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SUMMARY

Quantile regression has emerged as a useful supplement to ordinary mean regression. Traditional frequen-

tist quantile regression makes very minimal assumptions on the form of the error distribution and thus

is able to accommodate nonnormal errors, which are common in many applications. However, inference

for these models is challenging, particularly for clustered or censored data. A Bayesian approach enables

exact inference and is well suited to incorporate clustered, missing, or censored data. In this paper, we

propose a flexible Bayesian quantile regression model. We assume that the error distribution is an infinite

mixture of Gaussian densities subject to a stochastic constraint that enables inference on the quantile of

interest. This method outperforms the traditional frequentist method under a wide array of simulated data

models. We extend the proposed approach to analyze clustered data. Here, we differentiate between and

develop conditional and marginal models for clustered data. We apply our methods to analyze a multipa-

tient apnea duration data set.

Keywords: Bayesian semiparametric modeling; Clustered data; Quantile regression; Stick-breaking prior.

1. INTRODUCTION

Quantile regression has emerged as a useful supplement to ordinary mean regression. As might be ex-

pected, the upper or lower quantiles of the response variable may depend on the covariates very differ-

ently from the center. Therefore, quantile regression can provide a more complete description of functional

changes than focusing solely on the mean. The value of “going beyond the conditional mean model” has

been demonstrated in rapidly expanding literatures in econometrics, social sciences, and biomedical stud-

ies; see Koenker (2005) for a comprehensive review. In addition, quantile regression makes very minimal

assumptions on the form of error distribution and thus is able to accommodate nonnormal errors, which

are common in many applications. Although asymptotic theory for quantile regression is well studied,

the development of convenient inference procedures has been challenging, as the asymptotic covariance

matrix of quantile estimates involves the unknown error density function, which cannot be estimated

reliably.

Another serious challenge in quantile regression lies in the analysis of clustered data. At present time,

few options exist for quantile inference for such data. Jung (1996) proposed a quasilikelihood method
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338 B. J. REICH AND OTHERS

for median regression estimation, where the dependency structure is captured by the covariance matrix of

the sign of residuals. Employing the idea of Jung’s estimator, Lipsitz and others (1997) and Yin and Cai

(2005) discussed quantile regression for correlated data in different contexts and considered resampling

methods for inference by treating each cluster as a sampling unit. The cluster-resampling scheme generally

performs well for large sample sizes, but it may lose control of the false-positive rate for small number

of clusters; see Wang and Fygenson (2009). Koenker (2004) proposed to estimate the cluster-specific

fixed effects through penalizing the cluster effects. The results of this penalization approach depend on

the choice of some penalization parameter, and the practical use of inference for fixed effects was not

studied. Based on estimates obtained under the working assumption of independence, Wang and He (2007)

developed a quantile rank score test for clustered data by incorporating the intrasubject correlation in the

test statistic. Even though it was shown to be robust to modest heteroskedasticity, the validity of the score

test relies on the common error distribution assumption. Geraci and Bottai (2007) developed a parametric

model with an asymmetric Laplace (ASL) error distribution.

This paper provides an appealing quantile inference approach through Bayesian modeling. The Bayesian

framework enables exact inference and is well suited to incorporate clustered, missing, or censored data.

From the frequentist point of view, the quantile regression problem is tackled by minimization of an ob-

jective function whose population minimizer is the desired quantile. The estimate is equivalent to the

maximum likelihood solution under an ASL error distribution. A Bayesian approach to quantile regres-

sion must specify a likelihood, and thus, a natural choice for the likelihood is the ASL distribution. The

ASL distribution has been used to construct Bayesian quantile regression models for independent data

(e.g. Yu and Moyeed, 2001).

Other researchers considered nonparametric approaches to avoid the restrictive parametric assump-

tion. Walker and Mallick (1999) and Hanson and Johnson (2002) proposed median regression models

using a diffuse Polya tree and a mixture of continuous Polya trees, respectively. Scaccia and Green (2003)

modeled the conditional distribution of the response variable y given a single covariate (time) with a dis-

crete normal mixture with nonparametric time-dependent weights. The centile curves were then evaluated

numerically from the Markov chain Monte Carlo (MCMC) output at a grid of time points. Focusing on the

univariate data without covariates, Hjort (2003) and Hjort and Petrone (2007) discussed the posterior dis-

tributions of quantiles, which were induced by the Dirichlet process prior distribution of the data. Taddy

and Kottas (2007) focused on nonlinear regression, and they modeled the joint distribution of the response

y and convariates x through a Dirichlet process mixture of multivariate normal distributions. Bayesian in-

ference on the conditional quantiles of y were based on draws obtained through numerical integration of

the posterior conditional density of y, implied by the Dirichlet process mixture model. Different from the

above methods, in this paper, we model the conditional quantiles of y directly by imposing a quantile-

constrained Dirichlet process prior on the residuals. Under such formulation, Bayesian inference could be

done automatically on the quantile of interest, and no numerical evaluation is required.

For independent data, Kottas and Gelfand (2001) proposed to model the error distribution by 2 families

of median zero distributions based on mixtures with Dirichlet process priors on the mixture distributions.

Recently, Kottas and Krnjajić (2009) extended the idea to quantile regression for arbitrary quantiles, and

their resulting nonparametric error distributions was able to capture general forms of skewness and tail

behavior. However, like the ASL distribution, these densities necessarily have their mode at the quantile

of interest, which can be a very restrictive property, particularly when modeling extreme quantiles. In

addition, these constructed densities are discontinuous at the mode.

To create a fully Bayesian framework for quantile regression inference that allows for the full span of

quantile-restricted error distributions, we introduce a flexible nonparametric density along with a novel

sampling method to fit the model with the newly proposed error distribution. The likelihood is taken to

be an infinite mixture of Gaussian densities. We make no further assumptions about the shape of the error

distribution except for a stochastic constraint that permits inference on the quantile of interest. We show
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FBQR model 339

that our prior for the residual density spans the entire space of densities that satisfy the quantile constraint

and that our prior is stochastically centered on the ASL density.

We also extend this model to analyze clustered data from a recent study of apnea duration, the period

of nasal airflow cessation during swallowing. In this study, apnea duration is measured several times for

each subject so within-subject correlation must be taken into account. Geraci and Bottai (2007) account

for within-subject correlation by adding a random subject effect to the quantile and modeling the residual

distribution with an ASL density. However, unlike mean regression, marginalizing over the random effects

in quantile regression alters the desired quantile level, and the fixed effects can no longer be interpreted

in terms of the population quantile, which is often the focus of the analysis. To overcome this problem,

we develop a marginal quantile regression model and show that this leads to different results than the

independent model.

The remainder of the paper proceeds as follows. Section 2 introduces the flexible Bayesian quantile

regression (FBQR) model for independent data. This approach is extended to model clustered data in Sec-

tion 3. Section 4 conducts a simulation study to compare the proposed method with traditional frequentist

quantile regression and the Bayesian ASL model. The nonparametric Bayesian model improves estimates

of the regression coefficients and maintains the nominal frequentist coverage probability for a wide array

of error distributions. Section 5 analyzes the multipatient study of apnea duration and Section 6 concludes.

Some theoretical results and MCMC details are relegated to the Appendix.

2. BAYESIAN QUANTILE REGRESSION FOR INDEPENDENT DATA

Following He (1997), we assume the heteroskedastic linear regression model

yi = xiβββ + xiγγγ εi , (2.1)

where xiγγγ is constrained to be positive for all xi and the residuals εi are independent and identically

distributed. Under this model, yi ’s τ th quantile is xi [βββ + 9−1
ε (τ )γγγ ], where 9−1

ε (τ ) is εi ’s τ th quantile,

and all yi ’s quantiles are in the span of xi . Note that this model not only covers the simple linear quantile

model but can also be used to model nonparametric quantile curves by including a set of basis functions

for each covariate.

Model (2.1) may be rewritten

yi = xiβββ
(τ ) + xiγγγ

(τ )ε
(τ )
i , (2.2)

where ε
(τ )
i = εi −9−1

ε (τ ) has τ th quantile equal to zero. To analyze yi ’s τ th quantile, xiβββ
(τ ), we consider

only distributions for the residual term with τ th quantile equal to zero. For simplicity of notation, we omit

the superscript τ for the remainder of the paper, although we note the dependence on the quantile of

interest τ . Also, we fix the element of γγγ corresponding to the intercept at 1 to separate out the scale of the

errors from γγγ .

Traditional quantile regression techniques make few assumptions about the residual distribution.

Bayesian nonparametric methods avoid specifying a particular residual distribution by placing a prior on

the residual distribution, for example the Dirichlet process mixture prior (Ferguson, 1973, 1974). Kottas

and Gelfand (2001) and Kottas and Krnjajić (2009) apply the Dirichlet process mixture prior to quantile

regression by placing separate priors on the areas above and below zero to ensure the correct amount of

mass in each region. However, this leads to a discontinuity at the mode, and the mode is also forced to be

at the quantile of interest, so that the distribution is not as flexible as one would hope.

We propose an alternative approach that avoids these restrictions. Our approach is to build a flexible

residual distribution h as an infinite mixture of simple densities f that each satisfy the desired quan-

tile constraint. As shown below, mixing these simple constrained densities yields an arbitrarily flexible
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340 B. J. REICH AND OTHERS

residual distribution. We assume εi ’s distribution is the infinite mixture

h(ε|μμμ, σσσ 2) =

∞
∑

k=1

pk f
(

ε|μμμk, σ
2
k , qk

)

, (2.3)

where the pk are the mixture proportions with
∑∞

k=1 pk = 1. The base density f (ε|μμμk, σ
2
k , qk) is the

quantile-restricted 2-component mixture

f
(

ε|μμμk, σ
2
k , qk

)

= qkφ
(

μ1k, σ
2
1k

)

+ (1 − qk)φ
(

μ2k, σ
2
2k

)

, (2.4)

where φ(μ, σ 2) is the normal density with mean μ and variance σ 2, and qk ∈ (0, 1). To ensure
∫ 0
−∞ f (ε|μμμk, σ

2
k , qk)dε = τ , the mixture proportion is set to

qk =
τ − 8(−μ2k/σ2k)

8(−μ1k/σ1k) − 8(−μ2k/σ2k)
, (2.5)

where 8 is the standard normal distribution function. By construction,
∫ 0
−∞ f (ε|μμμk, σ

2
k , qk)dε = τ and

thus
∑

k pk

∫ 0
−∞ f (ε|μμμk, σ

2
k , qk)dε =

∑

k pkτ = τ , the desired quantile constraint.

Although the form of the base distribution f is rather simple, the resulting prior for the residual

distribution h is arbitrarily flexible. In particular, draws from this prior may be multimodal. To see this

complete flexibility, note that as σ1k, σ2k → 0 for all k, this becomes an infinite mixture of point mass

distributions. In this limiting case, qk = τ and μ1k < 0 < μ2k for all k.

Denote the mixing distribution by dP(s, t). Then, the residual density can be written as

h(ε|μμμ, 0) =

∫

(τδμ1
(ε) + (1 − τ)δμ2

(ε))dP(μ1, μ2), (2.6)

with μ1 < 0 < μ2 and δμ(ε) is the point mass distribution for ε with point mass at μ. Varying the bivariate

mixing distribution dP(s, t) in (2.6) over the class of all distributions with support on the product space

(−∞, 0) × (0, ∞) generates the class of all distributions having τ th quantile zero (see Hoff, 2003). If

a prior for this mixing distribution is chosen so that any distribution on the product space has nonzero

prior mass, then the resulting prior will give nonzero mass to any distribution having τ th quantile at zero.

Although we assume σ1k, σ2k > 0, this result implies that any density can be well approximated by a

density in the span of our prior using small σ1k and σ2k .

To specify a prior for this mixing distribution to span the appropriate space, we take μ1k and μ2k to

be independent draws from the ASL distribution with density

p(μ|λ, τ) ∝ λ−1 exp
(

−
μ

λ
∙ (τ − I [μ 6 0])

)

. (2.7)

The ASL is commonly used for parametric Bayesian quantile regression since its τ th quantile is zero;

the double exponential distribution is a special case of the ASL distribution with τ = 0.5. The standard

deviations σ1k, σ2k ∼ Uniform(0,c1) for some large constant c1 (Gelman, 2006). Each mixture component

must also satisfy the constraint that 0 6 qk 6 1, which leads to the truncated prior

p(μ1k, μ2k, σ1k, σ2k |λ, τ, c1) ∝ exp
(

−
μ1k

λ
∙ (τ − I [μ1k 6 0]) −

μ2k

λ
∙ (τ − I [μ2k 6 0])

)

× I (0 6 σ1k 6 c1)I (0 6 σ2k 6 c1)I (0 6 qk 6 1). (2.8)
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FBQR model 341

To specify a prior for pk , we use the stick-breaking representation (see, e.g. Ishwaran and James, 2001,

and references therein) to model the mixture proportions. Specifically, the proportions are defined through

the latent variables Vk
iid
∼ Beta(1, D). The first is p1 = V1. Successive proportions are given by

pk = Vk



1 −
∑

j<k

p j



 = Vk

∏

j<k

(1 − V j ), (2.9)

where 1 −
∑

j<k p j =
∏

j<k(1 − V j ) is the mass not accounted for by the first k − 1 components and Vk

is the proportion of the remaining mass attributed to the kth component. By construction,
∑∞

k=1 pk = 1

almost surely.

With σ1k = σ2k = 0 for all k, the prior for the residual distribution h is centered on the ASL distribu-

tion, while D controls the strength of the prior. To see this, let F be the distribution function corresponding

to (2.4). Then, Appendix A shows that when σ1k = σ2k = 0,

E(F(u)) = FASL(u|λ),

V (F(u)) = FASL(u|λ)[1 − FASL(u|λ)]/(D + 1)2, (2.10)

where u ∈ R, expectations are taken with respect to {Vk, μ1k, μ2k}, and FASL(u|λ) is the ASL distribution

function. Although the residual density is centered on a unimodal density with mode at zero, this does not

require draws from the model to have a single mode at zero. In practice, we do not take σ1k = σ2k = 0 so

the mean and variance in (2.10) are only approximate. Hanson and others (2005) discuss the discrepancy

between the centering distributions of the Dirichlet process versus mixture Dirichlet process approaches

and recommend the choice of centering distribution be based on the limiting discrete Dirichlet process.

For computational and conceptual purposes, this model can also be written as a mixture model. We

introduce latent variables Gi ∈ {1, 2, . . .} and Hi ∈ {1, 2} to indicate the mixture component from which

the i th observation is drawn, and write the model as

yi = xiβββ + xiγγγ ei , where ei ∼ N
(

μHi Gi
, σ 2

Hi Gi

)

,

Gi ∼ Categorical(p1, p2, . . .) and Hi ∼ Categorical(qGi
, 1 − qGi

), (2.11)

and qk , p(μ1k, μ1k, σ1k, σ2k), and pk are given in (2.5), (2.8), and (2.9), respectively. The regression coef-

ficients and scale parameters are given diffuse priors, β j ∼ N(0, c2) for large c2 and λ ∼ Gamma(0.1,0.1).

The regression scale parameters γ j also have vague normal priors, subject to xiγγγ > 0 for all xi and we

restrict the first element of γγγ corresponding to the intercept to be 1 to identify the scale of the residuals.

Appendix B describes an algorithm to analyze this infinite mixture model using retrospective MCMC

sampling. Alternatively, this model could be truncated to be an M component mixture by fixing VM = 1.

It would be straight forward to fit this finite mixture model in freely available WinBUGS software. R code

is available from the first author on request.

3. BAYESIAN QUANTILE REGRESSION FOR CLUSTERED DATA

In this section, we describe our quantile regression models for clustered data, such as the swallowing data

described in Section 1. We consider 2 models: Section 3.1 introduces random subject effects to account

for within-subject correlation and Section 3.2 integrates over the random subject effects and models the

quantile of the marginal distribution.
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342 B. J. REICH AND OTHERS

3.1 Conditional model

One approach to quantile regression for clustered data is to add a random subject effect αs to the model in

(2.2), that is,

yis = xisβββ + αs + xisγγγ εis, (3.12)

where yis is the i th measurement for subject s and εis follows the quantile-restricted mixture distribution

in (2.3). We refer to this as the conditional model since conditional on αs , the τ th quantile of yis is

xisβββ + αs . Conceivably any distribution could be used for the random effects. Regardless of the random

effects’ distribution, observations from different subjects are independent, while observations from the

same subject are dependent with

cor(yis, yi ′s) =
σ 2

α
√

[(xisγγγ )2σ 2
ε + σ 2

α ][(xi ′sγγγ )2σ 2
ε + σ 2

α ]
, (3.13)

where σ 2
α = Var(αs) and

σ 2
ε =

[

∞
∑

k=1

qk pk

(

σ 2
1k + μ2

1k

)

+ (1 − qk)pk

(

σ 2
2k + μ2

k

)

]

−

[

∞
∑

k=1

qk pkμ1k + (1 − qk)pkμ2k

]2

.

3.2 Marginal model

After integrating over the random effects, Section 3.1’s conditional model may no longer have the desired

quantile relationship. For example, assuming the random effects are Gaussian with mean zero and xisγγγ =

1 for all xis , integrating over αs gives

P(yis < xisβββ) =

∞
∑

k=1

pk

∫ 0

−∞
qkφ

(

r |μ1k, σ
2
α + σ 2

1k

)

+ (1 − qk)φ
(

r |μ2k, σ
2
α + σ 2

2k

)

dr . (3.14)

If σ 2
α is large,

∫ 0
−∞ φ(r |μ jk, σ

2
α + σ 2

jk)dr ≈ 0.5 for all j and k and P(yis < xisβββ) ≈ 0.5, which is

inappropriate for an analysis of extreme quantiles. Therefore, the conditional model is appropriate if the

focus of the study is to estimate each cluster’s quantile. However, unlike mean regression, βββ should not

be interpreted in terms of the population’s τ th quantile.

When the focus of the study is to estimate the population’s quantile, we must specify a model that

both accounts for within-subject correlation as well as guarantees that the τ th marginal quantile of yis is

xisβββ. To do so, consider the random effect model

yis = xisβββ + xisγγγ (αs + εis), (3.15)

where the τ th quantile of αs + εis is zero. For simplicity, we assume a conjugate prior for the random

effects, that is αs
iid
∼ N (0, σ 2

α ). The residuals εis are modeled as an infinite mixture of normals as before,

except that we now must account for the random effect variability in the quantile restriction. We modify

(2.5) as

qk =

τ − 8
(

− μ2k
√

σ 2
2k

+σ 2
α

)

8
(

− μ1k
√

σ 2
1k

+σ 2
α

)

− 8
(

− μ2k
√

σ 2
2k

+σ 2
α

) . (3.16)
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FBQR model 343

Under this model, observations from the same subject have correlation

cor(yis, yi ′s) =
σ 2

α

(xi ′sγγγ )(xisγγγ )(σ 2
ε + σ 2

α )
, (3.17)

where σ 2
α and σ 2

ε are defined in (3.13).

To show this model gives the desired quantile relationship, let ris = (yis − xisβββ)/xisγγγ . Using the

mixture representation in (2.11) and integrating over αs , we get ris ∼ N (μHis Gis
, σ 2

His Gis
+ σ 2

α ), where

His and Gis indicate the observation’s residual mixture component. Marginalizing over His and Gis gives

p(ris 6 0) =

∞
∑

k=1

pk

[

qk8

(

−
μ1k

σ1k + σα

)

+ (1 − qk)8

(

−
μ2k

σ2k + σα

)]

=

∞
∑

k=1

pkτ = τ

by the definition of qk .

4. SIMULATION STUDY

We conduct a simulation study to assess the performance of the proposed semiparametric Bayesian quan-

tile regression approach for independent data for both homosckedastic and heterosckedastic models.

4.1 Design

Our simulation design follows Kocherginsky and others (2005). We generate data from 5 model designs

with uncorrelated errors:

• Design 1: yi = 1 + x1iβ1 + x2iβ2 + ε1i

• Design 2: yi = 1 + x1iβ1 + x2iβ2 + πiε1i + (1 − πi )(ε2i )

• Design 3: yi = 1 + x1iβ1 + x2iβ2 + ε3i

• Design 4: yi = 1 + x3iβ1 + (1.1 − x3i )ε1i

• Design 5: yi = 1 + x1iβ1 + x2iβ2 + x4iβ3 + ε1i ,

where x1i , x2i
iid
∼N (0,1), ε1i ∼ N (0,1), ε2i ∼ N (3,3), ε3i

iid
∼ DExp(0,1), x3i

iid
∼ Unif(−1,1), πi

iid
∼ Bern(0.8),

and x4i
iid
∼ |t2|. All covariates and error terms are mutually independent. We set all slopes to 1, that is

βk = 1, k = 1, 2, 3. Models 1, 2, and 3 are simple location shift models with different error distributions.

Model 4 has heteroskedastic errors. In Model 5, the predictor x4 has heavy tails, which is troublesome for

frequentist asymptotics. For each model, we generate 200 data sets assuming the sample size is n = 100.

We analyze both τ = 0.5 and τ = 0.9.

Each simulated data set is analyzed using 3 methods. We use our FBQR model proposed in Section 2.

For our FBQR model, we choose D = 1 in the stick-breaking prior so that the prior on the weights is

uniform. We also consider the parametric Bayesian model assuming the errors follow an ASL distribution

with βββ ∼ N (0, 100 ∙ Ip) and σ ∼ U (0, 10). We compare these methods with the standard frequentist

quantile regression approach (“QReg”) using the “quantreg” package in R (R Development Core Team,

2006) using the default “rank” method to obtain confidence intervals.

Methods are evaluated based on mean squared error

MSE =
1

p

p
∑

j=1

(β j − β̂ j )
2, (4.18)
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344 B. J. REICH AND OTHERS

where p is the number of covariates (excluding the intercept), β j is the true value, and β̂ j is the estimate

(we use the posterior median for Bayesian methods). MSE is computed for each data set and each method,

and we report the mean (standard error) of the 200 MSEs for each method. We also report the coverage

probabilities for the 90% intervals for each procedure.

4.2 Results

Table 1 gives the results of the simulation study. In all cases other than Design 3 with τ = 0.50, our

FBQR procedure gives smaller MSE than its competitors. In these cases, the parametric form of the

error distribution for the Bayesian ASL model is incorrect that permeates into the regression coefficients’

estimates. The difference in MSE is particularly dramatic in the analyses of extreme quantiles. The data

provide less information about extreme quantiles so the parametric form of the residual distribution has a

greater effect.

As expected, the ASL procedure has the lowest MSE for Design 3 with τ = 0.50. In this case, the

ASL model has the smallest MSE because the data are generated from this model. The QReg procedure

also performs well in this case as the estimated coefficient vector is actually the posterior mode from

the Bayesian ASL model. Interestingly, the posterior median from the ASL model gives considerably

smaller MSE than the QReg procedure for this (and all other) design(s). In contrast, the FBQR procedure

has the smallest MSE of all the procedures for Design 3 with τ = 0.90. In this case, the mode of the

double exponential error distribution is in the center, but the ASL model assumes the mode is in the right

tail. This causes the ASL’s MSE to increase and the coverage probability of the 90% intervals to dip

to 0.63.

The 2 procedures (QReg and our proposed FBQR) that do not assume a parametric form for the

residual distribution have coverage probabilities near the nominal 90% level for all simulations. The pa-

rameteric Bayesian ASL procedure’s coverage probability sinks to as low as 56%. While both the FBQR

and the QReg procedures have correct coverage probabilities, the QReg confidence intervals are generally

much wider than our FBQR intervals. For example, the average interval width for the QReg procedure for

the Design 2 with τ = 0.9 is 1.97 compared to an average width of 1.02 for the FBQR procedure.

We also use the simulated data to study sensitivity to the hyperparameter, D, that controls the strength

of stick-breaking prior. Figure 1 plots the posterior mean density for 4 simulated data sets. For these data,

D = 0.1, D = 1, and D ∼ Gamma(1,1) give similar density estimates. Especially for small sample sizes,

Table 1. Mean squared error and coverage probabilities of 90% intervals for the simulation study for

independent data. Mean squared error is reported as 100 × average (100 × standard error) over the 200

simulated datasets for each simulation setting

Design τ Mean squared error Coverage probability

FBQR ASL QReg FBQR ASL QReg

1 0.5 1.11 (0.09) 1.31 (0.08) 1.58 (0.10) 0.90 0.85 0.90

2 2.10 (0.17) 2.29 (0.15) 2.68 (0.17) 0.88 0.89 0.88

3 1.37 (0.11) 1.27 (0.10) 1.36 (0.12) 0.92 0.91 0.90

4 2.34 (0.39) 4.18 (0.51) 4.42 (0.53) 0.92 0.84 0.84

5 1.07 (0.07) 1.20 (0.07) 1.33 (0.07) 0.88 0.83 0.88

1 0.9 2.38 (0.14) 2.46 (0.16) 2.88 (0.19) 0.92 0.73 0.89

2 13.47 (1.07) 41.35 (2.40) 48.10 (2.72) 0.89 0.56 0.87

3 4.51 (0.34) 7.27 (0.43) 8.76 (0.51) 0.91 0.63 0.88

4 3.74 (0.50) 7.15 (0.70) 8.49 (0.88) 0.93 0.68 0.83

5 1.86 (0.16) 1.92 (0.10) 2.38 (0.13) 0.91 0.73 0.89
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Fig. 1. Posterior means residual density (solid lines) for 4 simulated data sets.

D = 10 gives slightly different density estimates. However, Table 2 shows that the posterior mean and

standard deviation of the regression coefficients β, which are the primary focus, are robust to changes

in D.

5. ANALYSIS OF THE SWALLOWING DATA

In this section, we use quantile regression methods to analyze the swallowing data previously analyzed in

Perlman and others (2005) and Zhou and He (2008). The response, apnea duration, is the period of nasal

airflow cessation during swallowing. Longer apnea durations are related to longer cycle time breathing

patterns and often indicate age-related function changes for seniors. There are 23 elderly women in the

study. The apnea duration of each subject was measured multiple times, while they were swallowing

either water or pudding with different volumes and under different feeding conditions, giving 1286 total

observations. The purpose of the study was to determine how apnea duration is affected by 3 covariates:

feeding condition (self-fed or examiner-fed), viscosity (liquid or pudding), and volume (5 or 10 mL). The

covariates vary within subject and we assume a 2-way interaction model.
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Table 2. Posterior mean (standard deviation) of the regression coefficients for 4 simulated data sets under

different priors/values for D

Prior n Simulation Design 2 Simulation Design 3

β1 β2 β1 β2

D = 0.1 100 1.14 (0.16) 1.00 (0.14) 1.02 (0.11) 0.99 (0.14)

D = 1 100 1.13 (0.17) 1.01 (0.14) 1.01 (0.10) 0.99 (0.14)

D = 10 100 1.11 (0.17) 1.00 (0.15) 1.02 (0.10) 1.01 (0.13)

D ∼ G(1,1) 100 1.12 (0.17) 0.99 (0.14) 1.03 (0.11) 1.01 (0.14)

D = 0.1 1000 0.94 (0.04) 0.98 (0.04) 0.99 (0.04) 0.99 (0.04)

D = 1 1000 0.94 (0.04) 0.99 (0.04) 1.00 (0.03) 1.00 (0.04)

D = 10 1000 0.94 (0.04) 0.99 (0.04) 1.00 (0.03) 0.98 (0.04)

D ∼ G(1,1) 1000 0.94 (0.04) 0.99 (0.04) 1.00 (0.03) 0.99 (0.04)

Fig. 2. Boxplots of the log duration (seconds) for each group. Wide boxes represent subjects being fed by the exam-

iners and narrow boxes represent self-feeding. Shaded boxes are pudding and white boxes are liquid. The horizontal

lines give the sample quantiles for τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}.

Apnea duration is highly right skewed so we perform the analysis on the log scale. The data are shown

graphically in Figure 2. The heteroscedastic FBQR model seems to be appropriate here, as the data are

non-Gaussian even after the log transformation and the covariate effects appear to be different in the right

tail than in the center, especially for viscosity.

We compare 3 models: the frequentist quantile regression model, our FBQR model assuming the data

are independent, and the FBQR model assuming marginal subject random effects. We begin our analysis

of the swallowing data by temporarily ignoring the within-subject correlation and using Section 2’s model

for independent data, referred to as “IID.” At τ = 0.50, the main effects for feeding condition and volume

and the interaction between viscosity and volume are moderately strong predictors of swallowing time

(Table 3). The results are quite different for the analysis of the upper tail. At τ = 0.90, the main effect
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Table 3. 95% intervals for the swallowing data. The frequentist quantile regression procedure assuming

independence (QReg) is compared with 3 semiparametric Bayesian models: the model assuming indepen-

dent errors (IID) and the marginal random effects model (Marginal RE)

τ QReg IID Marginal RE

Intercept 0.5 (−0.14,−0.01) (−0.11,−0.03) (−0.11, 0.04)

Viscosity (Visc) 0.5 (−0.11, 0.05) (−0.09, 0.01) (−0.12,−0.03)

Feed cond (FC) 0.5 (−0.01, 0.15) ( 0.01, 0.12) ( 0.00, 0.09)

Volume (Vol) 0.5 ( 0.03, 0.21) ( 0.00, 0.10) ( 0.02, 0.10)

Visc × FC 0.5 (−0.14, 0.04) (−0.11, 0.01) (−0.07, 0.03)

Visc × Vol 0.5 (−0.23,−0.05) (−0.14,−0.02) (−0.10,−0.01)

FC × Vol 0.5 (−0.12, 0.06) (−0.05, 0.07) (−0.06, 0.03)

Intercept 0.9 ( 0.61, 0.97) ( 0.72, 0.92) ( 0.65, 0.98)

Viscosity 0.9 (−0.56,−0.06) (−0.27,−0.01) (−0.35,−0.11)

Feed cond 0.9 ( 0.37, 0.79) ( 0.10, 0.35) ( 0.10, 0.37)

Volume 0.9 (−0.05, 0.35) (−0.08, 0.19) (−0.08, 0.28)

Visc × FC 0.9 (−0.83,−0.34) (−0.35, −0.03) (−0.28, 0.05)

Visc × Vol 0.9 (−0.25, 0.23) (−0.23, 0.08) (−0.25, 0.10)

FC × Vol 0.9 (−0.29, 0.19) (−0.14, 0.17) (−0.24, 0.07)

Fig. 3. Standardized residuals (bars; i.e. ris = (yis − xis β̂ββ)/xis γ̂γγ , where β̂ββ and γ̂γγ are posterior means) and posterior

means of the residual density (solid lines) for the swallowing data assuming independent observations.

of feeding condition is far more pronounced than with τ = 0.5 and the interaction between feeding

condition and viscosity emerges as a strong predictor of swallowing time. These differential effects are

also apparent in Figure 2; the distributions have the heavier right tails when the viscosity is liquid and the

examiner controls the feeding.

The Bayesian 95% intervals are narrower and closer to zero than the frequentist intervals (Table 3),

especially for τ = 0.9. For example, at τ = 0.9, the frequentist interval for the viscosity main effect

is (−0.56, −0.06) compared to the Bayesian interval (−0.27, −0.01). The Bayesian density estimates in

Figure 3 are also smoothed. Although the density estimates fit the data well, the estimated curves have

slightly less mass in the right tail than the residual histograms; this is the effect of Bayesian smoothing.

Section 4’s simulation study, especially Design 2’s right-skewed data, shows that this Bayesian smoothing

results in more stable estimates of the regression coefficients (Table 1).
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348 B. J. REICH AND OTHERS

Fig. 4. Posterior mean of the residual density h(ε) and the posterior distribution of the regression coefficients β j for

different hyperprior combinations.

Fig. 5. Posterior predictive model check of the marginal random effects model for the swallowing data with τ = 0.9.

The points are the withheld observations and the 3 lines are the median and 95% intervals of the predictive densities.

Figure 4 presents a sensitivity analysis. Our model with D = 1, c1 = 1 (roughly twice the sample

standard deviation of the response), and c2 = 100 was refit 5 times, each time modifying one of the

hyperparameters (given in the legend of Figure 4). With this large sample size of more than 1000 obser-

vations, both the density estimate and the posterior of the regression coefficient are robust to the choice of

hyperparameters.

Ignoring the within-subject correlation appears to be inappropriate for these data. The 95% interval for

the within-subject correlation under Section 3.2’s marginal model is (0.06, 0.26) with τ = 0.5 and (0.06,
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0.28) with τ = 0.9. Adding subject random effects influences several of the regression coefficients. The

marginal model identifies an additional significant predictor, viscosity for τ = 0.5. Also, the 95% interval

for the viscosity by feeding condition interaction not longer excludes zero under the marginal model.

For clustered data, within-subject correlation can reduce power for testing between-subject effects

(e.g. the intercept or the treatment effect in an experiment where a subject is either assigned to a treatment

or a control but not both) because the correlation reduces the effective sample size for each subject. How-

ever, intrasubject correlation can improve power for testing within-subject effects (e.g. feeding condition,

volume, and viscosity in this example) by reducing within-subject variability and isolating the covariate

effects. This is evident in the width of the intervals for the swallowing data; the intervals for the intercept

are larger for the marginal model than the independence model, but the majority of the intervals for the

other effects are smaller for the marginal model than the independence model. See Wang and Fygenson

(2009) for a similar discussion in a different setup.

Finally, we conduct a posterior predictive model check to demonstrate that the marginal random effects

model adequately fits the data. Ten percent of the observations are randomly selected to be removed from

the data set. For each withheld observation, we compute the posterior predictive median and 95% interval.

These predictive quantiles are plotted against the withheld data in Figure 5. The shape of the predictive

densities match the right skewness of the withheld data and coverage probabilities of the 95% intervals is

97%. It appears that our model is well calibrated.

6. DISCUSSION

This paper presents a new Bayesian quantile regression model. The residual distribution is modeled us-

ing a stick-breaking construction equipped with stochastic constraints to ensure that the desired quantile

relationship is satisfied almost surely. The simulation study demonstrates that this flexible approach im-

proves estimation compared to the usual frequentist procedure when the true residual distribution is non-

Laplacian. The Bayesian quantile regression model is extended to model-clustered data. We differentiate

between and develop conditional and marginal models and illustrate that accounting for within-subject

correlation in the swallowing data affects the posterior of the regression coefficients.

Section 3’s models for correlated data assume that the random effects follow independent normal

distributions. Although exploratory analysis suggests that this is adequate for the swallowing data, it is

possible to replace the normal prior with any parametric distribution or even a nonparametric model

with, for example a Dirichlet process prior for the random effects’ distribution. Also, it would be straight

forward to accommodate spatial or temporal correlation structures. For example, spatial correlation could

be introduced by modeling the vector of random effects with a Gaussian spatial prior or a nonparameteric

spatial prior (Gelfand and others, 2005; Griffin and Steel, 2006; Reich and Fuentes, 2007).
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APPENDIX A

A.1 Proof of the centering distribution

If σ1k = σ2k = 0, the constraint that 0 6 qk 6 1 implies that μ1k and μ2k have different signs. Without

loss of generality, assume μ1k < 0 < μ2k . Then (2.5) implies qk = τ . Let F1(u) = P(μ1k < u|μ1k < 0)

and F2(u) = P(μ2k < u|μ2k > 0). Then,

E(F(u)) = Ev Eμ

(

∞
∑

k=1

pk(τ I (μ1 < u) + (1 − τ)I (μ2 < u))

)

= Ev

(

∞
∑

k=1

pk(τ F1(u) + (1 − τ)F2(u))

)

= (τ F1(u) + (1 − τ)F2(u))

(

Ev

∞
∑

k=1

pk

)

= τ F1(u) + (1 − τ)F2(u),

where Ev and Eμ are expectations with respect to {Vk} and {μ1k, μ2k}, respectively. Therefore, E(F(u)) =

FASL(u|λ). To see this, let μ ∼ ASL(λ, τ). Then,

P(μ < u) = P(μ < 0)P(μ < u|μ < 0) + P(μ > 0)P(μ < u|μ > 0)

= τ F1(u) + (1 − τ)F2(u).

The calculation of V (F(u)) proceeds similarly.

APPENDIX B

A.2 MCMC details

MCMC sampling is carried out in R (R Development Core Team, 2006). We generate 25 000 samples

and discarded the first 5000 as burn-in. We describe below the algorithm for the independent data model

in Section 2. The regression parameters βββ, D, and λ have conjugate priors and are updated using Gibbs

sampling. The full conditional for βββ is multivariate normal with mean (X ′W X)−1 X ′Dr and covariance

(X ′W X)−1, where W is diagonal with diagonal elements 1/(xiγγγ σGi
)2 and ri = yi −xiγγγμGi

. The remain-

ing parameters are updated using Metropolis–Hastings sampling. Given N = max{G1, . . . , Gn}, we only

need to update (μ1k, μ2k, Vk, σ1k, σ2k) for k = 1, . . . , N . The remaining terms do not enter the posterior

except through their priors. μ1k , μ2k , Vk , σ1k , and σ2k are updated individually using Gaussian candidate

distributions. Candidates with zero probability are simply rejected. The standard deviation parameters are

also updated with Gaussian candidates. Candidates with xiγγγ < 0 for any i are rejected.

The group indicators Gi are also updated using Metropolis–Hastings sampling. Candidate Gi are

generated from the prior Gi ∼ Categorical(p1, p2, . . .). Following Papaspiliopoulos and Roberts (2008),

we generate the candidate by first drawing w ∼ Uniform(0,1). If w <
∑N

l=1 pl , we take min{G|w <
∑G

l=1 pl} as the candidate. If w >
∑N

k=1 pk , we increase N , drawing the corresponding μ1k ,μ2k , VN , σN

from their priors, until w <
∑N

l=1 pl and use the new N as the candidate for Gi .

Section 3’s models for clustered data add subject random effects, which are updated using Gibbs

sampling. We find convergence is dramatically improved by updating the fixed effects and random effects

jointly. Given the random effects, the MCMC algorithm above can be used for the remaining parameters.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

s
ta

tis
tic

s
/a

rtic
le

/1
1
/2

/3
3
7
/2

6
7
6
7
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



FBQR model 351

REFERENCES

FERGUSON, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics 1, 209–230.

FERGUSON, T. S. (1974). Prior distribution on spaces of probability measures. The Annals of Statistics 2, 615–629.

GELFAND, A. E., KOTTAS, A. AND MACEACHERN, S. N. (2005). Bayesian nonparametric spatial modeling with

Dirichlet process mixing. Journal of the American Statistical Association 100, 1021–1035.

GELMAN, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by

Browne and Draper). Bayesian Analysis 1, 515-534.

GERACI, M. AND BOTTAI, M. (2007). Quantile regression for longitudinal data using the asymmetric Laplace dis-

tribution. Biostatistics 8, 140-154.

GRIFFIN, J. E. AND STEEL, M. F. J. (2006). Order-based dependent Dirichlet processes. Journal of the American

Statistical Association 101, 179–194.

HANSON, T. AND JOHNSON, W. O. (2002). Modeling regression error with a mixture of Polya trees. Journal of the

American Statistical Association 97, 1020–1033.

HANSON, T., SETHURAMAN, J. AND XU, L. (2005). On choosing the centering distribution in Dirichlet process

mixture models. Statistics and Probability Letters 72, 153–162.

HE, X. (1997). Quantile curves without crossing. The American Statistician 51, 186–192.

HJORT, N. L. (2003). Topics in non-parametric Bayesian statistics. In: Green, P. J., Hjort, N. L. and Richardson, S.

(editors), Highly Structured Stochastic Systems. Oxford: Oxford University Press, pp. 455–487.

HJORT, N. L. AND PETRONE, S. (2007). Nonparametric quantile inference using Dirichlet processes. In: Nair, V.

(editor), Advances in Statistical Modeling and Inference: Essays in Honor of Kjell A. Doksum. London: World

Scientific Publishing Company, pp. 463–492.

HOFF, P. D. (2003). Nonparametric estimation of convex models via mixtures. Annals of Statistics 31, 174–200.

ISHWARAN, H. AND JAMES, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American

Statistical Association 96, 161–173.

JUNG, S. (1996). Quasi-likelihood for median regression models. Journal of the American Statistical Association 91,

251–257.

KOCHERGINSKY, M., HE, X. AND MU, Y. (2005). Practical confidence intervals for regression quantiles. Journal

of Computational and Graphical Statistics 14, 41–55.

KOENKER, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analysis 91, 74-89.

KOENKER, R. (2005). Quantile Regression. Cambridge, United Kingdom: Cambridge University Press.

KOTTAS, A. AND GELFAND, A. E. (2001). Bayesian semiparametric median regression modeling. Journal of the

American Statistical Association 96, 1458–1468.
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