{: SCISPACE

formerly Typeset

@ Open access + Book Chapter « DOI:10.1007/978-3-540-68143-4_7
Flexible Conversations Using Social Commitments and a Performatives Hierarchy
— Source link (4

Rob Kremer, Roberto A. Flores

Institutions: University of Calgary, Christopher Newport University

Published on: 01 Sep 2006 - Advances in Computers (Springer, Berlin, Heidelberg)

Topics: Performative utterance

Related papers:

« Using a performative subsumption lattice to support commitment-based conversations
« Semantics and pragmatics for agent communication

» Social and Individual Commitment

» Social network semantics for agent communication -- extended abstract

» Modelling Interactions via Commitments and Expectations

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/flexible-conversations-using-social-commitments-and-a-
56qc7dlvix

https://typeset.io/
https://www.doi.org/10.1007/978-3-540-68143-4_7
https://typeset.io/papers/flexible-conversations-using-social-commitments-and-a-56qc7dlvlx
https://typeset.io/authors/rob-kremer-27vurhhc69
https://typeset.io/authors/roberto-a-flores-3u4ug23lae
https://typeset.io/institutions/university-of-calgary-3rbzln32
https://typeset.io/institutions/christopher-newport-university-1a5tjw7k
https://typeset.io/journals/advances-in-computers-297mwetb
https://typeset.io/topics/performative-utterance-15cbzjcy
https://typeset.io/papers/using-a-performative-subsumption-lattice-to-support-5am6muvi4e
https://typeset.io/papers/semantics-and-pragmatics-for-agent-communication-29wly54sv3
https://typeset.io/papers/social-and-individual-commitment-fiilyy5tsj
https://typeset.io/papers/social-network-semantics-for-agent-communication-extended-5gg7kwjvmq
https://typeset.io/papers/modelling-interactions-via-commitments-and-expectations-6l0oioy0wq
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/flexible-conversations-using-social-commitments-and-a-56qc7dlvlx
https://twitter.com/intent/tweet?text=Flexible%20Conversations%20Using%20Social%20Commitments%20and%20a%20Performatives%20Hierarchy&url=https://typeset.io/papers/flexible-conversations-using-social-commitments-and-a-56qc7dlvlx
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/flexible-conversations-using-social-commitments-and-a-56qc7dlvlx
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/flexible-conversations-using-social-commitments-and-a-56qc7dlvlx
https://typeset.io/papers/flexible-conversations-using-social-commitments-and-a-56qc7dlvlx

Flexible Conversations Using Social
Commitments and a Performatives Hierarchy

Rob Kremer! and Roberto A. Flores?

! University of Calgary,
Department of Computer Science
Calgary, AB T2N 1N4, Canada
kremer@cpsc.ucalgary.ca
2 Christopher Newport University,
Department of Physics, Computer Science & Engineering,
Newport News, VA 23606 USA
flores@pcs.cnu.edu

Abstract. In this research, we re-arrange FIPA’s ACL performatives
to form a subsumption lattice (ontology) and apply a theory of social
commitments to achieve a simplified and observable model of agent
behaviour. Using this model, we have implemented agent interaction
through social commitments (or obligations) based solely on observation
of messages passed between the agents (such observation is supported by
the cooperation domain mechanism in our agent infrastructure system).
Moreover, because the performatives are in a subsumption lattice, it is
relatively easy for an observer to infer social commitment relationships
even if the observer does not understand the details of messages or even
the exact performatives used (so long as the observer has access to the
performatives ontology).

Our social commitment model can be used in agent implementation
to simplify the specification and observation of agent behaviour even if
the agents themselves are not implemented using social commitments.
This is accomplished through the use of commitment operators attached
to the performatives (as policies) in the subsumption lattice.

In this work, we show how FIPA’s performatives can be interpreted
in a theory of social commitment to allow observable social behaviour
and conformance to social norms.

1 Introduction

The FIPA standard SC00061G [§] has defined inter-agent messages in the enve-
lope/letter pattern, where the “envelope” contains several standard fields which
must be understood by all agents in the community, and the “letter” part may
or may not be understood by other agents. FIPA further defines the contents of
several envelope fields such as performative (the type of the communicative act),
sender, receiver, content, ontology, reply-with, in-reply-to, reply-by and others.
We focus primarily on the performative field as the main means by which
agents can choose their behaviour in reaction to a particular message.

F. Dignum et al. (Eds.): AC 2005, LNAI 3859, pp. 93-[I08] 2006.
© Springer-Verlag Berlin Heidelberg 2006

94 R. Kremer and R.A. Flores

Table 1. FIPA performatives

Performative Description

accept-proposal |accepting a previous proposal

agree agreeing to perform some action

cancel inform another agent that it no longer need perform some action
call-for-proposal |call for proposals to perform an action

confirm informs a given proposition is true

disconfirm informs a given proposition is false

failure an action was attempted but failed

inform a given proposition is true

inform-if inform whether a proposition is true

inform-ref inform the object which corresponds to a descriptor
not-understood |did not understand what the receiver just did

propagate pass a message on

propose submit a proposal to perform an action

proxy pass on an embedded message

query-if asking whether a proposition is true

query-ref asking for the object referred to

refuse refusing to perform an action

reject-proposal [rejecting a proposal during negotiation

request request to perform some action

request-when request to perform an action when a proposition becomes true
request-whenever|request to perform an action each time proposition becomes true
subscribe request to notify the value of a ref. whenever the object changes

Furthermore, we only focus on the behaviour relative to communication acts
(speech acts) in conversation and do not delve into physical acts or domain-
specific acts.

1.1 Performatives

The FIPA standard SC00037J [9] defines 22 “Communicative Act” names as
values for the performative field (see Table [I]).

In implementing our agent infrastructure, CASA [I3], we have found that the
FIPA performatives were very useful in that they include communicative acts
that we would not have initially thought of ourselves. Unfortunately, it became
obvious that they do not form a computationally useful set for our agents to
decide on an action when they receive a message. When our agents used FIPA’s
flat classification, they had to switch behaviour in an ad-hoc manner for (almost)
each of the 22 performatives. Our agents needed to perform a list of actions for
each performative, and these actions were often duplicated among several of the
performative behaviours. This lead to a complex and error-prone specification.
Furthermore, we had to extend the list of performatives, and each of our agents
had to constantly update the list.

We found that if we arrange the same performatives in a subsumption lattice
(see Figure[Il), we can succinctly glean the semantic information we need to clas-

Flexible Conversations Using Social Commitments 95

N

|reply propose discharge mat&e\reply| |propose d|scharge| |nack|

|inforryﬂref||query-if||}\equest-when| |p%gose|
[|

|agree||notlfy"accept-proposal||negative-reply|

|query-ref||ca|l-for-participati0n| |request-whenever|

|timeout| |fai|ure| |not-understood"reject—proposal||refuse|

Fig. 1. The CASA performative subsumption lattice

sify the message and decide on a course of action. Because certain performatives
are subtypes of others, we need only specify individual actions once for the parent
performative type, and those actions are “inherited” by the child performative
types. Thus, we eliminate the redundancies and simplify the specification sig-
nificantly. We also eliminate the need for every agent to always be updated on
the semantics of every extension to the performatives lattice: they can always
interpret a new type of performative in terms of its parent type. (And for an
agent to ask for the parentage of an unknown performative is a trivial operation
which is supported by our infrastructure.)

1.2 The CASA Architecture

The CASA architecture [I3] is an experimental infrastructure on which agents
can be implemented. CASA agents work by exchanging messages (via TCP /IP or
by local method calls) which consist of key/value pairs. The keys in the messages
are the various FIPA message field names, but may also include other, extended
keys, as appropriate.

The CASA architecture is a general purpose agent agent environment, but
defines several specialized agents (see Figure 2). CASA defines computational
areas (usually a single computer), and each area has exactly one Local Area
Coordinator (LAC) agent. A LAC agent is a registry of agents for its area, and
is responsible to act as a “white pages directory” for its area, to run agents on
behalf of agents in its or other areas, as well as to perform several other duties.
Another important type of agent is a Cooperation Domain (CD), which acts
like a “meeting room” for agents. Agents may join and then send messages to
a CD which, by default, re-broadcasts the message to all of its members. CDs
are particularly useful for third-party observers of agent conversations. These

96 R. Kremer and R.A. Flores

Area (Computer) Area (Computer)
Local Area Other Cooperation Local Area
Coordinator Domains Coordinator
(LAC) (LAC)
Cooperation
Domain (CD)
Agent C

Agent A Agent B

Cooperation
Domain Other Agents
Observer Agent

Fig. 2. The CASA architecture

observer agents can analyze agent behaviour on the behalf of the larger society of
agents for various purposes such as analysis, possible sanctioning of rogue agents
[I1UT6], or merely reporting unacceptable, malicious, or erroneous behaviour.

CASA is particularly concerned with agent behaviour and the observability of
agents’ behaviour. Unfortunately, the semantics behind FIPA’s model is based
on the BDI (Beliefs, Desired, Intensions) model, which has long been criticized
as requiring “omniscient” knowledge of the internal workings of all agents in the
environment [I7]. Since the inner workings of agents is not typically available to
an outside observer, the observer cannot predict expected behaviour of agents.
Therefore, an observer has no formal bases on which to judge agent behaviour
as “acceptable”, “harmful”, “malicious”, “useful”, etc. to the society of agents.

An alternate agent model is the commitment-based model [I]. Communicative
acts between agents generate social commitments, which form a social “contract”
among the agents. Assuming the communicative acts can be observed (as CASA
is careful to support), an outside observer can infer social commitments among
the observed agents. Our model is formally specified [3J4/5] and forms a clean
formal basis on which an observer can decide whether or not a particular agent is
fulfilling its social commitments, and therefore has a sound foundation on which
to judge agents’ behaviour.

2 Messages and Performatives

As stated in the introduction, we wish to simplify the specification of possible
agent behaviour. As a step in that direction, we arrange our communicative acts,
which we base on the FIPA standard, in a subsumption lattice of performatives
as described in Figure [Il In the lattice, every child performative inherits the
attributes of all of its ancestor performatives. In particular, we can associate

Flexible Conversations Using Social Commitments 97

policies with any performative, which will be inherited by all children of that
performative. This is described in detail in Section Bl

Note that the performatives in Figure [l are actually a superset of the perfor-
matives defined by FIPA. Some of the new performatives are classes of performa-
tive types which do not add any real semantic information to their children, but
serve to enable our agents (and their observers) to more easily classify performa-
tives into broader categories; thus allowing for more “superficial” specification
where appropriate. For example, an observer, Carol, may note that an agent,
Bob, sent a request to agent Alice, and that Alice replied with a failure perfor-
mative. If Carol is tracking only social commitments, then she would not care
if Alice had replied with a failure, a non-understood, a reject-proposal, a refuse,
or some other descendent of nack and reply; in any of these cases, there is no
social commitment entailed. Indeed, Carol need not understand the performa-
tive in the reply send by Alice, as long as she is aware (by looking it up in the
appropriate ontology) that the performative in Alice’s reply is subsumed by a
nack (negative acknowledge).

Other extensions to the FIPA performatives include the addition of an ack
(acknowledge) performative, which, in CASA, serves as an optional top-level
method of checking receipt of messages. The use of ack will be be further ex-
plained in the light of social commitments in Section Bl

3 Commitments

We model agent communication as generating (or deleting) social commitments,
thus allowing observation of the state of social commitments within a society of
agents. More specifically, the performatives in agent communication acts (mes-
sages), are translated (by a set of polices) to a set of social commitment operators,
which either add or delete a specific class of social commitments. We model a
social commitment as the promise by a debtor agent to a creditor agent(s) to do
some action:

(debtor, creditor, action)

and we model a social commitment operator as either an add or delete of a
commitment (refer to [7] for a detailed view of the life cycle of commitments):

(add|delete, social Commitment)

We have defined several polices (eg: propose, accept, reject, counter, and in-
form) [B] which can be applied to an agent’s outgoing and incoming messages
and set of social commitment operators:

apply: message x Ppolicy x ontology — Psocial CommitmentOperator

Here, we mean that if we observe an agent’s incoming or outgoing message, we
can interpret it in the context of the agent’s (or the society of agent’s) policies
and ontology. (The ontology is necessary to provide a semantics for the perfor-
matives.) Of course, not all the policies are applicable to a particular message;

98 R. Kremer and R.A. Flores

Table 2. An informal description of the conversation policies as defined by Flores and
Kremer. (The names of some of the policies have changed since the original work).

Policy Description

P-inform commits the addressee to acknowledge

P-ack releases informed agents of the commitment to acknowledge

P-request commits the proposed agents to reply

P-counteroffer |commits addressees to reply

P-reply releases proposed agents of the commitment to reply and releases coun-
teroffered agents of the commitment to reply

P-agree an acceptance realizes the shared uptake of proposed/counteroffered
commitments

P-done releases accepted agents of the commitment earlier agree

a matching function (see Section [.1]) is used to choose the subset of applicable
policies. The applicable polices are then executed to produce the set of social
commitment operators.

Furthermore, we can commit this set of social commitment operators to an
existing set of social commitments:

commit: PsocialCommitment x Psocial CommitmentOperator
— Psocial Commitment

Thus, it is easy to build up (or reduce) a set of social commitments based
on observed messages. Note that this is just as easy for an individual agent to
track its own social commitments (as in our implementation) or for a 3rd party
observer to track all of the social commitments of a society of agents (as in
Heard’s study of sanctioning of rogue agents [I1]).

Table [2] informally describes some of the fundamental polices we have de-
fined so far. The policies are meant to be used by a community of agents as
a description of “social norms”. The policies are used to map our FIPA-based
performatives to social commitments.

4 Using Social Commitments with Performatives

As already alluded to, we effectively use policies to annotate the performative
lattice with social commitment operators to form expectations about agent be-
haviour (the “normative” behaviour of agents in a society of agents). Figure
illustrates some of the polices by describing the relationship between (part
of) the performative lattice and commitments through policies and commitment
operators. The performative lattice on the left, and the curved arrows originat-
ing on the performatives represent the policies that indicate the associated social
commitment operators (center right column). The arrows originating in the com-
mitment operators illustrate the type of the commitments’ third parameter (an
action) and terminate on the action subtype of the action. Since these particular
policies are about conversational acts, all of these arrows (except the last two)
terminate on subtypes of communication-act.

Flexible Conversations Using Social Commitments 99

Performatives Policies Commitment Operators Social Commitments

Performative P-inform Commitment-operator
2 Operator: add action :I
A

Commitment: (receiver,sender,ack)

)

P-ack Commitment-operator P
251 Operator: delete 6 |\ communication-act
Commitment: (sender,receiver,ack) i 7'y
h
Inform |/| Ack ;

Commitment-operator
Operator: add
Commitment: (reciever,sender,reply)

/ P-reply Commitment-operator }

Operator: delete ~ g-----~,
RequeSt I- | Reply Commitment: (receiver,sender,regly)

Agree Commitment-operator
P-agree Operator: add
Commitment: (receiver,sender,content)
.- Unspecified action I—

Confirm
Commitment-operator
Operator: delete

P-confirm Commitment: (receiver,sender,content)

L ;

Fig. 3. Part of the CASA performative subsumption lattice together with their rela-
tionship via policies and performative operators to social commitments. The policies
are labelled with the policy names from Table

The curved arrows between the performatives and the social commitment op-
erators in Figure [represent some of the policies described in [5] and informally
described in Table[2l For example, the P-inform policy associated with the inform
perforative would read “if Bob receives a message with an inform performative
from Alice, then there exists a social commitment for Bob to send an acknowl-
edgement to Alice (Isc: socialCommitment, x: ack e sc = (Bob, Alice, x))”.

The reading of the request performative’s P-request policy is a bit more com-
plex. Because request is a subtype of inform, not only do we have to apply
the P-request policy, but also the P-inform policy as well (and likewise up
the lattice for every ancestor performative). So we would read the P-request
policy as “if Bob receives a message with a request performative from Alice,
then there exists a social commitment for Bob to send an acknowledgement
to Alice and another social commitment for Bob to send a reply to Alice,
(3scy, sca : social Commitment, x1: ack, xo: reply e sc; = (Bob, Alice, x1) A scg =
(Bob, Alice, 23))”.

This may seem somewhat redundant since a single conversational act (re-
quest) makes two (very similar) social commitments. But it makes sense and
yields needed flexibility. If Alice were requesting Bob attend a meeting, Bob
might not have his calendar with him, so might not be able to reply to Alice,
but could acknowledge that he had received the request (“I’ll check my calen-
dar”). Alice would then know that Bob had received the request and the social
commitment to acknowledge would be deleted (by policy P-ack), but the social
commitment for Bob to reply to Alice would remain. Later, Bob would reply
(affirmatively [agree] or negatively [by some reply that is subsumed by nack]),

100 R. Kremer and R.A. Flores

and that would remove the second social commitment (by policy P-reply). And
that would end the conversation because there would exist no more conversa-
tional social commitments between the two. (Well, not quite: if Bob had replied
affirmatively [using an agree performative], then Bob and Alice would uptake
the social commitments for Bob to attend the meeting and to tell Alice about it
[by policy P-agree] — but we will get into those details later in Section [Gl)

On the other hand, if Bob did have his calendar with him when Alice requested
he attend the meeting, then does Bob have to send an acknowledgement to Alice,
and then send a reply to Alice? That wouldn’t be very efficient. Fortunately, Bob
doesn’t have to respond twice: If Bob immediately sends a reply to Alice, then
the social commitment to reply will be removed (by policy P-reply), and so will
the social commitment to acknowledge. Why? Because, by virtue of reply being
subsumed by ack, the reply will generate two commitment operators

ddel Reply, del Ack: social CommitmentOperator e
dr:reply, a: ack e
del Reply = (delete, (Bob, Alice,r)) N del Ack = (delete, (Bob, Alice, a))

which will remove both of the commitments set up by the original request.

4.1 Implementation with Social Commitments

Thus, agents can be implemented by dealing with incoming messages by merely
applying all the policies associated with the performative in the message and
also those policies associated with all of the ancestors of the performatives in
the message. These polices will either add or delete social commitments. It is
important to note that this is also exactly what an observer does as well: The
social commitments are in the context of the entire community of agents, so an
observer’s record of social commitments should always be consistent with (be a
superset of) any observed agent’s record of social commitments.

Agents do not have to be implemented using social commitments (as may
have been implied by the previous paragraph). Observers can still use social
commitments to formulate a model of agent behaviour regardless of how the
agent is implemented. The policies merely form a codification of social norms. An
agent that is not implemented using social commitments (who is well behaved)
would still be regarded as not breaking any commitments by an observer using
reasonable social commitment policies (like the ones in Table [2]).

CASA implements its agents as either social commitment agents as listed
above, or as reactive agents. Both kinds of agents use the same set of named
policies, but the difference is that the policy implementation is different. When
a social commitment-based agent “sees” an incoming or outgoing message, it
merely applies it’s policies to add or delete social commitments; later (during
otherwise idle time) it will attempt to discharge any social commitments (for
which it is the debtor) by executing them when it can. On the other hand, reac-
tive agents will respond to a message immediately (without “thinking”) when-
ever it “sees” an incoming message. Reactive agents do nothing in idle time, do
nothing with outgoing messages, and don’t keep a record of social commitments.

Flexible Conversations Using Social Commitments 101

Both types of agents follow the same normative protocols, but the sequence of
messages is usually quite different. For example, social commitment agents may
easily and naturally choose to prioritize their tasks; reactive agents can’t handle
prioritized tasks easily.

4.2 Formal Model

It only remains to more formally describe how to apply social commitment oper-
ators to an agent’s record of social commitments. If we assume an agent’s record
of social commitments is a set, SC, the operator op is applied as follows:

Vop: socialCommitmentOperator, sc: socialCommitmente
op = (add, s¢) — SC' = SC U sc A
op = (delete, sc) — SC' = SC\match(sc, SC)

(In the above, we use SC’ to represent the value of SC after the operation
has taken place, dla Z [2].) That is, an add operator just inserts a new social
commitment into the record, and a delete operator just removes any matching
social commitments from the record. The match function takes a commitment
and a set of commitments and returns a subset of the second argument as follows:

Vsc : socialCommitment, SC: Psocial Commitment o match(sc,SC) =
{i € SC|sc.debtor = i.debtor A sc.creditor = i.creditor N
typeO f (sc.action) C typeO f (i.action)}

The reader may have noticed that there is no order specified on the ap-
plication of several operators in response to a message, and, as a result, it is
therefore possible that a delete operation may not remove any social commit-
ments at all. In fact, this could be the case in Alice and Bob’s meeting. If Bob
were to reply to Alice (without first sending an acknowledgement) and the ob-
server first applied the (delete,(Bob,Alice,reply)) operator, it would remove both
the (Bob,Alice,reply) and the (Bob,Alice,ack) social commitments from the so-
cial commitments record. Then, when the observer applied the second operator,
(delete,(Bob,Alice,ack)), there would be no change to the social commitments
record. Our choice is not to worry about such null deletions, but other implemen-
tations may wish to avoid such empty applications either by applying the least
specific deletions first if there is a subsumption relationship among operators,
or by changing the match() function to only match on the most specific social
commitment in the argument set.

Space limitations prohibit a detailed account of the formalization here, but a
detailed formalization may be found in [3].

5 An Example

As a more formal example, we repeat the example of Bob and Alice’s meeting
using the more formal framework and tracking the conversation through to the
end (signaled by there being no more social commitments left from the conver-
sation). Figure M shows an interaction diagram of the conversation: Alice first

102 R. Kremer and R.A. Flores

m,. Can you
attend this
meeting?

[mz Sure... | Bob I

(performative: request, content: attend(Bob,x)) \

(performative: agree, content: attend(Bob,x))

(performative: ack, content: attend(Bob,x))

ms: (nod) (performative: inform, content: attend(Bob,x)) !

(performative: ack, content: attend(Bob,x))

(performative: confirm, content: attend(Bob,x))

\ (performative: ack, content: attend(Bob,x))
mg. Thanks
for coming.

Fig. 4. Alice and Bob’s conversation about a meeting

LL 9

asks Bob to attend a meeting, I by sending a message to Bob with a request
performative and a contents describing the request, (attend(Bob,x)). Bob im-
mediately confirms his acceptance to attend the meeting, by sending a message
back to Alice with an agree performative and the same descriptive content. Alice
acknowledges by sending an ack message back to Bob.

Later, Bob sends another message to Alice, informing him that the predicate,
attend(Bob, x), is true, that he is currently attending the meeting. Alice acknowl-
edges. Alice then responds by sending a message to Bob with a confirm-complete
performative, and the same contents. Bob acknowledges.

Does Alice and Bob’s conversation conform to the social norms implied by the
policies? Figure [G] describes the conversation in terms of the messages, policies,
social commitment operators, and the constantly changing set of social com-
mitments held by both Bob and Alice, and that would be held by an observer
listening to the conversation.

Each row in Figure[H represents the same message passing between the conver-
sational participants as the corresponding cartoon balloons in Figure[d In row
m;y, Alice sends a message with a request performative to Bob and containing the
content predicate attend(Bob, z). Then Bob, Alice, and the observer can look up
request in the policies in Figure[3] and see that there are two applicable policies
(by searching up the lattice from the request node) representing policy P-inform
and P-propose. To apply these policies, we need only apply the operators, which
are (add, (receiver, sender, reply)) and (add, (receiver, sender, ack)). So we add
these two social commitments to our set of social commitments.

Note that we have a slight notational difficulty here. We need to contextualize
the reply and the ack social commitments with what to reply /acknoweldge to. In

! The meeting is normally described by an expression, but we omit the details here
for the sake of brevity.

Flexible Conversations Using Social Commitments 103

Message
d performative | sender | recr | content Policy Operator Social Commitments
m, request Alice Bob attend(P-request | (add,(Bob, Alice, reply(m,))) (Bob, Alice, reply(m;,))
Bob, x) [P-inform (add,(Bob, Alice, ack(m,))) (Bob, Alice, ack(m,))
m, agree Bob Alice | attend(P-reply (delete,(Bob, Alice, reply(m,))) B
Bob, x) | p-ack (delete,(Bob, Alice, ack(m,))) B -
P-agree (add,(Bob, Alice, (Bob, Alice,
attend(Bob,x))) attend(Bob,x))
(add,(Bob, Alice, p-d(Bob,x))) (Bob, Alice,p-d(Bob,x))
P-inform (add, (Alice, Bob, ack(m,))) (Alice, Bob, ack(m,))
m, ack Alice Bob attend((Bob, Alice,
Bob, x) attend(Bob,x))

(Bob, Alice,p-d(Bob,x))

P-ack (delete, (Alice, Bob, ack(m,))) (Alice Bobrackimy]]

my propose- Bob Alice | attend((Bob, Alice,
discharge Bob, x) attend(Bob,x
P-prop-dis | (delete,(Bob,Alice,p-d(Bob,x)) B‘? ’ X,
(add,(Alice,Bob,r-p-d(Bob,x)) (Alice,Bob,r-p-d(Bob,x)
P-inform (add,(Alice, Bob, ack(m,))) (Alice, Bob, ack(m,))
my ack Alice Bob attend((Bob, Alice,
Bob, x) attend(Bob,x))
(Alice,Bob,r-p-d(Bob,x)
P-ack (delete, (Alice, Bob, ack(m,))) (Alice 3
mg confirm Alice Bob attend(P-confirm (delete,(Bob, Alice, Alice
Bob, x) attend(Bob,x))
P-reply-p-d | (delete, (Alice,Bob,r-p-d(Bob,x)) P B
P-inform (add,(Bob, Alice, ack(mg))) (Bob, Alice, ack(mg))
m, | ack Bob Alice | attend(| P-ack (delete, (Bob, Alice, ack(mg))) (Bob, Alicersek(m)__
Bob, x)

Fig. 5. Alice and Bob’s conversation about a meeting

the software, this is just done by attaching a copy of the message, which allows
us to take advantage of FIPA’s reply-with field and unambiguously mark the mes-
sage as specifically in the context of the original inform /request message. However,
here, we use the notation “reply(message;)” to succinctly show the same thing.

The mo row of Figure Bl shows Bob immediately agreeing to go to the meet-
ing. (He could have acknowledged receipt of the message first, which would have
deleted the (Bob, Alice, ack(m1)) commitment.) He replied with an agree perfor-
mative, which isn’t listed in Figure B but is a subtype of affirmative-reply (see
Figure [1)). Looking up the policies for affirmative-reply in Figure B shows that
four policies are applicable (representing policies P-reply, P-ack, P-agree, and
P-inform). These four policies can be applied in any order, but all sequences will
yield the same end result (although intermediate results may differ). Applying
these policies in the order given, (delete, (Bob, Alice, reply(m1))) will delete both
social commitments (Bob, Alice, reply(my)) and (Bob, Alice, ack(my)).

(delete, (Bob, Alice, ack(m;))) will find nothing to delete (because the “target”
has just been deleted), but this is fine. The (add, (Bob, Alice, attend(Bob, x))) op-
erator is parameterized with the action predicate in the contents of the mo mes-
sage, and adds the (Bob, Alice, attend(Bob, x)) social commitment to the set of
social commitments. Finally, the (add, (Alice, Bob, ack(mz))) operator adds the
required commitment for Bob to acknowledge.

104 R. Kremer and R.A. Flores

The ms row shows Bob acknowledging the previous agree message, and re-
moving the social commitment for that acknowledgement.

Time passes, and the meeting commences. In row m,4, Bob informs Alice that
he has fulfilled his commitment, (Bob, Alice, attend(Bob, x)), to attend the meet-
ing, which invokes two policies, P-inform and P-propose-discharge. This message
does not remove the (Bob, Alice, attend(Bob, x)) commitment. Intuitively, this is
because Alice has not yet confirmed that Bob has attended the meeting and has
satisfactorily fulfilled his commitment. If Alice were an agent that could sense
her environment, and could “see” that Bob were in attendance, Bob would not
have to send this message and we wouldn’t have to include rows my4 and ms in
the table.

Row ms5 shows Alice acknowledging Bob’s inform.

In row mg, Alice has “seen” that Bob is in attendance at the meeting and
sends a message with the confirm performative. This invokes three policies (P-
done, P-reply-propose-discharge, and P-inform) which delete Bob’s outstanding
commitments to attend the meeting and to tell Alice about it and adds a com-
mitment for Bob to acknowledge the confirm message.

Finally, in row m7, Bob acknowledges Alice’s last message, which removes the
last of the social commitments. There being no more social commitments left,
the conversation is over.

Just so the reader is not left with the impression that this work only applies
to hypothetical human examples, we include a snapshot of the CASA system
in the process of an actual agent conversation (see Figure [). Here, we show
a Cooperation Domain that has just fulfilled its obligations in three distinct
(and interleaved) conversations: a request-to-join-CD conversation, a request-to-
subscribe (to be updated on membership changes) conversation, and a request-
for-a-membership-list conversation. The upper pane in the snapshot shows the
recently discharged social commitments. The lower pane shows the message just
received from another agent (called Jason) acknowledging successful completion
of the get-members request (a reply performative).

5.1 Variations: Flexibility and Efficiency

As already mentioned, if Alice could sense her environment, she could notice on
her own that Bob was attending the meeting, and messages my and ms (rows
my and ms in Figure () could be omitted. If this were the case, and Bob sent
the inform message anyway, the conversation would still not be harmed. The
number of the messages in the conversation would drop from 7 to 5.

Our protocols, as defined in Table[2 and Figure[3] call for every message to be
acknowledged. This is an option in our system, and can easily be “turned off”
by merely deleting the policies in Figure [associated with P-inform and P-ack.
If we do remove the P-inform policy, then messages m3, ms and my disappear
and the number of messages drops from 7 to 4.

By combining both strategies in the previous two paragraphs, we can reduce
the number of messages in the conversation from 7 to 3. The resulting conver-
sation appears in Figure [7.

Flexible Conversations Using Social Commitments 105

ﬂ CooperationL ing700 "¢ i " (social

Cooperation Domain Agent Commands LAC Yellow Pages Window Help

CD | Commitments rl" |

450: 0: ool Cr Jason, {actioin.cd), action: perform join.cd 1) [fulfilled debtor ohservers=151]
T ¥ s ¥ T

! C: Jason,{actiget bers), action: perform get i 1) [fulfilled debtor observe

D
B
462: D: ! C: Jason{po lisck
LR
B

ireph
Hepy T

Commitments | C 1]

13.08.06.552:coolness: Receiving message: o
{ accept-proposal

act success|discharge|get. members

sender casa/loretner@ 192 168.0.100:6702/casa/ChatAgent/Tason?lac=2000

recefver casakremen@ 192, 168.0.100:3700/casa/CooperationDomain/c oolness?lac=0000

from casa/kremen@@192.168.0.100:6702/casa/ChatAgent/Jason?lac=2000

‘to casaremen@ 192 168.0.100:3700/casa/CooperationDotnain/c oolness?lac=2000

reply-by "2005.12.15 13:09:05.611 MIT"

reply-with casa/kremen@192.168. 0. 100:6702/casa/ChatAgent/Jazon?lac=0000--19

in-reply-to casa/remerd@ 192, 168.0.100:8700/casa/CooperationD omain/coolties s7lac=2000--34
Janguage java util Vector

content "{oasa. Statusih] 0B R

)

Command:| | Execute |

Fig.6. A CASA CD conversing with another agent requesting to join the CD

5.2 Implementation Considerations

Figure[§ shows the conversational “schema” that arises from the polices involved
in a typical request conversation, like the one between Alice and Bob or between
the CD and another agent in Section Bl This figure is from the viewpoint of
the actual implementation in CASA. The heavy vertical lines represent the two
agents over time. The heavy horizontal arrows indicate messages, and the reader
will no doubt notice that there are eight messages exchanged in this seemingly
simple conversation. The reader should not be put off by this: this is only the
worst case, and we have shown how this conversation can be dramatically sim-
plified (optimized) earlier in this section. CASA can do this optimization.

Each of Figure s messages are labelled above with their possible performa-
tives and their supertype sublattice. Arrows emerging from the performative
names represent the applicable policies and social commitment operators (solid
indicates add, and dashed indicates delete). The policy arrows terminate on
shared (underscored) and private (grayed) social commitments. Some interest-
ing details of the theory and implementation are shown in this diagram that
aren’t explicit elsewhere in this paper:

The lighter-colored (non-underscored) private social commitments in the fig-
ure form the method we use to attach agent executable code (usually a method

106 R. Kremer and R.A. Flores

Message
Poli ial i

Id | performative | sender | recr | content oliey Operator Social Commitments

m, | request Alice Bob attend(P-request (add,(Bob, Alice, reply(m;))) (Bob, Alice, reply(m,))
Bob, x)

m, | done Bob Alice | attend(P-reply (delete,(Bob, Alice, reply(m,))) M
Bob, x) | P-prop-dis | (add,(Alice,Bob,r-p-d(Bob,x)) (Alice,Bob,r-p-d(Bob,x))

mg | confirm Alice Bob attend(P-reply-p-d | (delete,(Alice,Bob,r-p-d(Bob,x)) | (Alice : 0D, X))
Bob, x)

Fig. 7. Alice and Bob’s conversation about a meeting, without Bob’s inform to Alice,
and without policy P-inform

call) to the policies: one needs to reference some bit of the agent’s code to
“wake” the agent to a particular event. These private social commitments are
always bound to an inform, but are usually referenced from some subtype of
of inform ala the template method design pattern [I0]. These template refer-
ences are represented in the figure by the light-colored curved arrows among the
performatives in the sub-lattices at center.

The curved arrow on the extreme left and right of the diagram connecting
social commitments are dependencies between social commitments. This is a
powerful concept that is easily implemented by the observer design pattern [10],
and arises naturally in the system. For example, naturally, one needs to actually
perform an action before proposing to discharge it.

6 Related Work

Conversations and commitments have been studied in argumentation [19], where
the evolution of conversations is motivated by the commitments they imply,
and which are not necessarily made explicit. Others have looked into the me-
chanics of conversations using operations advancing the state of commitments,
which is a view independent of the intentional motives behind their advancement
[BIT2UTATHT8]. We share these views, and aim at identifying public elements
binding the evolution of conversations.

7 Conclusion

The main contribution of this paper is to show how the FIPA performatives
can be mapped onto a social commitment theory framework to allow observable
social behaviour. “Rules” (or policies), like those described in this paper, act
as a codification of social norms, so can be easily used by an observer to judge
whether an agent is well behaved relative to the social norms. Social commit-
ments, and the ontology of performatives can be used to implement agents, but
agents do not have be to implemented as social commitment-style agents to be
observed and monitored by an observing agent using commitments as described
here.

Flexible Conversations Using Social Commitments 107
Alice Bob
/——Vdecide(Bob,Alice,x
nafk inf(;rm — ack(Bob,Alice,x
request® /" —] ',vlepiy(BOb,AliCe,X
W ack®----"" g ’/
< !
@ider(Alice,Bob,x, infczrm ack /'
ck(Alice,Bob,x)4==f— *re yemz-eemm" -
N R it
PR agree [—=%act(Bob,Alice,x)
I s sask ol
Ll
evaluate(Alice,Bob,)< inform ack K
ck(Alice,Bob,x)¢=42 \
() "t~\ regly !
VN] \
. . _/\‘/‘.—-73propose-discharge Y T propose-discharge(Bob,Alice,x
reply-propose-discharge(Alice,Bob,x) <] Y L oA
N T i T P '
P ': L] done '
S ~--eack N
- L
‘.“ '\“ ack inform \"\ -accept(Bob,Alice,x)
SN reply ;T [rack(Bob.Alicex
\\‘\ 1 ‘
“3 reply-propose-discharge ,:' K
7 /‘
-] confirm '_’_x"k
P acke®-----"" d
[

Fig. 8. An implementation view of the policies associated with a typical client-server

request conversation

Acknowledgments

The authors thank the Canadian Natural Science and Engineering Research
Council (NSERC) for their support.

References

1. C. Castelfranchi. Commitments: From individual intentions to groups and orga-

nizations.

In Proceedings of the First International Conference on Multi-Agent

Systems, pages 41-48, San Francisco, CA, June 1995.

. A. Diller. Z: An Introduction to Formal Methods. John Wiley & Sons, Inc., Sussex,
England, 1990.

. R.A. Flores. Modelling agent conversations for action. Ph.D. thesis, Department
of Computer Science, University of Calgary, June 2002.

. R.A. Flores and R. Kremer. Formal conversations for the contract net protocol.
In V. Marik, O. Stepankova, H. Krautwurmova, and M. Luck, editors, Multi-Agent
Systems and Applications 11, volume 2322 of Lecture Notes in Artificial Intelligence,
pages 169—179. Springer Verlag, 2002.

. R.A. Flores and R. Kremer. To commit or not to commit: Modelling agent con-
versations for action. Computational Intelligence, 18(2):120-173, 2003.

. R.A. Flores and R. Kremer. Principled approach to construct complex conversa-
tion protocols. In A.Y. Tawfik, and S.D. Goodwin, editors, Advances in Artificial
Intelligence, volume 3060 of Lecture Notes in Artificial Intelligence, pages 1-15.
Springer Verlag, 2004.

108

7.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

R. Kremer and R.A. Flores

R.A. Flores, P. Pasquier, and B. Chaib-draa. Conversational semantic sustained by
social commitments. In F. Dignum, and R. van Eijk, editors, Autonomous Agents
and Multi-Agent Systems. To appear.

Foundation for Intelligent Physical Agents (FIPA). FIPA ACL message struc-
ture specification. document number SC00061G, FIPA TC communication.
http://www .fipa.org/specs/fipa00061/SC00061G.html, Dec. 2003.

Foundation for Intelligent Physical Agents (FIPA). FIPA communicative act
library specification. document number SC00037J, FIPA TC communication.
http://www.fipa.org/specs/fipa00037/SC00037J.html, Dec. 2003.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley, Reading, Mass., 1994.

J. Heard and R. Kremer. Detecting broken social commitments. In this volume.
S. Khan and Y. Lesperance. On the semantics of conditional commitments. In this
volume.

R. Kremer, R.A. Flores, and C. LaFournie. Advances in Agent Communi-
cation, chapter A Performative Type Hierarchy and Other Interesting Con-
siderations in the Design of the CASA Agent Architecture. In F. Dignum,
and R. van Eijk, and M-P. Huget, editors, Advances in Agent Communi-
cation, volume 2922 of Lecture Notes in Computer Science, pages 59-T74.
Springer Verlag, 2004. Available: http://sern.ucalgary.ca/ kremer/papers/-
AdvancesInAgentCommunication_KremerFloresLaFournie.pdf.

A. Mallya and M. Singh. Introducing Preferences into Commitment Protocols. In
this volume.

P. Pasquier, M. Bergeron, and B. Chaib-draa. Diagal: A generic ACL for open
systems. In M.-P. Gleizes, A. Omicini, and F. Zambonelli, editors, ESAW, volume
3451 of Lecture Notes in Artificial Intelligence, pp 139-152. Springer Verlag, 2004.
P. Pasquier, R.A. Flores, and B. Chaib-draa. Modelling flexible social commitments
and their enforcement. In M.-P. Gleizes, A. Omicini, and F. Zambonelli, editors,
ESAW, volume 3451 of Lecture Notes in Artificial Intelligence, pages 153-165.
Springer Verlag, 2004.

M. Singh. Agent communication languages: Rethinking the principles. IEEE Com-
puter, 31(12):40-47, 1998.

M. Verdicchio and M. Colombetti. A commitment-based Communicative Act Li-
brary. In this volume.

D. Walton and E. Krabbe. Commitment in Dialogue: Basic Concepts of Interper-
sonal Reasoning. State University of New York Press, 1995.

