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ABSTRACT

We present the use of continuous-time autoregressive moving average (CARMA) models as a method for estimating
the variability features of a light curve, and in particular its power spectral density (PSD). CARMA models fully
account for irregular sampling and measurement errors, making them valuable for quantifying variability, forecasting
and interpolating light curves, and variability-based classification. We show that the PSD of a CARMA model can
be expressed as a sum of Lorentzian functions, which makes them extremely flexible and able to model a broad
range of PSDs. We present the likelihood function for light curves sampled from CARMA processes, placing them
on a statistically rigorous foundation, and we present a Bayesian method to infer the probability distribution of
the PSD given the measured light curve. Because calculation of the likelihood function scales linearly with the
number of data points, CARMA modeling scales to current and future massive time-domain data sets. We conclude
by applying our CARMA modeling approach to light curves for an X-ray binary, two active galactic nuclei, a
long-period variable star, and an RR Lyrae star in order to illustrate their use, applicability, and interpretation.

Key word: methods: statistical

Online-only material: color figures

1. INTRODUCTION

Current and future time-domain optical surveys such as the
Sloan Digital Sky Survey (SDSS) Stripe 82 Supernova Survey
(Frieman et al. 2008), Palomar Transient Factory (PTF; Law
et al. 2009), the Catalina Real-Time Transient Survey (CRTS;
Drake et al. 2009), Pan-STARRS (Kaiser et al. 2002), and the
Large Synoptic Survey Telescope (LSST; Ivezic et al. 2008) are
providing and will provide an unprecedented flood of variability
data. Such data sets will number in the millions to hundreds of
billions of photometric data points, providing systematic mul-
tiwavelength variability studies for thousands to eventually bil-
lions of objects. For example, LSST will have ∼30 trillion total
measurements on ∼40 billion objects. For many classes of astro-
nomical sources these will be the first systematic multipassband
variability studies including large numbers of objects with well-
sampled multiwavelength light curves. Moreover, these rich data
sets will also enable the inclusion of multipassband variability
information for distinguishing different classes of objects. Data
sets generated by these surveys will present many exciting op-
portunities, providing astrophysical insight for known classes of
objects, as well as the discovery of unknown variability classes,
new subclasses of known variable classes, and anomalous
outliers.

The central data analysis problem for extracting science
from these time-domain data sets is how to quantitatively
characterize the variability. For periodic signals characterizing
the variability is relatively straightforward, with the period
being the obvious and most important feature to use. For
transient phenomena such as supernovae or black hole tidal
disruptions, the light curve is often characterized by fitting a
parameterized deterministic model to the data, either statistical
(e.g., splines) or astrophysical. For quasi-periodic and stochastic
light curves, the variability is often characterized through the

power spectral density (PSD). The PSD is the variability
amplitude per frequency, so it describes the variability power
contained within a frequency interval. A similar measure that is
sometimes used is the structure function, which describes the
variability amplitude as a function of timescale. The variability
of quasi-periodic and stochastic light curves may then be
characterized by summarizing the power spectrum through a
parametric form, with power laws and sums of Lorentzian
functions being common choices for active galactic nuclei
(AGNs) and X-ray binaries, respectively.

Irregular sampling or sequences of regular sampling separated
by gaps are often the source of the most problematic aspects of
measuring variability features from a light curve. Unfortunately,
all ground-based astronomical data and many space-based data
are subject to sampling that is not strictly uniform. For periodic
signals, methods have been developed to estimate periods from
irregularly sampled light curves and assess their statistical
significance (e.g., Scargle 1982; Horne & Baliunas 1986;
Reimann 1994); significance tests have also been developed
for periodic signals against red noise for regularly sampled light
curves (Vaughan 2010). For deterministic models, fitting the
light curve is a traditional regression problem, so the sampling
pattern does not bias the results.

Deriving the PSD features and their uncertainties from an
irregularly sampled light curve is considerably more challenging
for stochastic light curves. For a regularly sampled light curve
the traditional way of estimating the PSD is through the discrete
Fourier transform of the light curve, the modulus-squared of
which is called the periodogram. The periodogram suffers from
biases due to the fact that it is calculated from a time series that is
a sample from a continuous-time stochastic process. As a result,
the sampling pattern of the light curve distorts the periodogram
relative to the true PSD that generated the light curve (e.g., Uttley
et al. 2002; Vaughan et al. 2003). These issues similarly cause
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the empirical structure function to be a distorted estimate of the
true structure function (Emmanoulopoulos et al. 2010). This is
a concern because if one does not correct for this distortion,
differences in variability properties caused by vagaries of the
sampling pattern could mistakenly be interpreted to have an
astrophysical origin. Moreover, this distortion is also a problem
for classification algorithms that utilize variability information,
as objects may spuriously be interpreted to belong to different
variability classes simply because they have different sampling
patterns. Clearly, this issue must be dealt with in order to take
advantage of the state-of-the-art time-domain data sets.

There are two primary approaches used in astronomical stud-
ies to account for irregular sampling in stochastic light curves.
The first approach is to use Monte Carlo simulations to forward
model the periodogram as a function of a model power spec-
trum (Done et al. 1992; Uttley et al. 2002; Emmanoulopoulos
et al. 2013). The approach proceeds by first simulating a large
number of light curves from an assumed power spectrum, sam-
pling them with the same pattern as the measured light curve,
computing the periodogram for each down-sampled simulated
light curve, and averaging the simulated periodograms to cre-
ate a model periodogram. The best-fit power spectrum is found
by minimizing the χ2 between the model periodogram and the
measured periodogram. Moreover, confidence intervals may be
estimated from the Monte Carlo samples. This approach is ex-
tremely flexible, but can be computationally expensive. This is
especially true if there are intervals of fine sampling separated
by intervals of sparse sampling, as this requires either generating
a very dense light curve at the finest sampling rate or splitting
the light curve into segments and computing their periodograms
separately. Unfortunately, because of the computational cost, it
is difficult to see how this approach can be applied to massive
time-domain data sets. Moreover, fitting a complex multicom-
ponent for even a single data set can become computationally
expensive in the Monte Carlo forward fitting approach.

The second approach to accounting for irregular sampling in
stochastic light curves is to fit the light curve in the time domain.
This is almost always done by assuming that the light curve is a
realization of a Gaussian process (e.g., Rybicki & Press 1992;
Kelly et al. 2009, 2011, 2013; Miller et al. 2010; Kozłowski et al.
2010; Brewer et al. 2011). In this case, the likelihood function
is a multivariate normal distribution with unknown mean and
covariance matrix. The covariance matrix is parameterized by
the autocovariance function, which forms a Fourier transform
pair with the power spectrum. In this time-domain approach, the
autocovariance function is fit through maximum-likelihood or
Bayesian approaches, and the power spectrum is calculated from
the inferred autocovariance function. The irregular sampling
and measurement errors are automatically accounted for by
the likelihood function. This approach is statistically powerful
because of its reliance on the likelihood function, but in general
it is also computationally expensive. In order to calculate the
multivariate Gaussian likelihood function, it is necessary to
invert the n × n covariance matrix of the light curve, where n is
the number of data points in the light curve. In general, matrix
inversion scales as O(n3), which can be prohibitive for large
samples of light curves that are sampled with even moderate
density.

There are special classes of Gaussian processes for which the
computational complexity only scales linearly with the length
of the light curve. For linear processes that have a state-space
representation (discussed further in Section 2.2; see also Vio
et al. 1992), the likelihood function can be computed using a

computationally efficient (scaling as O(n)) algorithm known
as the Kalman filter. Gaussian processes with an exponential
autocorrelation fall into this class of stochastic models that have
fast algorithms for computing their likelihood function (Rybicki
& Press 1995; Kozłowski et al. 2010). This particular process
is known as both a first-order continuous-time autoregressive
process (CAR(1)) and an Ornstein–Uhlenbeck process6 and was
introduced by Kelly et al. (2009) as a model for quasar optical
light curves. Subsequent work has confirmed that it provides
a good description of quasar optical light curves on timescales
of days to years at the level of data quality of the OGLE and
Stripe 82 surveys (Kozłowski et al. 2010; MacLeod et al. 2010;
Zu et al. 2013; Andrae et al. 2013). However, recent studies
have found evidence for deviations from the CAR(1) model for
optical light curves of AGNs (Mushotzky et al. 2011; Graham
et al. 2014). In addition, successful AGN selection techniques
have been developed based on the CAR(1) parameters (Butler
& Bloom 2011; MacLeod et al. 2011; Ruan et al. 2012; Choi
et al. 2013).

Despite its recent success, the CAR(1) model is very simple,
as it assumes a PSD that is a Lorentzian centered at zero. Thus,
there are only two free parameters in the CAR(1) model: the
bend frequency of the PSD (i.e., the width of the Lorentzian)
and the normalization. This makes the model inflexible, limiting
its broader use. In this paper, we overcome the inflexibility of the
CAR(1) model and present the general class of continuous-time
autoregressive moving average (CARMA) models. CARMA
models are generated by adding higher order derivatives to the
stochastic differential equation that defines the CAR(1) pro-
cesses. The special case of a CAR(p) process is discussed by
Koen (2005), who applied it to the light curves for two variable
stars. The PSD of a CARMA process is a sum of Lorentzian
functions, with the free parameters being the centroid, widths,
and normalizations of the Lorentzian functions. This provides a
significant amount of flexibility in modeling the PSD, making
CARMA modeling applicable to many classes of astronomical
variables. Moreover, CARMA models have a state space repre-
sentation, enabling the use of the Kalman filter for calculating
their likelihood function. Because of this, the computational
complexity of calculating the likelihood function for CARMA
models still scales linearly with the number of data points in the
light curve, making them scalable to massive time-domain data
sets.

The format of this paper is as follows. In Section 2.1, we be-
gin by defining the CARMA process via a stochastic differential
equation, present the PSD of a CARMA process, and present the
autocovariance function of a CARMA process. Then, in Sec-
tion 2.2, we express the CARMA process using a continuous-
time state space representation and use this representation to
derive the solution to the stochastic differential equation defin-
ing the process. This solution forms the basis for the statistical
properties of a CARMA process sampled at a set of observa-
tional times, which are necessary for fitting the CARMA process
parameters to a measured time series. In Section 3, we present
the likelihood function for a sampled CARMA process, and in
Section 3.1, we present an efficient algorithm for computing the
likelihood function based on the Kalman filter. In order to de-
rive the Kalman filter for a CARMA process, it is necessary to
obtain a discrete-time state space representation of the sampled

6 There is effectively no difference between an Ornstein–Uhlenbeck process
and a first-order continuous-time autoregressive process, although the
terminology Ornstein—Uhlenbeck process is more common in the physics
literature.
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process, and we begin Section 3.1 by using the results of Sec-
tion 2.2 to present this discrete-time representation. We extend
these results in Section 3.2 and derive an algorithm for effi-
ciently performing interpolation and extrapolation from a mea-
sured time series assuming a CARMA model. In Section 3.3,
we describe Bayesian inference for the CARMA model, includ-
ing our adopted prior distribution; in Section 3.4, we describe
how to assess the quality of fit based on the CARMA model; in
Section 3.5, we discuss how to choose the order of the CARMA
model; and in Section 3.6, we discuss computational aspects
related to fitting the CARMA model to a measured time series.
In Section 4, we illustrate statistical inference under a CARMA
model on two simulated light curves, and in Section 5, we apply
the CARMA model to astronomical light curves from an X-ray
binary, AGNs, and periodic variable stars. In Section 6, we dis-
cuss our results and provide directions for future development.

2. CONTINUOUS-TIME AUTOREGRESSIVE
MOVING AVERAGE MODELS

In this section, we introduce the important mathematical
properties of the CARMA(p, q) process, including its defini-
tion, PSD, autocovariance function, and solution. Further details
may be found in, e.g., Jones (1981), Jones & Ackerson (1990),
Belcher et al. (1994), Roux (2002), and Koen (2005).

2.1. Definition, Power Spectrum, and Autocovariance Function

A zero-mean CARMA(p, q) process y(t) is defined to be the
solution to the stochastic differential equation

dpy(t)

dtp
+ αp−1

dp−1y(t)

dtp−1
+ · · · + α0y(t)

= βq

dqǫ(t)

dtq
+ βq−1

dq−1ǫ(t)

dtq−1
+ · · · + ǫ(t). (1)

Here ǫ(t) is a continuous-time white-noise process with zero
mean and variance σ 2. In addition, we define αp = 1 and
β0 = 1. The parameters α0, . . . , αp−1 are the autoregressive
coefficients, and the parameters β1, . . . , βq are the moving
average coefficients. For the process to be stationary, it is
necessary that q < p and that the roots r1, . . . , rp of the
autoregressive polynomial

A(z) =

p
∑

k=0

αkz
k (2)

have negative real parts. In addition, the process has minimum
phase when the roots of the moving average polynomial have
nonpositive real parts. If the CARMA process is minimum
phase, this basically means that we can uniquely determine the
values of the input white-noise process from the output CARMA
process.

A stationary CARMA(p, q) process has the PSD

P (f ) = σ 2

∣

∣

∣

∑q

j=0 βj (2πif )j
∣

∣

∣

2

∣

∣

∑p

k=0 αk(2πif )k
∣

∣

2
(3)

and autocovariance function at lag τ

R(τ ) = σ 2

p
∑

k=1

[
∑q

l=0 βlr
l
k

] [
∑q

l=0 βl(−rk)l
]

exp(rkτ )

−2 Re(rk)
∏p

l=1,l �=k(rl − rk)
(

r∗
l + rk

) . (4)

Here Re(·) denotes the real part and z∗ is the complex
conjugate of z. In this work we only deal with the case when the
roots are unique, as this is required in order to use the Kalman
filter to efficiently calculate the likelihood (see Section 3.1).

Most previous work on using continuous-time autoregressive
processes for characterizing astronomical time series has fo-
cused on the case when p = 1 and q = 0, i.e., a CAR(1) model.
The CAR(1) model is also called an Ornstein–Uhlenbeck pro-
cess and has often been referred to as a damped random walk in
the astronomical literature. Using the notation above, the PSD
and autocovariance for the more familiar case of p = 1, q = 0
are, respectively,

P (f ) = σ 2 1

α2
0 + (2πf )2

(5)

and

R(τ ) =
σ 2

2α0

e−α0τ . (6)

As can be seen, the PSD for the CAR(1) process is a
Lorentzian function centered at zero with a break frequency
at α0/(2π ), while the autocorrelations decay exponentially with
an e-folding timescale 1/α0.

Inspection of the autocovariance function and PSD of a
CARMA(p, q) process provides some guidance on how to in-
terpret the CARMA(p, q) parameters. For the CARMA(p, q)
process the autocorrelation function (ACF) is a weighted sum
of exponential functions, with the arguments of these expo-
nential functions being the roots of the polynomial given by
Equation (2) and the weights being a function of the moving
average coefficients. These roots may be complex-valued, al-
though if p is odd there is always at least one real root. As a
result, the ACF for the CARMA(p, q) process is a sum of ex-
ponentially damped sinusoidal functions (corresponding to the
complex roots) and exponential decays (corresponding to the
real roots). The e-folding timescale of the decaying autocor-
relations for each exponential function is 1.0/|Re(rk)|, while
the frequencies of the oscillations in the autocorrelations are
|Im(rk)|/2π .

Because the PSD and the autocovariance function are a
Fourier transform pair, we can also connect the roots of A(·)
to the PSD. Because the Fourier transform of an exponentially
damped sinusoidal function is a Lorentzian function, the PSD
of a CARMA(p, q) process can be expressed as a weighted
sum of Lorentzian functions. The widths of the Lorentzian
functions are proportional to |Re(rk)|, while the centroids of
the Lorentzian functions are given by |Im(rk)/2π |. As with
the autocovariance function, the moving average coefficients
β1, . . . , βq help control the weights in the sum. Incidentally,
a sum of Lorentzian functions is a common model used to
characterize the X-ray PSDs of X-ray binaries (e.g., Nowak
2000; Belloni 2010).

2.2. State Space Representation

The solution to Equation (1) may be obtained by introduc-
ing a state space representation of a CARMA(p, q) process
(e.g., Brockwell & Davis 2002). In addition, as discussed in
Section 3.1, representing a CARMA(p, q) process in a state
space representation enables efficient calculation of the likeli-
hood function for a measured time series. A state space represen-
tation models a stochastic process as arising from an observation
equation and a state equation. The observation equation relates
the observed time series to an unknown latent state variable, and
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the state equation describes the evolution of the state variable.
Note that the state variable will in general not be scalar-valued.
For the CARMA(p, q) model, the p-element state vector x(t)
is a vector containing the value of a latent process s(t) and its
derivatives as a function of time t:

x(t) =

⎛

⎜

⎜

⎜

⎜

⎝

s(t)
s ′(t)
s ′′(t)

...

s(p−1)(t)

⎞

⎟

⎟

⎟

⎟

⎠

. (7)

The state space representation of a CARMA(p, q) process
y(t) is

y(t) = bx(t), (8)

dx(t) = Ax(t)dt + edW (t), (9)

where W (t) is a Wiener process,7 dW (t) is a white-noise process
with mean zero and unit variance, b = [β0, β1, . . . , βp−1] is a

p-element row vector, βj = 0 for j > q, e = [0, 0, . . . , 0, σ ]T

is a p-element column vector, and A is a p × p matrix with
elements

A =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 · · · 1
−α0 −α1 −α2 · · · αp−1

⎞

⎟

⎟

⎟

⎟

⎠

. (10)

The solution to Equation (9) with random initial condition
x(t = 0) = x0 is (e.g., Brockwell & Davis 2002)

x(t) = eAtx0 +

∫ t

0

eA(t−u)e dW (u). (11)

The first term on the right-hand side represents the determin-
istic contribution to the evolution of the state vector, given the
initial condition, while the second term on the right-hand side
is a random variable representing the stochastic contribution
to this evolution. Note that because dW (u) has an expectation
value of zero, the stochastic integral in Equation (11) also has
an expectation value given by the zero vector.

The process given by the solution to Equation (11) is
stationary if and only if x(0) has an expectation value given
by the zero vector and p × p covariance matrix with elements
(Jones & Ackerson 1990)

Vij = −σ 2

p
∑

k=1

r i
k(−rk)j

2Re(rk)
∏p

l=1,l �=k(rl − rk)
(

r∗
l + rk

) . (12)

In this case, the stationary mean of x(t) is also the zero vector,
and the stationary covariance is also given by Equation (12).
Because x(t) is stationary, the CARMA process defined by
Equation (8) is also stationary with mean zero and variance
bV bT ; note that this is the same as that given by Equation (4)
using a time lag of τ = 0.

7 The Wiener process is referred to as a standard Brownian motion.

3. STATISTICAL INFERENCE FOR CARMA MODELS

If the white-noise term in Equation (1) is Gaussian, the
resulting CARMA(p, q) process is also Gaussian. In this case,
the likelihood function for a CARMA(p, q) model may be
derived for a measured time series y = [y1, . . . , yn]T sampled
at times t1, . . . , tn as

p(y|μ, σ, α, β) ∝
1

|Σ|
exp

{

−
1

2
(y − μ)T Σ

−1(y − μ)

}

, (13)

Σij = R(|ti − tj |) + δijσ
2
i , (14)

where μ is the mean of the time series, α = (α0, . . . , αp−1), β =

(β1, . . . , βq), δij is the Kronecker delta function, σ 2
i is the

variance in the measurement error for yi, and R(·) is the
autocovariance function of a CARMA(p, q) process, given by
Equation (4). Note that here and throughout this work we assume
that the measurement errors on the time series are uncorrelated.
Maximum-likelihood estimates of the parameters μ, σ, α, and
β may be obtained by maximizing Equation (13), and Bayesian
inference may be performed by combining Equation (14) with
a suitably chosen prior.

Calculating Equation (13) directly requires inverting the
n × n covariance matrix Σ, the computational complexity of
which scales as O(n3). This may represent a considerable
bottleneck for large time series, especially when performing
statistical inference for a large sample of objects. Fortunately, the
state space representation of a CARMA(p, q) process enables
application of the Kalman filter, which speeds up calculation of
the likelihood function to O(n) operations.

3.1. Likelihood Calculation via the Kalman Recursions

For state space models of Gaussian processes, such as that
described by Equations (8) and (9), the Kalman filter algorithm
may be used to sequentially and efficiently calculate the mean
and covariance of the next state and observation of a sampled
process given the previous values and the model parameters
(e.g., Brockwell & Davis 2002). Because a normal distribution
is completely characterized by its mean and covariance, this
is all that we need to calculate the likelihood function for a
measured time series.

We factor the likelihood as

p(y|μ, σ, α, β) = p(y1|μ, σ, α, β)

×

n
∏

i=2

p(yi |y1, . . . , yi−1, μ, σ, α, β). (15)

For a Gaussian CARMA(p, q) model each of the terms on
the right-hand side of Equation (15) is a normal distribution:

p(y|μ, σ, α, β) ∝

n
∏

i=1

1

V ar(yi |y<i, σ, α, β)

× exp

{

−
1

2

(yi − E(yi |y<i, μ, σ, α, β))2

V ar(yi |y<i, σ, α, β)

}

.

(16)

Here we have used the notation y<i = [y1, . . . , yi−1]. The
Kalman filter is used to calculate the means and variances for
each of these normal distributions, efficiently calculating the
likelihood in O(n) operations.
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Because astronomical time series are measured with error, we
introduce a measurement error term to the observation equation
of the state space representation, modifying Equation (8) to
become

y(t) = bx(t) + δ(t). (17)

The measurement error for yi, δ(ti), is assumed to be normally
distributed with mean zero and variance σ 2

i . Equations (17)
and (9) are a state space representation for a time series measured
with error assuming a CARMA(p, q) model.

In order to use the Kalman filter for a sampled continuous-
time process, it is necessary to convert the continuous time
state space representation to that of a discrete time process
evaluated at the sampled time values. This requires integrating
the state equation (Equation (9)) over the time intervals between
subsequent observations. The discrete state space representation
of a CARMA process sampled at times t1, . . . , ti, . . . , tn is
derived using Equation (11) (e.g., Jones & Ackerson 1990) to
be

yi = bxi + δi (18)

xi = eA(ti−ti−1)xi−1 + ηi, (19)

where δi denotes the normally distributed measurement error at
ti with mean zero and variance σ 2

i and

ηi =

∫ ti

ti−1

eA(ti−t)e dW (t) (20)

is a random vector drawn from a multivariate normal distribution
with mean given by the zero vector and covariance matrix (e.g.,
Gardiner 2004)

Cov(ηi) =

∫ ti−ti−1

0

eAteeT eAT t dt. (21)

Equations (18)–(21) provide everything we need to compute
the Kalman filter and the likelihood function for a CARMA
model.

Calculation of the matrix exponentials needed in
Equations (19) and (21) is computationally expensive. How-
ever, for diagonal matrices the matrix exponential is trivial to
calculate. In order to improve the efficiency of the Kalman fil-
ter, we use the diagonal form A = UDU−1 (Jones & Ackerson
1990), where the columns of U contain the right eigenvectors of
A and D is a diagonal matrix:

Ulk = r l−1
k (22)

Dlk =

{

rk l = k
0 l �= k

. (23)

Recall that rk, k = 1, . . . , p are the roots of the autoregressive
polynomial. We then transform Equations (18) and (19) to be in
terms of the rotated state vectors x̃i = U−1xi :

yi = b̃x̃i + δi (24)

x̃i = Λi x̃i−1 + η̃i . (25)

Here Λi is a diagonal matrix with diagonal elements Λi,kk =

erk (ti−ti−1), and b̃ = bU . The stochastic term in the rotated state

space formulation, η̃i , is a complex-valued normally distributed
random variable with mean given by the zero vector and
Hermitian covariance matrix. The elements of the covariance
matrix of η̃i are not actually needed for the Kalman filter (e.g.,
Wang 2013) in our implementation, but they are given in Jones
& Ackerson (1990). We note that the variables in the rotated
state space notation are complex-valued, although they are all
real-valued in the original representation.

Jones (1981) derived the Kalman filter for a CAR(p) model
under the rotated state representation, and Jones & Ackerson
(1990) extended these results to a CARMA(p, q) model. In
Appendix A we provide the Kalman filter algorithm for a
CARMA(p, q) model, and we refer the reader to Jones (1981)
and Jones & Ackerson (1990) for further details. After running
the Kalman filter, we will have the values of E(yi |y<i, θ ) and
Var(yi |y<i, θ ) needed for computing the likelihood function via
Equation (16).

3.2. Interpolation and Extrapolation
from a Measured Time Series

In certain applications, one may need to simulate an inter-
polated or extrapolated time series conditional on a measured
time series. Examples of this include reverberation mapping of
AGNs (Horne et al. 1991; Zu et al. 2011; Brewer et al. 2011;
Pancoast et al. 2011, 2012) or studies of the time delay between
images of gravitationally lensed quasars (e.g., Press et al. 1992;
Kochanek 2004; Morgan et al. 2012). In addition, forecasting
may also be useful for generating alerts. The probability dis-
tribution of a Gaussian CARMA process at time t0 given the
measured time series is a normal distribution, and one can use
the usual Gaussian process machinery to calculate the condi-
tional mean and variance of future data. However, as with the
likelihood calculation, this is expensive, also requiring an ex-
pensive matrix inversion. Instead, for a CARMA process we can
use the Kalman filter to efficiently calculate the mean and vari-
ance of this normal distribution, and in this section we derive
these quantities.

Denote the value of a CARMA process at time t0 as y0,
and define j (t0) = min{i; t0 < ti}, i.e., tj (t0)−1 < t0 < tj (t0).
Assuming a Gaussian CARMA process, we can write the
probability distribution of y0 given a CARMA model and a
measured time series y as

p(y0|y, θ ) ∝
1

V ar(y0|y<j (t0), θ )

× exp

{

−
1

2

(y0 − E(y0|y<j (t0), θ ))2

V ar(y0|y<j (t0), θ )

}

×

n
∏

i=j (t0)

1

V ar(yi |y0, y<i, θ )

× exp

{

−
1

2

(ỹi − c̃i − d̃i ỹ0)2

V ar(yj |y0, y<i, θ )

}

. (26)

As before, ỹi = yi − μ. The values of V ar(y0|y<j (t0), θ ),
V ar(yi |y0, y<i, θ ), and E(y0|y<j (t0), θ ) can be obtained by
running the Kalman filter on the time series generated by
inserting t0 into the set of observation times ti. The sets of

coefficients c̃i and d̃i can be obtained recursively through an
algorithm similar to the Kalman filter, which we describe in
Appendix B.

5



The Astrophysical Journal, 788:33 (18pp), 2014 June 10 Kelly et al.

From Equation (26), we can derive the mean and variance of
y0 as

E(y0|y, θ ) = V ar(y0|y, θ )

×

⎡

⎣

E(y0|y<j (t0), θ )

V ar(y0|y<j (t0), θ )
+

n
∑

i=j (t0)

d̃i(ỹi − c̃i)

V ar(yi |y0, y<i, θ )

⎤

⎦ (27)

Var(y0|y, θ ) =

⎡

⎣

1

V ar(y0|y<j (t0), θ )
+

n
∑

i=j (t0)

d̃2
i

V ar(yi |y0, y<i, θ )

⎤

⎦

−1

.

(28)

Equations (27) and (28) provide the interpolated or ex-
trapolated value and its uncertainty, assuming the CARMA
model. Note that for forecasting and backcasting, the first
and second terms appearing on the right-hand sides of
Equations (27) and (28) are ignored, respectively.

An interpolated or extrapolated time series may be sim-
ulated sequentially at time values t̂1, . . . , t̂m by first using
Equations (27) and (28) to generate a value of y(t̂1) from a
normal distribution, inserting this value of y(t̂1) into the mea-
sured time series array, and repeating for the remaining t̂j .

3.3. Bayesian Inference

In this work, we focus on Bayesian inference of the CARMA
process model. This is primarily because in Bayesian infer-
ence one derives the probability distribution of the CARMA
process given the measured time series (i.e., the posterior dis-
tribution), providing a rigorous assessment of the uncertainties
in the CARMA model, and consequently in the inferred power
spectrum. The likelihood function of a CARMA model can ex-
hibit multiple maxima for p > 1 (e.g., Broersen & Bos 2006),
and therefore traditional techniques based on the Fisher infor-
mation matrix and the asymptotic normality of the maximum
likelihood estimate do not apply in general for CARMA models.

Bayesian inference is based on the posterior distribution,
which is related to the likelihood function by the equation

p(θ |y) ∝ p(θ )p(y|θ ). (29)

Here p(θ ) is the prior distribution on the model parameters.
Because we have already derived the likelihood function, the
only additional thing we need to do to perform Bayesian
inference is to specify the prior distribution. In our model we
assume a uniform prior on the standard deviation of the light
curve subject to [R(0)]1/2 < R0 for some input value of R0 and
a uniform prior on μ. In this work we set R0 to be 10 times the
standard deviation of the measured time series.

Following Jones (1981), we use the following parameteriza-
tion for α:

A(z) = (a1 + a2z + z2)(a3 + a4z + z2) · · ·

×

{

(ap−1 + apz + z2) if p is even,

(ap + z) if p is odd.
(30)

The roots of the autoregressive polynomial will have negative
real parts (and thus produce a stationary CARMA process) if
and only if a1, . . . , ap are positive. In order to enforce this,
we sample the values of log ak in our Markov Chain Monte
Carlo (MCMC) sampler and place a uniform prior on their
values. Using the parameterization of Equation (30) also has the

computational convenience that the roots may be analytically
computed from the quadratic and linear terms. In addition,
we use a similar parameterization and prior for the moving
average coefficients, β. This parameterization of the moving
average coefficients enforces the system to be minimum phase
by keeping the roots of the moving average polynomial positive.

Because the likelihood function is invariant to permutations
of the indices of rk, we place the following ordering constraint
on the indices in order to make the model identifiable:

Im(|r1|) > Im(|r3|) > · · · > Im(|rp|). (31)

The constraints are only with respect to the pairs (rk, rk+1) for k
odd because the roots come in complex-conjugate pairs. Finally,
we also constrain the Lorentzian centroid values to be less than
the inverse of the minimum time between measurements, and the
Lorentzian widths to be between the minimum and maximum
frequencies probed by the light curve time sampling.

In practice, we include an additional scaling parameter on
the measurement errors, ν, such that the true measurement error
variances are assumed to be ς2

i = νσ 2
i . Because the derived PSD

depends on the amplitude of the measurement errors, especially
at the high-frequency end, we include this additional parameter
to incorporate uncertainty on the quoted measurement error
variances σ 2

i . Our prior on the parameter scaling parameter ν

is a scaled inverse χ2 distribution with 50 degrees of freedom
and scale parameter of unity. In addition, we bound the value
to be 1/2 < ν < 2. This prior reflects an assumption that the
relative amplitude of the measurement errors is correct, but that
the overall normalization of the measurement error standard
deviations σi has an uncertainty of 10%. This is application
dependent, and researchers analyzing time series for which
they have greater confidence in the quoted measurement error
amplitudes may wish to use a much larger value than 50 degrees
of freedom, or narrower bounds on ν.

3.4. Assessing the Fit

The quality of the fit and the appropriateness of the Gaussian
CARMA model can be assessed by noting that the standardized
residuals, χi , from the Kalman filter should have the form of
Gaussian white noise. The standardized residuals are calculated
as

χi =
yi − E(yi |y<i, θ̂ )

[V ar(yi |y<i, θ̂ )]1/2
, (32)

where θ̂ is a point estimate of θ . When inspecting the residuals,

we have found that it is best to use for θ̂ the value of θ obtained
from maximizing the posterior or likelihood. As discussed in
Section 3.6, the posterior for the CARMA model parameters
can be multimodal, especially for high values of p or q, and the
CARMA process implied by the posterior median or mean may
not be representative if these quantities fall between the modes.

If the Gaussian CARMA model is correct, then the residuals
should have a normal distribution with mean zero and stan-
dard deviation of unity. Deviations from the expected normal
distribution can be used to assess the assumption of a Gaus-
sian process. Similarly, the sequence χ1, . . . , χn should form a
Gaussian white-noise sequence, the accuracy of which can be
assessed through the ACF of the standardized residuals. Under
the null hypothesis that the sequence χ1, . . . , χn is a white-noise
sequence, their sample autocorrelations are approximately inde-
pendently and normally distributed with mean zero and variance
1/n. If a large number of the sample autocorrelations are outside
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of the, say, 2σ interval, then there is residual correlation struc-
ture in the time series that the CARMA model is not picking up.
Finally, the sequence of squared residuals χ2

1 , . . . , χ2
n should

also form a white-noise sequence under the assumption of a
Gaussian CARMA model. Therefore, deviations of the sample
autocorrelations of the sequence χ2

1 , . . . , χ2
n from a zero-mean

normal distribution with variance 1/n signal nonlinear behavior,
as they indicate that the variance in the time series is changing
with time. Note that in both these cases it is the ACF of the
sequence of residuals that is calculated, and not the time se-
ries of residuals. In other words, we calculate the ACF of the
residuals treating their time values as being on a regular grid:
t = 1, 2, ..., n − 1, n.

3.5. Choosing the Order of the CARMA Model

There are multiple approaches to choosing the order of
the CARMA model. First, it is often the case that traditional
methods based on statistical hypothesis testing are not optimal
for flexible models such as the CARMA model. For one,
CARMA models are not nested because a CAR(p − 1) model
cannot be obtained by setting αp in a CAR(p) model to
some finite value. Therefore, the usual asymptotic assumptions
underlying the likelihood ratio test do not apply. An exception is
the transformed CAR model presented by Belcher et al. (1994),
which does provide a sequence of nested models. Second,
choosing the order of the CARMA model is more of a model
selection issue and should not be framed within the context of
ruling out a null hypothesis. For many applications, the CARMA
parameters will not have any specific physical meaning, so there
will not be any physically meaningful null hypothesis. Instead,
in time series analysis, it is common to choose the order of
the model to be that which best predicts additional data (i.e.,
minimizes the test error), or otherwise is close to the process
that generated the data. Because we are interested in using
the CARMA model to adequately and flexibly constrain the
PSD and correlation structure in the time series, as well as to
provide automatic variability features that may be used, e.g.,
for classification, our approach is to choose the p and q that
minimize an estimate of how close the CARMA(p, q) model is
to the data generating process.

Information criteria are a common mechanism for ranking a
set of models. Such criteria are often used as approximations
to the prediction error of future data and are usually inexpen-
sive to calculate. In time series analysis it is common to use
the Akaike information criterion (AIC; Akaike 1973), which
is based on the maximum-likelihood estimate of θ . The AIC
provides an estimate of the relative information lost in using
a model to represent the underlying process that generated the
data, as measured through the Kullback–Leibler divergence. The
AIC in its original form is strictly only valid asymptotically, but
Hurvich & Tsai (1989) provide a correction to AIC for finite
sample sizes (denoted as AICc). An alternative Bayesian crite-
rion is the deviance information criterion (DIC; Spiegelhalter
et al. 2002), which may be calculated from the samples returned
by an MCMC sampler. Cross-validation is another approach for
choosing p and q, as it provides an estimate of the test error.
Cross-validation works by dividing the light curve into K con-
tiguous subsamples, fitting the model to the data after removing
one of the subsamples, evaluating the model performance on the
withheld subsample, and repeating for the remaining K −1 sub-
samples. The errors on the withheld subsamples are averaged,
and (p, q) can be chosen to minimize this error.

Because it is more expensive to run independent MCMC
samplers than to obtain a maximum-likelihood estimate for each
set of candidate (p, q) values, we use the AICc instead of DIC
to choose the order of the CARMA model. Similarly, because
it is expensive to perform a fit to each of the K subsamples
generated by cross-validation, we use AICc in this work. The
AIC is defined as

AIC(p, q) = 2k − 2 log p(y|θ̂mle, p, q), (33)

where k is the number of parameters in the CARMA(p, q) model

and θ̂mle is the maximum-likelihood estimate of the CARMA
process parameters, θ . The best model is the one that minimizes
the AIC. The AIC penalizes against overfitting through the 2k
term: once the improvement to the log-likelihood function that
results from using a more complex model does not increase
faster than the number of parameters, the AIC will begin to
worsen. The AICc is

AICc(p, q) = AIC(p, q) +
2k(k + 1)

n − k − 1
, (34)

where n is the number of data points in the light curve. The
AICc places a stronger penalty for model complexity due to the
finite sample correction.

Finally, we note that in certain cases it is scientifically
meaningful to assess the significance of a specific feature in the
PSD. For example, CARMA models selected based on AICc to
have p > 1 may show evidence for quasi-periodic oscillation
(QPO) features in the PSD. These features in, for example,
light curves from black hole systems are thought to be driven
by astrophysical phenomena in accretion flows (e.g., Done
et al. 2007), and therefore in this case there is a scientifically
meaningful null hypothesis. For such situations one needs to
assess the statistical significance of these features, even if their
existence provides a better AICc. This can be done by inspecting
the posterior distribution of the feature of interest for the chosen
model (e.g., the one with the minimum AICc). To use the QPO
example, the coherence of a QPO is often quantified via a
quality factor,which is the ratio of peak frequency of the QPO
to its width. The statistical significance,or, more importantly,
the scientific significance of a possible QPO feature, could be
assessed by inspecting the posterior distribution of the QPO
quality factor. If most of the posterior probability is at high
quality factors, then one may be confident in the existence of this
QPO (assuming that the CARMA model has been shown to be
accurate; see Section 3.4). Otherwise, if most of the probability
in the quality factor is at low values, then this QPO feature
may not be scientifically meaningful even if its inclusion still
provides a more accurate model.

3.6. Computational Considerations and Software

The computational complexity of evaluating the likelihood
function using the Kalman filter scales as O(n) for a time series
with n data points. Unfortunately, because the Kalman filter is
a serial calculation, it cannot be parallelized.

For our MCMC sampler we use the robust adaptive Metropo-
lis algorithm of Vihola (2012) with a Student’s t distribution
with eight degrees of freedom as the proposal distribution. The
algorithm of Vihola (2012) improves on the standard Metropo-
lis algorithm by adaptively tuning the covariance matrix of the
proposals to achieve a desired acceptance rate; in this work we
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use an acceptance fraction of 25%. We only adapt the proposals
during the burn-in phase.8

For p > 1 the likelihood function often contains multiple
modes, especially for higher orders of p and q. This presents
a difficulty for many optimizers and MCMC samplers. When
computing the maximum-likelihood estimates, we run a local
optimization algorithm using 100 random starting values of θ

and choose the best θ̂mle among the outputs. While there is no
guarantee that this approach will find the global optimum, we
have found it to be sufficient for the purposes of choosing the
values of p and q via the AICc. Further improvement may be
obtained through the use of, for example, genetic algorithms.

In order to effectively sample the posterior for p > 1, we
also employ parallel tempering in our MCMC sampler (e.g.,
Liu 2004). In our parallel tempering implementation K parallel
chains are run using their own robust adaptive Metropolis
algorithm, where the kth chain samples from the distribution
p(θ |y)1/Tk , and the sequence T1 < . . . < TK forms what is
known as a temperature ladder; note that T1 = 1. Denote the
value of the CARMA model parameters for the kth chain as θk .
After each chain updates its parameters via the Vihola (2012)
Metropolis step, we then propose to swap the values of θk and
θk−1 for k = K, . . . , 2. The purpose of the temperature ladder
is to flatten the posterior distribution for larger values of Tk,
enabling the chains to move between modes in the hot chains.
The swapping step then allows the coolest chain, which is the
one we actually care about, to jump between modes when the
hotter chains find these modes. We use a temperature ladder
that forms a regular grid in log Tk , with TK = 100. In general,
we have found that values of K = 10 are sufficient. Although
we do not do so in our code, the parallel tempering algorithm is
parallelizable. Further details on parallel tempering and MCMC
methods in general can be found in Liu (2004).

We have developed software to run our MCMC algorithm
on a time series, assuming the CARMA model. The soft-
ware is written in a combination of C++ and Python, with the
C++ code forming a Python extension. The MCMC sampler
is written in C++ for speed, but may be called from within
Python, enabling one to analyze the results within Python.
The Python component of our software also contains a rou-
tine for computing the maximum-likelihood estimate of θ
(although the likelihood calculations are done in C++), choos-
ing the order of the CARMA model via AICc, and routines
for analyzing the MCMC output. Our software is available at
https://github.com/bckelly80/carma_pack.

4. EXAMPLE APPLICATIONS TO
SIMULATED TIME SERIES

In order to illustrate the use of CARMA models for analysis
of astronomical time series, we generated a mock light curve
from a CARMA(5, 3) process under both regular and irregular
sampling and a nonstationary irregularly sampled light curve
that switches from one CARMA(5, 3) process to another.

4.1. Stationary Process under Regular Sampling

For the first light curve we simulated a CARMA(5, 3) process
sampled on a regular grid t1 = 1, . . . , tn = 1028 days. The
CARMA(5, 3) parameters were chosen to ensure that the mock

8 MCMC samplers are first run for a burn-in phase in order to forget about
how the MCMC sampler was started. The sampled parameter values are not
saved until the burn-in phase has finished, at which point the MCMC should
have converged to the posterior distribution.

Figure 1. Simulated light curve from a CARMA(5, 3) process on a regular grid.
The black line denotes the true values, and the blue dots denote the measured
values. Because the measurement errors are very small for this light curve, the
measured values track the true values very closely.

(A color version of this figure is available in the online journal.)

light curve was dominated by broadband noise, as with, for
example, AGNs. The PSD for this light curve is flat on timescales
�500 days, falls off as ∼1/f 2 for frequencies corresponding to
timescales 500 � ∆t � 50 days, and steepens to ∼1/f 4 for
frequencies corresponding to timescales �50 days. In addition,
there is a weak QPO centered at a frequency of ∼1/5 day−1.
The measurement noise level for this source was chosen to be
just below the magnitude of the QPO, in order to test if we can
recover an oscillatory feature at the limit of the measurement
noise. The mock light curve is shown in Figure 1, and the PSD for
this light curve is shown in Figure 2. Note that the measurement
error in this case is only ≈1% of the standard deviation in the
light curve. In addition, because the light curve is regularly
sampled, we also show its periodogram in Figure 2. The QPO
feature appears but is not obvious above the measurement noise
component of the periodogram, although one may suspect its
existence through visual inspection.

We searched for models of the form CARMA(p, q) for
p = 1, . . . , 7, q = 0, . . . , p − 1. For each value of (p, q) we
computed a maximum-likelihood estimate, which we then used
to compute the AICc. The values of AICc as a function of p and
q are shown in Figure 3. The AICc drops off rapidly down to
p = 4, after which it levels off. The minimum AICc is obtained
for p = 5 and q = 1, although models with p � 5 provide
comparable quality. As discussed in Section 3.5, the fact that
the AICc chose a model with p = 5, q = 1 even though the
true model is p = 5, q = 3 implies that the difference in log-
likelihood between the two models was not sufficiently large to
warrant the inclusion of the additional parameters required under
the CARMA(5, 3) model. However, because the AICc depends
on the data, it can change for different realizations from the
same stochastic process. Because of this, different simulations
of the CARMA(5, 3) light curve may result in different values
of p, q for which the AICc is minimized.

Using the values of p = 5, q = 1, we ran our MCMC sampler
using 10 parallel chains for 7.5 × 104 iterations, discarding
the first 2.5 × 104 as burn-in. The residuals calculated using
the best-fit CARMA(5, 1) model were consistent with a unit
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Figure 2. PSD for the light curve shown in Figure 1. The true PSD is given
by the solid black line, the periodogram by the orange circles, the PSD from
the maximum-likelihood estimate assuming a CARMA(5, 1) model (chosen to
minimize AICc) by the blue dashed line, and the blue region contains 95%
of the probability on the PSD assuming a CARMA(5, 1) model. There is a
weak oscillatory feature centered at a frequency of 1/5 day−1, which is at the
measurement noise level. This feature is not obvious above the measurement
error component for the periodogram, but the CARMA model is able to recover
it, along with the rest of the PSD. We note that the tight errors on the PSD below
the measurement noise level are due to extrapolation assuming the parametric
form of the CARMA(5, 1) model, and using a higher order model would enable
more flexibility and consequently broader errors below the measurement noise
level.

(A color version of this figure is available in the online journal.)

Figure 3. AICc values computed from the simulated light curve shown in
Figure 1 for CARMA(p, q) models of order p � 7, q < p. The minimum
AICc is achieved for the values p = 5, q = 1 although there is little change in
the AICc for models of order p � 5.

(A color version of this figure is available in the online journal.)

variance Gaussian white-noise sequence, suggesting that the
CARMA(5, 1) model provides an adequate fit.

In Figure 2, we show the maximum-likelihood estimate of the
model PSD and the region containing 95% of the probability on
the PSD. The chosen CARMA(5, 1) model recovers the PSD,
including the QPO feature, the centroid of which corresponds
to an estimated timescale of 5.04 ± 0.08 days. Note that the
tight constraints on the PSD below the noise level are caused
by extrapolation of the CARMA(5, 1) model form and are

Figure 4. Simulated light curve from a CARMA(5, 3) process irregularly
sampled over three observing seasons.The black line denotes the true values,
and the blue dots denote the measured values. Also shown are interpolated
and forecasted values, based on the best-fitting CARMA(5, 1) process; a
CARMA(5, 1) model had the minimum AICc value. The solid blue line and
cyan region denote the expected value and 1σ error bands of the interpolated
and extrapolated light curve, given the measured light curve.

(A color version of this figure is available in the online journal.)

not reflective of the actual uncertainty on the PSD in this
regime when one does not know the order of the CARMA
process. Because the PSD is largely unconstrained below the
measurement noise level, the uncertainties would have been
larger in this regime if we had used a larger value of p.

4.2. Stationary Process under Irregular Sampling

For our second simulated light curve, we used a
CARMA(5, 3) process but with different parameters, as well
as a sampling pattern and measurement errors that are more
realistic of an actual optical light curve. We simulated three ob-
serving seasons of 90 epochs separated by 180 days with time
spacing drawn from a uniform probability distribution over one
to three days. The measurement error standard deviations were
set to 20% of the standard deviation in the light curve. In this
case we used a PSD that has a strong oscillator mode centered at
a frequency of 1/25 day−1; this type of PSD is more representa-
tive of certain types of variable stars. As with the first simulated
light curve, there is a weak oscillatory feature at 1/5 day−1, but
in this case the feature falls primarily below the measurement
noise level. The simulated light curve is shown in Figure 4, and
its PSD is shown in Figure 5. Note that because this light curve
is irregularly sampled, we do not compute a periodogram due
to distortions caused by the sampling pattern.

We ran our MCMC sampler on the second light curve using
the same configuration as for the first. The AICc values are
shown in Figure 6. In this case, the p = 5, q = 1 model
was chosen as having the best AICc. The 95% probability
bounds on the PSD based on the CARMA(5, 1) model are
also shown in Figure 5. The CARMA(5, 1) model is able to
recover the PSD above the measurement noise level. The high-
frequency oscillatory feature may be encompassed in the prob-
ability contours derived from a higher order CARMA process;
however, a detection of this feature would not be possible. In an
actual analysis one would in general not have knowledge of the
PSD below the measurement noise level, so we consider it best
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Figure 5. PSD for the light curve shown in Figure 4, with symbols the same as
for Figure 2. The constraints on the PSD are given by a p = 5, q = 1 model. A
p = 5, q = 1 model was found to have the minimum AICc and is sufficient to
capture the variability characteristics above the measurement noise.

(A color version of this figure is available in the online journal.)

Figure 6. AICc values from the simulated light curve shown in Figure 4 for
CARMA(p, q) models of order p � 7, q < p. The minimum AICc is achieved
for a value of p = 5, q = 1, although the AICc curve is fairly flat for p � 3.

(A color version of this figure is available in the online journal.)

practice to use the simplest model that adequately describes the
variability features above the measurement noise level.

Finally, as an illustration for applications where one may
desire interpolated or forecasted values of a light curve, in
Figure 4 we also show the interpolated and forecasted values
of the simulated light curve, along with their 1σ uncertainties,
based on the best-fit CARMA(5, 1) model. These quantities
provide a means of simulating realizations of the light curve at
these time points, conditional on the measurement light curve,
as described in Section 3.2.

4.3. Nonstationary Process under Irregular Sampling

In order to illustrate what a CARMA model fit would look
like for a nonstationary process, we simulated a light curve that
switches from one CARMA process to another. In reality the
behavior of a CARMA model fit to a nonstationary process
will depend on the nature of the nonstationarity, and this simple

Figure 7. (Top left) Light curve for a simulated nonstationary light curve, as
well as the interpolated values based on the best-fitting CARMA(5, 2) process.
Symbols are as in Figure 4. (Top right) Standardized residuals (data points)
and their distribution (blue histogram), compared with the expected standard
normal distribution (orange line). There is no evidence for a deviation from
a Gaussian CARMA process for this light curve. (Bottom left) ACFs of the
standardized residuals and (Bottom right) their square, compared with the 95%
confidence region assuming a white-noise process (shaded region). There is no
evidence that the residuals deviate from a white-noise sequence, suggesting that
the CARMA model has adequately captured the correlation structure in the light
curve.

(A color version of this figure is available in the online journal.)

illustration is meant to provide some qualitative insight into how
nonstationarity affects the inferred PSD. Moreover, we also note
that nonstationarity could be modeled by allowing the CARMA
process parameters to change with time.

We constructed a nonstationary light curve by generating two
separate light curves with the same sampling scheme as for
the stationary irregularly sampled light curve above. For the
first process we used the CARMA parameters from Section 4.2,
while for the second we used the parameters from Section 4.1.
In addition, the variance of the latter CARMA process was set
to be twice that of the former. We constructed a nonstationary
light curve by setting the first half to the former process and the
second half to the latter process. The light curve is shown in
Figure 7.

Minimizing the AICc chose a CARMA(5, 2) model. The
fit quality is shown in Figure 7, and the PSD is shown in
Figure 8. Based on the distribution and ACF of the residuals,
there is no statistically significant evidence for a deviation from
a single CARMA process for this light curve, suggesting that
nonstationarity may be difficult to detect using these diagnostics,
at least at this data quality. The inferred PSD is a blend of
the two separate CARMA processes, picking up the dominant
sources of variability. In particular, the PSD picks up the strong
QPO present in the first half of the light curve and the large
amount of broadband variability power at the longest timescales
present in the second half of the light curve. This is, in a sense,
because these features have the strongest signal-to-noise ratio, as
their variability amplitude and frequency distribution are most
distinguished from the measurement noise and are constrained
by the frequency range probed by the sampling pattern. From
this we infer that the estimated PSD for a nonstationary light
curve will be a weighted average of a time-varying PSD over
the observing period of a light curve, where the weights are
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Figure 8. PSD for the nonstationary light curve shown in Figure 7. The blue
region contains 95% of the posterior probability, the solid line shows the PSD for
the first half of the light curve, and the dashed line shows the PSD for the second
half of the light curve. The constraints on the PSD are given for a p = 5, q = 2
model. The inferred PSD assuming the stationary CARMA model is a blend of
the two true PSDs, picking up both the strong QPO present in the first half of
the light curve and the strong low-frequency broadband noise in the second half
of the light curve.

(A color version of this figure is available in the online journal.)

strongest for PSDs and frequencies that have the highest signal-
to-noise ratio.

5. EXAMPLE APPLICATIONS TO REAL LIGHT CURVES

In this section, we illustrate the application of CARMA
models to a variety of astronomical variables, including an X-
ray light curve of X-ray binaries, optical light curves of AGNs,
and optical light curves of two variable stars.

5.1. X-Ray Binary

We first apply our CARMA modeling to a Rossi X-ray Timing
Explorer (RXTE) light curve of the X-ray binary XTE 1550-664;
the OBSID of this light curve is 30191-01-16. The data reduction
for this light curve is described in Heil et al. (2011). This light
curve was chosen because it is densely and regularly sampled
every 1/128 s, and because it has a complex and well-measured
PSD with multiple QPOs. We analyze a ≈312 s segment of this
light curve from t = 848.02 s to t = 1160.47 s. The full light
curve has 4 × 104 data points, and its periodogram is shown in
Figure 9. The PSD is flat on a timescale longer than ≈1 s and
shows a strong QPO at ≈3 Hz; there is a second weaker QPO
at ≈6 Hz. The flattening in the PSD at the highest frequencies
is caused by the measurement noise.

Before applying our CARMA modeling, we randomly down-
sampled the light curve to 4000 data points. This therefore
provides an interesting test of the CARMA modeling to recover
the PSD from an irregularly sampled light curve from an
astronomical source for which the PSD is effectively known.
The mean time spacing of the down-sampled light curve is
∆t = 0.078 s, and the measurement noise contributes ≈8% to
the observed rms of the natural logarithm of the flux values
(i.e., the ratio of measurement noise standard deviation to the
observed rms of the natural logarithm of the measured flux
values is ≈0.08). Because the X-ray binary light curves have
a lognormal distribution (Uttley et al. 2005), and because flux

Figure 9. PSD for the RXTE light curve of the X-ray binary XTE 1550-564,
with symbols the same as for Figure 2. The constraints on the PSD are given
by a p = 5, q = 4 model. The periodogram corresponds to the full light curve
segment with 4 × 104 data points, while the CARMA constraints are obtained
after randomly down-sampling the light curve to 4000 data points. In addition,
the length of the line marking the approximate measurement error noise level
in the down-sampled light curve also marks the frequency range probed by the
down-sampled light curve, with the upper limit corresponding to the average
value of the Nyquist frequency, 〈1/2∆t〉. We note that the measurement noise
level of the down-sampled light curve is higher relative to the full light curve by
the ratio of Nyquist frequencies, since the integrated power in the measurement
noise is preserved. The CARMA model recovers the dominant QPO, but does
not find evidence for the higher frequency weaker QPO. It likely misses the
higher frequency QPO because it lies at the upper limit of the frequency range
probed by the down-sampled light curve.

(A color version of this figure is available in the online journal.)

must be nonnegative, we applied our CARMA modeling to the
logarithms of the flux values.

The CARMA model that minimized the AICc had p = 4, q =
3. The existence of two QPOs in addition to a broadband noise
component in the periodogram of the full light curve implies at
least p = 5, because the number of QPO features that can be
modeled for a CARMA process of order p is ⌊p/2⌋, where ⌊·⌋
is the floor function, and because a broadband noise component
(i.e., a zero-centered Lorentzian function in the PSD) always
occurs for odd values of p. This therefore suggests that the
AICc value does not find sufficient improvement to justify
the inclusion of the weaker QPO feature. In order to assess
the statistical significance of the feature, we ran our MCMC
sampler using values of p = 5, q = 4. The PSD from the
CARMA(5, 4) model is also shown in Figure 9. The dominant
QPO is clearly recovered, with an estimated centroid of 2.84 ±
0.01 Hz and quality factor of Q = 16.32 ± 3.27; the QPO
quality factor is the ratio of the Lorentzian centroid frequency
to its FWHM. However, the weaker QPO is missed, suggesting
that there is not evidence for it in the down-sampled light curve.
This is likely due to the fact that its centroid is close to the
average Nyquist frequency of the down-sampled light curve
and thus falls at the edge of the frequency range probed. In
addition, there is no evidence in the down-sampled light curve
for significant additional variability power on timescales longer
than the QPO, much less evidence that it flattens to white noise.

We assess the quality of the CARMA(5, 4) model fit by
inspection of the histogram of standardized residuals, and of
the ACFs of the standardized residuals and their squares, all
of which are plotted in Figure 10. There is no evidence for a
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Figure 10. Histogram of the standardized residuals (left), ACF of the standardized residuals (center), and ACF of the square of the standardized residuals (right); all
standardized residuals were calculated for a CARMA(5, 4) model. The standardized residuals do not show any significant departures from a Gaussian distribution
(solid black line), implying that the assumption of a Gaussian process is adequate. The 95% confidence limit on the ACF of a white-noise sequence is also shown in the
middle and right plots, denoted by the gray region. The sequence of standardized residuals is consistent with a white-noise process, implying that the CARMA(5, 4)
model has adequately captured the correlation structure in the light curve. Moreover, the sequence of the squares of the standardized residuals is also consistent with
white noise, implying that there is not evidence for nonlinear behavior in the light curve when using the logarithm of flux.

(A color version of this figure is available in the online journal.)

significant departure from the assumption of a Gaussian process,
and the residuals are consistent with white noise, implying
that the Gaussian CARMA(5, 4) model adequately describes
the fluctuations in this light curve.

5.2. Active Galactic Nuclei

We applied our CARMA modeling to optical light curves of
two AGNs. The first light curve is from the Kepler observatory,
and the second is from the SDSS Stripe 82 data set.

5.2.1. Kepler Light Curve

The first optical light curve is from the Kepler observatory
for the local AGN Zw 229-15 (z = 0.027879) in quarter Q9.
The Kepler light curves are the highest quality light curves for
any AGN, with this one being almost regularly sampled every
30 minutes for approximately 3 months, providing a total of
4375 data points. This therefore makes it a good test case for
our CARMA modeling approach. In addition, the amplitude of
the measurement errors is only ≈1.5% of the observed standard
deviation in the light curve. This light curve was analyzed by
Mushotzky et al. (2011), who concluded that the PSD can be
characterized as a power law P (f ) ∝ 1/f 3.14. The light curve is
shown in Figure 11, and the periodogram is shown in Figure 12.
When computing the periodogram, we also employed the end-
matching technique used by Mushotzky et al. (2011). Also
shown in Figure 12 is a PSD of the form P (f ) ∝ 1/f 3.14,
as estimated by Mushotzky et al. (2011).

The AICc values were minimized for p = 6, q = 4.
The standardized residuals using the best-fit model did not
show any evidence for deviations from a Gaussian white-noise
process, implying that the CARMA(6, 4) model is sufficient.
The maximum-likelihood estimate and region containing 95%
of the posterior probability are both shown in Figure 12. The
PSD from the CARMA(6, 4) model is very similar to the
periodogram above the measurement noise level and can be
well approximated as a power law with the slope ∼−3 on
timescales shorter than ≈1 month, consistent with the analysis
of Mushotzky et al. (2011). However, there is some evidence
that the PSD flattens to ∼1/f 2 on timescales �10 days. If real
and common among AGNs, this may explain why a CAR(1)
model has been successful in modeling optical AGN variability
on these longer timescales.

Figure 11. Optical light curve for the AGN Zw 229-15 from the Kepler satellite
in quarter Q9.

(A color version of this figure is available in the online journal.)

5.2.2. SDSS Stripe 82 Light Curve

An r-band AGN light curve from Stripe 82 is taken from the
catalogue of MacLeod et al. (2012) and is for the quasar with
R.A. and decl. (J2000) 10:02:34.6, −00:59:19.5 and a redshift
of z = 1.5239. This light curve has a time baseline of a little
less than 10 yr, but suffers from considerable irregular sampling.
The Stripe 82 light curve has 68 data points, and the average
amplitude of the measurement errors is ≈16% of the observed
standard deviation in the light curve. The light curve is shown
in Figure 13.

The AICc values for this light curve were minimized at
p = 4, q = 1. In Figure 13, we compare the measured light
curve with an interpolation based on the best-fit CARMA(4,1)
model. Also shown in Figure 13 are the standardized residuals
and ACFs of the residuals and their square. There is no
evidence for significant deviations from the assumption of
a Gaussian process, and the residuals are consistent with
white noise, implying that a CARMA(4,1) process adequately
describes the fluctuations of this light curve. The maximum-
likelihood estimate of the PSD is shown in Figure 14, along
with the region containing 95% of the posterior probability.
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Figure 12. PSD for the Kepler light curve of Zw 229-15, with symbols the same
as for Figure 2. The constraints on the PSD are given by a p = 6, q = 4 model.
The dark orange line shows a power-law PSD of the form P (f ) ∝ 1/f α , where
Mushotzky et al. (2011) find a best fit of α = 3.14. The CARMA model PSD
tracks the periodogram well, confirming that on timescales �10 days the PSD
for this source is steeper than expected from a CAR(1) model. The CARMA
model also shows some evidence for the PSD flattening to ∼1/f 2 on timescales
�10 days.

(A color version of this figure is available in the online journal.)

Figure 13. (Top left) The r-band light curve for a quasar from the SDSS Stripe 82
survey, as well as the interpolated values based on the best-fitting CARMA(4,1)
process. Symbols are as in Figure 4. (Top right) Standardized residuals (data
points) and their distribution (blue histogram), compared with the expected
standard normal distribution (orange line). There is no evidence for a deviation
from a Gaussian CARMA process for this light curve. ACFs of the standardized
residuals (bottom left) and their square (bottom right), compared with the 95%
confidence region assuming a white-noise process (shaded region). There is no
evidence that the residuals deviate from a white-noise sequence, suggesting that
the CARMA model has adequately captured the correlation structure in the light
curve.

(A color version of this figure is available in the online journal.)

The PSD shows some evidence for steepening toward higher
frequencies, although the uncertainties are large and a single
power law of the form 1/f α, α = 2–4 is also consistent with the
estimated PSD.

5.3. Variable Stars

As an illustration we also applied our CARMA modeling to
the optical variations of two variable stars. The first is a long-

Figure 14. PSD for the light curve of the Stripe 82 quasar, with symbols the same
as for Figure 2. The constraints on the PSD are given by a p = 4, q = 1 model.
There is considerable uncertainty in the estimated PSD, and the PSD is consistent
with a power law of the form P (f ) ∝ 1/f α, α = 2–4. In addition, there is some
marginal evidence that the PSD flattens toward lower frequencies. Note that the
high-frequency spike in the maximum-likelihood estimate is unlikely to be real,
as it falls well below the measurement noise level.

(A color version of this figure is available in the online journal.)

Figure 15. The i-band light curve for a long-period variable star on the red giant
branch, from the OGLE-III survey. Also shown is the interpolated light curve
and its uncertainty assuming a CARMA(6,0) model; the symbols are the same
as in Figure 4.

(A color version of this figure is available in the online journal.)

period variable star, and the second is an RR Lyrae star. Both
show regular variations, with the RR Lyrae star variations being
more regular and deterministic. They contrast with the X-ray
binary and AGN light curves in that their emission does not
come from an accretion disk, but instead is driven by pulsations
within the stellar atmosphere.

5.3.1. Long-Period Variable

The first variable star light curve to which we applied our
CARMA modeling is the i-band light curve of a long-period
variable on the red giant branch from the OGLE-III variable
star catalogue (Soszyński et al. 2011). The light curve is shown
in Figure 15. The R.A. and decl. of this source are 04:27:55.78,
−70:24:59.4. The light curve for this source has 437 data points,
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Figure 16. PSD for the light curve of the long-period variable from the
OGLE-III survey assuming a CARMA(6,0) model; symbols are the same as
in Figure 4. The power spectrum is flat on the longest timescales, implying
uncorrelated variations on timescales �187 days. On shorter timescales the PSD
flattens to ∼1/f . In addition, there are two pulsation modes with quasi-periods
corresponding to ≈16 (labeled “B”) and ≈25 days (labeled “A”), respectively.
However, the lower frequency QPO feature only has a posterior probability of
∼63%.

(A color version of this figure is available in the online journal.)

spans 7.6 yr, and has a median time sampling of 3 days. This
is a relatively low S/N light curve relative to the intrinsic
source variability, as the measurement errors make up ≈48%
of the observed standard deviation in the light curve. Part of our
motivation for choosing this light curve as an example is because
long-period variable stars are the main contaminant in samples
of AGNs selected using the CAR(1) parameters (MacLeod et al.
2011), and hopefully the two sources become distinguishable
using higher order CARMA models.

The AICc for this light curve was minimized at p = 6, q = 0.
There was no significant evidence for deviations from the
CARMA(6,0) model for this light curve, as the residuals were
consistent with Gaussian white noise. In Figure 15, we also
show the light curve interpolated from the best-fit CARMA(6,0).
The estimated PSD is shown in Figure 16. The PSD on the
longest timescales is flat, implying uncorrelated variability,
and steepens to ∼1/f at a characteristic frequency ω = 1/τ .
We estimate τ = 187 days with a 95% credibility interval
of 15.5 < τ < 320 days. The higher frequency pulsation
mode, labeled “B,” corresponds to a QPO with a timescale
of 15.9 days (95% credibility interval of (11.1, 19.5) days).
The existence of QPO “B” is highly significant, as it is present
in all of the MCMC samples. QPO B has a posterior median
quality factor of Q = 6.85 with a 95% credibility interval
of 1.5 < Q < 42. The lower frequency pulsation mode,
labeled “A,” was not present in ≈37% of the MCMC samples,
suggesting that it has a posterior probability of only 63% and
is therefore not statistically significant. The quasi-period found
from the CARMA model for QPO B is shorter than the period
of 22.46 days quoted in the OGLE-III catalog (Soszyński et al.
2011), although the A pulsation mode, if real, has a period of
≈25 days.

5.3.2. RR Lyrae

We also applied our CARMA modeling to the g-band light
curve of an RR Lyrae from the Stripe 82 catalog of (Sesar et al.

Figure 17. (Top left) The g-band light curve for an RR Lyrae star from the SDSS
Stripe 82 survey, as well as the interpolated values based on the best-fitting
CARMA(7,0) process. Symbols are as in Figure 4. (Top right) Standardized
residuals (data points) and their distribution (blue histogram), compared with
the expected standard normal distribution (orange line). The distribution of the
residuals is considerably narrower than the standard normal, suggesting that the
assumption of a Gaussian process is not appropriate for this light curve. ACFs
of the standardized residuals (bottom left) and their square (bottom right),
compared with the 95% confidence region assuming a white-noise process
(shaded region). There is no evidence that the residuals deviate from a white-
noise sequence, suggesting that the CARMA model has captured the correlation
structure in the light curve.

(A color version of this figure is available in the online journal.)

2010). The R.A. and decl. (J2000) of this source are 06:41:29.48,
−00:00:01.68. There are 128 epochs in this light curve over
∼9 yr with a median time spacing of 2 days. The measurement
errors are ≈3.5% of the observed standard deviation in the light
curve. RR Lyrae sources show regular nonsinusoidal periodic
fluctuations, and thus a stochastic process such as the CARMA
model may not provide the best representation of their light
curves. We include this application as an example of how the
CARMA modeling performs for a periodic source. The light
curve for this source is shown in Figure 17.

A CARMA(7,0) model was found to minimize the AICc. The
interpolated light curve based on the best-fit CARMA model is
also shown in Figure 17, as well as the standardized residuals and
their ACFs. The ACFs do not show any significant deviations
from white noise, suggesting that the CARMA(7,0) model has
captured the correlation structure in the light curve within the
limits of the data quality. However, the histogram of the residuals
is narrower than a normal distribution, suggesting deviations
from the assumption of a Gaussian stochastic process. This is
not surprising, as RR Lyrae exhibit regular periodic variations
and thus a CARMA model is unlikely to be the best choice.
We note that the consistency of the residuals with a white-noise
sequence implies that it is not necessary for the residuals to be
normally distributed in order for the CARMA model to capture
much of the correlation structure in a light curve. In addition, the
significant deviation in the residuals from a normal distribution
may provide a way of using the CARMA process parameters to
discriminate between periodic and aperiodic variables in time-
domain surveys.

The inferred PSD for this light curve is shown in Figure 18.
The PSD is dominated by two narrow pulsation modes (labeled
“B” and “C”), plus a broader mode at lower frequency (labeled
“A”), and is flat on timescales �10 days. Modes B and C are
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Figure 18. PSD for the g-band light curve of an RR Lyrae star from the SDSS
Stripe 82, assuming a CARMA(7,0) model; symbols are the same as in Figure 4.
The power spectrum is flat on the longest timescales, implying uncorrelated
variations on timescales �10 days. The three pulsation modes are labeled “A,”
“B,” and “C” and are in increasing order in terms of their centroid frequency.
There are two statistically significant pulsation modes in the PSD, with the mode
A being a little broader and corresponding to a period of ≈2.5 days. While it
appears that there are two significant higher frequency pulsation modes (B and
C), only one of the two is present at any time in the MCMC samples. The
high-frequency pulsation occurs at either a period of ≈1.3 days (mode B) or
≈0.56 days (mode C), with the shorter period being ∼3 times more likely.

(A color version of this figure is available in the online journal.)

mutually exclusive in the sense that if mode B is present in an
MCMC sample, mode C is not. We used a clustering algorithm
on the PSD Lorentzian centers and widths in order to identify
which MCMC samples correspond to each pulsation mode, as
the labeling used by the MCMC sampler for each Lorentzian
does not uniquely map to a quasi-periodic feature in the PSD.
Mode C corresponds to a period of 0.56 days and is observed
in ≈75% of the MCMC samples. This mode corresponds very
closely to the catalogue period of 0.564 (Sesar et al. 2010),
found using the super smoother algorithm (Reimann 1994).
Mode B corresponds to a period of 1.30 days and is present
in ≈23% of the MCMC samples. Because the existence of the
two modes is mutually exclusive, the fact that one of the two is
present is statistically significant at 98% probability, with mode
C being the more likely of the two. Mode A is also statistically
significant, being present in 99.986% of the MCMC samples,
and corresponds to a period of 2.49 days with a 95% credibility
interval of (2.18, 3.18).

We note that getting our algorithm to converge was partic-
ularly problematic for this light curve, as we would often get
quantitatively different results for different runs of the algorithm.
Moreover, the maximum-likelihood estimate is not contained
within the 95% probability bounds found from the MCMC sam-
pler. This is likely because the MCMC sampler has found a bet-
ter solution due to the fact that it runs for many more iterations,
while the optimizer used to compute the maximum-likelihood
estimate only found suboptimal modes. These facts, in addition
with the fact that the light curve is inconsistent with a Gaus-
sian process, imply that the likelihood function is noisy and has
many modes. This implies that optimizers and MCMC samplers
that are robust against multimodality and complicated likeli-
hood spaces may be necessary in order to get reliable results
from CARMA modeling of light curves that exhibit regularly
periodic and nonsinusoidal variations.

6. DISCUSSION

In this work, we have introduced continuous-time autoregres-
sive moving average processes as flexible models for stochastic
and quasi-periodic light curves. These models account for irreg-
ular sampling and measurement errors, making them applicable
to a wide variety of light curves. Moreover, they are flexible,
as their PSD can be described as a sum of Lorentzian func-
tions. The primary purposes of this modeling approach are (1)
to provide a flexible way to estimate power spectra for astronom-
ical light curves and (2) to provide variability features for light
curves that may be used in variability selection techniques and
potentially in the identification of new classes of variables. Be-
cause one can compute the likelihood function for a light curve
under a CARMA model, they have the advantage that they are
statistically efficient and rigorous, as all of the information in
the light curve is used to estimate the variability parameters
and inference is based on the well-developed statistical theory
of maximum-likelihood or Bayesian inference. Moreover, cal-
culation of the likelihood function is computationally efficient,
scaling linearly with the number of data points in a light curve.
This last point makes their application to massive time-domain
data sets particularly attractive.

Previous work has also expanded on the CAR(1) model to
introduce additional flexibility. Kelly et al. (2011) developed a
mixture of CAR(1) processes as a model for X-ray variability
of AGNs. In this model, the light curve is expressed as a
weighted sum of independent CAR(1) processes with different
characteristics timescales that are constrained to lie on a regular
logarithmic grid. The free parameters for this model are the
maximum and minimum characteristic timescales of the grid,
the mean and variance of the light curve, and the weights.
Comparison with Equation (4) shows that the mixture of
p CAR(1) process models of Kelly et al. (2011) is a special case
of a CARMA(p, q) process where the roots of Equation (2)
are constrained to be real. Kelly et al. (2011) also showed
that a mixture of CAR(1) processes can closely approximate a
broken power-law model for the PSD. In this case, the maximum
and minimum characteristic timescales correspond to the low-
and high-frequency breaks, respectively, and the sequence of
weights can be calculated as a function of the slope of the
power law between the low- and high-frequency breaks, so long
as the slope of the PSD is constrained to the range [−2, 0].
These constraints reduce the number of free parameters to five
for this model, which can be a computational advantage. In
addition, Kelly et al. (2011) also showed that the solution to
the stochastic linear diffusion equation is a mixture of CAR(1)
processes, providing a physical interpretation of the variability
model.

Andrae et al. (2013) investigated extensions to the Gaus-
sian CAR(1) process as a model for quasar variability. The
processes investigated by Andrae et al. (2013) included mod-
els with more flexible PSDs, such as a CAR(2) process and a
CARMA(1,1) process. The former process provides the abil-
ity to capture quasi-periodic variations, while the latter pro-
cess introduces additional smoothing of the stochastic driving
noise. Both processes are special cases of the general class of
CARMA processes we discuss here; however, we note that the
CARMA(1,1) model is not stationary. Andrae et al. (2013) also
investigated CAR(1) models after relaxing the assumptions of
a linear Gaussian process. In particular, they also investigated
non-Gaussian CAR(1) models and nonlinear processes where
the light-curve variance also stochastically varies in time. These
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models, while not as flexible in modeling the PSD as a CARMA
process, provide valuable alternatives to linear Gaussian models
and may provide a better description of the variability of some
light curves. However, in the case of quasar light curves from
Stripe 82 Andrae et al. (2013) concluded that the linear Gaus-
sian CAR(1) process provided the best model for most of the
quasars, based on a Bayesian model comparison.

While CARMA models are, in theory, computationally effi-
cient, the likelihood space can be complex and exhibit multiple
modes that can be problematic for numerical optimizers and
samplers. This is especially true for higher order models and
seems to affect higher order q models more strongly than higher
order p models. The likelihood space may also be very complex
for light curves that have regular nearly deterministic variations,
such as RR Lyrae stars. We consider the difficulty in optimizing
or sampling from a multimodal complex posterior to be the pri-
mary shortcoming of these models at this time, dampening their
computational efficiency. Thus, researchers who utilize them
must be careful to check that the primary posterior mode has
been found and that the dominant posterior modes have been
sampled from. We deal with this in our MCMC sampler us-
ing a parallel tempering algorithm, which we have used with
success. However, even this can fail to adequately sample the
posterior if an insufficient number of chains are run, or if the
algorithm is not run for a sufficiently long period of time. More-
over, our maximum-likelihood estimation is rather simple, as
we simply use 100 random starts and optimize by finding a lo-
cal mode using a greedy gradient-based algorithm. Future work
should focus on improving the effectiveness and efficiency of
the maximum-likelihood estimate and MCMC algorithm.

In order to illustrate the applicability of CARMA models
for a variety of astronomical sources as well as to provide a
guide for interpreting their results, we applied these models
to light curves for an X-ray binary, two AGNs, a long-period
variable star, and an RR Lyrae star. In general, we found that
the CARMA models provide a good description of these light
curves, suggesting that they can be applied to a broad range
of astronomical sources that exhibit stochastic or quasi-periodic
variations. The only exception was the RR Lyrae star light curve.
This is to be expected, as RR Lyrae light curves exhibit regular
nonsinusoidal variations and thus are unlikely to have a strong
stochastic component. However, in spite of this, the CARMA
models still identified the period quoted by the catalogue from
which this light curve was taken in ≈75% of the MCMC
samples. Moreover, the deviation in the residuals from a normal
distribution for the RR Lyrae star implies that the distribution of
the residuals from a CARMA fit may provide an effective means
of discriminating between different types of variables, even for
those for which a CARMA model is not optimal. These results
suggest that there may be value in using variability features
derived from CARMA parameters even for nonstochastic light
curves.

Further improvements to the CARMA modeling approach
can be obtained by including a deterministic component such
as a periodic function, for modeling periodic light curves
such as those from RR Lyrae. In this case the residuals from
fitting a deterministic function are modeled as following a
CARMA process. In fact, this is the motivation behind the
periodic autoregressive moving average models (PARMA; e.g.,
Anderson et al. 2013), which allow for periodic variations
in the mean and autocovariance function of a time series. In
addition, it is possible to define multivariate CARMA models
through a vector- and matrix-valued extension to Equation (1)

(e.g., Marquardt & Stelzer 2007; Schlemm & Stelzer 2012).
Multivariate CARMA models hold considerable potential for
characterizing the full multipassband variability information
obtained by time-domain surveys and will be the subject of
future work.

In summary, CARMA models provide an important addition
to the astronomer’s statistical toolbox in the era of massive time-
domain surveys and have the potential to play an important role
in the analysis of variability as a probe of astrophysics, as well
as in the use of variability as a means of identifying classes of
astronomical sources.
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Our software made use of the Armadillo C++ linear algebra
library (Sanderson 2010).

APPENDIX A

KALMAN FILTER FOR A CARMA PROCESS

Using the rotated state space representation, the Kalman filter
computes the mean and variance of the measured time series at
time ti conditional on the measurements at times {tj ; j < i} via
the following algorithm (Jones & Ackerson 1990).

1. Center the time series. For each i, compute ỹi = yi − μ.
Because the Kalman filter assumes a zero-mean time series,
we will work with the centered values instead of yi.
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2. Denote the covariance matrix of the predicted rotated state

as P̃ . Initialize the rotated state vector x̃ and its covariance
P̃ at time t1 to its stationary mean and covariance, 0 and Ṽ ,
respectively:

x̃(t1|·) = 0 (A1)

P̃ (t1|·) = Ṽ . (A2)

Defining J = U−1e, the stationary covariance matrix for
x̃(t) has elements (Belcher et al. 1994)

Ṽlk = −
JlJ

∗
j

rl + r∗
k

. (A3)

3. Calculate the mean and variance of the first measurement
in the time series using the stationary values for a CARMA
process:

E(ỹ1) = 0 (A4)

Var(ỹ1|σ, α, β) = R(0) + σ 2
1 , (A5)

where R(0) is given by Equation (4).
4. Initialize the Kalman gain:

K1 =
P̃ (t1|·)b̃

H

V ar(ỹ1|σ, α, β)
. (A6)

Here zH denotes the Hermitian transpose of z.
5. Update the estimate of the rotated state vector:

x̃(t1|t1) = x̃(t1|·) + ỹ1K1. (A7)

6. Update the covariance matrix of the rotated state vector:

P̃ (t1|t1) = P̃ (t1|·) − V ar(ỹ1|σ, α, β)K1KH
1 . (A8)

After initializing the Kalman filter as above, repeat the
following steps for i = 2, . . . , n:

7. Predict the rotated state vector at the next observation time
given the time series at the earlier observation times:

x̃(ti |ti−1) = Λi x̃(ti−1|ti−1). (A9)

8. Calculate the covariance matrix of the predicted rotated
state vector at time ti:

P̃ (ti |ti−1) = Λi(P̃ (ti−1|ti−1) − Ṽ )ΛH
i + Ṽ . (A10)

9. Calculate the mean and variance of the centered time series
at time ti conditional on the earlier values:

E(ỹi |ỹ<i, σ, α, β) = b̃x̃(ti |ti−1) (A11)

V ar(ỹi |ỹ<i, σ, α, β) = b̃P̃ (ti |ti−1)b̃H + σ 2
i . (A12)

Here we have used the notation ỹ<i = [ỹ1, . . . , ỹi−1].
10. Update the Kalman gain:

Ki =
P̃ (ti |ti−1)b̃H

V ar(ỹi |ỹ<i, σ, α, β)
. (A13)

11. Update the estimated rotated state vector:

x̃(ti |ti) = x̃(ti |ti−1) + (ỹi − E(ỹi |ỹ<i, σ, α, β))Ki . (A14)

12. Finally, update the covariance matrix of the estimated
rotated state vector:

P̃ (ti |ti) = P̃ (ti |ti−1)−V ar(ỹi |ỹ<i, σ, α, β)KiK
H
i . (A15)

The values of E(ỹi |ỹ<i, σ, α, β) and V ar(ỹi |ỹ<i, σ, α, β)
computed using the above algorithm can then be used to effi-
ciently calculate the likelihood function given by Equation (16),
noting that E(yi |y<i, σ, α, β, μ) = E(ỹi |ỹ<i, σ, α, β) + μ.

APPENDIX B

ALGORITHM FOR COMPUTING THE COEFFICIENTS
NEEDED FOR INTERPOLATION AND

EXTRAPOLATION FROM A MEASURED TIME SERIES
UNDER THE CARMA MODEL

The coefficients c̃i and d̃i needed to compute the expected
value of yi as a function of y0 for i � j (t0) can be computed
recursively using the following algorithm.

1. First, run the Kalman filter up to index j (t0) − 1. If t0 < t1,
then skip this step.

2. Compute x̃(t0|tj (t0)−1), P̃ (t0|tj (t0)−1), E(ỹ0|ỹ<j (t0), θ ), and
V ar(ỹ0|ỹ<j (t0), θ ) using Equations (A9)–(A12). If t0 > tn,
then nothing further needs to be calculated. Otherwise, use

these values to compute K0, x̃(t0|t0), and P̃ (t0|t0).
3. Initialize the rotated state vector coefficients cj (t0) and dj (t0)

as

cj (t0) = Λ0[x̃(t0|t0) − E(ỹ0|ỹ<j (t0), θ )K0] (B1)

dj (t0) = Λ0K0, (B2)

where Λ0 is a diagonal matrix with Λ0,kk = erk (tj (t0)−t0). If
t0 < t1, then j (t0) = 1 and the initial values are

c1 = 0 (B3)

d1 =
Ṽ b̃H

b̃.Ṽ b̃H
. (B4)

4. Initialize the coefficients c̃j (t0) and d̃j (t0) as

c̃j (t0) = b̃cj (t0) (B5)

d̃j (t0) = b̃dj (t0). (B6)

Note that if t0 < t1, then c̃1 = 0 and d̃1 = 1.

Then, for i = j (t0) + 1, . . . , n do the following.

5. Update the linear coefficients for the rotated state vector

ci = Λi[ci−1 + (yi−1 − c̃i−1)Ki] (B7)

di = Λi[di−1 − d̃i−1Ki]. (B8)

6. Update the linear coefficients:

c̃i = b̃ci (B9)

d̃i = b̃di . (B10)

Because the Kalman gains, Ki , only depend on the observa-
tion times, and not on the measured time series, they are com-
puted by performing the Kalman filter using the observation
times t1, . . . , tj (t0)−1, t0, tj (t0), . . . , tn.
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