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Coherent WDM technologies have leveraged the optical communication systems in core networks, increasing the 

fiber capacity by transmission with advanced modulation formats and mitigation of impairments with digital signal 
processing (DSP). However, these solutions are too expensive for access networks, where cost, power budget and 

footprint are limited. Hence, the key technology will be developing low-cost coherent transceivers providing an 

excellent selectivity, and giving high sensitivity, which allows high splitting ratios. This article reports an 
experimental design of a low-cost coherent ultra-dense WDM-PON (UDWDM-PON) with 6.25 GHz channel spacing. 

The users´ optical network unit (ONU) is built employing coherent transceivers with two paired low-cost DFB 
lasers, one as local oscillator and another as transmitter, offering simplicity and low-cost hardware; likewise, the 

optical line terminal (OLT) at central office can profit from the same design. The ONU DFB lasers have wavelengths 

with limited thermal tunability, controlled by a thermo-electric cooler (TEC), which is used to allocate the 
wavelengths. A medium access control (MAC) at the OLT manages the spectrum channel allocation for ONUs 

demanding connection when activation is requested: the OLT furnishes an optical carrier wavelength for the ONU 

to obtain connection by a control algorithm, assigning a down-channel and another paired up-channel assigned to 
the ONU DFB transmitter. The MAC can reassign the channels because of interference or collision in a dynamic 

wavelength allocation (DWA). Measures in an activation process and in channel reassignment have been 
performed in environment conditions, including control signals and physical parameters of DFB lasers, 

demonstrating the practical viability of the PON scaling from 32 up to 256 wavelength channels. 

 http://dx.doi.org/10.1364/JOCN.99.099999 

1. INTRODUCTION Current optical access networks standards and developed fiber-to the–home (FTTH) technologies need to evolve to face the upcoming bandwidth (BW) growth driven by multimedia services with high definition video, cloud-computing, business services, and emerging next generation mobile networks like 5G. The passive optical networks (PONs), installed with a fiber and split-built optical distribution network (ODN), are deploying the 10GE-PON [1] and XG-PON [2] standards, with 10 Gb/s data rate and time division multiplexing (TDM). Though, they employ only two wavelengths (λs), thus with poor use of the optical fiber spectrum, whereas core networks are now reaching its limits [3]. To enhance the PON capacity, the next generation NG-PON2 recommendation [4] gathers from 4 to 8 XG-PONs on a time and wavelength division multiplexing (TWDM) basis and aggregate capacity up to 80 Gb/s, coexisting with legacy systems through λ overlay and keeping the split-based ODN, while still using the intensity-modulation and direct-detection (IM-DD) transmission format. However, scaling TWDM to higher bit rates may not be compatible with low-cost photonic devices, explicitly the bit rate per λ, with high hardware cost and excessive energy consumption. On the other hand, several WDM-PONs have been introduced making also use of IM-DD formats, and mainly based on deploying 

arrayed waveguide gratins (AWGs) in the ODN. An automatic wavelength allocation method was proposed, based on maximization of the beating noise between a seed light from the OLT at central office (CO) and a tunable laser (TL) at the ONU [5]; however, requiring a broadband light source at the OLT, which is filtered by the AWG, increases complexity and costs.  Another proposal for automatic wavelength control is based on the detection of backscattered light [6], where the light generated by the ONU TL passes through the AWG twice and is back received at the ONU, then the λ of the ONU TL is matched at the maximum power of the received λ, corresponding to the peak center of the AWG channel. In an alternative method, a centralized control by the OLT is facilitated by imprinting feedback of the received power of each ONU upstream by the OLT to enable calculation of relative ONU λ deviation; this feedback is transferred by the OLT to the ONUs by pilot tones or a MAC [7,8]. These WDM-PONs make use of expensive full TLs in the optical band and of AWGs in the ODN, which is not compatible with legacy systems based in power splitters and decreases granularity. Nevertheless, a colorless and pug-and-play WDM access over existing power splitter infrastructure has also been presented [9]; it makes use again of full TLs and an automatic λ control at the ONU, which is based on a tunable filter (TF) exploring the full band until sensing a downstream unused λ, where the TF is set, and next a paired λ upstream is automatically assigned, according to a 
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wavelength assignment table indicating the combination of the corresponding downstream and upstream λs. Our proposal is a novel coherent UDWDM-PON making use of a wavelength-to-the-user (WTTU) scheme, furnishing each customer a single λ, while keeping coexistence with legacy systems and spacing channels densely at a few GHz, thus achieving a high spectral efficiency [10]. Moreover, the UDWDM-PON can be implemented with affordable low-cost components [11] and also be flexible in user BW and channel allocation [12,13]. Considering ITU recommendations, the grid will evolve to finer 12.5 GHz slots [14], so the next step can be down to 6.25 GHz, enabling a PON for high and dense number of users. Additionally, superior bit rates per λ can also be achieved exploiting low-cost distributed feedback (DFB) lasers, photonic integration, simplified direct optical modulation, consumer electronics and low-complexity digital signal processing (DSP) [15,16]. The developed UDWDM-PON under the EU FP7 COst-effective COhereNt Ultra-dense-WDM-PON for lambda-To-the-user access (COCONUT) project [10,11], was a progress in order to support new emerging customer and mobile front-haul and back-haul applications. Novel low-cost coherent techniques improve the sensitivity to about -50 dBm, thus reaching a higher power budget (>45dB) and hence, serving higher number of users (up to 256) at long distances (up to 60 km), being each user served with flexible data rates from 1.25 Gb/s to 10 Gb/s [15,16]. When implementing an UDWDM-PON, for each ONU, a TL is needed as local oscillator (LO) for coherent reception and another TL for transmission, and two different λs are used for down and up transmission to avoid Rayleigh backscattering (RB) at the single-fiber PON transmission. The tuning range of the lasers is a key parameter for achieving a low-cost implementation of the ONU; such narrow channel spacing enables to choose simple DFB lasers, with limited tunability of only about ±1.6 nm by simple temperature control [17,18]; VCSEL lasers could be similarly used, with lower performances. Employing DFB-lasers in direct modulation and coherent detection schemes has been shown [19]. When DFB-lasers are manufactured, they exhibit random nominal λs with statistical Gaussian distribution over few nanometers range [17]; but this range can be extended to a larger optical band, of e.g. 10 to 40 nm, merely by merging lasers with different nominal λs in a number of sub-bands and, hereafter, the random λs gathered in a full optical band have approximately a new statistical uniform distribution [20]. When the TLs sources at the ONU, with very limited thermal tunability used to allocate λs avoiding collisions, have random nominal λs distributed in a band, we apply a statistical UDWDM allocation approach [20]. Hence, to efficiently distribute the spectrum in activation and also during operation, dynamic wavelength allocation (DWA) algorithms using the limited thermal tunability schemes were proposed [20,21].  In this work we present an experimental demonstration of an UDWDM-PON, by furnishing a WTTU approach and also introducing the proposed architectures for the ONUs at users’ premises and for the OLT at the CO. DWA schemes in activation and also in operation processes are proposed to estimate the needed optical BWs. Afterwards, a trial setup is introduced to show a network system implementation, including ONU wavelength assignment, activation and also operation, which are all managed by a medium access control (MAC) in the OLT.  This article is organized in the following sections: Section 2 presents the network architectures and DWA algorithms. In Section 3 the trial setup is introduced, exposing the physical system characteristics, the managing and control functions for activation and the wavelength assignment. In Section 4 the experimental results are reported, and, finally, in Section 5 the conclusions are discussed.  

 

2. UDWDM-PON ARCHITECTURES In the proposed architectures, the key technology will be low-cost coherent transceivers. At the ONU side, employing TLs based on cheap DFB-lasers, and at the CO part, the OLT implementation will reproduce the same ONU design for each customer. The ODN is built with optical fibers and splitters, coexisting with legacy systems.  
A. ONU architectures  The ONU implementation is based on coherent detection, using two TLs, one as LO for reception and another as transmitter, with direct or external modulation and two different λs in separated down and up bands to avoid RB crosstalk (Fig. 1). The TLs are of low-cost DFB type with limited tunability adjusted by heating or cooling and with non-preselected nominal λs, which have statistical uniform distribution in the PON optical band. DFB-lasers have a constant linear variation of λ with temperature of about 0.1 nm/°C highly reproducible between 14 to 55 °C [21], covering 3.2 nm, thus tuning up to 64 channels of 6.25 GHz, within the 30 nm of C-band. The temperature range is easily reached with a thermo-electric cooler (TEC) or Peltier.  A particular case, that simplifies the λ control, is having the ONU TLs paired from the factory, with a fixed λ difference between their nominal λs. When a TL moves the tuning, the other paired TL moves its λ in the same way; this will provide an easy activation process, which will be profited in the trial setup. Several types of integrated dual-wavelength semiconductor tunable lasers have been reported: DFB [22,23], VCSEL [24], Fabry-Pérot [25] and, besides, a direct-modulated dual-wavelength laser [26], realized by coupling two DFBs, demonstrating their feasibility in integrated photonics.  Direct DFB phase modulation in Fig. 1 is obtained by driving the laser with the high-pass equalized data, taking advantage of the laser chirp. Directly phase modulated DFB lasers transmitting from 1.25 to 10 Gb/s, with modulations formats spanning from DPSK to 8-(A) PSK, have been reported with simplified coherent detection [16,19]. The receiver optical front-end implements 3x3 fused couplers with 6 photodiodes (PDs) for coherent homodyne detection [10], and two extra options for heterodyne detection:  3x3 coupler with 3 PDs or 2x2 coupler with 4 PDs [27]. All the receivers feature polarization-independent coherent detection. These coherent transceiver architectures are simple and low-cost, avoiding external Mach Zehnder (MZ) modulators, tunable lasers and optical 90° hybrids. When using coherent homodyne detection with a bit rate of 1.25 Gb/s, the channel spacing was taken to be 6.25 GHz [28,29], allocated in C-band. A guard band of about 3 GHz is left, since the minimum wavelength separation between two adjacent channels is 3 GHz [28].  Furthermore, recently, to flexibly adapt to different bit rates with complexity-reduced coherent transceivers, transmissions up to 10 Gb/s by direct amplitude-and-phase modulation of dual electro-absorption modulated laser (EML), have been shown [15,16], with different modulation formats and BWs. Alternatively, a DPSK coherent heterodyne detection at the ONU can be implemented with two photodiodes (PDs), and the up DPSK modulation at the ONU can be realized by injecting data to a simple reflective semiconductor optical amplifier (RSOA), transmitting at 1.25 Gb/s and with 12.5 GHz total BW [11,30].  
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disconnects its TX, also with the ‘DPC’ function. The down and up channels are liberated and free for future ONUs connections. 3) ONU channel reallocation process: because of a fall-down channel, interference between channels or of flexible BW reassignment needs, the OLT can manage a channel to be moved to another λ. The MAC indicates the ONU to change the channel; then, the ONU and the OLT stop the ‘AFC’ function and disconnect their TXs using the ‘DPC’ function. The ONU-TX DFB reduces its power in 18 dB; afterwards, the ONU LO sweeps the band searching for a new available OLT-carrier with the ‘BM’ function and finally the ONU-LO is tuned to the OLT-carrier with the ‘Gtλ’ function; then, the ‘AFC’ function is activated with the ONU-LO tracking the new down carrier. Once the down channel is established, the ONU-TX in low power transmission jumps to the 50 GHz paired channel using the ‘Gtλ’ function; afterwards, the ONU-TX increases its power to the operation transmission conditions using the ‘DPC’ function; lastly, the OLT-LO detects the ONU-TX with the ‘BM’ function and activates the ‘AFC’ tracking the upstream carrier. Finally, both sides data transmissions are activated.   

 Fig. 4. ONU channel initialization-activation basic flow-diagram. 
4. EXPERIMENTAL RESULTS The activation process has been tested with 3 active channels at 1.25 Gb/s which are neighbors and each one is centered in the middle of the 6.25 GHz channel slot with a frequency drift better than ±50 MHz because of the AFC control. Fig. 5 presents the spectrum at the ONU side obtained from the ‘BM’ functionality (with 1.25 GHz resolution OSA). The OLT-carrier provided by the OLT for the new incoming ONU to allocate the RX-LO is the highest level channel on the left. Three consecutive operating down channels are also present into the 50 GHz sub-band.   Once the RX-LO is allocated to the OLT-carrier, the ONU activates the ONU-TX at the 50 GHz paired channel; after, the OLT-RX detects the ONU-TX carrier and allocates the OLT-LO; then, the channels are ready for data activation, first for downstream and later for upstream.   

 Fig. 5. Optical spectrum at ONU side with the down OLT-carrier (first on the left), and 3 active channels with downstream data (right).  Time measurements of the channel activation focused on frequency accuracy and time stabilization of the frequency allocation have been done with a preliminary prototype as proof of concept. The whole LO activation process always takes less than 50 s as reported. The activation process has been divided in several steps which are: 1) first of all, the “software initialization”, which takes about 4 s; 2) next, the “LO calibration”, taking about 5.2 s, where the LO laser is turned on at 30 °C; 3) then, follows “the initializing wavelength”, which allocates the LO at the center of the 50 GHz grid and takes 5.6 s;  4) after, “scanning optical band”, which takes about 12.2 s, searching for the OLT-carrier; 5) then, comes the “allocation user wavelength”, which fixes the LO over the incoming OLT-carrier, which takes an average of 15 s; 6) and finally, the “automatic frequency control” ‘AFC’ catches the OLT-carrier in about 600 ms and the LO keeps tracking the downstream signal. The LO activation average time has been tested to be about 42 s, while the maximum is 46 s. The activation process has been verified by temperature tuning with the ‘Gtλ’ function and depends on the wavelength stabilization time to the frequency target into the 50 GHz grid. Some of the steps can be improved by stressing the hardware with the techniques described in reference [33] about DFB laser reallocation. Once the LO is allocated, the upstream TX will be activated. Considering that both DFB lasers are paired, the ONU-TX activation follows next steps: 1) first of all, during the LO activation, the TX is tuned at LO + 50 GHz with low power not interfering other upstream channels, so this time is yet considered into the LO activation; 2) with the dynamic power control ‘DPC’ function, the TX laser increases the current typically 60 mA to reach 0 dBm output power, while keeping the same wavelength. The ‘DPC’ function works increasing the bias current of the DFB while simultaneously cooling the DFB through the Peltier cell in several steps with a final frequency drift less than 1.5 GHz. ‘DPC’ average time is of 40 s and the maximum is 48 s for the channels in the shorter wavelength range; 3) finally, the ‘AFC’ control at the OLT side takes another 600 ms to catch and tracking the upstream channel. Hence, the total time for activation is under 100 s for this first prototype, and this times are in study for future improvement. Once ‘AFC’ functions are running at both sides, the LOs are tracking the incoming signals with accuracy better than 50 MHz and data demodulation is done with the performance presented in Fig. 7. Fig. 6 illustrates the spectrum, at a photodiode output, of one OLT-carrier allocated between two downstream operating channels separated 12.5 GHz. Spectrum in Fig. 6 (a) is measured at a photodiode output with an ESA instrument, while the same spectrum measured with our ‘BM’ function, which works as a HR-OSA, is shown in Fig. 6 (b).   
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(a)     

(b)  Fig. 6. Comparative of the heterodyned electrical spectra at ONU side: a) with external instrument and LO at 2.5 GHz left from the first channel, b) with the implemented HR-OSA in the ‘BM’ function. Sensitivity in terms of bit error rate (BER) vs. received power for 3-photodiodes heterodyne receiver, 4-photodiodes heterodyne receiver, and 6-photodiodes homodyne polarization-independent receiver at 1.25 Gb/s, with 25 km single mode fiber spool and an optical attenuator emulating the split losses was evaluated, as depicted in Fig. 7 . With a FEC threshold of BER = 10-3, the achieved sensitivities were -49.7 and -49 dBm for the heterodyne receivers with off-line post-processing [27], and -46 dBm for the homodyne receiver realized with real-time DSP implemented in a commercial FPGA [32]. 

 Fig. 7. Receiver sensitivity for polarization-independent coherent heterodyne and homodyne detection with1.25 Gb/s data rate.  The differences between homodyne and heterodyne receiver sensitivities mainly obey the different insertion losses of the optical front-end architectures, as well as the impairments like clock jitter and also synchronization mismatch, that become more apparent in a real-time DSP operation. When crossing the neighbor channel by using the ‘DPC’ function, with the switching channel power attenuated 18 dB, the SNR guarantees a BER penalty lower than 1 dB [34]. In fast activation process without attenuating the power of the switching channel, the effective crossing time takes less than 700 ns, producing a burst error of 875 bits at 1.25 Gb/s transmission, which can be assumed by buffering [33]. The obtained electrical spectra of two adjacent users at Rb = 1.25 Gb/s for homodyne and heterodyne detection is shown in Fig 8. The channel separation for homodyne detection is of 6.25 GHz, as illustrated in Fig. 8 (a). When using heterodyne reception, the optical carriers between two users are separated 12.5 GHz, and the obtained electrical spectrum after heterodyning with an intermediate frequency (IF) of 2.5 GHz, is shown in Fig 8 (b). As the LO at 0 GHz frequency reference has been allocated for heterodyne demodulation, it is at 2.5 GHz from the first user to be demodulated and at 10GHz from the 

closer neighbor and will be at 15 GHz from the neighbor in the other side. The homodyne receiver is more spectrally efficient than the low cost and off-the-self heterodyne one, but at the price of using ADCs.  

(a)  

(b)  Fig. 8. ONU electrical spectra after photo-detection of two users at 1.25 Gb/s: (a) separated by 6.25 GHz for homodyne detection; (b) separated by 12.5 GHz for heterodyne detection, where the intermediate frequency (IF) is 2xRb (2.5 GHz). 
5. CONCLUSION A wavelength-to-the-user UDWDM-PON with flexible efficient channel management has been proposed and tested for practical deployment. The system is based on low-cost coherent DFB transceivers with limited tunability, avoiding optical filters and providing high sensitivity. The splitting factor in the ODN can go from 32 up to 256. ONU and OLT architectures have been introduced with random DFB laser wavelengths with a statistical approach and channel assignment by heuristic DWA algorithms. An experimental setup has been realized for ONU activation and operation processes. The basic optical band, organized in 8 down/up sub-bands of 50 GHz serving 32 users of 6.25 GHz, can be scaled up to 256 ONUs with non-preselected wavelengths. For activation, the OLT provides a wavelength carrier to user’s DFB LO to get connection; and, next, a paired DFB TX is blindly assigned. Experimental results show that high sensitivity and dense spectral allocation can be achieved.  
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