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KI'heme: Modular Extensions of Standard Tools \'

Linear Discriminant Analysis or LDA is a classic technique

for discrimination and classification

+ Simple prototype method for multiple class classification
+ Can produce optimal low dimensional views of the data

+ Sometimes produces the best results; e.g. LDA featured
in top 3 classifiers for 11/22 of the STATLOG datasets,

overall winner in 3/22.

- Lots of data, many predictors: LDA underfits (restricts to

linear boundaries)

- Many correlated predictors: LDA (noisy/wiggly

coefficients)

- Dimension reduction limited by the number of classes
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‘ Example of extension: FDA I

where ) is an indicator response matrix
and a regression procedure (Linear regression,

Polynomial Regression, Additive Models, MARS, Neural
Network, - - )

LDA, flexible
extensions of LDA.

Typically this amounts to expanding/selecting the predictors
via basis transformations chosen by regression, and then
(penalized) LDA in the new space.
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Example: Vowel Recognition I

11 symbols, 8 speakers (train), 7 speakers (test), 6
replications each. 10 inputs features based on digitized

utterances.

Source: Tony Robinson, via Scott Falman, CMU
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‘ Some Results '

Technique Error rates
Training Test
(1) LDA 0.32 0.56
Softmax 0.48 0.67
2 QDA 0.01 0.53
(3) CART 0.05 0.56
(4) CART (linear combination splits) 0.05 0.54
(5) Single-layer Perceptron 0.67
(6) Multi-layer Perceptron (88 hidden units) 0.49
(7) Gaussian Node Network ( 528 hidden units) 0.45
(8) Nearest Neighbor 0.44
(9)  FDA/BRUTO 0.06 0.44
Softmax 0.11 0.50
(10)  FDA/MARS (degree = 1) 0.09 0.45
Best reduced dimension (=2) 0.18 0.42
Softmax 0.14 0.48
(11) FDA/MARS (degree = 2) 0.02 0.42
Best reduced dimension (=6) 0.13 0.39
Softmax 0.10 0.50
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Coordinate 2 for Training Data

~

Linear Discriminant Analysis
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Coordinate 1 for Training Data
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Flexible Discriminant Analysis
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/ ‘ List of Extensions ' \

e (Reduced Rank) LDA — (reduced rank) FDA via flexible

regression:

e (Reduced rank) LDA — (reduced rank) PDA (Penalized
Discriminant Analysis) via penalized regression
, €.g. for

image and signal classification.

® (Reduced rank) Mixture models. Each class a mixture of
Gaussians. Each iteration of EM is a special form of
FDA/PDA: where / is a random response

matrix.

e In the mixture model above the classes can share

centers (radial basis functions) or own separate ones.

\ Separate Centers per Class Common Centers /
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e |n the above we use full likelihood for training:

what if we use the

conditional likelihood ?

[+ LDA becomes multinomial regression, and the

non-parametric versions likewise.

[+ The mixture problems again result in an E-M
algorithm, where each M-step is a multinomial

regression with random response Z.

References:
Breiman and Ihaka (1984) Unpublished manuscript
Campbell (1980) Applied Statistics
Kiiveri (1982) Technometrics
Ripley and Hjort (1995) Monograph in preparation
Ahmad and Tresp (1994) papers on RBFs
Bishop (1995) Monograph preprint
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‘ Detalls of LDA '

LDA is Bayes rule for P(X |G') Gaussian with density

B(Xi g, B) = e BT )
(2mP|X) 2
P(]|£Ij) — Z . JH
g aj ,U,g, V4

_ 1 _
~  exp (CUTE 1,uj — 5,&?2 1,uj + logHJ>

= exp(z’ B + ay)
Note:
J
max Z Z log ¢(xi; pj, 3) + log 11;]

rank{p; }=K;% 4 _
J=1g;=J

Is equivalent to Fisher’s rank-K LDA:

maxv,?ka subject to vZva =1, k=1,..., K

where B and W are the sample and covariance

matrices. The latter is the usual formulation of Fisher’'s LDA.
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LDA, FDA <— Optimal Scoring I

n

Z[e(gi> — | + J(n) = min

1=1

with normalization > . 6%(g;) = 1, and “roughness”

penalty functional .J.

often n(x) =Y. hpm(z)Bm and J(n) = S1QB.

There is a 1-1 correspondence between optimal scoring and

Fishers LDA, as well as the flexible extensions.

~
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where

-

‘ Optimal scoring algorithm for LDA/FDA I

Indicator Response Matrix Y

C, Cy C3 Oy Cs

91:2(0 1 0 0 o\
gy = 1 0 0 0 0
g3 = 1 0 0 0 0
gy = 0 0 0 0 1
gs = 0 0 0 1 o0

0=3\0 0 1 0 0

<>
|
|~<

Yy = epDpeT

, each giving a different version of FDA.

~
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FDA and Penalized Discriminant Analysis I

The steps in FDA are

e Enlarge the set of predictors X via a basis expansion
h(X), and hence inject us into a higher dimensional

space.

e Use (penalized) LDA in the enlarged space, where the

penalized Mahalanobis distance is given by

D(z, 1) = (h(z)=h()" (Ew+Q) " (h(z)—h(p))

Y is defined in terms of bases functions h(z;).

® Decompose the classification subspace using a

penalized metric:

max tr(U1 Y ge:U) subjectto UL (S + QU =1

- /
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‘ Skin of the Orange I
Training Data
o | 0
< 40
4 2 0 2 4
X[,1]
Predicted Classes
o | 0
< 10
4 2 0 2 4
x[.1]
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FDA vs Regression I

In FDA algorithm, we decompose

YTS\Y =YTY

Why not stop at Y ~ E(Y|X)?

l.e. for new x, compute

and assign x to the class j with the largest g, (z).

-
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Softmax after Linear Regression LDA
error: 0.3333 error: 0.0047

X2

X1 X1

e QUL AR TH T ] O T IHRARRE TR O D

With many classes, high order (polynomial) interaction terms

might be needed to avoid masking.
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FDA vs PDA .

There are two complimentary situations:

h(x) is an expansion of x into m >> p basis functions.

B1QB makes n(x) =

h(x) = x, e.g. digitization of an analog
signal—z = (z1,...,%p), x; = x(t;).
B Q5 makes




Handwritten Digit Identification I
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Speech Recognition
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A sample of 10 log-periodograms within each phoneme class. 1633

training (11 speakers) and 1661 test (12 different speakers) frames.
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Reasons for Regularization I

There are two different reasons why regularization is

necessary.

With digitized analog signals, the
variables-to-observation ratio can be small.
Regularization is needed for consistency in estimating a
population LDA model [Leurgans, Moyeed & Silverman,
JRSSB, 1993]

The LDA coefficients are given by
B = E_l,uj. If the eigenstructure of 2137 concentrates
on low-frequency signals, then 3 will tend to be noisy,

and hence hard to interpret.

N /
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‘ PDA coefficients: Handwritten Digits I

il S

LDA: Coefficient 1 PDA: Coefficient 1 LDA: Coefficient 2 PDA: Coefficient 2 LDA: Coefficient 3 PDA: Coefficient 3
LDA: Coefficient 4 PDA: Coefficient 4 LDA: Coefficient 5 PDA: Coefficient 5 LDA: Coefficient 6 PDA: Coefficient 6

LDA: Coefficient 7 PDA: Coefficient 7 LDA: Coefficient 8 PDA: Coefficient 8 LDA: Coefficient 9 PDA: Coefficient 9

Left images: LDA coefficient image

Right images: PDA coefficient image

~
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Canonical Variate Plot --- Digit Test Data

PDA: Coordinate 2

PDA: Coordinate 1
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‘ PDA coefficients: Phoneme Data '
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and regularized versions.

Canonical Function
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Ordinary LDA coefficient functions for the phoneme data,
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Mixture Discriminant Analysis: MDA

Linear Discriminant Analysis Mixture Discriminant Analysis
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Gaussian Mixture Model '

P(X|G=j) = ijrgb(X; tjr, %), Mixture of Gaussians

R.
Dol ercb(X' pjr, D)1
Zg 1 7T£7~§Z§(X :U’EMZ)HK

Estimate parameters by maximum likelihood of P (X, GG) (possibly

P(G=jlX=2x)=

subject to rank constraints!)

rank{m’;K;EZZbg Zw vis e E)IL)

1=1g;,=y3

Note: reduced rank amounts to dimension reduction in predictor

space!

- /
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/ EM and Optimal Scoring I \

Compute memberships Prob(obs € rth subclass of class j |z, 7)

7T7~(/5(£IZ; jr, E)
R.
D L mikd(x; ik, )

W(CT|x7j) —

Construct Random Response Matrix Z with elements

W (cjrlz, 5):

Ci1 Ci2 C13 C21 C22 C23 C31 C32 C(C33
gr22(0 3 5 2 0 0 0\
g2 =1 : 1 .0 0 0 0 0
g3 =1 .8 1 0 0 0 0 0 0
ga = 0 0 0 0 0 0 5 4 1
Js = 0 0 o .7 1 2 0 0 0

gnzs\o o 0 0 0 0 a4 1 8)

7 =57
777 — DO } < M-step of MDA

\ Update 7rs and Ils / /
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Waveform Example I

x; = uh1(i)+ (1 —u)h2(i) + € Class 1
x; = uh1(i)+ (1 —u)h3(i) + € Class 2
x; = uho(i)+ (1 —wu)h3(i) + ¢ Class 3

Class 1

Class 2

Class 3
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Discriminant Var 2

Discriminant Var 3

3 subclasses, penalized 4df

6 4 2 0 2 4 6

Discriminant Var 1

3 subclasses, penalized 4df

w
w

2

Discriminant Var 1
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Penalized MDA coefficients '

Cla§s 1

.g

=

.g
Class 3

=

.8

-
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Simulation Results for Waveform Example I

Technique Error Rates
Training Test
LDA 0.121(.006) 0.191(.006)
QDA 0.039(.004)  0.205(.006)
CART 0.072(.003)  0.289(.004)
FDA/MARS (degree = 1) 0.100(.006)  0.191(.006)
FDA/MARS (degree = 2) 0.068(.004)  0.215(.002)

~
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‘ Gaussian Mixtures and RBFs '

P(X,G — ]) — Zﬂ'r¢(X;,umE)Pr(j)

This is a mixture of joint-densities P (X, G) with R

mixture components. Then

Zle 7T7“¢(375 for E)Pr(j)
Zle 777“(/5(373 Mo, E)

This closely resembles (renormalized) RBFs.

P(G=j|X =)=

Estimate parameters by maximum likelihood of P (X, G) (possibly

subject to rank constraints!)

rank{iﬂ%ﬁf{;zz Z log( Zﬁr¢ (@i pr, B) Pr(j)

1=1g;,=y

E-M algorithm again yields optimal scoring , Where now

Z is the full random response matrix described earlier.
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/ EM and Optimal Scoring I \

Compute memberships Prob(obs € rth subclass |, j)

Wrﬁb(w; Hr, E)Pr(j)
SO T (@; ey B) Pr(j)

i.e. membership depends on ||z — k|5 — 21og Px(5).

W(CT|x7j) —

Construct Random Response Matrix Z with elements

Werlz, 7):
Ci1 C2 C3 €C4 Cy Cg Ct C8 C9
g1 = 0.1 0 2 4 .20 .1 0
¢2=1|.8 .1 .00 .10 0 0 0
g3 = 1 6.1 0 0 0 0 .1 .1
g=3l0 0 0 0 0 0 5 4 .1

gnzs\o 0 0 .1 0 0 0 .1 8/

\

=57
77 —=epeT , < M-step of MDA

\ Update 7s and I1s ) /




