
Flexible Architecture Conformance Assessment
with ConQAT

Florian Deissenboeck, Lars Heinemann, Benjamin Hummel, Elmar Juergens
Technische Universität München, Garching b. München, Germany

ABSTRACT
The architecture of software systems is known to decay if no
counter-measures are taken. In order to prevent this archi-
tectural erosion, the conformance of the actual system archi-
tecture to its intended architecture needs to be assessed and
controlled; ideally in a continuous manner. To support this,
we present the architecture conformance assessment capabil-
ities of our quality analysis framework ConQAT. In contrast
to other tools, ConQAT is not limited to the assessment of
use-dependencies between software components. Its generic
architectural model allows the assessment of various types
of dependencies found between different kinds of artifacts.
It thereby provides the necessary tool-support for flexible
architecture conformance assessment in diverse contexts.

1. INTRODUCTION
For virtually all software systems of significant size, an

architecture specification exists that describes the system’s
components and their intended interactions. However, stud-
ies have shown that software systems undergo an architec-
tural decay throughout their life-time if no counter-measures
are taken, i. e., dependencies creep into the system that vio-
late the interaction patterns that have been originally speci-
fied [3,4,9]. As the original intended architecture was usually
designed to support important goals like portability or per-
formance, such deviations are prone to increase the cost of
maintenance as well as operation. A classic example of an
unintended dependency is a direct call of a UI component
(on the top of a three-layered architecture) to the data ac-
cess layer although this call is meant to be mediated by the
application logic layer. Similarly, many applications pool
platform-dependent functionality in a special component to
improve portability. Calls to platform-specific functions not
routed via this dedicated component are therefore violations
of the intended architecture.

Unfortunately, most of the programming languages used
today provide no means to describe intended and non-inten-
ded dependencies beyond the level of classes and, possibly,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’10, May 02–08, 2010, Cape Town, South Africa.
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

packages. Hence, an analytic approach is required to assess
the conformance of a software system’s architecture to its
intended architecture.

Problem. Conformance assessment is challenging as the
artifacts that comprise real-world software systems are of
diverse nature. Among others, they include source code
in different all-purpose programming languages as well as
in domain-specific languages, libraries in binary form, var-
ious kinds of configuration files (e. g., for O/R-mappers),
database artifacts like tables and views, plus a host of ex-
ternal resources like web-services. Crucially, a software sys-
tem’s dependencies are not limited to dependencies within a
specific artifact type but often cross these boundaries, e. g.,
a Java class querying a database table. An architecture con-
formance assessment tool must therefore be flexible enough
to deal with the various artifact types and their dependen-
cies.

Contribution. This paper presents a tool that addresses
this challenge with a highly generic and flexible architecture
conformance assessment approach. Our approach reduces
the problem of architecture conformance assessment to the
comparison of two hierarchical graphs; one that describes
the intended architecture and one that describes the actual
system’s dependencies. In contrast to other tools, confor-
mance assessment is not limited to a certain language or
particular type of dependency. The intended architecture
is conveniently specified with a graphical editor that also
allows to specify the mapping between architectural compo-
nents and system artifacts. The analysis of the actual depen-
dencies of the system is performed with the quality analysis
toolkit ConQAT1 that provides the extraction of different
dependency types for various languages. Moreover, new de-
pendency extraction functionality can be added easily. The
results of the conformance assessment can either be viewed
in the graphical editor or included in a quality dashboard
and thereby support the continuous control of architecture
conformance. ConQAT’s architecture conformance assess-
ment capabilities have been applied for architecture evalu-
ations in multiple industrial projects and are used, among
others, by the Munich Re and ABB in a continuous manner.

2. CONFORMANCE ASSESSMENT
To assess the architecture conformance of a system, three

ingredients are required: (1) a machine readable specifica-
tion of the intended architecture, (2) a mapping between the

1Available as Open Source at http://www.conqat.org/

Figure 1: Architecture editor

architecture’s components and the system’s artifacts, and
(3) knowledge of the dependencies between the system’s ar-
tifacts (extracted automatically). Based on these inputs, the
actual assessment can be performed, which is usually embed-
ded in an iterative process of assessment and changes to both
the system and the architecture description. Our approach
corresponds in principle to the reflexion model technique [7]
and its extension to hierarchical high-level models [6].

2.1 Intended Architecture
ConQAT employs a simple hierarchical component model

for specifying the intended architecture of a software system.
It consists of the decomposition of the system into compo-
nents and dependency policies between them. A graphi-
cal editor based on the Eclipse framework and integrated
into ConQAT is used for the specification of the architec-
ture (Fig. 1).

There are three types of dependency policies: allow, deny
and tolerate. An allow policy defines that a component may
depend on another one. A deny policy defines that a com-
ponent must not depend on another one. A tolerate policy
is similar to a deny policy, but has attached a list of im-
plementation artifact dependencies that are tolerated. The
support for tolerated dependencies was introduced as a trib-
ute to industrial practice. Tolerations provide a mechanism
to mask existing violations until they can be resolved, while
ensuring that no new violations of the policy occur.

A component can have the PUBLIC stereotype indicating
that every other component within the same parent compo-
nent may depend on it. This is useful for library components
that are used by many other components.

2.2 Artifact Mapping
To relate the system to the architecture description, a

many-to-one mapping between system artifacts and the com-
ponents of the architecture has to be established. Which
level of detail is used when identifying artifacts can be con-
figured in ConQAT. To identify the artifacts of the system
we use the unique ID assigned by ConQAT to analyzed el-
ements. For Java classes this would be the fully qualified
class name including the package name, for C# classes this
is the full class name including any surrounding namespaces,

Figure 2: ConQAT analysis configuration

for files just the full file name is used.
The actual mapping is described by two sets of regular

expressions associated with each component of the architec-
ture. An artifact is mapped to the component if its ID is
matched by any expression in the first (include) set and not
matched by any expression in the second (exclude) set. As
Java packages and file names are organized in a hierarchy,
often the regular expressions are just used to select entire
packages or directories (e. g., package edu.tum.cs.conqat.core
maps to component core). So, if the system’s structure re-
sembles the architecture’s decomposition, the mapping is
fairly simple. However, the scheme is expressive enough to
capture more complex mappings.

2.3 Dependency Extraction
The extraction of dependencies is highly flexible as we can

utilize the full spectrum of the existing ConQAT framework.
An annotated example using ConQAT’s data-flow configu-
ration language is shown in Fig. 2, which illustrates the con-
figuration used for architecture conformance assessment. As
the mapping and assessment works directly on plain depen-
dencies, for the dependency extraction part any ConQAT
analysis can be used that annotates an artifact with a list of
the ids of artifacts it depends on.

Probably the most common dependency types analyzed
are call or use dependencies. Call captures the invocation of
a function or method in another artifact, while use captures
general dependence which besides invocation also includes
inheritance or use of a type in attributes, parameters, or
local variables. Both can be extracted for Java and .NET
systems from the byte-code. ConQAT also allows to extract
the create dependency, i. e., object creation.

Another class of dependencies can be analyzed by replac-
ing the dependency extraction part by processing steps from
ConQAT’s clone detection sub-framework [5]. In one pos-
sible configuration code files could depend on each other if
they contain a piece of code which is (nearly) the same,
called a clone. This cloning dependency is relevant for two
reasons. First, duplicate code often needs to be changed
consistently, thus also the corresponding components require
consistent evolution. Second, cloning is sometimes used to
circumvent architectural constraints. For example, if the ar-
chitecture disallows to call a certain method from another
module, the developer could simply copy the method to
avoid an explicit dependency. As such behavior often in-
dicates either a problem with the architecture or a missing
understanding of the developer, finding these dependencies
can be relevant.

Beyond these artifact internal relations, often dependen-
cies can also be extracted from secondary systems and de-

scriptions, which slightly shifts the focus to assessment of
the architecture itself. For example change management
systems usually have a notion of a commit or change set.
Thus these systems can be queried for files which have been
changed together. By extracting this information and an-
notating the artifacts with it, ConQAT can also be used to
analyze the change coupling [11] between artifacts and thus
architecture components.

2.4 Assessment
The assessment compares the actual architecture to the

specified intended architecture. Implementation artifacts
are mapped to the components. Artifacts that cannot be
mapped to any component—called orphans—are recorded
and included in the assessment report. After the mapping,
the dependency policies are assessed. In case there is no ex-
plicitly modeled policy between two components, the policies
of the parents in the component hierarchy are considered. If
no explicit parent policy is found, the dependency is con-
sidered as implicitly forbidden and therefore is treated as a
deny policy. All components are implicitly allowed to access
components that are transitive parents or children within
the component hierarchy.

During the assessment, each policy is assigned a rating.
An allow policy is rated valid if there is at least one imple-
mentation artifact dependency between the matched types
of the components. Otherwise it is rated unnecessary. The
notion of an unnecessary rating is useful for detecting super-
fluous dependency policies in the architecture specification.
A deny policy—be it explicit or implicit—is rated valid, if
either there are no corresponding implementation artifact
dependencies or the target of the policy has the PUBLIC
stereotype. Otherwise the rating invalid is assigned. A
tolerate policy is rated valid, if all implementation depen-
dencies are in the list of tolerations of the policy, invalid
otherwise.

2.5 Process Support
We promote an iterative approach for introducing archi-

tecture conformance assessment in development projects.
Our suggestion is to start with an initial architecture speci-
fication manually created from documentation (if available)
and the implicit knowledge of team members elicited in an
initial workshop. Once this version of the architecture spec-
ification is created, a first assessment is performed. Our ex-
perience shows that this first assessment will usually reveal
many deviations between the intended and actual architec-
ture. This is due to the loss of architectural knowledge in
the project life cycle. The architecture specification is then
refined in several iterations such that only those violations
remain that are considered real problems and need to be ad-
dressed by realigning the implementation with the intended
architecture. In case this cannot be done immediately, e. g.,
for organizational reasons, tolerations can be used to express
this fact in the architecture specification. This iterative re-
finement is supported by the graphical editor which allows to
interactively inspect the assessment. Upon opening the as-
sessment report, the architecture definition is overlayed with
icons indicating the ratings of the policies. The matched
types for the components are displayed in a list. The assess-
ment mode of the architecture editor allows to directly refine
the architecture specification by menu actions for allowing
or tolerating violations.

Once established, conformance assessment should be per-
formed continuously in a development process [2,8]. Ideally
this is done in the context of a continuous quality control
process. This can be accomplished by including the archi-
tecture assessment with ConQAT in a nightly build. For
this purpose the assessment generates the report in HTML
format that can be integrated in quality dashboards. This
ensures that new architectural violations are detected early
and can therefore be fixed with reasonable effort. Moreover
the development team is forced to update the architectural
specification in case the system’s architecture changes. This
way, the architecture specification is turned into a “living”
artifact. According to our experience, this is another valu-
able benefit of continuous architecture conformance assess-
ment.

3. INDUSTRIAL EXPERIENCE
ConQAT is employed for architecture conformance assess-

ment in several contexts.

Munich Re. Munich Re is one of the largest re-insurance
companies in the world and employs more than 47,000 peo-
ple in over 50 locations. Munich Re develops and maintains
several business information systems to support its business
processes. Continuous quality control of the development
and maintenance efforts is supported through (ConQAT-
based) quality dashboards that collect various quality indi-
cators. These dashboards contain architecture conformance
assessment results that are computed on a daily basis. This
way, architecture violations can be discovered shortly after
their creation, when their removal is still inexpensive. Con-
sequently, ConQAT helps to reduce or even avoid architec-
tural decay. Furthermore, we have found that conformance
assessment can be a catalyzer for architecture discussion—
it helps to foster a common understanding of the intended
architecture among developers. Due to positive experiences
using ConQAT for quality assessment in three systems [4]
over the course of two years, ConQAT architecture confor-
mance assessment is currently introduced into the develop-
ment process of further systems at Munich Re.

ABB. ABB is one of the world’s leading power and au-
tomation engineering companies. It employs about 115,000
employees in more than 100 countries. Similarly to Munich
Re, ABB applies ConQAT to control the architectural con-
formance of a mid-sized C#-system that is used by ABB cus-
tomers to configure the hardware products. Due to ABB’s
worldwide operations, the development of the system is car-
ried out, among others, at locations in Finland and India.
ABB found that, particularly, in globally distributed soft-
ware development, an automated mechanism that continu-
ously controls architectural conformance and reports devia-
tions to product managers in a timely manner, is of paramount
importance. The company is, hence, currently working on
integrating the ConQAT-based architecture-conformance as-
sessment into their development tool-landscape as well as
their processes.

ConQAT. The ConQAT code-base is used in lab courses,
where 10 to 15 students spend several consecutive weeks ex-
tending ConQAT. Although some students stay on after a
lab is finished, most move on to other tasks. This constel-
lation causes a large turnover in the ConQAT development

team. As one measure to nevertheless achieve and preserve
high maintainability of the source code, architecture con-
formance assessment is performed hourly to establish and
persist a common architecture understanding among devel-
opers.

4. BEYOND CODE
The flexibility provided by the architecture description

formalism and the open analysis platform allows application
of architecture conformance assessment beyond source code.
We successfully employed ConQAT to analyze conformance
of the database architecture of a large industrial business
information system at Munich Re.

The analyzed system has grown out of several previously
independent systems. The database schema contains sub-
schemas of its 11 constituent systems. These sub-schemas
contain over 700 different database entities, e.g. tables and
views. Rules govern access between entities located in differ-
ent sub-schemas. For example, tables in other sub-schemas
are encapsulated through views and must not be accessed
from another sub-schema directly.

Each database sub-schema was modeled as a component.
Sub-components were created for the tables and views. Poli-
cies were added between sub-schema components to allow
access to views, but not to tables. Dependency extrac-
tion was performed via queries to the meta tables of the
database management system—identifying over 1300 depen-
dencies between database entities. Conformance assessment
revealed multiple violations of the architecture rules. Ex-
amples include cross-subsystem accesses to tables instead of
to the views that encapsulate them—making maintenance
of these tables difficult. Prior to using ConQAT, an auto-
matically layouted graph of the database entities and their
dependencies was used to manually identify violations. Be-
cause of the size of the database schema, this graph grew
to enormous size, significantly degrading its usefulness. In
contrast, due to aggregation provided by the intended archi-
tecture, conformance assessment with ConQAT scales well.

5. RELATED WORK
Existing tools for architecture conformance assessment can

be categorized into the three following approaches: source
code query languages, dependency structure matrices and
reflexion models [8].

The tools using source code query languages like .QL [1]
and dependency structure matrices [10] specify the intended
architecture directly on the basis of the system’s artifacts as
they do not separate the architecture specification from the
mapping to the system’s artifacts. Consequently, they can-
not provide an architecture specification that is independent
of the system’s implementation. However, such an artifact is
vital as it serves documentation purposes and eases commu-
nication with stakeholders. Furthermore, experience shows
that many stakeholders are most familiar with graphical ar-
chitecture description and, hence, reluctant to deal with tex-
tual query languages or the matrix-based descriptions used
by tools like XDepend and Lattix LDM.

In a comparison of architecture conformance checking tech-
niques, Passos et al. recommend reflexion model based tools
for integration of architecture conformance checking in a
development process [8]. There are several tools that im-
plement the reflexion model approach (Bauhaus, Depen-

dometer, SAVE, SonarJ, Sotograph Structure101). How-
ever, these tools have a fixed notion of the dependencies be-
tween the elements of a system and a fixed set of supported
artifact types. ConQAT, in contrast, supports arbitrary ar-
tifact types as well as a flexible notion of a dependency be-
tween them by allowing users to implement an extension
for determining the dependencies between system entities.
Moreover, ConQAT is available as open source software.

6. CONCLUSION
In this paper we introduced ConQAT’s architecture con-

formance assessment capabilities. While none of the indi-
vidual features are completely new from a research perspec-
tive, their combination and implementation in an analysis
framework is in our opinion a valuable contribution to the
community. The graphical editor simplifies the creation of
architecture descriptions and the interpretation of assess-
ment results. The combination with the flexible ConQAT
framework allows the assessment regarding different types
of dependency with low configuration efforts. Several in-
dustrial applications confirmed the practical relevance and
applicability of our approach, but we also envision this tool
platform as a basis for future experiments and case studies
in architecture conformance and assessment.

7. REFERENCES
[1] O. de Moor, M. Verbaere, E. Hajiyev, P. Avgustinov,

T. Ekman, N. Ongkingco, D. Sereni, J. Tibble, and
S. Limited. .QL for source code analysis. In SCAM’07,
2007.

[2] M. Eichberg, S. Kloppenburg, K. Klose, and
M. Mezini. Defining and continuous checking of
structural program dependencies. In ICSE’08, 2008.

[3] S. Eick, T. Graves, A. Karr, J. Marron, and
A. Mockus. Does code decay? Assessing the evidence
from change management data. IEEE Transactions on
Software Engineering, 27(1):1–12, 2001.

[4] M. Feilkas, D. Ratiu, and E. Juergens. The loss of
architectural knowledge during system evolution: An
industrial case study. In ICPC’09, 2009.

[5] E. Juergens, F. Deissenboeck, and B. Hummel.
CloneDetective – A workbench for clone detection
research. In ICSE’09, 2009.

[6] R. Koschke and D. Simon. Hierarchical reflexion
models. In WCRE’03, 2003.

[7] G. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: Bridging the gap between source and
high-level models. In FSE’95, 1995.

[8] L. Passos, R. Terra, R. Diniz, M. T. Valente, and
N. das Chagas Mendonca. Static architecture
conformance checking – an illustrative overview. IEEE
Software, 99(1), 2009.

[9] J. Rosik, A. Le Gear, J. Buckley, and M. Babar. An
industrial case study of architecture conformance. In
ESEM’08, 2008.

[10] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using
dependency models to manage complex software
architecture. In OOPSLA’05, 2005.

[11] T. Zimmermann, S. Diehl, A. Zeller, et al. How
history justifies system architecture (or not). In
IWPSE’03, 2003.

