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Flexible Empirical Bayes Estimation For Wavelets

By Merlise Clyde and Edward I. George 1

Summary

Wavelet shrinkage estimation is an increasingly popular method for signal denoising and compression.

Although Bayes estimators can provide excellent mean squared error (MSE) properties, selection of an

effective prior is a difficult task. To address this problem, we propose Empirical Bayes (EB) prior selection

methods for various error distributions including the normal and the heavier tailed Student t distributions.

Under such EB prior distributions, we obtain threshold shrinkage estimators based on model selection, and

multiple shrinkage estimators based on model averaging. These EB estimators are seen to be computationally

competitive with standard classical thresholding methods, and to be robust to outliers in both the data and

wavelet domains. Simulated and real examples are used to illustrate the flexibility and improved MSE

performance of these methods in a wide variety of settings.

Keywords: BAYESIAN MODEL AVERAGING; EM; HIERARCHICAL MODELS; MODEL SELECTION;

MULTIPLE SHRINKAGE; OUTLIERS; ORTHOGONAL REGRESSION; ROBUSTNESS; THRESHOLD-

ING.

1 Introduction

Wavelets are families of orthonormal basis functions that provide efficient representations for wide classes

of functions, representations that are increasingly useful for signal denoising and compression. Towards this

end and motivated by frequentist considerations, Donoho and Johnstone (1994, 1995) proposed a variety of

wavelet shrinkage procedures for estimating a function observed with normal error. For this setup, recent

papers such as Abramovich et al. (1998), Chipman et al. (1997) and Clyde et al. (1998) have proposed

Bayesian shrinkage estimators that, for a variety of functions, yield improved performance over the earlier

shrinkage methods. Although such improvements are available over broad prior classes, selection of the most

effective prior can be especially difficult when little is known about the unknown function.

In this paper, we propose Empirical Bayes (EB) methods to resolve the prior selection problem for

Bayesian estimation of wavelet coefficients. We develop these methods not only for the conventional nor-
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mal error model, but also for heavier tailed error models such as Student t distributions that can better

accommodate extreme values and outliers. To handle these different error distributions, we begin with a

hierarchical Bayesian wavelet model that uses a scale mixture of normals for the error distribution (section

2). We then propose EB methods that identify EB priors by using the data to estimate the hyperparameters

and the error variance of this hierarchical model (section 3). Using these EB priors, we obtain threshold

estimators based on model selection, and multiple shrinkage estimators based on model averaging. These

EB procedures not only bypass the difficulty of specifying the hyperparameters in the prior distributions,

but are also competitive with other shrinkage methods on computational grounds. These new EB estimators

are seen to offer improved performance over previous methods in simulation studies (section 4), and are

illustrated on real data (section 5).

2 Statistical Model

Suppose Y = (Y1, . . . , Yn)′ are n equally spaced noisy observations of an unknown function f = (f1, f2, . . . , fn)′

of interest, where n is a power of 2. Let f = Wβ be an orthogonal wavelet decomposition of f , where W

is an n × n orthonormal matrix, and β is the n × 1 vector of wavelet coefficients for f . Let D = W ′Y be

the discrete wavelet transform (DWT) of Y , so that D is the n × 1 vector of empirical or observed wavelet

coefficients. For this setup, we assume the model for the data in the wavelet domain is

Djk = βjk + ǫjk (1)

where ǫjk represents an additive error term. The doubly indexed subscripts reflect the multi-resolution

nature of the wavelet decomposition; j indexes scales or levels of resolution, and k indexes locations.

A standard assumption is that the ǫjk are independent and normally distributed with mean zero and

variance σ2. While reasonable in many cases, extreme values and potential outliers may be more realistically

modeled by heavy tailed error distributions. To extend the error distribution beyond the standard normal

model, we replace it by a scale mixture of normals

ǫjk | λjk ∼ N(0, σ2/λjk) (2)

λjk ∼ h (3)

where the ǫjk’s are conditionally independent, the λjk’s are independent, and h() is a scale mixing distribution

on (0,∞). Scale mixtures of normals have been widely used in robustness studies and in outlier analysis

(Andrews and Mallows 1974, West 1984, 1987, O’Hagan 1979, 1988) and include as special cases the normal,
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Laplace, exponential power, and Student t distributions. The normal model is obtained when λjk ≡ 1,

whereas independent errors with the tν distribution (the Student t distribution with ν degrees of freedom)

are obtained when h is a Gamma distribution,

λjk ∼ Gamma(ν/2, 2/ν) (4)

with mean 1. For notational convenience, we shall use ph(x; 0, σ) to stand for the marginal density of X

when X | λ ∼ N(0, σ2/λ) and λ ∼ h.

For nondegenerate h, independent scale mixtures of normal errors in the wavelet domain corresponds to

a scale mixture of normal errors in the data domain, though a different mixture. To see this, note that given

Λ, the diagonal matrix with diagonal terms λjk, the data domain errors are normal with covariance matrix

σ2WΛ−1W ′. Mixing over Λ yields a different scale mixture with uncorrelated but typically dependent errors.

(The unconditional covariance matrix, σ2WEh(Λ−1)W ′, is proportional to the identity matrix as the λjk

are independent and identically distributed.) In particular, if the wavelet domain errors have independent

tν distributions, then the data domain errors will be linear combinations of those tν random variables.

Although specification of independent tν distributions in the data domain may seem simpler than using

other heavy tailed error distributions, exact calculations in the wavelet domain become intractable and re-

quire computationally intensive methods. Furthermore, if the only available information about the process

is that the errors appear to be uncorrelated with a heavy tailed distribution (in either domain), then ap-

proximating the error distribution in the wavelet domain with independent tν distributions, perhaps with

level dependent ν, seems reasonable and is more appropriate than the standard normal model. At the very

least, this model provides a useful approximation which, as we show, yields computationally tractable EB

estimators for non-normal error distributions that are robust to outliers.

2.1 Hierarchical Model

The cornerstone of our Bayesian approach is an extension of the hierarchical normal mixture prior used by

(Clyde et al. 1998). Based on the natural multilevel grouping of the wavelet coefficients, this distribution

for the βjk’s at level j is

βjk | λ∗

jk, γjk ∼ N(0, σ2cjγjk/λ∗

jk) (5)

λ∗

jk ∼ h∗ (6)

γjk ∼ Bernoulli(ωj) (7)
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where the βjk’s are conditionally independent, the λ∗

jk’s and γjk’s are independent, and h∗() is a scale mixing

distribution on (0,∞). We also assume that the βjk’s and the ǫjk’s are conditionally independent given the

λ∗

jk’s and the λjk’s.

When the indicator variable γjk = 0, the wavelet coefficient βjk = 0; when γjk = 1, βjk is conditionally

normal with a variance σ2cj/λ∗

jk. There are two fixed hyperparameters at each level: the expected fraction

ωj of non-zero wavelet coefficients at level j, and a fixed scaling factor cj > 0 for these non-zero coefficients.

As with the error distribution, the introduction of random scale coefficients λ∗

jk ’s allows for a heavy-tailed

distribution of the non-zero βjk’s. As will be seen in the next section, the effect of the choice of h∗ on

posterior probabilities is strongly influenced by the choice of h for the error distribution.

The final specification issue concerns the dependence between the λ∗

jk’s and the λjk’s. Because we do

not expect a relationship between the signal and noise components, the most reasonable choice would be to

specify these as independent, in which case the βjk’s and the ǫjk’s would be unconditionally independent.

However, as will be seen, the EB calculations under this independent λ specification become analytically

intractable and must be carried out numerically.

To substantially ease the computational burden, it may be useful to consider the alternative specification

obtained by forcing λ∗

jk = λjk but maintaining the independence of the λjk’s. Under this common λ

specification, each βjk and ǫjk pair are still uncorrelated (because of their conditional independence), but

become unconditionally dependent through λjk. As is illustrated in Figure 1 in the next section, this

dependence appears to have only a mild effect on posterior quantities of interest. Because the resulting

posterior calculations are faster than the fully independent (λjk, λ∗

jk) model and yield predictions that

compare favorably with competing methods, this common λ specification is at least a useful approximation

to the full independence specification.

2.2 Posterior Distributions

The γjk are a posteriori independent Bernoulli random variables, as a result of the conditional independence

structure in the prior distributions and orthogonality of the DWT. The posterior probability that a coefficient

is nonzero, π(γjk = 1|Y ), can be expressed as a function of the posterior odds, Ojk,

π(γjk = 1|Y ) =
Ojk

1 + Ojk
Ojk =

(

ωj

1 − ωj

)

m1 (Djk|γjk = 1)

m0 (Djk|γjk = 0)
(8)
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where m0 and m1 are the marginal distributions of the data Djk when γjk = 0 and 1, respectively. The first

of these is a standard normal scale mixture

m0 (Djk|γjk = 0) =

∫
(

λjk

2πσ2

)1/2

exp

{

−1

2
D2

jkλjk/σ2

}

h(dλjk) = ph(Djk; 0, σ), (9)

which can be computed in closed form in many cases of interest. The second of these is

m1 (Djk|γjk = 1) =

∫ ∫

1√
2πσ2

(

cj

λ∗

jk

+
1

λjk

)

−1/2

exp







−1

2
D2

jk

(

σ2cj

λ∗

jk

+
σ2

λjk

)

−1






h∗(dλ∗

jk)h(dλjk)

(10)

when λ∗

jk and λjk are independent, and

m1 (Djk|γjk = 1) =

∫
(

λjk

2πσ2(1 + cj)

)1/2

exp

{

−1

2
D2

jkλjk/σ2(1 + cj)

}

h(dλjk) (11)

= ph(Djk; 0, σ
√

(1 + cj))

when λ∗

jk = λjk.

Table 1 summarizes several special cases to which we turn our attention. The Normal-Normal model for

which the βjk’s and ǫjk’s have independent normal distributions is obtained when λ∗

jk ≡ λjk ≡ 1, and yields

a closed form expression for the posterior odds Ojk of γjk = 1,

Ojk = (1 + cj)
−1/2

(

ωj

1 − ωj

)

exp

{

1

2

(

Djk

σ

)2(
cj

1 + cj

)

}

. (12)

Next, to allow for heavy tailed error distributions, we consider several specifications under which the errors

have the tν distribution corresponding to λjk iid Gamma(ν/2, 2/ν). The first of these is the Normal-t model

obtained by λ∗

jk ≡ 1, where the βjk’s are normal and independent of the ǫjk’s. Although this provides

robustness to outliers thru the likelihood, the tails of the error distribution dominate the tails of the prior.

This leads to posterior distributions that classify extremely large values of |Djk| as noise rather than signal,

which may not be desirable. Posterior computations for this case must be done by numerical integration.

From a Bayesian prior robustness perspective, the tails of the prior should typically be at least as flat as

the tails of the likelihood (Fan and Berger 1990). When the errors have a tν distribution, this is achieved

when the βjk’s are iid tν∗ with ν∗ ≤ ν, and are independent of the ǫjk’s. This corresponds to taking λ∗

jk

iid Gamma(ν∗/2, 2/ν∗) with ν∗ ≤ ν, independently of the λjk’s. We focus on the two special cases of this

independent t specification listed in Table 1: the t-t model with equal degrees of freedom, ν∗ = ν, and the

Cauchy-t model with ν∗ = 1. The marginal distribution in (10) can be obtained by first integrating out λjk

5



Label λ∗

jk and λjk Distributions βjk and ǫjk Distributions βjk and ǫjk Dependence

Normal-Normal λ∗

jk = λjk ≡ 1 Normal prior Independent

Normal errors

Normal-t λ∗

jk ≡ 1 Normal prior Independent

λjk ∼ Gamma(ν/2, 2/ν) tν errors

t-t λ∗

jk ∼ Gamma(ν/2, 2/ν) tν prior Independent

λjk ∼ Gamma(ν/2, 2/ν) tν errors

Cauchy-t λ∗

jk ∼ Gamma(1/2, 2) Cauchy prior Independent

λjk ∼ Gamma(ν/2, 2/ν) tν errors

Bivariate t λ∗

jk = λjk tν prior Uncorrelated

λjk ∼ Gamma(ν/2, 2/ν) tν errors But Dependent

Table 1: Joint distributions of βjk and λjk

and λ∗

jk ,

m1(Djk|γjk = 1) =

∫

Kν

σ
(

1 +
(Djk−βjk)2

νσ2

)(ν+1)/2

Kν∗

σ
√

cj

(

1 +
β2

jk

ν∗cjσ2

)(ν∗+1)/2
dβjk (13)

reducing (10) to a one dimensional integral over βjk of the product of the two t densities (Kν and Kν∗ are

the normalizing constants of the tν and tν∗ densities, respectively). Furthermore, for cases where ν and ν∗

are both odd integers, Fan and Berger (1990) have shown that exact closed form expressions for (13) and the

posterior mean of βjk can be obtained. Although the marginal distribution in such cases can be expressed

in closed form (the lengthy expressions are omitted), it is a complicated function of cj and σ2. As a result,

numerical methods are required to obtain the corresponding EB estimates discussed in Section 3.

Finally, a prior setup for tν distribution errors, which lessens the above computational burdens, is the

Bivariate t model where the (βjk, ǫjk) pairs have independent bivariate tν distributions corresponding to

λ∗

jk = λjk ∼ Gamma(ν/2, 2/ν). The marginal distributions m0 and m1 are both rescaled tν distributions,

and the odds expression simplifies to

Ojk = (1 + cj)
−1/2

(

ωj

1 − ωj

)







1 + 1
ν

(

D2
jk

σ2(1+cj)

)

1 + 1
ν

(

D2
jk

σ2

)







−(ν+1)/2

. (14)

Although βjk and ǫjk are dependent here, they remain uncorrelated. As will be seen below, posterior

probabilities under the Bivariate t closely approximate posterior probabilities under the t-t, but can be

computed in less than 1/7th the time.
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Figure 1 shows the posterior probability π(γjk = 1|Y ) as a function of |tjk| = |Djk|/σ for various choices

of cj under each of the priors listed in Table 1 for ν = 5. (Numerical integration was required to compute

the curves for the Normal-t model). Under the Normal-Normal model when cj > 0, π(γjk = 1|Y ) increases

rapidly in |tjk| to 1, thus treating extreme values as signal. In sharp contrast, under the Normal-t model,

π(γjk = 1|Y ) eventually decreases in |tjk|, causing it to treat extreme values as noise. This occurs because

the tails of the tν distribution eventually dominate the normal prior. This behavior, which is more evident

when cj is small, is undesirable for functions that have a few very large coefficients at the finest level because

the Normal-t model would tend to treat them as outliers.

The Cauchy-t curve corresponds to an independent t specification with a Cauchy prior (ν∗ = 1) and a

t5 error distribution. The Cauchy prior is the easiest of the independent t priors to handle computationally,

and has desirable robustness properties. Like the Normal-Normal, π(γjk = 1|Y ) under the Cauchy-t even-

tually approaches 1 for large |Djk|. However, it does so more slowly, exhibiting greater uncertainty that an

observation represents signal.

The π(γjk = 1|Y ) curves for both the Bivariate t and t-t model (with ν∗ = ν = 5) are very similar,

especially for cj large. Providing a compromise between the Normal-Normal and the Normal-t models, both

add robustness while avoiding the Normal-t non-monotonicity phenomenon. For the Bivariate t model, the

posterior odds Ojk has a limit of (ωj/(1+ωj))(1+ cj)
νj/2, as |tjk| goes to infinity. For large cj , this behaves

effectively like the normal model. However, compared to both the Normal-Normal and the Cauchy-t models,

for small cj (where it is difficult to distinguish between signal and noise), there is more uncertainty about

whether a coefficient is nonzero, which does not disappear for large |Djk|. Because of the availability of simple

closed form posterior expressions, the Bivariate t model can be seen as an attractive approximation to the

t-t model, providing a reasonable compromise between robust estimation and computational ease. Because

of the similarity of the Bivariate t and the t-t, we will proceed to focus our attention on the Normal-Normal,

Bivariate t and the Cauchy-t models.

3 Empirical Bayes Methods

Implementation of the Bayes hierarchical model (5)-(7), with fixed hyperparameter values requires the speci-

fication of cj and ωj at each level j of the wavelet decomposition. Unfortunately, meaningful pre-specification

of these is difficult at best. Although one’s prior beliefs might reflect an ordering of the cj and ωj by level,

it is difficult to subjectively elicit additional information. A fully automatic Empirical Bayes (EB) approach

that estimates cj , ωj and σ2 from the data is appealing because it avoids this difficulty and the possibility

7
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Figure 1: The posterior probability of inclusion, π(γjk = 1|Y ), as a function of |tjk| = |Djk|/σ under the
specifications listed in Table 1. In all cases ω = .5

of specifying values which are in conflict with the data.

The EB approach we propose is based on using maximum marginal likelihood (MML) estimates of the

hyperparameters, and extends the approach of George and Foster (1997) for the normal linear model. Because

closed form EB estimates of cj and ωj are generally unavailable, numerical methods must be used. For this

purpose, we consider several computationally attractive alternatives: direct numerical maximization, EM

algorithms and a conditional maximum likelihood (CML) approximation.

3.1 Direct Maximum Likelihood Estimation

Marginally, the observations Djk given cj , ωj , and σ2, are independently distributed as a mixture of m0 as

in (9) and m1 as given by (11) or (13), with respective weights ωj and 1 − ωj. The log likelihood L for

c = (c1, . . . cJ)′, ω = (ω1, . . . , ωJ)′ and σ2 is then

L(c, ω, σ2) =
∑

j

{

∑

k

log [ωjm1 (Djk; cj , σ) + (1 − ωj)m0 (Djk; σ)]

}

. (15)

Although closed form solutions for the marginal maximum likelihood (MML) estimates ĉj and ω̂j are generally

unavailable, standard iterative methods can be used for direct maximization of the log likelihood (15). In
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particular, we have found nonlinear Gauss-Seidel iteration (Thisted 1988, pp 187-188) to work well. This

entails iterating between finding the maximizing ĉj given (ω̂j , σ̂
2), the maximizing ω̂j given (ĉj , σ̂

2) for each

j, and the maximizing σ̂2 given (ĉ1, ω̂1), . . . , (ĉJ , ω̂J). As the Hessian of the log likelihood is in general not

positive definite for all values of cj , ωj , and σ2, convergence may only be to a local mode. However, we have

achieved reasonable success using the MAD estimate σ̂ = Median(|D1k|)/0.6745 (Donoho et al. 1995) as an

initial value for σ, and ω̂j equal to the number of observed wavelet coefficients that exceed
√

2 log n σ̂ based

on hard thresholding.

3.2 Maximum Likelihood Estimation using the EM Algorithm

For the Normal-Normal model with a fixed value for σ2, Johnstone and Silverman (1998) have recently

proposed an EM algorithm based on a metric inequality. To implement a more general EM algorithm here,

we consider the augmented log likelihood given D and latent or “missing” variables λ and γ. This leads to

an alternative method for maximizing the marginal likelihood in (15). Unless, otherwise noted, we shall now

restrict attention to common λ models such as the Normal-Normal and the Bivariate t where λ∗

jk = λjk,

which leads to closed form iterative solutions for the parameters.

Let τ−1
j = (1 + cj)σ

2, where τj corresponds to the unknown precision parameter for the data, Djk, given

γjk = 1 and let φ = 1/σ2, the precision when γjk = 0. The log likelihood for τ = (τ1, . . . , τJ )′, ω and φ

based on the “augmented” or “completed” data, X = (D, λ, γ), is

L(ω, τ, φ|D, λ, γ) =
∑

j

[

nj log(1 − ωj) + log

(

ωj

1 − ωj

)

∑

k

γjk

]

+
1

2

∑

j

[

log(τj)
∑

k

γjk − τj

∑

k

D2
jkλjkγjk

]

+
1

2
log(φ)

∑

jk

(1 − γjk) − 1

2
φ
∑

j,k

D2
jkλjk(1 − γjk)

+
∑

jk

log (h(λjk)) (16)

and belongs to a regular exponential family of the form a(θ)′b(X) + c(θ) + d(X) where θ = (ω, τ, φ), a(θ)

is the 2J + 1 dimensional vector of natural parameters, and b(X) is the 2J + 1 vector of sufficient statistics

with components (
∑

k γjk,
∑

k D2
jkλjkγjk) for j = 1, . . . J and

∑

jk D2
jkλjk(1 − γjk).

The E-step of the EM algorithm consists of computing the expectations of the sufficient statistics with

respect to the distribution of (λ, γ) given D, c, and ω. The posterior mean of γjk is

E(γjk|D) = γ̂
(i)
jk =

O
(i)
jk

1 + O
(i)
jk

9



where O
(i)
jk is the posterior odds (8) evaluated using the current estimates ĉ

(i)
j and ω̂

(i)
j . For the Bivariate t

model, where λjk ∼ Gamma(νj/2, 2/νj), the posterior distribution of λjk given γjk is Gamma, with

E(λjkγjk|D) =
νj + 1

νj + D2
jk τ̂

(i)
j

γ̂
(i)
jk = [λ̂jk γ̂jk](i)

E(λjk(1 − γjk)|D) =
νj + 1

νj + D2
jkφ̂(i)

(1 − γ̂
(i)
jk ) = [λ̂jk(1 − γ̂jk)](i).

The M-step consists of maximizing the augmented likelihood with the latent data now replaced by their

posterior expected values, resulting in

σ̂2(i+1)

=

∑

jk D2
jk[λ̂jk(1 − γ̂jk)](i)

n −∑jk γ̂
(i)
jk

(17)

ω̂
(i+1)
j =

∑

k γ̂
(i)
jk

nj
(18)

ĉ
(i+1)
j = max

(

0,

∑

k D2
jk[λ̂jk γ̂jk](i)

σ̂2(i+1)
∑

k γ̂
(i)
jk

− 1

)

. (19)

The EM algorithm for the Normal-Normal model is obtained by simply setting λ̂jk ≡ 1 in the above.

If the parameter estimates are in the interior of the parameter space, the solutions above are the unique

solutions (conditional on the values of latent data) because the complete data belong to a regular exponential

family. The E and M steps are repeated until the estimates converge, and yield a stationary point of the

marginal likelihood (15). However, as in the case of direct maximization of the marginal likelihood using

Gauss-Seidel or other methods, the EM algorithm may converge to a local mode. Because the convergence

rate of the standard EM algorithm is linear (Dempster, Laird, and Rubin 1977), the direct maximization

methods described above may result in faster convergence. However, the iterative solutions are available in

closed form for the common scale λjk model and provide some insight into the problem and connections to the

CML estimates of George and Foster (1997). The M-step estimates of σ2 and wj have natural interpretations;

the estimate of σ2 is the ratio of the posterior expected error sum of squares to the posterior expected df,

and the estimate of wj is the posterior expected fraction of nonzero coefficients.

While it is not necessary to introduce λjk as a latent variable, this does permit closed form iterative

expressions for the hyperparameter estimates of the Bivariate t model. For models where the complete data

are not from a regular exponential family, such as in the Cauchy-t model, numerical optimization is required

to carry out the M-step for cj and σ2, although ω̂j has the same form as in (18). In practice, we have noticed

very little difference between MLEs using the EM algorithm or the direct maximization approach for the

Normal-Normal, Bivariate t or Cauchy-t models.
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3.3 Conditional Likelihood Approximations

For the Normal-Normal model, the conditional maximum likelihood (CML) approach of George and Foster

(1997) provides a fast alternative to direct maximization and EM, and can be viewed as taking the complete

data likelihood (16) and evaluating it at the mode for γ, rather than using the posterior mean, as in the

EM algorithm. Let qj =
∑

k γjk denote the the number of nonzero wavelet coefficients at level j. For fixed

j, let D2
j(k) denote the sorted values (in decreasing order) of (Djk/σ̂)2, where σ̂2 corresponds to the MAD

estimate of σ2. The most likely model with qj nonzero components at level j, γ̃(qj) has elements γ̃j(k) = 1

if k ≤ qj , and 0 otherwise.

For each value of qj , the values of cj and ωj that maximize the conditional log likelihood are

ωj(qj) =

∑

k γ̃j(k)(qj)

nj
= qj/nj cj(qj) = max

{

0,

∑

k D2
j(k)γ̃j(k)(qj)

∑

k γ̃j(k)(qj)σ̂2
− 1

}

. (20)

The CML estimators have the same form as the EM MML estimators, and are the same when the posterior

distribution for γjk is degenerate at 1 or 0, where we have perfect classification of the observation into noise

or signal. For large values of cj , there is often very good separation of signal and noise, resulting in little

bias of the CML estimators.

The difference between the MML and the CML estimates will be the most extreme when the posterior

mean of γjk is 0.5 and when cj is small. The simulation studies described later suggest, however, that the EB

estimators using the conditional estimates have better MSE performance than earlier shrinkage estimators.

Although this approach does not readily extend to the case of t errors without further approximations, the

Normal-Normal model solutions can be used as starting values for iterative methods such as the Gauss-Seidel

or EM algorithms.

3.4 Empirical Bayes Estimators

We consider two types of Empirical Bayes estimators: threshold shrinkage estimators based on model se-

lection, and multiple shrinkage estimators based on model averaging. The EB estimators are obtained as

posterior means, treating the MML hyperparameter estimates as if they were fixed in advance. The βjks

under the common λ model are a posteriori conditionally independent,

p(βjk|γjk, λjk, Y ) ∼ N

(

γjk
cj

1 + cj
Djk,

γjk

λjk
σ2 cj

1 + cj

)

. (21)

Expressions for the posterior mean of βjk given γjk = 1 under the Cauchy-t model can be obtained from

equations in Fan and Berger (1990). Unless noted otherwise, all results below hold for the Cauchy-t model,

with (cj/(1 + cj))Djk replaced by E[βjk|γjk = 1, Y ] computed under the Cauchy-t model.
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Threshold Shrinkage Estimators

Thresholded shrinkage estimators are obtained as posterior means conditionally on the highest posterior

probability model or γ = (γ11, . . . , γJK). (As in the variable selection context, a “model” can be identified

with γ). As a consequence of the conditional independence structure, the posterior probability of γ is of the

form

p(γ|D) =
∏

jk

π(γjk = 1|Djk)γjk (1 − π(γjk = 1|Djk))(1−γjk), (22)

a product of independent Bernoulli probabilities. Because of the product structure, the highest posterior

probability model, γ̂ = (γ̂11, . . . , γ̂JK), is obtained by setting γ̂jk = 1 if π(γjk = 1|Djk) ≥ 0.5 and γ̂jk = 0

otherwise. The posterior mean under γ̂ for the common λ model is then

E(βjk|γ̂, Y ) = γ̂jk
ĉj

1 + ĉj
Djk. (23)

This threshold shrinkage estimator thresholds the data by setting β̂jk = 0 whenever γ̂jk = 0, and then

shrinks the remaining coefficients. This is useful for compression problems where dimension reduction and

elimination of negligible coefficients is important. Because the inverse DWT (IDWT) is linear, the posterior

mean of f under model γ̂ is obtained by applying the IDWT to the posterior mean of β under model γ̂.

Multiple Shrinkage Estimators

Instead of conditioning on a single model as above, an estimator of βjk which incorporates uncertainty about

γjk, is the unconditional posterior mean

E(βjk|Y ) = π(γjk = 1|Y )
ĉj

1 + ĉj
Djk. (24)

Note that π(γjk = 1|Y ) = π(γjk = 1|Djk) is given by (8), where the marginals m0 and m1 are based on the

EB hyperparameter estimates ĉj and ω̂j . For specifications such as the Normal-Normal and the Bivariate

t, the resulting closed form expressions for π(γjk = 1|Y ) and the EB multiple shrinkage estimators can be

computed quickly once we have the hyperparameter estimates. In contrast, the multiple shrinkage estimator

for the Cauchy-t takes approximately 30 times longer (not including the extra time necessary to obtain the

hyperparameter estimates) for n = 1024. The posterior mean of f is obtained by applying the IDWT to the

multiple shrinkage estimator of β.

The estimator (24) is a multiple shrinkage estimator (George 1986, Clyde et al. 1998) and corresponds to

model averaging. Because of the form of the conditional distribution (21), the usual posterior weighted sum

12



of conditional expectations reduces here to the simple form (24) that inserts π(γjk = 1|Y ) as an additional

shrinkage factor. As opposed to the threshold shrinkage estimator, which sets negligible coefficients to zero,

the multiple shrinkage estimator provides nonzero estimates for all coefficients for which π̂(γjk = 1|Djk) 6= 0.

For problems where threshold shrinkage rather than multiple shrinkage is desired, it is worth noting that

the threshold estimator (23) minimizes squared error loss for estimation or prediction under model selection

(J.O. Berger, personal communication). We provide a proof for the case of wavelet regression. Let f̂γ denote

the posterior mean for f under model γ corresponding to (23), and let f̂ denote the unconditional posterior

mean corresponding to (24); f̂ is the Bayes rule under squared error loss for estimation of f . The best single

model γ∗ for estimating f under posterior expected squared error loss is the model such that f̂γ is closest to

f̂ , or that minimizes

(f̂γ − f̂)′(f̂γ − f̂).

Because W is orthonormal, this can be equivalently expressed in the wavelet domain by

(f̂γ − f̂)′WW ′(f̂γ − f̂) =
∑

jk

(γjk − π(γjk = 1|Y ))
2
(E[βjk|Y, γjk = 1])2.

The last expression is minimized by the model with γ∗

jk = 1 if π(γjk = 1|Y ) ≥ 0.5 and with γ∗

jk = 0 if

π(γjk = 1|Y ) < 0.5, which is equivalent to the highest posterior model when the posterior distribution for γ

has the form given by (22) and is the median probability model as defined by Berger.

Although the multiple shrinkage estimator tends to outperform the threshold shrinkage estimator in

terms of squared error loss, sometimes the improvements are small. Such gains may not compensate for the

costs of including additional terms, as might occur, for example, in compression problems. We will see in

the next section that both (23) and (24) appear to offer improved frequentist risk performance over several

classical estimators.

4 Simulations

To investigate the practical potential of our EB method, we evaluated the performance of the EB estimators

under the Normal-Normal, the Bivariate t and Cauchy-t specifications, using noisy versions of the four test

functions “blocks”, “bumps”, “doppler”, “heavisine” proposed by Donoho and Johnstone (1994). In every

case, the functions were scaled so that the signal-to-noise ratio was 7, (the ratio of the standard deviation

of the function values fi to the standard deviation of the noise). We compared this performance with that

of several existing shrinkage strategies: HARD - Hard thresholding with the universal rule, SOFT - Soft

thresholding with the universal rule, and SURE - SureShrink adaptive shrinkage rule as implemented in
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Figure 2: MSE for the EB threshold shrinkage (TS) and multiple shrinkage (MS) estimators using exact (E)
and approximate (A) hyperparameter estimates, and the HARD estimator.

S+Wavelets, Donoho and Johnstone (1994, 1995). The wavelet bases were chosen to match those used

by Donoho and Johnstone (1995). To assess robustness, we considered both normal and heavy-tailed dis-

tributions for the noise. Performance was evaluated by the average mean squared error (MSE) over 100

simulations for each problem,

MSE =
1

100

100
∑

l=1

n
∑

i=1

(fi − f̂ l
i )

2

n
,

where fi is the true signal and f̂ l
i is the estimate of the function from simulation l.

4.1 Normal Errors

For our first set of simulations, we repeatedly added n = 1024 independent N(0, 1) errors to each of the four

test functions. For the Normal-Normal specification, we first compared the threshold shrinkage estimator,

TS in (23) and the multiple shrinkage estimator, MS in (24) to HARD thresholding. We also compared

the threshold shrinkage and multiple shrinkage estimators using EB hyperparameter estimates based on the

exact (E) marginal likelihood (MML) and on the approximate (A) conditional likelihood (CML) discussed

in Section 3.

Figure 2 presents boxplots of MSEs of these five estimators, and shows that all four EB estimators are

superior to HARD in this setting. Of the EB estimators, MS is superior to TS for both exact and approximate

hyperparameter estimates. However, estimates based on the exact marginal likelihood are at most slightly

better than those based on the rapidly computable approximate conditional likelihood.
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Figure 3: MSE comparisons for data simulated with normal errors. The EB estimators are all based on
multiple shrinkage.

Restricting attention now to multiple shrinkage estimators using exact marginal likelihood hyperparame-

ter estimates, Figure 3 compares the EB estimators for the Normal-Normal, the Bivariate t5 (with 5 df) and

the Cauchy-t5 specifications, labeled EB N, EB T5, and EB C5, to the SURE, HARD, and SOFT estimators.

The EB N estimator exhibits excellent MSE performance compared to the other methods. However, EB T5

performs nearly as well, demonstrating only a small loss of efficiency and is equal or better than HARD,

SURE or SOFT.

Figure 4 shows the distribution of the MLEs of
√

cj and ωj under the normal model for the four test

functions. Variation of the estimates across levels is striking, revealing strong decay in both ωj and cj but

different rates across functions. Although such decay might be roughly anticipated using a fixed hyperpa-

rameter Bayes setup with subjective prior inputs, it is difficult to pre-specify the appropriate magnitude and

rate of decay. MSE performance comparisons with the fixed hyperparameter Bayes estimators of Clyde et

al. (1998) again favored our EB estimators.

4.2 Student t Errors in the Wavelet Domain

For our second set of simulations, we repeatedly added n = 1024 independent t5 errors to the true wavelet

coefficients for each of the four test functions. Figure 5 compares MSEs for the multiple shrinkage EB

estimators EB N, EB T5, and EB C5, with those for the SURE, HARD, and SOFT estimators.

Comparing Figure 5 with Figure 3 reveals that the MSE performance of all the estimators tends to
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Figure 4: EB estimators of
√

cj and ωj for data simulated with normal errors.
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Figure 5: MSE comparisons for data simulated with t5 errors in the wavelet domain.

be worse under heavy-tailed error distributions (recall that the signal-to-noise ratios were the same across

simulations), and the number of “MSE outliers” increases dramatically. Of the three EB estimators, the

performance of EB N worsened the most, indicating a stronger sensitivity to extreme errors. Compared to

all the estimators, EB T5 and EB C5 performed well, offering substantial gains in efficiency for all functions;

the one exception is SOFT in heavisine. The average performance of EB T5 and EB C5 is similar, although

computations for EB T5 can be carried out in a fraction of the time for EB C5.

We also compared the results to the Robust-Smoother-Cleaner (RSC) transform developed by Bruce et

al. (1994), which is a fast wavelet decomposition that prevents outliers and outlier patches from leaking into

the wavelet coefficients at coarse levels. MSE performance of RSC in blocks, bumps, and doppler is much

poorer than any of the other methods with average MSEs of 5.37, 47.13, 8.7, respectively (boxplots not

included because of scale). For heavisine, the average MSE is 0.25, which is comparable to EB C5. Visual

inspections of reconstructions suggested that while RSC effectively removed outliers it often mistook signals

for outliers resulting in over-smoothing, particularly in bumps.

4.3 Student t Errors in the Data Domain

In our final set of simulations, we assessed the performance of EB N, EB T5, and EB C5 under the more

realistic assumption of independent t errors in the data domain. To do this we repeatedly added n = 1024

independent t5 errors directly to each of the four test functions, rather than to the wavelet coefficients as in

the previous section, but still maintaining SNR=7.
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Figure 6: MSE comparisons for data simulated with t5 errors in the data domain.

Here, the wavelet transformation induces dependent, though uncorrelated, errors in the wavelet domain

that are linear combinations of t random variables. Thus, the wavelet domain errors are more normally

distributed, especially at the coarser levels, where the linear combinations typically involve more terms.

Although a hierarchical Bayesian analysis under the exact wavelet domain error distribution is computation-

ally impractical, one might consider a modifications of the EB T estimator to allow for increasing df at the

coarser levels to account for the tendency towards normality. To explore this approach, we considered an

additional estimator, labeled EB TM. The degrees of freedom for EB TM (M is for Matched) were matched

to the error process by applying the wavelet transform to independent t5 errors. For each level, we selected

the df that maximized the marginal distribution of the data, and then repeated this procedure 100 times.

The average degrees of freedom for the seven levels were (5, 6, 6, 7, 7, 7, 8) (after rounding) for the “haar”,

“d6” and “s16” wavelet transforms, suggesting that despite the averaging due to the DWT, heavy tails can

still be an issue at the coarsest levels.

Figure 6 compares the MSEs of the four EB estimators EB N, EB T5, EB TM and EB C5 with those

for the SURE, HARD and SOFT estimators in this setting. Comparison with Figures 3 and 5 shows that

the MSEs here are somewhat smaller here than under t errors, but still much larger than under normal

errors. Because of the wavelet transform, extreme values in the time domain have a smaller effect in the

wavelet domain, but apparently, the tendency towards normality in the wavelet domain is not especially

pronounced. All three EB estimators based on heavy tailed error distributions exhibit substantial gains in
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efficiency over the standard methods, with EB TM performing only marginally better than EB T5 or EB

C5. With the exception of the SOFT estimator for the heavisine function, EB N offers improvement over

SURE, HARD and SOFT. As in the previous section, RSC performed poorly, obtaining larger MSEs than

all other methods for blocks, bumps, and doppler (average MSEs are 5.36, 47.46 8.73 respectively), with the

exception of heavisine, where it was comparable to EB N, but still not as good as EB T5, EB TM, or EB

C5.

5 GLINT Example

To observe their performance on a real data set, we applied our EB estimators to the GLINT data of Bruce

and Gao (1994). These data are radar reflections or glints measured in degrees for a rotating airplane

model, and are subject to errors that can be as large as 150 degrees in absolute value. The true signal is

supposed to be a low frequency oscillation about zero with possible level shifts, but the glint spikes are highly

non-Gaussian (Bruce and Gao 1994).

We used an estimate of σ = 29 so that 3 standard errors contain almost all of the glint spikes in the

original signal, based on information from Bruce and Gao (1994). In Figure 7, we compare the EB estimates

under the Normal-Normal and Bivariate t models to hard thresholding and the Robust-Smoother-Cleaner

wavelet transform of Bruce et al. (1994). In this example, shrinkage via hard thresholding has not removed

the glint spikes and Bruce and Gao (1994) view the resulting estimate of the signal as quite poor. The robust-

smoother-cleaner wavelet transform was designed to remove outlier patches from the wavelet decomposition,

and results in a much improved, smoother reconstruction than HARD thresholding (Bruce and Gao 1994).

While the EB normal estimate may still retain a spurious glint spike around t = 400, the EB shrinkage

estimates under the Bivariate t model with 3 degrees of freedom have effectively removed the outliers/non-

Gaussian glint spikes in the original signal. Unlike the RSC wavelet transform, the EB approach is completely

model based and can incorporate prior information about the process.

6 Discussion

In this article, we have proposed robust empirical Bayes methods for wavelet estimation. Embedding the

wavelet setup in a hierarchical normal scale mixture model, we obtain maximum likelihood estimates of the

unknown hyperparameters for each wavelet level, as well as an estimate of σ2 using data from all levels.

We then obtained shrinkage and threshold estimators based on posterior means under the estimated prior

distributions. When applied to a variety of simulated examples, these shrinkage estimators performed better
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Figure 7: Shrinkage estimates for GLINT data. From top to bottom: original Glint data, hard thresholding
(HARD), the robust smoother-cleaner transform (RSC), Normal EB shrinkage (EBN) and Student t EB
shrinkage (EBT).

than current methods including fixed parameter Bayes estimators. The EB N model provides an excellent

adaptive default prior for most cases, while the EB T and EB TM approaches provide a balance between

robustness when heavy tailed errors are a concern and computational ease over independent scale models in

either the wavelet or original domain.

An explanation for the improved performance of the EB estimators is that they allow for wide variation

of hyperparameter values across different wavelet levels, yielding flexible shrinkage patterns. The Bayesian

hierarchical model can also incorporate prior uncertainty about the degrees of freedom, which leads to a

posterior distribution for the degrees of freedom at each level. This avenue of research may lead to additional

improvements over the current EB T or EB TM estimators in the case of heavy tailed errors in the data

domain.

It would be straightforward to use our EB prior distributions and resulting posterior distributions to

estimate the posterior median, as in Abramovich et al. 1998, for robust L1 EB estimators. Analogous

to Johnstone and Silverman (1997), the EB methods can be adapted to the case of correlated noise, by

replacing the MLE of σ with a level dependent MLE, σ̂j . Because sample sizes at coarser levels are small,
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there may be substantial uncertainty in the EB estimators of cj , wj and σj . In cases with small signal-to-

noise ratios, improved estimation can be achieved using Gibbs sampling (Clyde et al. 1998) combined with

Rao-Blackwellized estimators. If the computational issues for this approach could be simplified, this would

be a promising competitor to our methods, and would provide improved estimates over a naive EB approach

that ignores uncertainty in the hyperparameter estimates.
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