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Abstract

Visuomotor rotation tasks have proven to be a powerful tool to study adaptation of the motor system. While adaptation in
such tasks is seemingly automatic and incremental, participants may gain knowledge of the perturbation and invoke a
compensatory strategy. When provided with an explicit strategy to counteract a rotation, participants are initially very
accurate, even without on-line feedback. Surprisingly, with further testing, the angle of their reaching movements drifts in
the direction of the strategy, producing an increase in endpoint errors. This drift is attributed to the gradual adaptation of
an internal model that operates independently from the strategy, even at the cost of task accuracy. Here we identify
constraints that influence this process, allowing us to explore models of the interaction between strategic and implicit
changes during visuomotor adaptation. When the adaptation phase was extended, participants eventually modified their
strategy to offset the rise in endpoint errors. Moreover, when we removed visual markers that provided external landmarks
to support a strategy, the degree of drift was sharply attenuated. These effects are accounted for by a setpoint state-space
model in which a strategy is flexibly adjusted to offset performance errors arising from the implicit adaptation of an internal
model. More generally, these results suggest that strategic processes may operate in many studies of visuomotor
adaptation, with participants arriving at a synergy between a strategic plan and the effects of sensorimotor adaptation.
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Introduction

When learning a new motor skill, verbal instruction often proves

useful to hasten the learning process. For example, a new driver is

instructed on the sequence of steps required to change gears when

using a standard transmission. As the skill becomes consolidated,

the driver no longer requires explicit reference to these

instructions. Operating a vehicle with a stiffer or looser clutch

does not generally require further instruction, but rather entails a

subtle recalibration, or adaptation of the previously learned skill.

Indeed, the use of an explicit strategy may even lead to

degradation in the expert’s performance. Consideration of these

contradictory issues brings into question the role of instructions or

explicit strategies in sensorimotor learning.

The type of motor task and nature of the instruction can have

varying effects on motor execution and learning [1–3]. In the serial

reaction time task (SRT), participants produce a sequence of cued

button presses. If the participant is informed of the underlying

sequence, learning occurs much more rapidly compared to when

sequential learning arises from repeated performance [4].

However, learning in the SRT task entails the linkage of a series

of discrete actions. Explicit instructions of the sequence structure

may be viewed as a way to create a working memory

representation of the series. Many skills lack such a clear elemental

partition and, as such, participants cannot easily verbalize what a

successful movement entails. For example, the pattern of forces

required to move the hand in a straight line in a novel force field

[5–7] would be hard to verbalize.

Various studies have examined the role of explicit strategies in

tasks involving sensorimotor adaptation [8–11]. The benefits of an

explicit strategy may be illusory with adaptive processes arising

from automatic and incremental updating of a motor system that

is impenetrable to conscious intervention [12–16]. However,

performance measures indicate that adaptation may differ

between conditions in which participants are either aware or

unaware of the changes in the environment [17]. For example, a

large visuomotor rotation can be introduced abruptly, in which

case, awareness is likely, or introduced incrementally such that

participants are unaware of the rotation. The abrupt onset of large

unexpected errors may promote the use of cognitive strategies

[18–20]. Participants who gain explicit knowledge of an imposed

visuomotor rotation show better performance during learning than

participants who report little or no awareness of the rotation [10].

Moreover, the rate of learning, at least in the early phase of

adaptation, correlates positively with spatial working memory span

[21], suggesting that strategic compensation may be dependent on

working memory capacity. Studies of sensorimotor adaptation

during aging also indicate that the rate of learning is slower in

older adults compared to young adults, despite similar aftereffects

[22–24]. This cost is absent in older adults who report awareness

of the rotation [25].

In many of the studies cited above, the assumption has been that

the development of awareness can lead to the utilization of

compensatory strategies. However, few studies have directly

sought to manipulate strategic control during sensorimotor

adaptation. One striking exception is a study by Mazzoni and
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Krakauer [9]. Participants viewed a display of eight small circles,

or visual landmarks, that were evenly spaced by 45u to form a

large, implicit ring. The target location was specified by presenting

a bullseye within one of the eight circles. After an initial training

phase in which the visuomotor mapping was unaltered, a 45u
rotation in the counterclockwise direction (CCW) was introduced.

In the standard condition in which no instructions were provided,

participants gradually reduced endpoint error by altering their

movement heading in the clockwise direction (CW). In the strategy

condition, participants were given explicit instructions to move to

the circle located 45u clockwise to the target. This strategy enabled

these participants to immediately eliminate all error. However, as

training continued, the participants progressively increased their

movement heading in the clockwise direction. As such, the

endpoint location of the feedback cursor drifted further from the

actual target location and, thus, performance showed an increase

in error over training, a rather counterintuitive result [26].

Mazzoni and Krakauer [9] proposed that this drift arises from

the implicit adaptation of an internal forward model. Importantly,

the error signal for this learning process is not based on difference

between the observed visual feedback and target location. Rather,

it is based on the difference between the observed visual feedback

and strategic aiming location. Even though participants aim to a

clockwise location of the target (as instructed), the motor system

experiences a mismatch between the predicted state and the visual

feedback. This mismatch defines an error signal that is used to

recalibrate the internal model. Reducing the mismatch results in

an adjustment of the internal model such that the next movement

will be even further in the clockwise direction. Thus, the operation

of an implicit learning process that is impervious to the strategy

produces the paradoxical deterioration in performance over time.

In the present paper, we start by asking how this hypothesis

could be formalized in a computational model of motor learning.

State space modeling techniques have successfully described

adaptation and generalization during motor learning [27–29].

These models focus on how learning mechanisms minimize error

from trial to trial. Variants of these models postulate multiple

learning mechanisms that operate at different time scales [28].

Within this framework, strategic factors might be associated with

fast learning processes that rapidly reduce error. However, such

models are unable to account for the drift that arises following the

deployment of a strategy. To address these issues, we developed a

series of setpoint state-space models of adaptation to quantitatively

explore how strategic control and implicit adaptation interact.

Assuming a fixed strategy, adaptation should continue to occur

until the error signal, the difference between the feedback location

and the aiming location is zero; that is, the visual feedback matches

the intended aim of the reach. As such, drift arising from implicit

adaptation should continue to rise until it offsets the adopted

strategy. To test this prediction, we increased the length of the

adaptation phase. Moreover, we manipulated the salience of the

visual landmarks used to support the strategy. We hypothesized

that these landmarks served as a proxy for the aiming location. If

this assumption is correct, then elimination of the visual landmarks

should weaken the error signal, given uncertainty concerning the

aiming location, and drift should be attenuated. We test this

prediction by comparing performance with and without visual

landmarks.

Results

Current models of sensorimotor adaptation have not addressed

the effect of explicit strategies. Therefore, we started with the

standard state-space model (Eq 1 and 2), and incrementally

modified it to accommodate the use of an explicit strategy. The

standard model for target error is given as:

etarget
n ~ rn{rest

n

� �
ð1Þ

rest
nz1~Arest

n zBetarget
n ð2Þ

where etarget
n is the target endpoint error on movement n, rnis the

rotation, rest
n is the internal model’s estimation of the rotation, A is a

memory term, and B represents either a learning rate or sensitivity

to error [27–30]. As expected, this model gradually learns to

compensate for a visuomotor rotation (Figure 1A – black line;

simulated with A = 1 and B = 0.02).

Modeling strategy use during visuomotor adaptation
When informed of an appropriate strategy that will compensate

for the rotation, participants immediately counteract the rotation

and show on-target accuracy. The standard model as formulated

above does not provide a mechanism to implement an explicit

strategy. To allow immediate implementation of the strategy, we

postulate that there is direct feedthrough of the strategy (s) to the

target error equation (equation 1):

etarget
n ~ snz rn{rest

n

� �� �actual ð3Þ

Direct feedthrough allows the strategy to contribute to the target

error equation without directly influencing the updating of the

internal model. If the strategy operated through the internal

model, then the impact of the strategy would take time to evolve,

assuming there is substantial memory of the internal model’s

estimation of the rotation (i.e., A has a high value in Eq. 2). With

direct feedthrough, the implementation of an appropriate strategy

can immediately compensate for the rotation. In the current

arrangement, the appropriate strategy is fixed at 45u in the CW

direction from the cued target.

Author Summary

Motor learning has been modeled as an implicit process in
which an error, signaling the difference between the
predicted and actual outcome is used to modify a model
of the actor-environment interaction. This process is
assumed to operate automatically and implicitly. However,
people can employ cognitive strategies to improve
performance. It has recently been shown that when
implicit and explicit processes are put in opposition, the
operation of motor learning mechanisms will offset the
advantages conferred by a strategy and eventually,
performance deteriorates. We present a computational
model of the interplay of these processes. A key insight of
the model is that implicit and explicit learning mechanisms
operate on different error signals. Consistent with previous
models of sensorimotor adaptation, implicit learning is
driven by an error reflecting the difference between the
predicted and actual feedback for that movement. In
contrast, explicit learning is driven by an error based on
the difference between the feedback and target location
of the movement, a signal that directly reflects task
performance. Empirically, we demonstrate constraints on
these two error signals. Taken together, the modeling and
empirical results suggest that the benefits of a cognitive
strategy may lie hidden in many motor learning tasks.

Flexible Strategies during Motor Learning
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Once the strategy is implemented, performance should remain

stable since the error term is small. Indeed, a model based on Eq. 3

immediately compensates for the rotation. The target error, the

difference between the feedback location and target location, is

essentially zero on the first trial with the strategy, and remains so

throughout the rotation block (Figure 1B – green line). However,

this model fails to match the empirical results observed by

Mazzoni and Krakauer [9]: performance drifts over time with an

increase in errors in the direction of the strategy. This

phenomenon led the authors to suggest that the prediction error

signal to the internal model is not based on target error. Instead,

the error signal should be defined by the difference between the

feedback location and aiming location (see Figure 2E):

eaiming
n ~Feedback-Aiming Location

~ snz rn{rest
n

� �� �actual
{ sn½ �desired

ð4Þ

The formulation of the prediction error term in Eq. 4 is akin to

a setpoint or reference signal from engineering control theory [30].

In typical motor learning studies, the setpoint is to reach to the

target. When there is no strategy (s = 0), the target error in Eq. 1 is

the same as the error term in Eq. 4. However, when a strategy

with direct feedthrough is used (s?0), the strategy terms may

cancel out if the actual implemented strategy is similar to the

desired strategy. The input error to update the internal model’s

estimate of the rotation becomes:

eaiming
n ~ snz rn{rest

n

� �� �actual
{sactual

n

~ rn{rest
n

� �actual
z(sactual

n {sdesired
n )

ð5Þ

This model shows immediate compensation for the visuomotor

rotation, and more importantly, produces a gradual deterioration in

performance over the course of continued training with the reaching

error drifting in the direction of the strategy (Figure 1A – red line),

consistent with the results reported by Mazzoni and Krakauer [9].

It is important to emphasize that the error signal for

sensorimotor recalibration in Eq. 4 is not based on the difference

between the feedback location and target location (target error).

Rather, the error signal is defined by the difference between the

feedback location and aiming location, or what we will refer to as

aiming error. When a fixed strategy is adopted throughout training

(Figure 1B – blue line), the aiming error is (initially) quite large

given that the predicted hand location is far from the location of

visual feedback, even though the feedback cursor may be close to

the actual target. In its simplest form, the setpoint model predicts

that, as the internal model minimizes this error (Figure 1B – red

line), drift will continue until the observed feedback of the hand

matches the aiming location. That is, the magnitude of the drift

should equal the size of the strategic adjustment. In the Mazzoni

and Krakauer set-up [9], the drift would eventually reach 45u in

the CW direction (Figure 1A – red line).

A second prediction can be derived by considering that the

error signal in Eq. 4 relies on an accurate estimate of the strategic

aiming location. We assume that a visual landmark in the display

can be used as a reference point for strategy implementation (e.g.,

the blue circle adjacent to the target). This landmark can serve as a

proxy for the aiming location. The salience of this landmark

provides an accurate estimate of the aiming location and, from Eq.

4, drift should be pronounced. However, if these landmarks are

not available, then the estimate of the aiming location will be less

certain. Previous studies have shown that adaptation is attenuated

when sensory feedback is noisy [31,32]. One approach for

modeling the effect of changing the availability or certainty of

the (strategy defined) aiming location would be to vary the

adaptation rate (B). For example, B could be smaller if there is a

decrease in certainty of the aiming location, and correspondingly,

a decrease in the certainty of the aiming error. This model predicts

that the rate of drift is directly related to B: if B is lower due to

decreased certainty of the aiming location, then the rate of drift

will be attenuated (Figure 1A – cyan line).

To evaluate the predictions of this setpoint model, participants

were tested in an extended visuomotor rotation task in which we

varied the visual displays used to define the target and strategic

landmarks (see methods). The target was defined as a green circle,

Figure 1. Setpoint model simulation. A 245u rotation was introduced on movement 121 and remained present for the next 322 trials. A)
Simulated target error for four state space models. Black: Standard state-space model (A = 1, B = 0.02); Green: Setpoint model in which the target error
is used to adapt the internal model; Red: Setpoint model with direct-feedthrough in which the aiming error is used to adapt the internal model. Drift
is attenuated by either reduced adaptation rate (Cyan: A = 1, B = 0.01) or reducing the availability of the aiming error signal that selectively operates
on the strategy (Magneta: K = 0.5). B) Internal model estimation of rotation when a fixed strategy (blue) is combined with either high (red, K = 1) or
low (magenta, K = 0.5) certainty of aiming errors. C) Effect of a variable strategy on target error. The strategy was simulated with a low (blue; E = 1 and
F = 0.01) or high (orange; F = 0.05) weighting of the target error.
doi:10.1371/journal.pcbi.1001096.g001
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appearing at one of eight possible locations, separated by 45u
(Figure 2, only three shown here). By encouraging the participants

to make movements that ‘‘sliced’’ through the target, and only

providing feedback at the point of intersection with the virtual

target ring, we were able to train the participants to move quickly

with relatively low trial-to-trial variability. We assume that

participants mostly relied on feedforward control given the

ballistic nature of the movements and absence of continuous

online feedback.

Participants were assigned to one of three experimental groups

(n = 10 per group), with the groups defined by our manipulation of

the blue landmarks in the visual displays. For the aiming-target

group (AT), the blue circles were always visible, similar to the

method used by Mazzoni and Krakauer. For the disappearing

aiming-target group (AT), the blue circles were visible at the start

of the trial and disappeared when the movement was initiated. For

the no aiming-target group (NoAT), the blue landmarks were not

included in the display.

The participants were initially required to reach to the green

target (Figure 2A). Movement duration, measured when the hand

crossed the target ring, averaged 275650.8 ms with no significant

difference between groups (F2,27 = 1.02, p = 0.37). Following the

initial familiarization block, participants were trained to use a

strategy of moving 45u in the CW direction from the green target

location, (Figure 2B). This location corresponded to the position of

the neighboring blue circle. Feedback was veridical in this phase

(e.g., corresponded to hand position). To help participants in the

NoAT group learn to move at 45u, the blue circles were also

presented on half of the trials for this group (in this phase only).

The mean angular shifts, relative to the green target, were

43.461.6u and 42.961.2u for the AT and DAT groups,

respectively (Figure 3 - orange). For the NoAT group, the mean

angular shift was 43.560.9u when the aiming target was present

and 40.167.1u when the aiming target was absent. While the

variance was considerably larger for trials without the aiming

target, the means were not significantly different (t18 = 0.95,

p = 0.38).

Practicing the 45u CW strategy did not produce interference on

a subsequent baseline block in which participants were again

instructed to reach to the cued, green target (Figure 3 – black).

Over the last 10 movements of the familiarization block

participants, across all groups, had an average target error of

21.560.7u. Over the first 10 movements of the baseline block, this

value was 20.560.6u, confirming that the strategy-only block did

not produce a substantial bias.

Without warning, the CCW rotation was introduced (Figure 2C).

As expected, the introduction of the CCW rotation induced a large

target error. Averaged over the two, rotation probe trials, the mean

values were 241.663.3u, 243.861.1u, 243.563.2u for AT, DAT,

and NoAT groups, respectively (Figure 3 – ‘‘x’’). After the

participants were instructed to use the clockwise strategy

(Figure 2D), the target error was reduced immediately to

3.564.4u, 1.064.3u, and 22.566.6u, values that were not

significantly different from each other (F2,27 = 1.96, p = 0.16).

The participants were then instructed to use the strategy and

required to produce a total of 320 reaching movements under the

CCW rotation. This extended phase allowed us to a) verify that

error increased over time, drifting in the direction of the strategy,

and b) determine if the magnitude of the drift would approximate

the magnitude of the rotation, a prediction of the simplest form of

the setpoint model. Consistent with the results of Mazzoni and

Krakauer [9], error increased in the direction of the strategy over

Figure 2. Experimental task design. The experiment workspace consisted of 8 empty blue circles separated by 45u (three locations are shown
here). The target was defined when a green circle appeared at one of the locations. The hand was occluded by the apparatus and on feedback trials, a
red cursor appeared as soon as the participant crossed a virtual ring, 10-cm from the start location. A) In the baseline block, participants moved
towards the cued green target. B) In the strategy-only block, participants moved to the blue circle located 45u in the clockwise direction. Feedback
was presented at the veridical hand position. C) For the two rotation probes, participants were instructed to move to the green target, but feedback
of hand position was rotated 45u in the counter-clockwise direction. D) In the rotation plus strategy block, participants were instructed to move to
the blue circle located 45u clockwise direction from the target. The feedback of hand position was rotated 45u counter-clockwise. E) Two sources of
movement error: a target error between the feedback location and target location and an aiming error between the feedback location and aiming
location.
doi:10.1371/journal.pcbi.1001096.g002
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the initial phase of the rotation block. However, the extent of the

drift fell far short of the magnitude of the rotation. To quantify the

peak drift, each participant’s time series of endpoint errors was

averaged over 10 movements and we identified the bin with the

largest error. Based on this estimate of peak drift, a significant

difference was observed between groups (F2,27 = 21.9, p,0.001;

Figure 4A). This is consistent with the prediction of the model

based that the salience of the aiming targets would influence the

estimation of the aiming location. Drift was largest when the

aiming targets were always visible, and progressively less for the

DAT and NoAT groups. Drift was not isolated to particular target

locations (Figure 4B).

Our rotation plus strategy block lasted 320 trials, nearly four

times the number of trials used by Mazzoni and Krakauer [9]. This

larger window provides an interesting probe on learning given that

the participants become progressively worse in performance with

respect to the target over the drift phase. While the AT group had

the largest drift, they eventually showed a change in performance

such that the heading angle at the end of the rotation block was close

to 45u CW from the green target (Figure 3A). By the end of training,

their target error was only 0.363.9u, which was not significantly

different from zero (t9 = 0.17, p = 0.85). We did not observe a

consistent pattern in how these participants counteracted the drift

(Figure 5). Two participants showed clear evidence of an abrupt

change in their performance, suggesting a discrete change in their

aiming strategy. For the other eight AT participants, the changes in

performance were more gradual.

The drift persisted over the 320 trials of the rotation block for

participants in the DAT group (Figure 3C). The average drift was

5.964.8u at the end of training, a value that was significantly

greater than zero (t9 = 2.40, p = 0.04). Given that the NoAT group

showed minimal drift, we did not observe any consistent changes

in performance over the block. At the end of training, the mean

target error was only 1.061.9u, a value which is not significantly

different from zero (t9 = 1.01, p = 0.33).

The effect of aiming target availability
The availability or certainty in the estimate of the aiming

location was manipulated by altering the presence of the aiming

target across the groups. As predicted by the setpoint model, the

degree of drift was attenuated as the availability of the aiming

targets decreased. In the current implementation of our model,

this decrease in drift rate is captured by a decrease in the

adaptation rate (B): with greater uncertainty, the weight given to

the error term for updating the internal model is reduced.

However, one prediction of this model is at odds with the

empirical results. Variation in the adaptation rate not only predicts

a change in drift rate, but also predicts a change in the washout

period. Specifically, decreasing the adaptation rate should produce

a slower washout, or extended aftereffect (Figure 1B – cyan). This

prediction was not supported. The washout rates are similar across

the three groups (bootstrap, p.0.11 between all groups). One

could hypothesize different adaptation rates during the rotation

and washout phases, with the effect of target certainty only

relevant for the former. However, a post hoc hypothesis along these

lines is hard to justify.

Alternatively, it is possible that the adaptation rate (B) is similar

for the three groups and that the variation in drift rate arises from

another process. One possibility is that the manipulation of the

availability of the aiming targets influences the certainty of the

desired strategy term in Equation 4, and correspondingly, modifies

the aiming error term:

eaiming
n ~ rn{rest

n

� �actual
z(sactual

n {Ksdesired
n ) ð6Þ

A value of K that is less than 1 will attenuate drift (Figure 1A –

magenta line; simulated with K = 0.5) because the strategy output

(Eq. 3) and the desired strategy (Eq. 6) do not completely cancel

out. Consequently, the error used to adjust the internal model will

be smaller and produce attenuated drift (Figure 1B – magenta

line). Moreover, because the strategy is no longer used during the

washout phase, the K term is no longer relevant. Thus, the

washout rates should be identical across the three groups,

assuming a constant value of B.

In sum, while variation in B or K can capture the group

differences in drift rate, only the latter accounts for the similar

rates of washout observed across groups. When the availability of

the aiming targets is reduced, either by flashing them briefly or

Figure 3. Group averaged endpoint error relative to the target for the three groups. Participants first practiced moving to the cued target
without a rotation (black) and while using the strategy without a rotation (orange). The rotation was turned on between movements 121 and 443
(dashed vertical lines). For the first two of these trials, the rotation probes, the participants had not been given the strategy (X’s). For the next 320
rotation trials, participants were instructed to use the strategy. Following this, the rotation was turned off and participants were instructed to move
towards the cued target, first without endpoint feedback (X’s) and then with endpoint feedback (circles). A) Aiming-Target Group (blue). B)
Disappearing Aiming-Target Group (magenta). C) No Aiming-Target Group (red). Shading represents the 95% confidence interval of the mean.
doi:10.1371/journal.pcbi.1001096.g003
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Figure 4. Time course of drift and aftereffect, and the relationship of drift to target location and aftereffect. A) Average endpoint
angular error relative to the target for the three groups, binned by averaging over epochs of ten movements (AT group in blue, DAT group in
magenta, NoAT group in red). B) Peak drift with respect to the eight target location for the three groups. The empty circles are the target locations. To
identify peak drift, 10 bins of four movements were calculated for each direction. C) Angular error after the rotation was turned off and participants
were instructed to stop using the strategy. Triangles are average of the first eight post-rotation trials, performed without visual feedback. Squares are
washout block with feedback. D) Relationship of drift and aftereffect based on the estimated peak drift for each participant and the first eight post-
rotation trials. For B) and D), the means and 95% confidence interval of the mean were estimated through bootstrapping.
doi:10.1371/journal.pcbi.1001096.g004

Figure 5. Performance during the rotation block of three participants. A and B are from the AT group; C is from the DAT group. A) Drift
followed by large fluctuations in error. B) Drift followed by an abrupt change in target error. C) Continuous drift across training.
doi:10.1371/journal.pcbi.1001096.g005

Flexible Strategies during Motor Learning
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eliminating them entirely, the participants’ certainty of the aiming

location is attenuated. This hypothesis is consistent with the notion

that the aiming locations serve as a proxy for the predicted aiming

location.

Strategy adjustment based on performance error
As noted above, none of the participants showed drift

approaching 45u. Even those exhibiting the largest drift eventually

reversed direction such that they became more accurate over time

in terms of reducing endpoint error with respect to the target

location. To capture this feature of the results, we considered how

participants might vary their strategy over time as performance

deteriorates. It is reasonable to assume that the participant may

recognize that the adopted strategy should be modified to offset

the rising error. One salient signal that could be used to adjust the

strategy is the target error, the difference between the target

location and the visual feedback.

To capture this idea, we modified the setpoint model, setting the

strategy as a function of target error (Figure 2E):

snz1~Esn{Fetarget
n ð7Þ

where E defines the retention of the state of the strategy and the F

defines the rate of strategic adjustment. As target error grows (i.e.,

drift), the strategy will be adjusted to minimize this error

(Figure 2E). In our initial implementation of the setpoint model,

the strategy term was fixed at 45u. Equation 7 allows the strategy

term to vary, taking on any value between 0u and 360u.
The availability of the aiming targets, captured by K in Eq. 6,

influences the magnitude of the drift. Greater drift occurs when

the aiming error, that between the feedback location and aiming

location, is salient (Figure 1B – red line; K = 1). However, when

the target error grows too large, adjustments to the strategy begin

to gain momentum and performance becomes more accurate with

respect to the target given the change in strategy (Figure 1C – blue

line; simulated with E = 1 and F = 0.01). More emphasis on target

errors rather than the aiming error results in less drift (Figure 1C –

orange line; simulated with F = 0.05). Thus, the relative values of

K and F determine the degree of performance error that is

tolerated before strategic adjustments compensate to offset the drift

(Figure 1C).

This setpoint model (Eqs. 8–11) was fit by bootstrapping (see

methods) each group’s time series of target errors:

etarget
n ~ snz rn{rest

n

� �� �actual ð8Þ

eaiming
n ~ rn{rest

n

� �actual
z(sactual

n {Ksdesired
n ) ð9Þ

rest
nz1~Arest

n zBeaiming
n ð10Þ

sdesired
nz1 ~Esdesired

n {Fetarget
n ð11Þ

The fits (Figure 6A–C and Table 1) show that K is the greatest for

the AT group and progressively less for the DAT group and the

NoAT group (AT vs DAT group: p = 0.003; AT vs NoAT groups:

p,0.001; DAT vs. NoAT groups: p,0.001). When the aiming

targets remain visible, the aiming error signal is readily available,

and the weight given to the strategic aiming location, K, is larger.

Conversely, the weight given to the target error, F, is significantly

greater for the NoAT group compared to the AT and DAT groups

(NoAT vs AT group: p = 0.005; NoAT vs DAT group p = 0.001).

These results are consistent with the hypothesis that participants in

the NoAT group rely more on target errors because the absence of

the aiming targets removes a reference point for generating a

reliable aiming error (Eq. 9).

The dynamics of the recalibration process and strategy state

(Eqs. 10 and 11) are plotted in Figure 6D. These parameters, along

with the other parameters that represent the memory of the

internal model (A), the adaptation rate (B), and the memory of the

strategy (E) are listed in Table 1.

Following the rotation block, we instructed the participants that

the rotation would be turned off and they should reach to the cued

green target. For the first eight trials, no endpoint feedback was

presented. This provided a measure of the degree of sensorimotor

recalibration in the absence of learning (Figure 4C – triangles).

Aftereffects were observed in all three groups. The average error

was significantly different from zero in the CW direction from the

green target for all three groups (one sample t-test for each group,

p,0.001). In comparisons between the groups, the AT group

showed the largest aftereffect of 19.263.7u (t18 = 3.5, p = 0.003

and t18 = 5.61, p,0.001 compared to the DAT and NoAT groups,

respectively). The mean aftereffects for the DAT and NoAT

groups were 10.463.2u and 6.862.2u, values that were not

significantly different. When endpoint feedback was again

provided, the size of the aftereffect diminished over the course of

the washout block (Figure 4C - squares).

Relationship between drift and aftereffect
In the setpoint model, the internal model will continue to adapt

even in the face of strategic adjustments adopted to improve

endpoint accuracy. As such, the model predicts that the size of the

aftereffect should be larger than the degree of drift. To test this

prediction, we compared the peak drift during the rotation block

to the aftereffect. In the preceding analysis, we had estimated peak

drift for each participant by averaging over 10 movements and

identifying the bin with the largest error. However, a few errant

movements could easily bias the estimate of drift within a 10-

movement bin. As an alternative procedure, we used a boot-

strapping procedure to identify the bin with the largest angular

error for each group. This method should decrease the effect of

noise because the estimate of peak drift is selected from an

averaged sample of the participants’ data. Moreover, any bias in

the estimate of the magnitude of the peak should be uniform across

the three groups of participants. For consistency, we estimated the

aftereffect (the first 8 trials without feedback) using the same

bootstrap procedure.

For the AT group, the peak drift was 14.862.5u in the CW

direction, occurring 64630 movements into the rotation block.

For the DAT group, the peak drift was 10.061.8u, occurring at a

later point in the rotation block (1306106). For the NoAT group,

peak drift was only 3.262.7u and occurred after 1456131

movements. As predicted by the model, the aftereffect was

significantly larger than peak drift for the AT and NoAT groups

(Figure 4D; bootstrap: p = 0.002 and p,0.001, respectively). The

difference between the degree of peak drift and aftereffect in the

DAT group was not reliable. It is important to emphasize that

estimates of the time of peak drift should be viewed cautiously,

especially in terms of comparisons between the three groups.

These estimates have lower variance for the AT group because it

was easier to detect the point of peak drift in this group compared

to the DAT and NoAT groups.
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Discussion

Behavioral summary
Visuomotor rotation tasks are well-suited to explore how explicit

cognitive strategies influence sensorimotor adaptation. Following

the approach introduced by Mazzoni and Krakauer [9], we

instructed participants to aim 45u CW in order to offset a 245u
rotation. Between groups, we manipulated the information

available to support the strategy by either constantly providing

an aiming target, blanking the aiming target at movement

initiation, or never providing an aiming target. In all groups, the

strategy was initially effective, resulting in the rapid elimination of

the rotation-induced endpoint error. However, when the aiming

target was present, participants showed a drift in the direction of

the strategy, replicating the behavior observed in Mazzoni and

Krakauer [9]. This effect was markedly attenuated when the

aiming target was not present suggesting that an accurate estimate

of the strategic aiming location is responsible for causing the drift.

In addition, when the drift became quite large (as in the AT

group), participants begin to adjust their strategy to offset the

implicit drift.

Incorporating a strategy into state-space models
Mathematical models of sensorimotor adaptation have not

explicitly addressed how a strategy influences learning and

performance. By formalizing the effect of strategy usage into the

standard state-space model of motor learning, we can begin to

evaluate qualitative hypotheses that have been offered to account

for the influence of strategies on motor learning. Mazzoni and

Krakauer [9] suggested that drift reflects the interaction of the

independent contribution of strategic and implicit learning

processes in movement execution. Current models of adaptation

Table 1. Modeling results for each group based on the
setpoint model (Eqns 8–11).

AT Group DAT Group NoAT Group

A 0.99160.002

B 0.01260.003

E 0.99960.001

K 0.98560.034 0.40960.122 0.19560.108

F 0.02360.006 0.00260.003 0.72560.319

Goodness
of fit (r)

0.68260.075 0.71360.069 0.65060.081

A: Retention factor of the internal model; B: Adaptation rate based upon aiming
errors; E: Retention factor of the strategy; K: Availability of the strategic aiming
location; F: Adjustment rate of the strategy based upon target errors (high
values favor strategy change). A, B, and E were constrained to be the same
across groups, while parameters K and F were allowed to vary between groups.
The means and 95% confidence interval of the mean were estimated through
bootstrapping.
doi:10.1371/journal.pcbi.1001096.t001

Figure 6. Setpoint model fit. The setpoint model with direct-feedthrough (equations 8–11) was fit to each group’s data (from figure 3) via
bootstrapping. A–C: Solid functions are averaged model fits for the AT group (blue), DAT group (magenta), and NoAT group (red) in comparison with
actual group averaged data (black). D) The target error is the combination of learning within the sensorimotor recalibration process (solid) and the
aiming location associated with the strategy (dashed), shown here fro the AT group (blue), DAT group (magenta), and NoAT group (red).
doi:10.1371/journal.pcbi.1001096.g006

Flexible Strategies during Motor Learning

PLoS Computational Biology | www.ploscompbiol.org 8 March 2011 | Volume 7 | Issue 3 | e1001096



cannot be readily modified to account for this interaction. Rather,

we had to consider more substantive architectural changes.

Borrowing from engineering control theory, we used a setpoint

model in which the internal model can be recalibrated around any

given reach location. The idea of a setpoint is generally implicit in

most models of learning, but this component does not come into

play since the regression is around zero. However, simply making

the setpoint explicit is not sufficient to capture the drift

phenomenon. The strategy must have direct feedthrough to the

output equation in order to implement the explicit strategy while

allowing for an internal model to implicitly learn the visuomotor

rotation.

This simple setpoint model was capable of completely

eliminating error on the first trial and capture the deterioration

of performance with increased training. Drift arises because the

error signal is driven by the difference between the internal

model’s prediction of the aiming location and the actual, endpoint

feedback. The idea that an aiming error signal is the source of drift

is consistent with the conjecture of Mazzoni and Krakauer [9]. An

important observation in the current study is that, given

uncertainty in the prediction of the aiming location, participants

use external cues as a proxy in generating this prediction. This

hypothesis accounts for the observation that drift was largest when

the aiming target was always visible, intermediate when the aiming

target was only visible at the start of the trial, and negligible when

the aiming target was never visible. The aiming target, when

present, served as a proxy for predicted hand position, and helped

define the error between the feedback cursor and aiming location

in visual coordinates. When the aiming target was not present, the

aiming location was less well-defined in visual coordinates, and

thus, the relationship between the aiming location and feedback

cursor was less certain. Under this condition, the participant’s

certainty of the error was reduced and adaptation based of this

signal was attenuated. Quantitatively, progressively smaller values

of K were observed with decreasing availability of the aiming

targets.

The attenuation of adaptation with increasing uncertainty (as

reflected by reduced drift) is similar to the effects on adaptation

predicted by a Kalman filter when measurement noise is large.

Several studies have shown that adaptation rates can change when

the certainty of sensory information is manipulated [31,32]. In our

study, variation in certainty of the desired aiming location (K)

influenced the magnitude of drift. As the availability of the aiming

targets was reduced, the corresponding estimate of the aiming

error became less certain, producing slower adaptation of the

internal model, or reduced drift. Moreover, since K directly

operates on the estimate of the strategic aiming location, this

parameter does not affect the rate of washout since the strategy is

no longer used. Consistent with this prediction, the rate of washout

was similar across the three groups.

The effect of the visual landmarks on adaptation also provides

insight into why other studies have not observed drift, even when

participants develop some explicit awareness of the rotation, and

presumably, use that knowledge [8,10,11,24,25] to improve

performance rapidly. Several key methodological differences are

relevant. First, in most visuomotor rotation studies, online visual

feedback is provided during the movements. This may impede

drift because participants observe the casual relationship between

movement of their hand and the endpoint, cursor feedback [33].

Drift itself could be corrected by online feedback. Second,

participants in the earlier studies were not given a clear, explicit

strategy, and importantly, were not provided with visual

landmarks that could support a self-generated strategy. Under

such conditions, participants face a difficult estimation process.

The absence of landmarks would increase uncertainty in

implementing a self-generated strategy. Moreover, the motor

system would not have a salient visual signal for grounding the

comparison of feedback and aiming location. As shown by our no-

aiming target condition, drift is minimal when the landmarks are

absent. Thus, the absence of drift in the visuomotor adaptation

literature cannot be taken as evidence that strategies are not

relevant. It is likely that, when initial error signals are large,

learning involves a combination of strategic and recalibration

processes.

Two sources of errors
Our model entails two types of error signals: an aiming

prediction error between the feedback location and aiming

location, and performance error between the feedback location

and the target location (Figure 2E). The aiming error drives the

drift phenomenon while the target error is used to restore

performance. Intuitively, the motor system should be able to

recalibrate the internal model around any desired reach location, a

feature captured by the setpoint model. When there is an accurate

estimate of the strategy (the setpoint), then the strategy naturally

falls out of the error equation, allowing the internal model to

recalibrate around any position. The setpoint mechanism is

revealed when a strategy is imposed to counteract a visuomotor

rotation. A counterintuitive consequence of this process is the rise

in error over time because the motor system is recalibrating

around the strategic aiming location (or its proxy) and not the

target location.

Interestingly, while there was an initial rise in endpoint error,

this function eventually reversed, returning close to zero endpoint

error by the end of the strategy phase for the AT group. We

assume that at some point, the size of the endpoint error exceeded

the participant’s self-defined tolerance for errors and caused them

to modify the strategy. Unfortunately, we do not have a direct

measure of strategy change. Examination of the learning profiles

revealed considerable variability across individual participants

(Figure 4A and Figure 5). This variability likely reflects multiple

sources of noise, as well as instability in the use of a strategy. We

obtained self-reports in a debriefing session at the end of the

experiment. A few subjects in the AT and DAT groups reported

adjusting their strategy such that they reached to a location

between the cued target and aiming target, or that shifted to reach

straight to the cued target.

At a minimum, multiple processes are required to capture this

nonmonotonic learning function. In our initial modeling efforts,

we fixed the strategy for the entire training process. Under this

assumption, the system should exhibit drift that is equal in size to

the rotation, an effect never observed. Thus, the final version of

our model is a variant of a two-rate state space model [28], but

with the two rates reflecting different error sources. As described

above, adaptation of an implicit model is driven by the aiming

error. In contrast, the strategy is adjusted on a trial-by-trial basis as

a function of the current target error. Target errors are initially

quite small and, thus have little effect on performance. However,

as the target errors become large due to adaptation of the internal

model, adjustments in the strategy are required to improve

endpoint accuracy. Aiming to a new location resets the

recalibration around a new setpoint. To reach a stable state,

participants would need to progressively adjust their strategic

aiming location to a point where aiming error and target error

cancel each other out.

It is reasonable to assume that our manipulation of the

availability of the aiming locations influenced the degree of

certainty associated with the desired aiming location. When
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certainty is reduced, adaptation arising from the aiming error

signal is slower, and in our two-process model, the level of

adaptation achieved by the motor system is lowered. Moreover,

the model does not predict that drift will reach 45u. The strategy is

adjusted, reaching a point where it offsets the drift arising from

adaptation of the internal model. The interplay of these two

processes is complex (Figure 6D). With both occurring continu-

ously during training, the system reaches a pseudo-equilibrium

state at which additional changes to both processes becomes

relatively small.

Linking the strategy adjustment to the target error signal offers a

process-based approach to capture flexibility in strategy use. Our

setpoint model captures this through the strategy adjustment

parameter (F), a weighting term on target error. The NoAT group

appears to give more weight to target error than the AT and DAT

group. Interestingly, the modeling results indicate that the AT

group showed more utilization of the target errors than the DAT

group. We assume this arises because the AT group eventually

offset the relatively large drift to restore on-target accuracy. In

contrast, the DAT group never corrected for drift, suggesting that

the weight given to target errors for this group was nearly zero.

It is important to highlight one difference in how we

conceptualize changes in the rate of strategy adjustment (F)

compared to changes in the rate of adaptation (B). Adjustments in

a strategy can occur on very fast timescale; for example, once

instructed, participants were able to immediately offset the full

rotation. Variation in F refers to the rate at which participants

change where to aim. In contrast, B reflects a gradual process,

reflecting the rate of change in a system designed to reach a

desired location.

Alternative models of strategy change
In many sensorimotor adaptation tasks, variable learning rates

are used to model the substantial variability observed in individual

learning curves. In a similar manner, our setpoint model captures

individual differences in strategy utilization by varying the strategy

adjustment rate (F). Nonetheless, this formulation does not

adequately capture the full range of behavior observed in the

current study. In particular, this approach is insufficient to account

for abrupt changes in performance. For example, the learning

profile shown in Figure 5B suggests a categorical change in

strategy. That is, the participant abandoned what was becoming

an unacceptable strategy to search for a new strategy. Indeed, in a

post-test interview, this participant reported changing the aiming

location to a position halfway between the cued target and the

aiming location.

An alternative approach to model strategy change could be

derived from models of reinforcement learning [34–37]. In such

models, participants explore different regions of a strategy space,

attempting to quickly identify the policy that results in small target

error. In our task, a shift in policy might occur when the rise in

target error due to adaptation exceeds a threshold. That is, when a

chosen action fails to achieve the predicted reward, a new strategy

is adopted. This approach would provide a way to fit the data of

the few participants who exhibited categorical-like changes in

performance.

A reinforcement learning approach based on a discrete set of

strategies is problematic with the current data set. At one extreme,

one might suppose that such values could take on the locations of

the aiming targets (e.g., 0u and 45u), and perhaps some

intermediary points (e.g., 22.5u, the point halfway between two

aiming targets). At the other extreme, the set might consist of a

large set of values. Choosing a sparse set of potential actions will

result in more abrupt changes in performance, while choosing a

finer set of potential actions will allow for more gradual changes.

Studies designed to explore reinforcement learning models

generally use a limited set of choices and performance thus entails

discrete shifts in behavior. In our task, reach direction spans a

continuous space, and in fact, for most of our participants, the

changes in performance were gradual. Future experiments that

constrain the set of potential actions and manipulate reward may

be better suited for employing a reinforcement learning perspec-

tive to explore strategy change.

Qualitative changes in performance may also indicate that the

participants have fundamentally changed their conceptualization

of the task. For example, rather than view the task goal as one

involving reaching to targets, the participant may have switched to

an orientation in which the task goal involved mastering a game in

which the hand is a tool [38–40]. By this account, the initial drift

would result from the operation of implicit adaptation of an

internal model of the arm as described above. However, when this

drift became too large, the participant switched to treating the task

as a game, with the arm now conceptualized in a manner similar

to how we view a computer mouse. Accurate performance now

required learning the appropriate transformation between the

movements of the tool and the task workspace. The error signal for

this form of learning would no longer be based on the difference of

predicted hand/object location and the feedback location; we are

able to readily accept that the movement of a mouse-driven cursor

results in feedback in an alternative workspace. Rather, the error

signal here is the difference between the cued target location and

the feedback location. An error signal of this form would not

produce drift.

The reconceptualization hypothesis would predict that peak

drift should equal or be greater than the aftereffect. This follows

from the idea that adaptation of the internal model should cease at

the time the task goal changes from reaching to tool mastery. Once

the participant switches from learning about their arm to learning

how to play the visuomotor game, then there the internal model

would not continue to learn. The target error gains emphasis and

the aiming error falls out. As such, the aftereffect should equal the

drift value or be lower if there is some time-dependent decay of the

adaptation effects [41].

While this hypothesis is plausible, there are also some

limitations. First, it is important to keep in mind that in almost

all adaptation studies, the only visual signals are the target location

and a feedback cursor. Under such conditions, aftereffects are

prominent, indicating adaptation of an internal model and not just

learning a game. One would have to assume that tool

conceptualization was more pronounced in the present study

because of the strategic instructions. Second, our estimate of the

aftereffect is actually larger than the peak drift for two of the three

groups (Figure 4D). This observation, while at odds with the

reconceptualization hypothesis, is consistent with the setpoint

model. In our model, the aiming error signal will continue to

modify the internal model even as strategy adjustments reduce

target error. As such, the aftereffect, an estimator of implicit

adaptation should be equal to or larger than peak drift.

While future research will be required to explore the

mechanisms of strategy change, the current study advances our

understanding of the interactions that arise between explicit,

strategic processes and implicit, motor adaptation. Consistent with

Mazzoni and Krakauer [9], the results make clear that strategies

should not be viewed simply as representations that can facilitate

implicit learning mechanisms. Rather, implicit learning mecha-

nisms operate with a considerable degree of autonomy and, under

certain conditions, can override the influence of an explicit

strategy. Nonetheless, the benefits of strategic capabilities are also
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borne out in the present work. When implicit mechanisms go

awry, a strategic system can confer the flexibility required to

ensure task success.

Methods

Ethical statement
The study was conducted according to the principles expressed

in the Declaration of Helsinki and the protocol was approved by

the University’s IRB. Thirty right-handed participants with no

known neurological conditions were recruited from the University

of California research participation pool. All participants provided

informed consent prior to the start of the experiment.

Experimental apparatus and procedures
The participant was seated in front of a table with her right

hand comfortably positioned on a table surface. A horizontal,

back-projection screen was positioned 48 cm above the table and a

mirror was placed halfway between this screen and the table

surface. The displays were presented via an overhead projector. By

having the participant view the mirror, the stimuli appeared to be

presented on the table surface. The mirror occluded vision of the

hand; thus, feedback, when provided, was given in the form of a

small red circular ‘‘cursor’’. Movements were tracked by a 3D

motion tracking system (miniBIRD, Ascension Technology,

Burlington, VT, USA). A sensor was placed on the tip of the

index finger, and position information was sampled at 138 Hz.

The miniBirds have an approximate spatial resolution of 0.05 cm.

On each trial, the participant made a horizontal reaching

movement to a visually displayed target, sliding their hand along

the surface of the table. The target was defined by the appearance

of a green circle at one of eight possible locations and the eight

locations were separated by 45u on a virtual ring with a radius of

10 cm, centered on the starting position. The targets were not at

cardinal directions, but started at 22.5u and increased in 45u steps.

Participants were instructed to move quickly and were not

provided with online visual feedback during the movement. Once

the hand crossed the virtual target ring, a stationary red feedback

cursor was displayed for 1000 ms. Subsequent to the feedback

interval, the participant was visually guided back to the starting

location. A white circle appeared, with the diameter corresponding

to the distance of the hand from the starting position. The

participant was trained to move so as to reduce the diameter of this

circle. When the hand was within 10 pixels (8.8 mm) of the

starting position, the circle changed to a cursor that the participant

then moved into the start location. When this position had been

maintained for 500 ms, the next target appeared. The target, start

region, and feedback cursor were all 8 pixels (7 mm) in diameter.

Testing began with a familiarization block in which participant

was trained to make rapid reaching movements from the start

location toward the target location (Figure 2A). The participants

were instructed that the task goal was to make the red feedback

cursor appear as close as possible to the green target. We did not

impose any constraint on movement amplitude other than that the

movement had to span at least 10 cm. In addition to emphasizing

the importance of directional accuracy, the participants were

trained to complete the movement within 300 ms. Auditory

feedback in the form of computerized voice that said ‘‘too slow’’,

was provided if the movement took longer than 300 ms. The quick

movements were intended to minimize any within-movement

control even though there was no online visual feedback provided.

The familiarization block lasted 40 trials, five for each of the eight

target locations.

Following the familiarization block, participants were trained to

use a 45u clockwise (CW) strategy. Eight blue circles (termed

‘‘aiming target’’— see below), indicating the possible target

locations, were always visible during these trials; one of these

turned green to indicate the target. The participants were

instructed to aim to the neighboring CW blue circle (Figure 2B).

The feedback cursor was veridical, appearing at the position of the

hand when it crossed the virtual target ring. Thus, during this

block, the participant attempted to align the feedback cursor with

the blue circle that was 45u clockwise from the green target. This

strategy-only block consisted of 40 trials.

The strategy-only block was followed by a 40-trial baseline

block in which participants were instructed to reach directly

towards the green target. The feedback remained veridical and

thus, the participant’s goal was to align the feedback cursor with

the green target.

Following these 40 trials, a visuomotor rotation was introduced

without warning. For these trials, the position of the feedback

cursor was shifted 245u (CCW rotation) from the actual hand

position (Figure 2C), and correspondingly, induced substantial

endpoint error. After two such movements, the participants were

told that they could minimize their error by adopting an explicit

‘‘corrective’’ strategy in which they aimed 45u in the CW direction

from the target (Figure 2D). The participants were instructed to

employ this strategy and testing continued without further change

for the next 320 trials (40 movements/target).

At the end of this rotation (plus strategy) block, there was a brief

pause so that the experimenter could instruct the participants the

rotation would no longer be present and that they should resume

moving directly to the cued target location. For the next eight trials

(1/target location), no endpoint feedback was provided. The

purpose of this short block was to quantify the aftereffects of the

rotation training, while not inducing any learning based on visual

errors [28].

The experiment concluded with a washout block that was

identical to the baseline block. The rotation remained off and

participants were reminded to continue reaching towards the

green target. The feedback cursor was again visible, now providing

an error in terms of the distance between this cursor and the green

target.

There was a short temporal delay (less than 1 minute) between

the blocks so that the experimenter could load the new block.

The participants were divided into three experimental groups.

The only difference between the groups was the status of the blue

circles, the visual landmarks that provide an aiming target during

the strategy-only and rotation blocks. In the Aiming-Target group

(AT group; 4 Female/6 Male, ages 19–25), the blue circles were

present throughout the experiment. In the No Aiming-Target

group (NoAT group; 5 Female/5 Male, ages 18–28), the blue

circles were never presented except for the strategy-only practice

block. In this block, the blue circles were presented on half of the

trials to assist the participants in learning where 45u was in relation

to the cued, green target. During the other blocks (familiarization,

baseline, rotation, and washout blocks), the blue circles were

absent at all times.

The third group was the Disappearing Aiming-Target group

(DAT group; 5 Female/5 Male, ages 19–23). For these

participants, the blue circles were presented at the start of the

trial, followed shortly by a green target at one of the locations. The

blue circles remained visible until the hand had been displaced

1 cm from the starting position (approximately 30 ms into the

movement) at which point they disappeared. Thus, the aiming

targets were not visible when the feedback cursor appeared. As in

the other conditions, the green target remained on the screen until
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the end of the feedback interval. We opted to use blue circles on a

black background as the visual landmarks to minimize visual

aftereffects for the DAT group.

Movement analysis
Kinematic information was analyzed with Matlab (MathWorks,

Natick, MA). Movement duration was defined as the interval from

when the hand was 1 cm from the start position until it passed

through the virtual target ring (10 cm radius). We determined the

heading of the hand at the point of intersection and used this to

compute the endpoint hand angle, defined as the difference

between this heading and a straight line connecting the starting

position and the target (green circle except for the strategy-only

block). When there was no rotation, the target error was identical

to the endpoint hand angle. When the rotation was present, the

target error was the endpoint hand angle plus 45u. The angular

endpoint error was used to infer the motor plan (plus noise) since

the movements were made without on-line feedback and at a

speed that minimized corrective movements. Since there was a

substantial difference between groups in terms of drift, we

measured the aftereffect relative to the target location.

For the analyses of movement accuracy, movements within each

block were averaged over 10-trial bins. However, we did not bin

the first two movements when the rotation was first introduced

(pre-strategy), nor did we bin the first two movements after the

strategy was introduced. Rather, these two movement pairs were

averaged separately to quantify error introduced by the rotation

and the initial success of the participant using the strategy,

respectively.

A key dependent measure in this study is the magnitude of the

drift exhibited during the rotation block. Estimating peak drift is

difficult, not only because of noise in performance, but also

because some participants exhibited non-monotonic drift func-

tions. To minimize these problems, we used a boostrapping [42]

method to estimate peak drift. Using the group averaged data, we

created bins of 10 movements each and then identified the bin

with the largest angular deviation. The group averaged data was

recompiled 1000 times by randomly resampling with replacement

from the participant pool. The estimate of the time of the peak

drift was chosen as the movement number in the middle of this 10-

movement bin.

We used a similar method to compute the aftereffect. Here we

focused exclusively on the first 8 trials following the end of the

strategy plus rotation phase, trials in which no visual feedback was

provided. The bootstrapping method here produces only a slightly

different estimate of the aftereffect compared to a simple averaging

across the observed data from these 8 trials.

To quantify the deadaptation rate during the washout phase, we

fit an exponential function [26] to the time series of target

endpoint errors. Specifically, we bootstrapped the washout data

from each group to provide an estimate of the exponential decay

rate. We compared these rates to determine if there was a

difference in the rate of deadaptation.

To statistically evaluate the results of the bootstrapping

procedures, the mean statistics of each resampled iteration were

calculated and then used to determine p values [29,42]. All

statistical analyses were performed in Matlab. For the analyses that

did not involve bootstrapping, we report the degrees of freedom

for the F-values when performing ANOVAs across groups and t-

values when performing t-tests within groups.

Occasionally participants did not move to the cued, green target

(on baseline and washout blocks), mistakenly implemented the

strategy in the wrong direction (i.e., went CCW instead of CW on

rotation blocks), or moved to a location far from the target. We

eliminated trials in which the movement heading was more than

three standard deviations from the mean for that block. This

resulted in an average removal of less than 1% of the movements

per participant and the number of such erroneous movements was

similar across the three groups (F2,27 = 1.58, p = 0.22).

Modeling
The Nelder–Mead method or simplex method [43], imple-

mented in Matlab as fminsearch, was used to fit the data from the

baseline, rotation, stop-strategy, and washout blocks. We did not

fit the data from the familiarization block and strategy-only block.

The instruction to use the strategy was implemented by setting the

value of s to 45 at the start of the strategy+rotation block. The

value was reset to 0 at the start of the washout block. While the

simplex method can be sensitive to initial conditions, we obtained

similar estimates of the parameters (within the confidence intervals

of those parameters) with different starting values with the current

data sets. Thus, the same initial conditions (values of zero for all

parameters) were used for each participant. The goodness of fit

was measured by the root mean square error (rms) and Pearson’s

correlation coefficient (r) between the output of the model for

endpoint hand angle and the participant’s endpoint hand angle.

Custom software was written to bound the parameters between 0

and 1. The sign of the parameters is dependent on the convention

we used for the target errors: CCW to the target was negative and

CW was positive. The equations were adjusted to make all the

parameters positive. The parameter K was bound from 0.1 to 1 for

all groups because we found that the simplex method sometimes

reached a local minimum of K = 0 for the NoAT group

(approximately 10% of fits). The data from the NoAT group is

more difficult to fit because of the absence of drift and relatively

small aftereffect.

A, B, and E, the parameters characterizing the internal model

memory, adaptation gain, and strategy memory, were fit for all the

groups collectively. K the parameter characterizing the availability

of the aiming target (strategic aiming location) and F, the influence

of target errors, were estimated separately for each group through

bootstrapping. The group’s averaged data was computed by

resampling with replacement the participant pool, repeating this

1000 times, and fitting the setpoint model (Eqns 8–11) to each

resampled average.
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