is numerically solved by Fliege in [6] by minimizing

the potential energy of a distribution of movable electrons on a

perfect conducting sphere. Then, a set of quadrature coefficients

(which are unequal) are obtained by an optimization procedure.

This is in contrast to spherical t-designs, where the quadrature

coefficients are equal. In our experience, and as can be seen from

a comparison of Fig. 3(b) and Fig. 4(b), the Fliege nodes are

more robust to functions that have higher spatial frequency com-

ponents. Fig. 4(a) shows Fliege’s 64-node layout in [6]. Fig. 4(b)

shows the orthonormality errors of spherical harmonics using

those optimal quadrature coefficient for each nodes.

However, those optimal quadrature coefficients are not gener-

ally available for other flexible layouts. More importantly, for a

given layout, especially for a "nonuniform" one, we will explain

in the next section that there is no single optimal set of coeffi-

cients to satisfy all orthonormalities. For example, Fig. 5(a) is

the layout of our array using the angular positions of those 64

nodes with four nodes at the bottom removed because of the

cable outlet. Fig. 5(b) shows the orthonormality errors using the

60 nodes and quadrature coefficients. It is less accurate com-

pared with Fig. 4(b). The top row in Fig. 6 shows the beam-

patterns from order three to five using this configuration. At

order three, the beampattern is distorted. At order four, the or-

thonormality errors significantly damage the beampattern. At

order five, the beampattern is almost completely destroyed. The

bottom row in Fig. 6 shows the beampatterns using the quadra-

ture coefficients solved by (27), which optimally approximate

the regular beampatterns.
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Fig. 4. (a) Fliege’s 64 nodes. (b) Orthonormality errors.

Fig. 5. (a) Same as in Fig. 4(a) except the bottom four nodes are removed. (b) Orthonormality errors.

IV. SIMPLIFIED OPTIMIZATION OF DESIRED BEAMPATTERN

FOR DISCRETE ARRAY

In total, we have quadrature coefficients for

each frequency, which can be viewed as degrees of freedom.

However, those coefficients are not directly related to the WNG

constraint, and we cannot find an explicit constrained optimiza-

tion easily. In addition, the DOFs are intuitively

redundant for satisfying the WNG constraint, specifically since

we have only microphones, and each microphone will be

assigned to one final weight no matter how many intermediate

coefficients are achieved. That means should

somehow be independent of and . Plausibly, we have the

following least-squares problem with only variables:

(28)

This method, however, is infeasible especially for ill-con-

ditioned layouts since in practice we aim to use as few

microphones as possible, so the number of linear equations will

largely outnumber the number of microphones which makes

the optimization less meaningful. Instead of satisfying (28),

we can use to maximize the directivity subject to

the WNG constraint, which simply returns to a classical solved

problem of designing a superdirective and robust beamformer

[3] in a white noise field. This method does not aim to optimally

approximate a desired regular beampattern of a specified order

.

We pay the price that the beampattern coefficients are no

longer the same in all steering directions. Because the optimiza-

tion on (28) is independent of the beamforming direction, it is

too ambitious to find such a single set of optimal weights for

every beamforming directions. This, in turn, also implies that

the optimization using DOFs should be performed for each

beamforming direction. In another words, to directly control

the WNG for a flexible microphone layout, we have to sacri-

fice the modal beamformer structure described in [15]. To make

the steering easier, we design an adaptive implementation in

Section V-B.
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Fig. 6. (a)–(c) Beampatterns from order 3 to 5 using the 60-node array in Fig. 5. The top row uses Fliege’s quadrature coefficients. The bottom row uses the
coefficients solved by (27). Simulated at 1 kHz with a = 10 cm.

We will follow the above argument to simplify the op-

timization: instead of fixing individual orthonormalities of

spherical harmonics as we did before, we will optimally fit

the desired beampattern directly using reduced DOFs. In this

case, we formulate the discrete spherical beamformer problem

in to a linear system with respect to the weights for the

microphones, respectively, so that the WNG can be directly

controlled. The linear system says that if these weights are

solved under the WNG constraint, they will optimally generate

the desired beampatterns. Then we will present straightforward

solutions. In Section IV-B, we will derive the upper bound of

beamforming order of a robust beamformer. Design examples

are provided to demonstrate our approach.

A. Discrete Spherical Beamformer as A Constrained Linear

System

To achieve a regular beampattern of order (14), a discrete

spherical beamformer with microphones can be formulated

as a finite linear system

(29)

(30)

where (29) defines the beampattern, and (30) means that the

plane wave incident from the beamforming direction will be

faithfully reconstructed. In (29), are the coefficients of the

spherical harmonics expansion of the soundfield in (5)

(31)

Fig. 7. Using the 60-nodes array in Fig. 5, the horizontal lines show the mode
bounds for robust beamforming at given ka.

...

...

(32)
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Fig. 8. Beampatterns of order 3 to 5 for the 60-nodes array in Fig. 5 using simplified optimization.

is the vector of complex weights to be assigned to each mi-

crophone at

...
(33)

As explained earlier, is dependent on . is the vector of

coefficients of the beampattern of order steered to in (14)

...

...

(34)

In (30), is the row vector of the complex pressure (the Fourier

transform of the signal recorded at each microphone position)

produced by a plane wave of unit magnitude from the desired

beamforming direction

...
...

(35)

In (29), is a normalizing coefficient to satisfy the all-pass

frequency response constraint (30). The least-squares solution

of (29) is

(36)

Then, can be determined using (30). If we assume (29) has

small residues, from (14), the a priori estimate of is

(37)

According to the spherical harmonic addition theorem, (37) can

be simplified easily, and we see that is independent of

(38)

We will use it to predict the maximum order in the next subsec-

tion.

Note that because we have absorbed all frequency depen-

dence ( ) into the linear system, it must be solved for each

frequency.

B. Maximum Beampattern Order for Robust Beamformer

A robust beamformer requires a minimum WNG of (such

as the decibel value used in [2])

(39)

Substituting (30) into (39), we have a spherical constraint on

(40)

Assume the maximum order we can possibly decompose ro-

bustly is , then the linear system (29) becomes

(41)

where

(42)

Suppose we have a least-squares solution of to (41), consid-

ering the following equations of order :

...

(43)
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Using Cauchy’s inequality, we have

So

(44)

From (40), we have

(45)

which is

(46)

for all Therefore, given a spherical

microphone array and the beamforming direction, for each fre-

quency, we know the upper bound order of a robust beam-

former.

C. Design Examples

We still use the node layout at kHz as an example. We set

, i.e., the minimum WNG is dB. Fig. 7 shows the

bounds for , where the dashed lines show the

bounds. For example, the dash-dotted line shows 1 kHz

in our case. Since the intersection of the black line and

the mode is above the bound, while its intersection

with mode is below the bound, we predict the

maximum order of a robust beamformer is four. Fig. 8 shows

the resulting beampatterns of order from three to five using the

simplified optimization. The WNG of an order-5 beamformer

falls below the minimum of dB as predicted. These results

are almost identical to the bottom row in Fig. 6

As a general example, Fig. 9 shows a random layout of 64

nodes. Fig. 10 shows the beampatterns from order three to five

at 1 kHz. Their WNGs are all below -6 dB. It seems to be contra-

dictory to the bounds shown in Fig. 11, however, we will show in

the next section that the robust beamformers up to order four are

still achievable, with constrained relaxation on the least-squares

solution (36).

Fig. 9. Random layout of 64 microphones on a sphere of radius 10 cm.

V. OPTIMAL APPROXIMATION SUBJECT TO

THE WNG CONSTRAINT

In the previous section, we minimize the residue of a finite

linear system and check the resulting beamformer against the

WNG constraint. In this section, we will extend the algorithm

further to address the following two aspects:

1) we need to relax the approximations to stay within the con-

straint such as in Fig. 9;

2) we need a robust beamformer with maximum directivity

index.

The two problems are closely related to each other and can

be formulated as a unified constrained optimization problem.

A. Constrained Optimization

To design a robust spherical beamformer with finite micro-

phones, yet optimally approximate the desired beampattern to a

certain order (e.g., the ideal beampattern in our case), we need

to optimize the following 2-norm function

(47)

subject to

(48)

(49)

This optimization can be numerically solved by some blackbox

software packages, such as the MATLAB function fmincon,

etc. Another way is to use Tikhonov regularization. Specifically,

we place a 2-norm constraint on by appending a damping

matrix with the regularization parameter

(50)

The solution is
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Fig. 10. Unconstrained beampatterns from order 3 to 5 for the array in Fig. 9.

Fig. 11. Mode bounds for the array in Fig. 9.

This regularization parameter , however, is not directly related

to the WNG constraint. A trial-and-error strategy can be used in

implementation.

B. Adaptive Implementation

The most straightforward way to implement this system is

to precompute all the weights for each pre-defined 3-D direc-

tion and store them in a lookup table. This method, however, is

not very efficient because of the obvious trade-off between the

spatial resolution and the cost of storage. In this subsection, we

reformulate our problem so that we can parallel the method pre-

sented in [3] to design an adaptive implementation which auto-

matically and robustly converges to the desired beamformer of

a specified order in any steering directions.

We rewrite the objective function into an ellipsoidal form, as

follows:

(51)

subject to

(52)

(53)

Fig. 12. Iteration process for beampattern of order 3. The thick curves use the
left scale, thin curves right scale.

Fig. 13. Constrained optimal beampattern of order 3.

where

...
...
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Fig. 14. Precision comparisons for order 4 beamforming. (a) Comparison of unconstrained and constrained beampattern coefficients with regular order four
beampattern coefficients c B . (b) Residue comparison between unconstrained and constrained beampattern coefficients. Both plots show the absolute values.

We know from (51), however, we include it as an

extra variable into and its actual value is automatically de-

termined by the constraint (52) in the process of optimization.

To solve this optimization, we first decompose into its

orthogonal components:

(54)

is the least-squares solution to satisfy the linear constraint

(52). The residue is expected to be zero since usually (52) is a

highly under-determined system. Substituting (54) into (53), we

have

(55)

Thus, the WNG constraint becomes a spherical constraint on

Since is the gradient of the object function (51) at step

, the tentative update vector is

(56)

is the scaled projection of into the sphere surface of

radius

(57)

is the step size, and is the null space of

(58)

The weights are updated as

(59)

(60)

Fig. 15. Constrained optimal beampattern of order 4.

Fig. 16. Iteration process optimally approximates the DI of the regular beam-
pattern of order 5. The thick curves use the left scale, thin curves right scale.

We set the initial guess as

(61)

(62)

which is equivalent to the solution we obtained in Section IV.

If the resulting WNG satisfies the constraint, the iteration will
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Fig. 17. (a) Constrained optimal beampattern of order 5. It is actually a superdirective beampattern in an ambient white noise field. (b) Beampattern of the regular
implementation of a superdirective beamformer in an ambient white noise field.

stay with this solution, otherwise, it will start the constrained

optimization process, both automatically. At each step, the con-

straints (52) and (53) are satisfied exactly. In addition, similar

to the methods in [3] and [7], round-off errors do not accumu-

late. This iteration is independent of the actual signal processing

rate, so it may be implemented more efficiently as a parallel unit

with other processors.

C. Convergence and Optimal Step Size

From (56) and (59), we have

(63)

Let

(64)

(65)

We then have

(66)

To guarantee convergence, we need

(67)

where is the maximum eigenvalue of . Although it is

difficult to precisely model and control if possible, it will not

cause divergence from (65) and will be very close to one in prac-

tice. Thus, the optimal step size can be roughly estimated

as the least-squares solution of

(68)

which is

(69)

where is the column vector of eigenvalues of , and

is the vector of ones with the length of .

D. Simulation Results

We use our algorithm to solve the two cases we mentioned at

the beginning of this section. We first go back to the example in

Figs. 9 and 10. We consider a beamformer of order three. Fig. 12

shows the iteration process using the optimal step size. As can be

seen from this figure, the optimization goal is not to maximize

the DI, instead it converges to the regular beampattern of order

three. The resulting beampattern is shown in Fig. 13. Fig. 15

shows the optimal approximations of the regular beampattern

of order four subject to the WNG constraint. There is minimal

difference between the beampatterns in Figs. 15 and 9(b). The

comparisons of residues are shown in Fig. 14.

If we desire optimal directivity, we can approximate the ideal

beampattern as (11). In practice, we just need to approximate an

order above the theoretical upper bound derived in (46), such as

order 5 in this case. It is best to demonstrate this via simulations.

Fig. 16 clearly shows the actual DI is approaching the regular DI

oforderfive.Fig.17(a)showstheresultedbeampattern.Fig.17(b)

shows the regular implementation of superdirective beamformer

in an ambient white noise field, which results in the nearly iden-

tical beampattern as Fig. 17(a). These simulations also demon-

strates our algorithm can robustly reconfigure itself after micro-

phone reorganization if the new positions are known.

VI. CONCLUSION

This paper describes a flexible and optimal design of spher-

ical microphone arrays for beamforming. We analyze the effects
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of discrete orthonormality errors of spherical harmonics on re-

sulting spherical beamformers, especially for nonuniform mi-

crophone layouts. We first design a weighted least-squares ap-

proach to correct the effects of the individual orthonormality

errors. However, since the solved coefficients cannot be used to

control the resulting beamformer’s robustness directly, we then

design a constrained optimization algorithm. Instead of fixing

individual orthonormality errors, this algorithm optimally ap-

proximates the desired beampatterns using reduced DOFs. To

obtain easier steering, we develop an adaptive implementation,

which optimally converges to the desired beampatterns under

specified robustness constraint. The resulting beamformer has

either regular or maximum directivity beampatterns. Various de-

sign examples are presented to demonstrate our algorithms. In

current work [12], these algorithms have been practically imple-

mented and found to exhibit performance close to the expected

theoretical one, and these are being prepared for submission.
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