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Abstract — A key feature of smart grids is the use of demand 

side resources to provide flexibility to the energy system and thus 

increase its efficiency. Multi-energy systems where different 

energy vectors such as gas, electricity and heat are optimised 

simultaneously prove to be a valuable source of demand side 

flexibility. However, planning of such systems may be extremely 

challenging, particularly in the presence of long-term price 

uncertainty in the underlying energy vectors. In this light, this 

work proposes a unified operation and planning optimisation 

methodology for Distributed Multi-energy Generation (DMG) 

systems with the aim of assessing flexibility embedded in both the 

operation and investment stages subject to long-term 

uncertainties. The proposed approach reflects Real Options 

thinking borrowed from finance, and is cast as a stochastic Mixed 

Integer Linear Programme. The methodology is illustrated 

through a realistic UK based DMG case study for district energy 

systems, with Combined Heat and Power plant, Electric Heat 

Pumps, and Thermal Energy Storage. The results show that the 

proposed approach allows reduction in both expected cost and 

risk relative to other less flexible planning methods, thus 

potentially enhancing the business case of flexible DMG systems. 

 

Index Terms — Distributed generation, flexibility, multi-

energy systems, planning under uncertainty, real options, risk, 

storage. 

NOMENCLATURE 

Decision variables  

𝐶 Total cost of the system (£) 

𝐶𝑜 Operational cost of the system (£/year) 

𝐷𝑑𝑒𝑠 Installed CHP, EHP and TES capacity (kW) 

𝐸𝐶𝐻𝑃 CHP electrical export (kWe) 

𝐸𝐸𝐻𝑃 EHP electrical export (kWe) 

𝐸𝑒𝑥𝑝 Plant electrical export to the grid (kWe) 

𝐸𝑖𝑚𝑝 Plant electrical import from the grid (kWe) 

𝐹𝑎𝑢𝑥 Boiler fuel input (kWth) 

𝐹𝐶𝐻𝑃 CHP fuel input (kWth) 

𝐻𝑎𝑢𝑥 Boiler heat output (kWth) 

𝐻𝐶𝐻𝑃 CHP heat output (kWth) 

𝐻𝐸𝐻𝑃 EHP heat output (kWth) 

𝐻𝑆 TES accumulated heat (kWhth) 

𝐼𝐶𝐻𝑃 CHP binary status (on or off) ∈ [0,1] 
𝐼𝑑𝑒𝑠 Investment decision ∈ [0,1] 
Input parameters  

𝐶𝐼 Cost of investment (£) 

𝐶𝑂𝑃 EHP coefficient of performance  

𝐶𝑂&𝑀 CHP operation and maintenance cost (£/kWhe) 

Des Feasibility of a capacity upgrade ∈ [0,1] 
𝐷𝐹𝐼 Factor for discounting investments  

𝐷𝐹𝑜 Factor for discounting operational costs  

𝐷𝑔𝑑𝑒𝑠 Predefined design (multi-stage constraint) ∈ [0,1] 

dt Length of a time period (h) 

𝐸𝐶𝐻𝑃_𝑚𝑎𝑥 CHP electrical capacity (kWe) 

𝐸𝐶𝐻𝑃_𝑚𝑖𝑛 CHP minimum electrical output (kWe) 

𝐸𝐷 Electrical demand (kWe) 

𝐻𝑎𝑢𝑥_𝑚𝑎𝑥 Boiler capacity (kWth) 

𝐻𝐷 Heat demand (kWth) 

𝐻𝐸𝐻𝑃_𝑚𝑎𝑥 EHP capacity (kWth) 

𝐻𝑆_𝑚𝑎𝑥 TES capacity (kWhth) 

𝐻𝑆_𝑚𝑖𝑛 TES minimum storage level (kWhth) 

𝑃𝐸𝑖𝑚𝑝 Price of electrical import from the grid (£/kWhe) 

𝑃𝐸𝑒𝑥𝑝 Price of electrical export to the grid (£/kWhe) 

𝑃𝑔𝑎𝑠 Price of gas (£/kWhth) 

𝑃𝑟𝑜𝑏 Probability of occurrence (%/100) 

𝑟𝑚𝑝 CHP electrical ramp (kWhe) 

𝜂1𝑒 , 𝜂2𝑒  CHP electrical efficiency curve components  

𝜂1𝑡 , 𝜂2𝑡 CHP thermal efficiency curve components  

𝜂𝑎𝑢𝑥 Boiler efficiency  

𝜂𝑆 TES efficiency  

Indices  

𝑎 Investment alternatives  

𝑔 Time period before/after multi-stage constraints 

𝑁𝑜𝑑(𝑠, 𝑦) Tree node corresponding to 𝑠 and 𝑦  

𝑝 Design parameter  

𝑠, 𝑠1, 𝑠2 Scenarios  

𝑡 Time period (operation)  

𝑦 Time period (investment)  

I.  INTRODUCTION 

NDER the smart grid paradigm, the existence of 

information and communication technologies is expected 

to facilitate the coordinated operation, control and 

optimisation of multiple demand side resources [1]. This is 

particularly beneficial for the emergence of multi-energy 

systems that integrate and optimise the use of different energy 

vectors such as gas, electricity and heat, among others [2]. The 

deployment of multi-energy systems in smart grids is seen as a 

key option to provide flexibility to the energy system and 

improve its overall efficiency and environmental performance.  

In this general context, the concept of Distributed Multi-

energy Generation (DMG) [3], in particular, has wide 

potential applications such as for district heating [4], 

commercial buildings/hospitals [5], and so on. 

DMG systems comprise a combination of different 

technologies capable of coupling different energy vectors and 

offer higher efficiencies than conventional “separate” 

electricity and heat generation. In the case of Combined Heat 

and Power (CHP) [6][7], in case coupled to Electric Heat 

Pumps (EHP) [8] and Thermal Energy Storage (TES), these 
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benefits are known from the operational and environmental 

point of view. And while single CHP and EHP units are 

characterized by high efficiency but low flexibility in 

responding to system requirements, complex DMG structures 

where these units are coupled can bring substantial economic 

benefits in terms of optimal trade-off between available 

energy vectors [9][10]. In addition, coupling CHP-TES or 

CHP-EHP has proven to have the potential to significantly 

reduce global CO2 emissions [11] and result in primary energy 

savings [8][12][13]. These benefits from coupling the 

operation of different DMG technologies can be called, 

operational flexibility. 

DMG plants composed of different multi-energy 

technologies could thus bring significant system benefits. 

However, their planning may be exposed to substantial risk, 

particularly under realistic conditions characterised by 

significant uncertainties in energy prices. This motivates the 

implementation of advanced risk hedging tools such as 

flexible planning methodologies facilitated by Real Options 

(RO) thinking [14], which could boost the business case for 

DMG systems. In fact, the use of RO thinking, borrowed from 

finance, for the purpose of investment planning in engineering 

systems has the desirable attributes of minimising risks from 

negative scenarios and maximising benefits from positive ones 

by capturing the value of flexibility in investment decisions 

(e.g., defer or accelerate investments) and system design (e.g., 

undersize the plant at an initial stage and increase its capacity 

whenever needed) [15].  

However, there is still little understanding and 

quantification of the aforementioned concepts, particularly of 

the implications from coupling of different technologies and 

energy vectors, which represent ongoing research from many 

perspectives. For instance, the majority of literature 

investigates the operation of DMG systems with predefined 

technologies in a deterministic scenario [11][16], optimal 

investments without flexibility [17][18], or RO based 

investments under uncertainty for single technology DMG 

systems [19][20]. Other studies have addressed the operation 

of DMG plants that couple various technologies in 

deterministic scenarios [21-23], investment under uncertainty 

for multi-technology DMG plants in a RO context [24], or 

single DMG technology investment according to different 

decision criteria in a comprehensive multi-temporal 

uncertainty framework [25][26]. However, none of these 

including investment time flexibility. Available literature on 

investment planning applied to other areas (e.g., transmission 

network planning and Phase Measurement Unit placement), 

highlight that multi-stage algorithms can be used to model 

investment timing flexibility (sometimes by combining the 

approach with RO thinking) as long as the associated search 

space is tractable [27-30]. For instance, in [27] a multi-stage 

algorithm is combined with the concept of options to assess 

flexibility in the form of options that may become available 

after a transmission expansion, while maintaining the problem 

tractable by only considering two decision stages and a 

simplified model of the network. Other studies recommend the 

use of scenario reduction techniques or heuristic approaches to 

limit the search space, which may not guarantee finding the 

optimal solutions (e.g., by disregarding impacts of immediate 

decisions on the value of future investments) [28-30]. 

In this light, there are clear research gaps relevant to DMG 

planning under uncertainty including flexibilities in operation, 

multi-technology selection, and investment timing. 

In the light of this, this work presents a new methodology 

for unified flexible operational and planning optimisation of 

DMG systems subject to long-term uncertainty. The 

framework has been devised to specifically address different 

types of potential DMG flexibilities, namely (i) operational 

flexibility in optimally responding to energy market signals 

from an operational perspective and (ii) investment flexibility 

in responding to long-term evolution of energy prices through 

optimal selection of DMG equipment type and size as well as 

relevant investment timing. More specifically, the 

methodology can capture operational flexibility brought about 

by the interaction between multi-energy technologies (e.g., 

CHP, EHP, and TES) and arbitrage between different energy 

vectors expressed with a specifically developed generalised 

Mixed Integer Linear Programming (MILP) formulation. 

Moreover, the results from the operational optimisation 

module are embedded in a flexible planning engine whereby 

investment decisions are cast as a stochastic programming 

problem based on RO thinking and formulated as a MILP, 

which allows the methodology to capture investment 

flexibility value too. 

The proposed approach naturally provides an investment 

risk hedging strategy and avoids investment lock-out, as it will 

be explored in detail throughout this work. Other planning 

philosophies including the traditional use of forecasts (“best 

view”) or scenario trees (“multi-stage”) are also incorporated 

and analysed as sub-cases of the proposed model with the 

objective of highlighting how different planning philosophies 

capture (or disregard) flexibility value and as a benchmark for 

the benefits of the approach introduced here. 

The rest of the paper is structured as follows. Section II 

presents the DMG system configuration considered for this 

study, which represents a general DMG system for district 

energy system applications coupling Boiler, CHP, EHP, and 

TES technologies. A novel generalised approach to map the 

energy flows of different system configurations is also 

presented, which will allow a compact and unified formulation 

of the proposed optimal flexible operational and investment 

methodology, described in Section III. The key attributes of 

the approach are illustrated with a realistic UK based case 

study in Section IV. The main findings and conclusions of this 

work are then summarised in Section V. 

II.  DMG SYSTEM GENERAL CONFIGURATION 

Typical applications of DMG plants are for district energy 

systems in which gas, electricity and heat vectors optimally 

interact to meet the energy demands of the district energy 

system’s customers. In this work, it is assumed that this type 

of DMG plant can be composed of any combination of Boiler, 

CHP, EHP and TES units, which represent the majority of 

technologies typically available for such applications. As a 
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Fig. 2.  Flow diagram of the proposed methodology. 

 

 
Technical and 

economic inputs 
Scenarios 

A: Pre-processing 

Yes 

B: Screening 

Operational 

optimisation 

System design 

More designs? 

C: Investment optimisation 
Formulate scenario tree 

Results 

Investment scheme 

optimisation 

result, plentiful DMG designs given by type (and size) 

combinations of these technologies can be devised. Hence, as 

mentioned earlier, rather than mapping all the potential energy 

flows in the different configurations for a handful of cases, a 

generalised flow diagram capable of mapping all possible 

combinations has been developed and is presented in Fig. 1. 

The generalised flow diagram relies on superscripts to 

denote the elements of the system that must be mapped when 

designing a given DMG configuration with Boiler (B), CHP 

(C), EHP (E) and/or TES (T) devices. In addition, as the 

diagram is generalised, other technologies can be included by 

choosing a proper superscript, formulating the particular 

elements and plugging them into the flow diagram. In order to 

model a specific DMG system configuration, the elements 

with relevant superscripts are included into the model. For 

example, the flow diagram of a BET system comprising 

Boiler, EHP and TES units would be modelled with all 

elements with the superscripts B, E and T (i.e., by removing 

elements with the C superscript). Note the elements without 

superscripts should always be included in the formulation of 

the DMG system. 

III.  METHODOLOGY 

This section describes the RO thinking based methodology 

proposed in this work. A description of the methodology can 

be seen at a high level in Fig. 2 and is detailed below. It is 

important to note that the term RO thinking is used to refer to 

the flexibility embedded in the operation and investment of 

engineering projects, which may not be properly captured with 

classical RO tools (e.g., partial differential equations and 

dynamic programming, among others). Such type of flexibility 

can be assessed with traditional planning tools such as 

mathematical programming as long as the sources of 

flexibility are identified (e.g., by screening for options) and 

uncertainty is properly modelled (e.g., with non-recombining 

scenario trees) [14][31].  

A.  Pre-processing 

At the pre-processing stage, all relevant inputs for the study 

are collected, namely, technical and economic inputs, and 

scenarios considered for modelling uncertainty. 

The technical inputs include the characteristics of the 

considered equipment (e.g., capacity, cost and efficiency, 

among others). Providing these characteristics by technology 

and size allows the methodology to account for economies and 

efficiencies of scale (for instance, larger plants may feature 

higher efficiencies). 

The economic inputs include the discount rate, planning 

horizon and other relevant parameters. These parameters are 

used to calculate the Net Present Cost (NPC) of the DMG 

systems under the assumption that all devices are replaced 

indefinitely at the end of their lifetime. This allows like-for-

like comparison of DMG systems that may be upgraded (e.g., 

by installing additional units) in different scenarios/times and 

may thus have different lifetimes.  

The different uncertainties (and in case their 

interactions/combinations) are modelled with a series of 

scenarios that are simulated at the following stage of the 

methodology. The amount of scenarios required to properly 

model uncertainty is a function of the characteristics of the 

uncertainty sources (e.g., model and correlations if any) and 

the planning horizon, and ultimately by the preferences of 

decision makers regarding trade-off between accuracy levels 

and computational time. In fact, both accuracy and 

computational time increase with the amount of scenarios 

considered. However, while assessing a large amount of 

scenarios is generally acceptable for planning studies even 

these were to take considerable computational time (e.g., 

several days), in most practical applications the amount of 

realistic future scenarios may be limited and what-if 

sensitivity studies may be preferred.  

B.  Screening 

At this stage, a screening method based on RO thinking and 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 1.  Generalized flow diagram of the DMG system. 
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exhaustive searches has been selected, while a unified MILP 

optimisation routine is used to calculate the related operational 

costs in the considered scenarios and DMG configurations.  

The literature provides several screening techniques based 

on RO thinking which can be used for the screening of 

flexibility in projects subject to computational, social, political 

and other constraints [32]. Among available screening 

approaches, the exhaustive search was selected as the search 

space associated with the DMG designs considered in this 

work is sensible, as will be further discussed in the next 

section (case study). The operation of each DMG system 

under consideration is explored by modelling the system as the 

generalised MILP problem denoted by (1) – (12): 

 

minimise:  

𝐶𝑜 = 𝑑𝑡 × ∑[𝑃𝑔𝑎𝑠(𝑡) × (𝐹𝑎𝑢𝑥(𝑡)𝐵 + 𝐹𝐶𝐻𝑃(𝑡)𝐶)

𝑡

 

 +𝐶𝑂&𝑀(𝑡)𝐶 × 𝐸𝐶𝐻𝑃(𝑡)𝐶 

 +𝑃𝐸𝑖𝑚𝑝(𝑡) × 𝐸𝑖𝑚𝑝(𝑡) − 𝑃𝐸𝑒𝑥𝑝(𝑡)𝐶 × 𝐸𝑒𝑥𝑝(𝑡)𝐶] 

(1) 

s.t. 

0 ≤ 𝐻𝑎𝑢𝑥(𝑡)𝐵 ≤ 𝐻𝑎𝑢𝑥_𝑚𝑎𝑥
𝐵 (2) 

 
𝐻𝑎𝑢𝑥(𝑡)𝐵 = 𝜂𝑎𝑢𝑥(𝑡)𝐵 × 𝐹𝑎𝑢𝑥(𝑡)𝐵 (3) 

 

𝐼𝐶𝐻𝑃(𝑡)𝐶 × 𝐸𝐶𝐻𝑃_𝑚𝑖𝑛
𝐶 ≤ 𝐸𝐶𝐻𝑃(𝑡)𝐶

≤ 𝐼𝐶𝐻𝑃(𝑡)𝐶 × 𝐸𝐶𝐻𝑃_𝑚𝑎𝑥
𝐶 

(4) 

 
𝐸𝐶𝐻𝑃(𝑡)𝐶 = 𝐹𝐶𝐻𝑃(𝑡)𝐶 × 𝜂1𝑒

𝐶 + 𝜂2𝑒
𝐶 × 𝐼𝐶𝐻𝑃(𝑡)𝐶 (5) 

 
−𝑟𝑚𝑝𝐶 × 𝑑𝑡 ≤ 𝐸𝐶𝐻𝑃(𝑡)𝐶 − 𝐸𝐶𝐻𝑃(𝑡 − 1)𝐶

≤ 𝑟𝑚𝑝𝐶 × 𝑑𝑡 
(6) 

 
𝐻𝐶𝐻𝑃(𝑡)𝐶 = 𝐹𝐶𝐻𝑃(𝑡)𝐶 × 𝜂1𝑡(𝑡)𝐶 + 𝜂2𝑡

𝐶

× 𝐼𝐶𝐻𝑃(𝑡)𝐶 
(7) 

 

0 ≤ 𝐻𝐸𝐻𝑃(𝑡)𝐸 ≤ 𝐻𝐸𝐻𝑃_𝑚𝑎𝑥
𝐸 (8) 

 
𝐻𝐸𝐻𝑃(𝑡)𝐸 = 𝐸𝐸𝐻𝑃(𝑡)𝐸 × 𝐶𝑂𝑃(𝑡)𝐸 (9) 

 

𝐻𝑆_𝑚𝑖𝑛
𝑇 ≤ 𝐻𝑆(𝑡)𝑇 ≤ 𝐻𝑆_𝑚𝑎𝑥

𝑇  (10) 
 

𝐻𝐷(𝑡) ≤ (𝜂𝑆 × 𝐻𝑆(𝑡 − 1)𝑇 − 𝐻𝑆(𝑡)𝑇)/𝑑𝑡 

  +𝐻𝑎𝑢𝑥(𝑡)𝐵 + 𝐻𝐶𝐻𝑃(𝑡)𝐶 + 𝐻𝐸𝐻𝑃
𝐸 

(11) 

 
𝐸𝐷(𝑡) = 𝐸𝑖𝑚𝑝(𝑡) + 𝐸𝐶𝐻𝑃(𝑡)𝐶 − 𝐸𝑒𝑥𝑝(𝑡)𝐶

− 𝐸𝐸𝐻𝑃(𝑡)𝐸 
(12) 

 

Equations (1) – (12) offer a generalised mathematical 

model for the operation of DMG systems based on the same 

rationale proposed for the generalised flow diagram presented 

in Fig. 1. That is, a particular system design (e.g., BCT) is 

denoted by the elements with the corresponding superscripts 

(e.g., B, C and T), as well as all elements without a 

superscript. More specifically, the objective function in (1) is 

to minimise operational costs (NPC in this work) from fuel 

and electricity imports while benefiting from energy exports, 

by exploiting arbitrage between electricity and gas prices. The 

capacity limit and operation of Boilers are denoted by (2) and 

(3), respectively. Equations (4) – (7) model CHP. Maximum 

CHP electricity generation capacity is denoted by (4), whereas 

electricity output subject to an efficiency curve and ramp 

up/down constraints are modelled with (5) and (6), 

respectively. The CHP heat output subject to an efficiency 

curve is denoted by (7). Equations (8) and (9) denote the 

capacity limits and operational efficiency of EHP units, 

respectively. The storage limits of TES are modelled with 

(10). Heat and Electricity balance is imposed by (11) and (12), 

respectively. It is worth emphasizing that DMG systems have 

the flexibility to meet the balance equations while minimising 

costs by coupling different technologies that, for instance, 

provide alternatives to supply demand or other devices (e.g., 

CHP), produce heat from fuel or electricity (e.g., CHP and 

EHP), produce electricity from fuel, and store surplus heat for 

later use (e.g., TES). This operational flexibility becomes 

valuable if the spark spread between gas and electricity or the 

time-shift characteristics of TES can be exploited.  

Operational optimisation simulations are run on a half 

hourly basis for a yearly interval, and it is assumed that the 

simulated conditions are representative of the whole period 

between two consecutive scenarios.  

C.  Investment optimisation 

At this stage, a flexible investment scheme is determined 

considering the operational costs calculated in the previous 

stage, and RO as well as other planning philosophies. 

In order to capture the value of flexible investment 

decisions in DMG, while also incorporating the value of 

flexible operation analysed in the previous stage, a stochastic 

programming model constrained by a customised non-

recombining scenario tree is proposed. Such an approach can 

identify the value embedded in the design of engineering 

systems [15]. This is owing to the path dependencies 

introduced by the non-recombining tree, which allows the 

methodology to hedge against the risk of investment lock-out. 

For example, after investing in a 500kWe CHP unit, path 

dependency forces DMG designs in future dependent 

scenarios to include the 500kWe CHP unit. Based on this, the 

stochastic programming model denoted by (13) – (18) is 

proposed to identify flexible investments in DMG systems.  

 

minimise 

𝐶 = ∑ 𝑃𝑟𝑜𝑏(𝑠) × {𝐷𝐹𝑜(𝑦)

𝑠,𝑦

× ∑ 𝐶𝑜(𝑠, 𝑦, 𝑎)

𝑎

 

 × 𝐼𝑑𝑒𝑠(𝑠, 𝑦, 𝑎) + 𝐷𝐹𝐼(𝑦) × ∑ 𝐶𝐼(𝑝)

𝑝

 

 × [𝐷𝑑𝑒𝑠(𝑠, 𝑦, 𝑝) − 𝐷𝑑𝑒𝑠(𝑠, 𝑦 − 1, 𝑝)]} 

(13) 

s.t.  

𝐷𝑑𝑒𝑠(𝑠, 0, 𝑝) = 0 (14) 
 

1 = ∑ 𝐼𝑑𝑒𝑠(𝑠, 𝑦, 𝑎)

𝑎

 (15) 

 

𝐷𝑑𝑒𝑠(𝑠, 𝑦, 𝑝) = ∑ 𝐼𝑑𝑒𝑠(𝑠, 𝑦, 𝑎) × 𝐷𝑒𝑠(𝑎, 𝑝)

𝑎

 (16) 

 
𝐷𝑑𝑒𝑠(𝑠, 𝑦 + 1, 𝑝) ≥ 𝐷𝑑𝑒𝑠(𝑠, 𝑦, 𝑝) (17) 
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𝐷𝑑𝑒𝑠(𝑠1, 𝑦, 𝑝) = 𝐷𝑑𝑒𝑠(𝑠2, 𝑦, 𝑝),                         
                                ∀𝑠1, 𝑠2|𝑁𝑜𝑑(𝑠1, 𝑦) = 𝑁𝑜𝑑(𝑠2, 𝑦) 

(18) 

 

The objective function in (13) aims at minimising expected 

costs from investments in DMG technologies and operation 

throughout the scenario tree. In this work, costs are quantified 

based on the NPC criteria; hence, investment costs are 

discounted with a factor that reflects investment timing 

(including additional investments to replace the units at the 

end of their lifetime) and operational costs are discounted with 

a factor that reflects both timing and periodicity (it is assumed 

that operational costs are the same within periods between 

scenarios, as mentioned above). Based on this objective 

function, the model seeks series of flexible investments in 

response to the evolution of uncertainty, avoiding risks from 

investment lock-out that may result in significantly oversized 

or undersized systems after the unfolding of uncertainty. The 

feasibility of the different investment decisions is enforced 

with (14) – (17). That is, a new DMG system may be built 

(14), based on a series of decisions (15) regarding the most 

cost effective and feasible system upgrades available (16) 

(e.g., including doing nothing or install a given device) subject 

to the characteristics of the current system (17). It is important 

to note that the design parameters (𝑝) is used to denote 

different devices, which can belong to the same technology. 

For example, the design parameters can be used to represent 

500kWe CHP, 1MWe CHP, 2MWth EHP, and so on. This 

allows the algorithm to discriminate DMG systems with the 

same capacity but different devices (e.g., one 1MWe CHP and 

two 500kWe units) and formulate feasible design upgrades that 

include devices already installed in the system. Finally, (18) 

imposes the nonanticipativity constraints required to formulate 

the non-recombining scenario tree. That is, the decision 

variables in scenarios that share the same previous information 

(i.e., scenarios that are identical until a given period) are 

forced to be the same; hence, realistic investment decisions are 

enforced based on past information and forecasts of plausible 

futures instead of on perfect information. 

Finally, (19) and (20) are included into the methodology to 

model typical planning philosophies other than RO:  

 

𝐷𝑑𝑒𝑠(𝑠, 𝑦, 𝑝) = 𝐷𝑔𝑑𝑒𝑠(𝑠, 𝑦, 𝑝),   ∀𝑦|𝑦 < 𝑔 (19) 
 
𝐷𝑑𝑒𝑠(𝑠, 𝑦, 𝑎) = 𝐷𝑑𝑒𝑠(𝑠, 𝑦 − 1, 𝑎), ∀𝑦|𝑦 > 𝑔 (20) 

 

In fact, in this work three planning philosophies besides RO 

are considered, namely (i) not investing in a DMG system (do-

nothing), (ii) investing immediately in a DMG system based 

on a forecasts (best view) and (iii) investing immediately in a 

DMG system based on the full tree and upgrading the system 

based on a rolling horizon (multi-stage). In practice, the best 

view philosophy may be the most commonly used, whereas 

the multi-stage philosophy may be one of the best techniques 

available to capture the value of flexibility. In this case, the 

multi-stage approach is combined with a heuristic tool to 

allow the algorithm to consider all scenarios with the cost of 

disregarding potential impacts of immediate investments on 

future decisions for the relevant simplification). 

 

The do-nothing philosophy is modelled by using (19) to set 

the capacity of the DMG system equal to zero throughout the 

tree (𝐷𝑔𝑑𝑒𝑠(𝑠, 𝑦, 𝑝) = 0). This philosophy does not involve 

any investments and does not capture any flexibility value.  

The best view philosophy is modelled by replacing the tree 

with a single scenario (taken as the mean values in all 

scenarios corresponding to a particular time period) and 

setting 𝑔 = 1 in (20), which forces the optimiser to select a 

single DMG design that has to be implemented immediately 

(without considering that the DMG may be upgraded at a later 

stage). Once the best view design has been determined, it is 

assessed using the full scenario tree. This philosophy assumes 

that a single forecast is used to assess whether to invest in a 

DMG system design immediately or never. As a result, the 

philosophy may capture some operational flexibility value 

embedded in the DMG system. However, this value may be 

limited as the price differentials between energy vectors may 

not be properly modelled. 

The multi-stage philosophy is modelled by solving the full 

stochastic programming model for every time period (𝑦), 

while locking previous investment decisions with (19) and 

neglecting future investment decisions with (20). As a result, 

this philosophy assumes that project planners will always 

optimise immediate investment decisions without considering 

future contingent investments. However, the project is revised 

and (if needed) upgraded in the future. Hence, this philosophy 

can capture the operational flexibility value embedded in the 

DMG systems, as well as some investment flexibility 

associated with the capability of project planners to upgrade 

the DMG system in response to the evolution of uncertainty. 

Investment flexibility is undervalued based on this philosophy, 

as current actions (taken without regard for future potential 

system upgrades) may prevent attractive system upgrades in 

the future, which is referred to as investment lock-out.  

Finally, the proposed RO methodology is modelled with 

(13) – (18) (without including (19) and (20)). This philosophy 

assumes fully flexible investment decisions throughout the 

tree, which take into account previous decisions, as well as 

future potential system upgrades in response to the unfolding 

of uncertainty. Accordingly, the RO philosophy is meant to 

fully capture the value of operational and investment 

flexibility, which can be used to maximises benefits or 

minimise costs from scenarios that materialise via avoiding 

investment lock-out to facilitate low cost system upgrades. In 

this light, the proposed methodology can be used for the 

planning and design of DMG systems while capturing the 

value of flexibility, as well as for the assessment of flexibility 

value associated with different planning philosophies. Both of 

these applications will be explored below with a case study. 

It is important to highlight that, ultimately, the proposed 

approach would make a recommendation for a first investment 

decision (including the option to wait), as well as a wide range 

of investment decisions contingent to the unfolding of 

uncertainty. The project planner may follow the 

recommendations for the first decision, as well as the 

contingent investments in the relevant scenario of the tree if 
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TABLE I. BASE CASE INDIVIDUAL DEVICES CONSIDERED FOR EACH 

TECHNOLOGY IN THE CASE STUDY 

Technology Capacity Efficiency 
Cost 

(£x103) 

CHP 1000 kWe 
35% (electrical) 

45%(thermal) 
500 

EHP 1000 kWth 3 (COP) 240 

TES 200 m3 - 140 

 

 
Fig. 3. Electricity and heat demand (ED and HD) for representative days. 
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such scenario is to materialize. However, in practice, the 

planner may be in a position to improve the models for 

uncertainty with time, in which case the methodology could be 

used periodically to produce improved recommendations for 

first (and contingent) investments. 

IV.  CASE STUDY 

A.  Case study description  

It is assumed that an investment in a DMG system for 

district energy system applications is being considered for a 

UK neighbourhood with roughly 1000 consumers with 

different heat and electricity consumption profiles. Currently 

heat demand is met by several Boilers with a total capacity of 

6MWth. Typical electricity demand (ED) and heat demand 

(HD) consumption profiles for the neighbourhood during 

representative days are shown in Fig. 3, while base electricity 

profiles were taken from current UK market prices. These 

profiles represent the current condition of the neighbourhood, 

whereas future ED, HD, gas prices (GP) and electricity prices 

(EP) are deemed uncertain. 

It is assumed that the DMG system can be designed with 

any combinations and number of the CHP, EHP and TES units 

shown in Table I, and that relevant smart grid infrastructure to 

couple, operate and optimise the units is available. That is, 

several units (or none) of each technology shown in Table I 

can be used in clusters to set up a DMG plant of desired 

capacity and type. Investments are assessed based on the NPC 

criterion at a 5% discount rate. 

As discussed, uncertainty is modelled with a customisable 

non-recombining scenario tree. In this illustrative example, it 

is assumed that investment decisions can be made every 5 

years during a planning horizon of 15 years and, after each 

decision node, electricity and gas consumption may remain the 

same (30% probability) or increase by 5% (70% probability), 

whereas average electricity and gas prices may increase by 

50% (60% probability) or decrease by 50% (40% probability). 

That is, each decision node may span up to 16 scenarios. 

However, several branches of the tree are removed 

(introducing asymmetry), as prices above 200% and below 

50% are deemed unlikely to occur. The resulting non-

recombining and asymmetric tree comprises 1600 scenarios 

and 1761 decision nodes.  It is important to note that these 

parameters have been selected for illustrative purposes, as the 

tree can be customised as needed. Furthermore, the parameters 

used for the screening stage were defined based on exploratory 

analysis, which consisted on testing large DMG designs in 

extreme scenarios (i.e., combinations of smallest and largest 

values for each source of uncertainty) to estimate reasonable 

sizes to be considered for each technology. In practice, 

forecasts for relevant sources of uncertainty, socioeconomic 

conditions of the neighbourhoods, availability of energy 

resources in the area, available models for each technology 

and other studies, would be needed to define the parameters 

for the screening process. 

Under the above-mentioned conditions, the proposed 

approach takes roughly 10 minutes to identify optimal 

investment decisions and DMG designs throughout the tree, 

while the screening process based on exhaustive searches 

takes roughly 6 hours to assess 225 design combinations in 81 

scenarios when parallelised using 4 instances (using a 

computer with a i5-3470 3.2GHz processor and 8GB RAM), 

which is clearly acceptable for planning purposes. Note that 

the operational costs of the different DMG designs in all 

scenarios throughout the non-recombining tree can be 

interpolated with an acceptable level of accuracy (2% error or 

lower) from the 81 scenarios considered at the screening stage. 

It is important to highlight that demand can be met with 

imports from the grid and the boiler in every scenario 

considered. As a result, there are no technical constraints that 

may impose investment decisions in given scenarios, which 

allows the study to focus on investments that may lead to 

lower energy costs. 

While the entire tree has been analysed (see discussion and 

results below, from Table II on), for the sake of simplicity, the 

key features of the proposed methodology are illustrated with 

a small section of the whole tree, namely reduced tree (Fig. 4). 

The reduced tree comprises four scenarios corresponding to 

potential evolution of prices (i.e., EP and GP) and demand 

(i.e., ED, HD) from 5 to 15 years in the future. The scenarios 

were selected to illustrate the effects of demand growth 

(scenario 1460), and different combinations of differentials 

between electricity and gas prices (i.e., scenarios 1652, 1682 

and 1686). Further discussion is provided below. 

B.  Results and discussion  

The designs suggested by the RO and multi-stage planning 

philosophies (i.e., total installed CHP, EHP and TES capacity) 

throughout the reduced scenario tree are shown in Table II. 

The expected NPC of the DMG systems in every scenario of 

the reduced tree and throughout the complete scenario tree 

(i.e., NPC summation of the investments in the 1600 scenarios 

times the probability of occurrence of the respective scenario) 
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TABLE II. DMG DESIGNS RECOMMENDED BY THE RO AND MULTI-STAGE 

APPROACHES 

Scenario 

(s) 
Year 

RO Multi-Stage 

CHP 

(kWe) 

EHP 

(kWth) 

TES 

(m3) 

CHP 

(kWe) 

EHP 

(kWth) 

TES 

(m3) 

1460 

5 1000 2000 - 3000 2000 200 

10 1000 2000 - 3000 3000 400 

15 1000 2000 - 3000 3000 400 

1461 

5 1000 2000 - 3000 2000 200 

10 1000 2000 - 3000 3000 400 

15 1000 4000 200 3000 4000 400 

1521 

5 1000 2000 - 3000 2000 200 

10 1000 4000 200 3000 3000 400 

15 1000 4000 200 3000 4000 400 

1525 

5 1000 2000 - 3000 2000 200 

10 1000 4000 200 3000 3000 400 

15 1000 4000 400 3000 3000 400 

 

 

TABLE III. NPC OF THE DMG SYSTEM UNDER DIFFERENT PHILOSOPHIES 

Scenario 

(s) 

NPC (£x103) Multi-  

stage  

– RO (%) 

Do- 

Nothing 

Best  

view 

Multi -

stage 
RO 

1460 10 923 9 715 9 913 8 680 12.4 

1461 15 428 11 123 10 524 9 340 11.2 

1521 16 701 11 698 10 893 9 570 12.1 

1525 18 313 13 358 13 168 12 459 5.4 

1-1600 

(Average) 
13 049 9 051 8 673 7 876 9.2 

 

 
 

Fig. 4. Reduced scenario tree formed with a section of the non-

recombining scenario tree considered for this study. 
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GP:150%    HD:105%

EP:100%   ED:105%
GP:100%  HD:105%

EP:100%   ED:105%
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EP:50%     ED:110%
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EP:50%     ED:105%
GP:150%  HD:105%

EP:50%     ED:105%
GP:150%  HD:105%

EP:150%   ED:105%
GP:150%  HD:105%

Year

5 10 15

Node 17
S=1457:1600

Node 146
S=1457:1472

Node 150
S=1521:1528

Node 1621
S=1460

Node 1652
S=1461

Node 1682
S=1521

Node 1686
S=1525

based on all investment philosophies are shown in Table III. 

The different scenarios in the reduced tree can drive 

investments in DMG systems of different sizes. For instance, 

it may be economically attractive to invest in large DMG 

systems whenever demand and prices increase significantly 

(e.g., scenario 1525), and when benefits can be gained from 

arbitrage (i.e., in scenarios 1652 and 1682), whereas small 

DMG systems may become more attractive under other 

conditions (e.g., scenario 1460). Accordingly, investment 

decisions in year 5 and 10 (i.e., nodes 17, 146 and 150) are 

challenging, as they may lead to sub-optimal designs in 

particular scenarios. 

In this regard (and as can be seen in Table II) the 

recommendations of the RO and multi-stage philosophies are 

fundamentally different. On the one hand, the RO philosophy 

recommends investments in small DMG systems in year 5, 

which offer the flexibility to upgrade the system or hedge risks 

of oversizing it in specific scenarios, however may result in 

modest economic gain in the short-term. On the other hand, 

the multi-stage philosophy recommends medium-size systems 

in year 5, which may offer higher short-term benefits and may 

offer some flexibility to upgrade the system to maximise 

benefits in the right scenarios, but can lead to investment lock-

out. 

An example of the conditions that may lead to investment 

lock-out for the multi-stage philosophy can be seen in scenario 

1460. A small DMG design is attractive in this scenario as 

energy prices decrease constantly and evenly regardless of the 

demand increase in year 15. However, a medium size DMG 

system and a capacity upgrade are recommended respectively 

in nodes 17 and 146 (see Table II) to minimise energy costs in 

other scenarios, which results in high costs in scenario 1460 

(i.e., from Table III, the multi-stage solution is more expensive 

that the best view solution in this scenario). The medium size 

DMG system recommended by the multi-stage philosophy in 

years 5 and 10 is an attractive option in scenario 1525 as 

energy prices increase. In addition, further capacity upgrades 

are recommended in scenarios 1461 and 1521 to benefit from 

arbitrage that arises due to the different growth of EP (i.e., 

50%) and GP (i.e., 150%). 

As discussed above, the RO philosophy acknowledges the 

value of investment flexibility to customise the design of the 

DMG system for specific scenarios. As a result, it can be seen 

from Table II that a relatively smaller DMG system is 

recommended in year 5 to allow expansion customisation in 

every scenario that may materialise. This allows the RO 

philosophy to recommend the most economically attractive 

DMG designs in every scenario of the reduced tree and the 

complete tree, as shown in Table III. The results in Table III 

also show that the multi-stage philosophy is the second best 

option considering the full tree, followed by the best view 

philosophy. Considering that do-nothing philosophy is more 

expensive than other alternatives, it can be concluded that, in 

this case study, installing a DMG system is economically 

attractive. 

Another key point to highlight is that investment flexibility 

does not simply increase the economic attractiveness of the 

DMG system by decreasing expected costs, but also by 

reducing risks. Actually, as shown in Fig. 5, the investment 

and operational flexibility value associated with some of the 

planning philosophies effectively shifts and skews (negative 

skewness) the corresponding expected NPC Probability 

Density Function (PDF) to the left. Thus flexibility value does 

not only reduce costs, but also limits the risks of incurring 

high costs in pessimistic scenarios. This is a well-known effect 

in RO literature, which considers that the risk of a project may 

be deemed low if the probability of incurring losses in 



Accepted for publication in IEEE Transactions on Smart Grid, March 2015 8 

 Fig. 6. Estimated flexibility value associated with changing from the best-
view to the RO thinking philosophy. 
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Fig. 5. NPC PDFs of investments planned under different philosophies 

throughout all scenarios. 
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pessimistic scenarios is reduced due to the effects of flexibility 

(regardless of the associated NPC standard deviation)  

[14][15][31]. 

The PDFs shown in Fig. 5 are consistent with discussion in 

the previous section regarding the flexibility value captured by 

each philosophy. The do-nothing alternative cannot capture 

any flexibility value, thus the corresponding NPC PDF is 

relatively normally distributed, as the distribution is defined 

by the scenarios considered in the tree (the fit improves for 

symmetric trees that comprise a large amount of scenarios). 

The best view philosophy only captures some marginal 

operational flexibility as future potential price differentials 

between energy vectors are underestimated. Thus, the 

corresponding NPC PDF only shows a marginal negative 

skewness. A comprehensive analysis on operational flexibility 

for DMG systems can be found in [13]. The study provides a 

detailed economic and environmental analysis of operational 

flexibility from coupling different types of DMG technologies 

(i.e., EHP, CHP and TES). It is shown that the economic 

benefits of operational flexibility from coupling DMG 

technologies are highly dependent on the cost of input fuel (in 

case gas) and market price of electricity. More precisely, in 

case of higher gas prices and of lower electricity prices, the 

option of CHP coupled with TES underperforms traditional 

boiler and grid option. This demonstrates insufficient 

flexibility CHP and TES option under specific market 

condition. Conducting the same analyses for coupled EHP, 

CHP, and TES these issues are alleviated resulting in savings 

of more than 50% when compared with traditional 

boiler/electric grid provision of energy services. As those 

options have the possibility to dynamically optimize choice 

and quantity of their input fuel (in this context, dynamically is 

referred to time frame of market price changes every 30 

minutes), they manage to avoid the pitfall of operating in 

periods when their marginal price is below that on the 

electricity market. Capability of using multiple input energy 

vectors results in high operational flexibility for all analysed 

cases in [13] manifested as operational cost savings ranging 

between 50 and 80% compared to procuring heat from gas 

boiler and electricity from the grid. 

The multi-stage philosophy results in a NPC PDF with a 

significant negative skewness as it provides a better modelling 

of future expected price differentials and captures significant 

operational flexibility value and some investment flexibility 

value. The RO philosophy fully captures both operational and 

investment flexibility values and results in a NPC PDF that is 

significantly skewed and effectively shifted to the left. 

Again with reference to Fig. 5, it is important to point out 

the capability of the methodology to analyse a large number of 

scenarios so as to generate PDFs. This is an attractive feature 

as the PDFs can be used to facilitate enhanced understanding 

and quantification of the different costs, flexibility and risk 

implications associated with different planning philosophies.  

As a final remark, it is important to note that the value of 

flexibility as captured by the proposed methodology and 

underlying RO framework is a function of uncertainty. In fact, 

a RO based investment framework would not be able to 

capture significant value from flexibility in projects that are 

not subject to sufficient uncertainty. In order to illustrate this 

point, the case study was re-assessed for lower levels of 

uncertainty (i.e., assuming lower ± variations to underlying 

uncertainty sources). The results, shown as box plots in Fig. 6, 

depict the median, and 25 and 75 percentiles of a NPC PDF 

corresponding to cost reductions associated with shifting from 

the best view to the RO planning philosophy (i.e., flexibility 

value captured by the RO philosophy that would be 

disregarded by the commonly used best view philosophy). 

Five cases are presented, in case one, the magnitude by which 

each uncertainty source varies per period was scaled by a 

factor of 1/5 (e.g., prices and demand can vary by ±10% and 

±1%, respectively every time period), by a factor of 2/5 in 

case 2 and so on. 

It can be appreciated from Fig. 6 how reducing uncertainty 

levels may also reduce the economic value of flexible 

investment decisions, which indeed arises from its potential to 

hedge risks and minimise expected costs under uncertain 

scenarios. It can be seen that the proposed methodology is still 

attractive even under low uncertainty levels as RO thinking 

can still capture some operational and investment flexibility 

value, which may still bring significant economic benefits. 

Furthermore, the value of the proposed approach is clear in the 

face of substantial uncertainties that are expected in the future 

in energy markets as well as more generally (for instance, 

policy development, new technologies, and so forth). 
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V.  CONCLUSION 

This work has proposed a unified flexible operation and 

planning optimisation methodology for DMG systems subject 

to long-term uncertainty. The novelties of the methodology 

include (i) an original generalised flow diagrams to map the 

energy flows of a wide range of different DMG systems and 

which allows synthetic writing of relevant equations; (ii) a 

new generalised MILP formulation for the optimisation of 

DMG systems that capture operational flexibility to respond to 

energy price signals by exploiting multi-vector arbitrage 

opportunities in the presence of different DMG technologies 

and time arbitrage opportunities in the presence of thermal 

storage (in case); and (iii) a stochastic programming model, 

again formulated as MILP, that allows type, size and 

investment time optimisation of multi-energy multi-

component flexible planning schemes considering long-term 

uncertainty and intrinsic risk hedging. Other investment 

philosophies are also incorporated in the proposed framework 

as sub-cases of the general flexible investment model. 

This new methodology has been illustrated via a realistic 

UK DMG system case study for district energy system 

applications under a smart grid paradigm whereby underlying 

distributed resources can be coupled, controlled and 

optimised. The numerical results show that the flexible 

investment schemes produced with the RO thinking 

philosophy outperform investments recommended by other 

planning practices in terms of both expected costs and risks. It 

has been discussed how the use of RO based frameworks for 

the unified optimisation of the planning and operation of 

DMG systems can increase their economic attractiveness, 

particularly when subject to high levels of uncertainty. 
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