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ABSTRACT. We propose a flexible class of skew-symmetric distributions for which the probab-

ility density function has the form of a product of a symmetric density and a skewing function. By

constructing an enumerable dense subset of skewing functions on a compact set, we are able to

consider a family of distributions, which can capture skewness, heavy tails and multimodality

systematically. We present three illustrative examples for the fibreglass data, the simulated data

from a mixture of two normal distributions and the Swiss bills data.
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1. Introduction

A popular approach to achieve departures from normality consists of modifying the prob-

ability density function (pdf) of a random vector in a multiplicative fashion. Wang et al. (2004)

showed that any p-dimensional multivariate pdf g(x) admits, for any fixed location parameter

n 2 Rp, a unique skew-symmetric (SS) representation:

gðxÞ ¼ 2f ðx� nÞpðx� nÞ; ð1Þ

where f : Rp fi R+ is a symmetric pdf and p : Rp fi [0, 1] is a skewing function satisfying

p(�x) ¼ 1 � p(x). Conversely, any function g of the type defined by (1) is a valid pdf. By

symmetric, we mean f(x) ¼ f(�x) and we will use ‘symmetric pdf’ and the property f(x) ¼ f(�x)

interchangeably in the sequel. Throughout this paper, we restrict our interest on functions

f 2 C0(R
p) and continuous skewing functions p(x), where C0(R

p) denotes continuous functions

on Rp with the property f(x) fi 0 when kxk2 fi 1, and kÆk2 denotes the L2 norm. Genton &

Loperfido (2002) considered the subfamily of generalized skew-elliptical (GSE) distributions for

which the pdf f in (1) is elliptically contoured rather than only symmetric. Many definitions of

skewed distributions found in the literature can be written in the form of an SS distribution (1).

For instance,Azzalini&DallaValle’s (1996)multivariate skew-normal distribution corresponds

to f(x) ¼ /p(x; 0, X) and p(x) ¼ U(aTx), where /p(x; l, X) is the p-dimensional multivariate

normal pdf with mean vector l and correlation matrix X, U is the standard normal cumulative

distribution function (cdf), and a is a shape parameter controlling skewness. Similarly,

multivariate distributions such as skew-t (Branco & Dey, 2001; Azzalini & Capitanio, 2003;

Jones & Faddy, 2003; Sahu et al., 2003), skew-Cauchy (Arnold & Beaver, 2000) and other skew-

elliptical ones (Azzalini & Capitanio, 1999; Branco & Dey, 2001; Sahu et al., 2003) can be

represented by the SS distribution (1) with appropriate choices of f and p.
In this article, we propose a flexible class of distributions (1) by constructing an enumerable

dense subset of the skewing functions p on a compact set. The result is a family of distributions

which can systematically capture skewness, heavy tails and multimodality. The construction of

the subset is through polynomials, which has a similar flavour as the semi-non-parametric

(SNP) representation proposed by Gallant & Nychka (1987). The latter is defined as the

product of the standard normal pdf and the square of a polynomial. The SNP distribution

requires the coefficients in the polynomial to be constrained in order to yield a valid density. It
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also relies on rejection sampling schemes to simulate random samples. These difficulties do not

occur with our construction.

The paper is organized as follows. In section 2, we describe a subset of skewing functions

based on odd polynomials and prove that it results in a dense subset of the SS distributions. In

particular, we define flexible skew-normal and skew-t distributions that can have more than

one mode. This is an essential property for some situations and provides an alternative to

modelling with mixtures of distributions. The flexibility and possible multimodality of the new

class of distributions is illustrated in section 3. We present three illustrative examples in section

4, and a discussion in section 5.

2. A dense subset of skew-symmetric distributions

In this section, we construct a dense subset of SS distributions through approximating the

skewing function p on a compact set. Any continuous skewing function p can be written as:

pðxÞ ¼ HðwðxÞÞ; ð2Þ

where H : R fi [0, 1] is the cdf of a continuous random variable symmetric around 0, and

w : Rp fi R is an odd continuous function, that is w(�x) ¼ �w(x). In fact, for a chosenH such

that H�1 exists, w(x) ¼ H�1(p(x)) is a continuous odd function. This representation has been

used byAzzalini &Capitanio (2003) to define certain distributions by perturbation of symmetry.

Note, however, that the representation (2) is not unique due to the many possible choices ofH.

Let PK(x) be an odd polynomial of order K. A polynomial of order K in Rp is defined as a

linear combination of terms of the form
Qp

i¼1 x
ri
i , where k ¼

Pp
i¼1 ri � K. If each term has an

odd order (all ks are odd), then the polynomial is called an odd polynomial, whereas if each

term has an even order (all ks are even), it is called an even polynomial. We define flexible

skew-symmetric (FSS) distributions by restricting (1) to:

2f ðx� nÞpKðx� nÞ; ð3Þ

where pK(x) ¼ H(PK(x)) and H is any cdf of a continuous random variable symmetric around

0. Note that there are no constraints on the coefficients of the polynomial PK in order to make

(3) a valid pdf. In particular, (3) defines flexible generalized skew-elliptical (FGSE)

distributions when the pdf f is elliptically contoured. For instance, flexible generalized skew-

normal (FGSN) distributions are defined by:

2/pðx; n;XÞUðPKðAðx� nÞÞÞ; ð4Þ

and flexible generalized skew-t (FGST) distributions are defined by:

2tpðx; n;X; mÞT ðPKðAðx� nÞÞ; mÞ; ð5Þ

where we use the Choleski decomposition X�1 ¼ ATA, tp denotes a p-dimensional multivariate

t pdf, and T denotes a univariate t cdf, both with degrees of freedom m. Note that we could use

U, or any other symmetric cdf, instead of T for the skewing function in (5). In practice, a

popular choice for the cdf H would be U or the univariate cdf corresponding to the symmetric

pdf f. Effectively, the following proposition shows that FSS distributions can approximate SS

distributions arbitrarily well.

Proposition 1

Let the class of FSS distributions consist of distributions with pdf given in (3) and the class of SS

distributions of distributions with pdf given in (1), where f 2 C0(R
p) in both classes and p is

continuous. Then the class of FSS distributions is dense in the class of SS distributions under the

L1 norm.
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Proof. An arbitrary distribution in the SS class can be written as 2f(x � n)H(w(x � n)),

where f and H are continuous, H�1 exists, and w is a continuous odd function. Because

f 2 C0(R
p), for any arbitrary �>0, we can find a compact set D which is symmetric around n

(if x � n 2 D then n � x 2 D), such that for any x � n j2 D, f(x � n) < �/4. Thus, for any

x � n j2 D, |2f(x � n)p(x � n) � 2f(x � n)H(P(x � n))| < � for any odd polynomial P.

As f is continuous, f is bounded on D. We denote the bound by C, i.e. f(x � n) £ C for

any x� n 2 D. We use D1 to denote the image space of w, i.e. D1 ¼ {w(x)|x 2 D}.

Because of the continuity of w, which is a result of the continuity of both H and p, D1 is

also compact. The continuous function H is uniformly continuous on the compact set D1.

Hence there exists g > 0 such that for any y1, y2 2 D1 and |y1� y2| < g, we get

|H(y1)�H(y2)| < �/(2C). From the Stone–Weierstrass theorem (see e.g. Rudin, 1973,

p. 115), there exists a polynomial P such that |w(x� n)�P(x� n)| < g for any x� n 2 D.

We decompose P into an even term Pe and an odd term Po, i.e. P ¼ Pe + Po.

Then |w(x� n)�Pe(x� n)�Po(x� n)| < g and |w(n� x)�Pe(n� x)�Po(n� x)| < g. Be-

cause w and Po are odd, and Pe is even, we get |�w(x� n)�Pe(x� n) + Po(x� n)| < g.
Notice that 2|w(x� n)�Po(x� n)| £ |w(x � n)�Pe(x� n)�Po(x� n)| + |�w(x� n) �
Pe(x� n) + Po(x� n)| < 2g, so |w(x� n)�Po(x� n)| < g. Combining these results, we

know that for an arbitrary member 2f(x� n)H(w(x� n)) in SS and an arbitrary �>0, we can

find a member 2f(x� n)H(Po(x� n)) in FSS such that |2f(x� n) H(w (x� n)) �
2f(x� n)H(Po(x� n))| < � for any x� n 2 D.

Hence FSS is dense in SS with respect to the L1 norm.

Remark 1. The requirement f 2 C0(R
p) in Proposition 1 can be relaxed to allow that f has a

finite number, m say, of poles. In this case, FSS is dense in SS with respect to almost uniform

convergence (uniform in a set whose complement is of measure arbitrarily small). Indeed, let

Rp(r) denote Rp minus the union of m open balls of radius r centred at the m poles. Then FSS is

dense in SS on Rp(r) under the L1 norm. Letting r fi 0, the result follows.

Proposition 1 shows in particular that the class of GSE, skew-t, and skew-normal distri-

butions can be approximated arbitrarily well by their flexible versions.

3. Flexibility and multimodality

In Fig. 1, we illustrate the shape flexibility of the FGSN distribution in the univariate case. Its

pdf for K ¼ 3 is defined by:

2/1ðx; n; r2ÞUðaðx� nÞ=r þ bðx� nÞ3=r3Þ: ð6Þ

Figure 1(a) depicts the pdf of the FGSN model for n ¼ 0, r2 ¼ 1, a ¼ 4, and b ¼ 0, i.e. it

reduces to Azzalini’s (1985) univariate skew-normal distribution. However, when b „ 0, the

pdf (6) can exhibit bimodality as shown in Fig. 1(b) with a ¼ 1, and b ¼ �1. In general, as the

degree K of the odd polynomial in the skewing function becomes large, the number of modes

allowed in the pdf increases, thus inducing a greater flexibility in the available shapes.

Unfortunately, the number of modes depends on the degree K of the odd polynomial, on the

symmetric pdf f, and on the cdf H of the skewing function pK in a complex fashion. Indeed,

even for the univariate situation given by p ¼ 1, the modes are determined by zeros of the first

derivative of the FSS distribution (3) given by:
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2f 0ðxÞHðPKðxÞÞ þ 2f ðxÞH 0ðPKðxÞÞP 0
KðxÞ; ð7Þ

for which the number of zeros cannot be easily computed. Even with restrictions to some

specific f and H functions, a general statement on the relation between the number of modes

and the order of the polynomial seems unavailable. However, in the univariate case, if we

consider a normal pdf f ¼ /1 and a standard normal cdf H ¼ U with an odd polynomial of

order K ¼ 3, we have the following proposition.

Proposition 2

The class of FGSN distributions with pdf 2/1(x;n,r
2)U(a(x � n)/r + b(x � n)3/r3) has at most

two modes.

Proof. Without loss of generality, we can set n ¼ 0, r ¼ 1, assume b > 0, and only need to

prove that w(x) ¼ 2/(x)U(ax + bx3) has at most two modes. We prove this by contradiction.

If w(x) has more than two modes, then w¢(x) has at least five zeros. In the following proof, we

show that this cannot be the case. We have w¢(x) ¼ 2/(x)((a + 3bx2)/(ax + bx3) �
xU(ax + bx3)) and need to consider three cases:

Case 1 (a ¼ 0). We write w¢(x) ¼ 2x/(x)g(x), where g(x) ¼ 3bx/(bx3) � U(bx3). We can

verify that g¢(x) ¼ 3b/(bx3)g1(y), where y ¼ x2 and g1(y) ¼ 1 � y � 3b2y3. As g1(y) is a

decreasing function on y ‡ 0, g¢(x) has at most two zeros. Thus, g(x) has at most three zeros,

hence w¢(x) has at most four zeros.

Case 2 (a > 0). Notice that w¢(x)>0 for x £ 0. For c1(x) ¼ w¢(x)/(2x/(x)) ¼
/(ax + bx3)(a + 3bx2)/x � U(ax + bx3), we get c01ðxÞ ¼ /ðax þ bx3Þ=ð�9bx2Þc2ðyÞ, where
y ¼ a + 3bx2 > 0 and c2(y) ¼ y4 + ay3 + (3 � 2a2)y2 � (3a + 9b)y + 18ab. As c002ðyÞ ¼
12y2 þ 6ay þ ð6 � 4a2Þ has at most one positive zero, and c02ðyÞ ¼ 4y3 þ 3ay2 þ
ð6 � 4a2Þy � ð3a þ 9bÞ < 0 at y ¼ 0, we know that c02ðyÞ has at most one positive zero. Thus

c2(y) has at most two positive zeros. This means c01ðxÞ has at most two positive zeros, so w¢(x)
has at most three positive zeros.

Case 3 (a < 0). Notice that w¢(x) < 0 for x 2 ½0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a=ð3bÞ

p
� and w¢(x) > 0 for

x 2 ð�1;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a=ð3bÞ

p
�. So we look only for solutions x 2 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a=ð3bÞ

p
;1Þ and x 2

ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a=ð3bÞ

p
; 0Þ. Let y ¼ a + 3bx2, then there is a one-to-one mapping between the x in the

above range and y 2 (a, 1). Let c1(x) and c2(y) have the same expressions as in case 2. We
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Fig. 1. Two members of the univariate FGSN family of distributions with K ¼ 3, n ¼ 0, r2 ¼ 1:

(a) a ¼ 4, b ¼ 0 (skew-normal); (b) a ¼ 1, b ¼ �1.
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have that c2(y) has at most four zeros as it is a fourth-order polynomial. Notice that

c2(a) < 0, c2(�1) > 0, so c2(y) has at most three zeros in (a,1). This means c01ðxÞ has at

most three zeros, hence w¢(x) has at most four zeros.

Figure 1 illustrates the result of proposition 2 by depicting a unimodal and a bimodal pdf

from the univariate FGSN with K ¼ 3. For K ¼ 1, the pdf is always unimodal as was already

noted by Azzalini (1985) for the univariate skew-normal distribution.

Next we investigate the flexibility of the FGSN distribution in the bivariate case. Its pdf for

K ¼ 3, n ¼ 0, and X ¼ I2 is given by:

2/2ðx1; x2; 0; I2ÞUða1x1 þ a2x2 þ b1x
3
1 þ b2x

3
2 þ b3x

2
1x2 þ b4x1x

2
2Þ: ð8Þ

Figure 2 depicts the contours of four different pdfs (8) for various combinations of values of

the skewness parameters a1, a2, b1, b2, b3 and b4. In particular, for b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0, the

pdf is exactly the bivariate skew-normal proposed by Azzalini & Dalla Valle (1996), and

known to be unimodal (see Fig. 2a). However, Figs 2(b–d) show that many different distri-

butional shapes can be obtained with the parameters b1, . . . , b4, in particular bimodal and

trimodal distributions. Additional flexibility can be imposed on the tail behaviour by choosing

pdfs other than the normal for the symmetric pdf f, for example, a t distribution. This yields

FGST distributions and will prove useful for applications as they can allow for both fat tails

and skewness (see section 4, example 1).

Finally, note that the stochastic representation of FSSdistributions follows from the stochastic

representation of SS distributions described byWang et al. (2004), see also Azzalini & Capitanio

(2003). It provides a quick way to generate pseudo-realizations from the FSS distribution (3).

4. Model fitting and examples

In this section, we present three applications of FGSE distributions. We carry out the esti-

mation and model fitting by maximizing the likelihood function corresponding to (3) for a

given order K. Unlike SNP distributions, there are no constraints on the parameters of the

skewing function pK and standard optimization techniques are used. To avoid local maxima,

we carry out the optimization routine with several different starting values that are widely

scattered in the feasible region. The order K is chosen adaptively via model selection strategies.

Because for a given symmetric pdf f and skewing function pK the models induced by (3) are

nested when K decreases, likelihood ratio tests (LRT) can be used to identify an appropriate

value of K. Model selection criteria such as AIC (twice the log-likelihood minus twice the

number of parameters) and BIC (twice the log-likelihood minus the number of parameters

times the logarithm of the sample size) can be used as well. In practice, K ¼ 3 seems to provide

enough flexibility to model unimodal and bimodal pdfs.

4.1. Example 1: fibreglass data

This example is concerned with a unidimensional data set of breaking strengths values of

1.5 cm long glass fibres. Jones & Faddy (2003) and Azzalini & Capitanio (2003) fit two forms

of skew-t distributions to these data. They both noted skewness on the left as well as heavy tail

behaviour.

We fit an FGST distribution (5) with pdf:

2t1ðx; n; r2; mÞT ðPKððx� nÞ=rÞ; mÞ; ð9Þ

for K ¼ 1 and K ¼ 3. The fitted parameters, obtained by maximizing the corresponding

likelihood function, are listed in Table 1.
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Note the small values for m̂, indicating tails much heavier than the normal distribution. The

fitted pdfs are depicted in Fig. 3 for K ¼ 1 (solid line) and K ¼ 3 (dotted line), along with a

histogram of the fibreglass data.

There appear not to be too much difference between the two models. We use an LRT for the

null hypothesis H0 : b ¼ 0 with the approximate asymptotic distribution v21 and use the AIC,

BIC criteria for model selection. The results are tabulated in Table 1. All three methods favour

the FGST model with K ¼ 1, which does not allow for bimodality.

4.2. Example 2: mixture of normals

This example illustrates that FSS distributions can be used as an alternative to mixtures of

distributions in situations where multimodality is desirable. We consider a simulated data set

of size 100 from a mixture of two bivariate normal distributions:
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Fig. 2. Four members of the bivariate FGSN family of distributions with K ¼ 3, n ¼ 0 and X ¼ I2: (a)

a1 ¼ 2, a2 ¼ 3, b1 ¼ 0, b2 ¼ 0, b3 ¼ 0 , b4 ¼ 0 (skew-normal; unimodal); (b) a1 ¼ 0, a2 ¼ 2, b1 ¼ 0,

b2 ¼ �1, b3 ¼ 0 , b4 ¼ 1 (bimodal); (c) a1 ¼ 1, a2 ¼ 1, b1 ¼ �2, b2 ¼ �2, b3 ¼ �1 , b4 ¼ �1 (bimodal);

(d) a1 ¼ 1, a2 ¼ 0, b1 ¼ �1, b2 ¼ 2, b3 ¼ �4 , b4 ¼ �1 (trimodal).

Table 1. Fitted values of the univariate FGST model for K ¼ 1 and K ¼ 3 for the fibreglass data, as well as

model selection criteria

n̂ r̂ â b̂ m̂ LRT (p-value) AIC BIC

K ¼ 1 1.67 5.14 �0.60 – 2.05 – �31.9 �40.4

K ¼ 3 1.60 5.43 0.07 �0.04 2.11 0.42 �33.2 �43.9
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ð1� eÞN2ðl1;R1Þ þ eN2ðl2;R2Þ; ð10Þ

with e ¼ 0.4, l1 ¼ (0,0)T, l2 ¼ (5,4)T and

R1 ¼
2 1
1 4

� �
;R2 ¼

3 2
2 6

� �
: ð11Þ

Figure 4(a) depicts the 100 simulated data along with the bivariate contours of the pdf cor-

responding to (10), which shows bimodality.

We fit a bivariate FGSN distribution (4) with K ¼ 1 and K ¼ 3. The parameters, estimated

by maximizing the corresponding likelihood function, are listed in Table 2.

The contours of the fitted bivariate pdfs are depicted in Fig. 4(b) for K ¼ 1 and in

Fig. 4(c) for K ¼ 3. The case K ¼ 1 corresponds to Azzalini & Dalla Valle’s (1996)

bivariate skew-normal distribution, which cannot capture the bimodality. The fit with

K ¼ 3 captures the bimodality and adapts closely to the shape of the simulated data. We

test the model with the LRT and AIC, BIC criteria, and find that all three select the model

with K ¼ 3. We further fit a model with K ¼ 5 and find that the LRT and AIC score

indicate that K ¼ 5 is a better fit for the data, while BIC suggests that K ¼ 5 imposes too

much model complexity for the gain. We decide to adopt a more complex model only when

all three methods indicate so, hence we keep K ¼ 3 as our final model. The results of the

model selection are tabulated in Table 3.

4.3. Example 3: old Swiss 1000 franc bills data

This example consists of measurements on 100 genuine and 100 forged old Swiss 1000 franc

bills analysed by Flury & Riedwyl (1988). We consider two variables: the distance X1 from the

inner frame to the lower border, and the length X2 of the diagonal of the bills.

Figure 5 depicts scatter plots of (X1, X2) along with fitted FGSN pdfs for various orders of

the polynomial PK in the skewing function. Panel (a) represents a fit with K ¼ 1 which

corresponds to Azzalini & Dalla Valle’s (1996) bivariate skew-normal pdf and implies

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

2.5

Fig. 3. Histogram of the fibreglass data and fitted pdfs of the FGST model with K ¼ 1 (solid line) and

K ¼ 3 (dotted line) by maximum likelihood.
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unimodality. Therefore, this fit cannot capture the difference between the genuine and forged

bills. Panel (b) represents a fit with K ¼ 3 which takes into account the bimodality arising

from the two types of bills. A fit with K ¼ 5 is presented in panel (c). It shows a complex

distributional pattern in the data and detects a third mode. Although this additional mode

appears to be located over a hole of the scatter plot, it suggests a possible third group near that

region. This pattern has also been discovered by various non-parametric kernel density esti-

mators, see Simonoff (1996, pp. 111–114). LRT and AIC favour the model with K ¼ 5 while

BIC favours K ¼ 3. We keep the model with K ¼ 3 in panel (b), that is the bimodal pdf which

detects the two groups of genuine and forged Swiss bills.

Table 3. Model selection criteria for K ¼ 1, 3, 5 for the simulated mixture data

LRT (p-value) AIC BIC

K ¼ 1 – �898.7 �916.9

K ¼ 3 0.0009 �888.0 �916.7

K ¼ 5 0.0085 �882.8 �927.0
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Fig. 5. Contours of the bivariate FGSN pdf fitted by maximum likelihood for the Swiss bills data.

(a) K ¼ 1; (b) K ¼ 3; (c) K ¼ 5.
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Fig. 4. Simulated data set of size 100 from a mixture of two normal distributions, with contours of the

corresponding bivariate pdf in panel (a). Contours of the bivariate fitted pdf from the FGSN model with

K ¼ 1 in panel (b) and with K ¼ 3 in panel (c).

Table 2. Fitted values of the bivariate FGSN model for K ¼ 1 and K ¼ 3 for the simulated mixture data

n̂1 n̂2 â11 â12 â22 â1 â2 b̂1 b̂2 b̂3 b̂4

K ¼ 1 �1.64 �1.93 0.36 �0.29 0.28 2.42 6.84 – – – –

K ¼ 3 1.72 2.08 0.42 �0.26 0.27 �0.78 �1.60 0.21 0.40 0.31 0.56
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5. Discussion

We have investigated FSS distributions, a flexible class that can take skewness, heavy tails and

multimodality, into account. It is based on an approximation of the skewing function by a

univariate symmetric cdf evaluated at odd polynomials. Using the Stone–Weierstrass theorem,

we have proved that this approximation can be made arbitrarily accurate by increasing the

order of the odd polynomial. However, the number of coefficients of the polynomial increases

quickly with its order K, especially when the dimension p of the distribution is also large. In

this case, Monte Carlo Markov chain methods might be more appropriate than direct like-

lihood maximization. In light of the examples in section 4, it seems that K ¼ 3 is sufficient for

unimodal and bimodal practical applications.

The choice of the symmetric pdf f is of practical importance. Although it has been shown

that any multivariate pdf g can be represented by an SS distribution, a parametric form for

the pdf f needs to be specified for our applications. It turns out that the normal and the t

pdfs are the most natural ones, yielding the flexible models FGSN and FGST. The latter

model is particularly well suited to capture heavy tails, possibly Cauchy-like, in addition to

skewness and multimodality. More sophisticated symmetric pdfs f could be used as well, e.g.

such as the slash distribution. The choice of the cdf H has theoretically no impact, but in

practice it can influence the order K of the polynomial PK. For applications, H should be

chosen to facilitate computations. A natural choice is H ¼ U or the cdf corresponding to the

symmetric pdf f.
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