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Abstract: We study a two-component semiparametric mixture model
where one component distribution belongs to a parametric class, while the
other is symmetric but otherwise arbitrary. This semiparametric model
has wide applications in many areas such as large-scale simultaneous test-
ing/multiple testing, sequential clustering, and robust modeling. We de-
velop a class of estimators that are surprisingly simple and are unique in
terms of their construction. A unique feature of these methods is that they
do not rely on the estimation of the nonparametric component of the model.
Instead, the methods only require a working model of the unspecified distri-
bution, which may or may not reflect the true distribution. In addition, we
establish connections between the existing estimator and the new methods
and further derive a semiparametric efficient estimator. We compare our
estimators with the existing method and investigate the advantages and
cost of the relatively simple estimation procedure.

Keywords and phrases: Efficiency, large-scale simultaneous testing, mix-
ture models, multiple testing, robust statistics, semiparametric estimator.

Received August 2014.

1. Introduction

Mixture models have a long history. The most classical mixture model is a
parametric model of the form

g(x) =

J∑

j=1

pjfj(x;αj),

where pj ’s are positive values satisfying
∑J

j=1 pj = 1 and each fj is a proba-

bility density function (pdf) known up to the parameters αj for j = 1, . . . , J .
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The interest is in estimating pj as well as αj , for j = 1, . . . , J . Because it is
a fully parametric model, as long as the problem is identifiable, the familiar
maximum likelihood estimator will provide the best estimation for the param-
eters. Please see for example, Lindsay (1995), Böhning (1999), McLachlan and
Peel (2000), and Frühwirth-Schnatter (2006) for more detailed illustration of
parametric mixture models.

At least two forms of extensions from the original parametric mixture model
have attracted considerable interest recently. In the first form, the mixture com-
ponents fj ’s are assumed to be identical, symmetric but otherwise unspecified.
Hence this is a nonparametric extension of the original mixture model. In this
extension, the parameter αj is the center of the jth component, written as µj ,
and the model has the form

g(x) =

J∑

j=1

pjf(x− µj). (1.1)

Identifiability and estimation for pj , µj , j = 1, . . . , J are studied extensively
for the extended nonparametric mixture model, see for example, Bordes et al.
(2006a) and Hunter et al. (2007). Hall and Zhou (2003) and Hall et al. (2005)
considered a multivariate version of (1.1) for which the component distributions
have independent nonparametric components.

The second extension allows one of the fj ’s to be symmetric with unknown
center and otherwise unspecified, while keeping the other components paramet-
ric. Hence this is a semiparametric extension of the original mixture model.
Because the combination of all the parametric components can itself be viewed
as a parametric model, this extension has the general form

g(x;β, η) = (1− p)f(x;α) + pη(x− µ), (1.2)

where 0 < p < 1. Here, α is an unknown parameter of the parametric com-
ponent f , while we use η to denote the symmetric nonparametric component.
We collect all the parameters of interest in the d dimensional parameter vector
β ≡ (µ, p,αT)T. In this article, we restrict our interest in the semiparametric
mixture model (1.2).

Model (1.2) arises naturally in large-scale simultaneous testing and multiple
hypothesis testing problems. For example, in detecting differentially expressed
genes under two or more conditions in microarray data, one naturally encounters
(1.2). Specifically, suppose we construct a test statistic for each gene. Assume
that under the null hypothesis, the test statistic has a distribution f(x;α) that is
either completely known or known up to a parameter α. Then the test statistics
collected from all genes automatically have a mixture distribution of f(x;α),
representing the null distribution, and η(x−µ), representing the unknown alter-
native distribution. This directly leads to (1.2). Indeed, there has been much ef-
fort in utilizing the parametric mixture model, i.e., further assuming a paramet-
ric form for η(x−µ), in the multiple hypothesis testing problems emerged from
bioinformatics. Please see, for example, Allison et al. (2002), Pounds and Morris
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(2003), Efron (2004), Genovese and Wasserman (2004), Langaas et al. (2005),
and McLachlan et al. (2006). Model (1.2) is also used in robust statistics (Ham-
pel et al., 1986; Huber and Ronchetti, 2009) to describe data that are contami-
nated, where the uncontaminated part of the data is described by f(x;α), and
the contamination is captured with a minimal restriction via η(x−µ). Compared
to the contaminated normal mixture model used in classical robust statistics lit-
erature, where η is typically assumed to have a normal distribution with a large
variance, the model (1.2) is certainly much more flexible. In fact, the more re-
laxed form of the semiparametric mixture distribution in (1.2) allows us to check
any parametric assumption, such as the assumption of normality, about η(·).

Model (1.2) is also used in some other areas in practice. For example, Song
et al. (2010) applied it in sequential clustering. Bordes et al. (2013) investigated
a regression setting of (1.2). Please see, for example, Bordes et al. (2006b) and
Song et al. (2010) for more applications of (1.2).

When f is completely known, hence α does not appear, Bordes et al. (2006b)
proved the identifiability of model (1.2) under certain conditions and proposed a
symmetrization based distance estimator for µ and p. Bordes and Vandekerkhove
(2010) further established that the estimator is root-n consistent and asymptot-
ically normal. Hohmann and Holzmann (2013) applied a similar symmetrization
based distance estimator to model (1.2) when a location shift parameter α ap-
pears in the model. Xiang, Yao, and Wu (2014) proposed estimating the model
(1.2) based on minimum profile Hellinger distance. When η is not assumed to be
symmetric and µ does not appear, Song et al. (2010) proposed a kernel type EM
algorithm where η is estimated with nonparametric kernel density estimation,
and Ma et al. (2011) proposed nonparametric maximum likelihood estimators
with discretized non-parametric component.

The extended model given in (1.2), which allows both α and µ to be unknown,
is the focus of our study. In Section 2, we give some conditions for model (1.2)
to be identifiable. Given that model (1.2) is identifiable, it is still not obvious
how to estimate the parameter of interest β. To this end, we develop a class of
estimators that are surprisingly simple and are unique in terms of their construc-
tion. These estimators are easy to construct because they completely bypass the
estimation of the nonparametric density function η or its corresponding cumu-
lative distribution function (cdf). Thus, the nonparametric nature of (1.2) is in
a way eluded operationally. Instead of estimating η or its cdf, the class simply
adopts a working model in its place. Regardless of whether the working model
is correct or not correct, or regardless whether it approximates the true pdf
reasonably well or badly, the resulting estimator is always consistent. The effect
of the working model is mainly reflected in the variability of the parameter esti-
mation, and we generally favor a working model that yields smaller estimation
variability. In Section 5, we further develop an estimator that involves faithfully
estimating η to achieve the minimum estimation variance among all possible
consistent estimators.

The construction of the estimator class heavily relies on the symmetry of η.
In fact, exploiting the symmetric nature of η, we are able to write a much wider
class of estimators. However, the class of estimators we recommend has the
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additional advantage of being more explicit and tractable. It also has a nice
connection to the most efficient estimator for β in the sense of semiparametric
efficiency given by Bickel et al. (1993). We further show that the symmetrization
based distance estimator proposed by Bordes et al. (2006b) also belongs to this
class. Thus, as an alternative to the derivation in Bordes and Vandekerkhove
(2010), one can also obtain the asymptotic properties of the estimator based on
the general results established here in Section 3.

The rest of the article is organized as the following. In Section 2, we discuss
the identifiability of (1.2). In Section 3, we investigate the symmetry of η to
reveal a general approach to construct estimators. We then propose a family of
explicit estimators and study their properties. We investigate the link between
our estimators and the existing methods in Section 4 and explain how to achieve
the optimal efficiency in Section 5. Finite sample performance of the estimators
are illustrated in Section 6. We conclude the article with some discussion in
Section 7 and collect all the technical details in an Appendix.

2. Identifiability

Without any constraints on η, model (1.2) is generally not identifiable. This
is easily seen since we can exclude (1 − p)f(x;α) from g(x) for different p,α
values and view the remaining component as pη(x − µ). Even under the sym-
metry constraints of η, the identifiability of model (1.2) is still not guaranteed
automatically, as we illustrate in the following two examples.

Example 1. If f(x;α) is symmetric about zero and η(x) = f(x;α), then

(1− p)f(x;α) + pf(x− µ;α) = (1− 2p)f(x;α) + (2p)η̃(x− µ/2),

where 0 < p < 1/2, η̃(x) = {f(x+µ/2;α)+f(x−µ/2;α)}/2, hence the problem
is not identifiable.

In fact, when we fix µ = 2, Example 1 reduces to the second non-identifiable
example given in Bordes et al. (2006b).

Example 2. If η(x) and f(x;α) are symmetric about zero, then

(1 − p)f(x;α) + pη(x) = (1− p̃)f(x;α) + p̃η̃(x),

where η̃(x) = {(p̃− p)f(x;α) + pη(x)}/p̃ and p < p̃ < 1, hence the problem is
not identifiable.

We next give some simple sufficient conditions for model (1.2) to be identifi-
able when η(x) is symmetric about 0 and α does not appear.

Proposition 1. Suppose η(x) is symmetric about 0 and α does not appear.
Model (1.2) is identifiable if either of the following two conditions is satisfied

1. f(x) > 0. In addition, limx→∞

η(x−δ)
f(x) = 0 or limx→−∞

η(x−δ)
f(x) = 0 for

any δ.

2. η(x) > 0. In addition, limx→∞

f(x)
η(x−δ) = 0 or limx→−∞

f(x)
η(x−δ) = 0 for

any δ.
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Based on Proposition 1, we can see that model (1.2) is identifiable if η(x) and
f(x) have different tail properties. In addition, note that the identifiable results
in Proposition 3 of Bordes et al. (2006b) are special cases of Proposition 1.
Compared to Bordes et al. (2006b), Proposition 1 does not require moment
assumptions of f(·) and η(·); in addition, Proposition 1 does not require f(x)
to have bounded support when η(x) has heavier tails than f(x). The proof of
Proposition 1 is in Appendix A.1.

3. Semiparametric estimators and properties

3.1. General estimators

When constructing the simplest generalized moment type of estimators, the
usual practice is to solve an estimating equation of the form

∑n
i=1 a(xi;β) = 0.

As long as E{a(X ;β)} = 0 and the estimating equation does not degenerate,

the solution β̂ will then be a root-n consistent estimator of β. Thus, finding the
mean zero estimating function is critical for constructing generalized moment
estimators. If we start with an arbitrary function a(x;β) that does not necessar-
ily have mean zero, an obvious way to correct it is through subtracting its mean.
This requires to calculate E{a(X ;β)}. Even though a(x;β) is explicitly chosen,
its expectation involves g(x;β, η), and since η is not known, E{a(X ;β)} is gen-
erally uncomputable without an approximated η function. However, the fact
that η is a symmetric function in (1.2) leads to some unexpected construction
as we now explain.

The explicit calculation of E{a(X ;β)} yields

E{a(X ;β)} =

∫
a(x;β){(1− p)f(x;α) + pη(x− µ)}dx

=

∫
a(t + µ;β){(1− p)f(t+ µ;α) + pη(t)}dt

=

∫
∞

0

a(t+ µ;β){(1− p)f(t+ µ;α) + pη(t)}dt

+

∫ ∞

0

a(µ− t;β){(1− p)f(µ− t;α) + pη(−t)}dt

= (1− p)

∫ ∞

0

{a(µ+ t;β)f(t+ µ;α) + a(µ− t;β)f(µ− t;α)}dt

+ p

∫
∞

0

{a(µ+ t;β) + a(µ− t;β)}η(t)dt.

The first component of the above expression is a computable quantity at any
parameter value of β, while the only difficulty due to the presence of η is reflected
in the second component. Thus, critically, if we choose the function a(x;β) so
that a(x;β)+a(2µ−x;β) = 0 for all x and β, then the effect of η vanishes and
an estimating function can be readily obtained. Under such choice of a(x;β),
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we have
∫

∞

0

{a(µ+ t;β)f(t+ µ;α) + a(µ− t;β)f(µ− t;α)}dt

=

∫ ∞

0

a(µ+ t;β){f(t+ µ;α)− f(µ− t;α)}dt

=
1

2

∫
a(µ+ t;β){f(t+ µ;α)− f(µ− t;α)}dt.

This simple yet crucial observation leads to a very general class of estimators
obtained by solving

n−1
n∑

i=1

a(xi;β)−
1− p

2

∫
a(µ+ t;β){f(t+ µ;α)− f(µ− t;α)}dt = 0, (3.1)

where a(x;β) ∈ Rd satisfies a(x;β)+a(2µ−x;β) = 0. This implies that any d-
dimensional odd function reparameterized to be a function of µ+x is a qualified
choice for a.

3.2. A specific family of estimators

The consideration above provides many choices of a(x;β), hence many potential
estimators of β. In this article, we restrict our attention to a specific family
of a(x;β) functions that is arguably the most interesting. Motivated by the
optimal efficiency of the maximum likelihood estimator in the parametric model
framework, we consider the score function Sβ = (Sµ, Sp,S

T
α)

T, where

Sµ =
−η′(x− µ)

g(x;β, η)
, Sp =

η(x − µ)− f(x;α)

g(x;β, η)
, Sα =

f ′
α(x;α)

g(x;β, η)
.

While the score function in its original form does not qualify as one choice of the
a(x;β) function, we modify them by making the denominator symmetric around
µ and the numerator anti-symmetric around µ. This yields a = (aµ, ap, a

T
α)

T,
where

aµ =
η′(x− µ)

g(x;β, η) + g(2µ− x;β, η)
,

ap =
f(x;α)− f(2µ− x;α)

g(x;β, η) + g(2µ− x;β, η)
,

aα =
f ′
α(x;α)− f ′

α(2µ− x;α)

g(x;β, η) + g(2µ− x;β, η)
.

While closely related to the score functions, a cannot be directly used because
it relies on the unknown pdf η. A simple alternative is to replace η with an
arbitrary working version of η, such as normal density. Denoting the working
function η∗, then we obtain a practically implementable function a∗, where a∗

is defined analogously as a except that η is replaced by η∗, a working symmetric
pdf. Specifically, the estimation procedure is the following.
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Step 1: Select a working model for η. Denote the working model η∗. Write
g∗(x;β) = (1− p)f(x;α) + pη∗(x − µ).

Step 2: Using numerical integration to approximate the functions of β:

r∗µ(β) =
1−p

2

∫
η∗

′

(t){f(µ+ t;α)− f(µ− t;α)}
g∗(µ− t;β)+ g∗(µ+ t;β)

dt,

r∗p(β) =
1−p

2

∫ {f(µ+ t;α)− f(µ− t;α)}2
g∗(µ− t;β)+ g∗(µ+ t;β)

dt,

r∗α(β) =
1−p

2

×
∫ {f ′α(µ+ t;α)− f ′α(µ− t;α)}{f(µ+ t;α)− f(µ− t;α)}

g∗(µ− t;β)+ g∗(µ+ t;β)
dt.

Write r∗(β) = {r∗µ(β), r∗p(β), r∗α(β)T}T.
Step 3: Define

a∗µ(xi;β) =
η∗

′

(xi − µ)

g∗(xi) + g∗(2µ− xi)
,

a∗p(xi;β) =
f(xi)− f(2µ− xi)

g∗(xi) + g∗(2µ− xi)
,

a∗α(xi;β) =
f ′α(xi;α)− f ′α(2µ− xi;α)

g∗(xi) + g∗(2µ− xi)
.

Let a∗(xi;β) = {a∗µ(xi;β), a
∗
p(xi;β), a

∗
α(xi;β)

T}T and h∗

β(xi;β) =
a∗(xi;β)− r∗(β).

Step 4: Solve the estimating equation
∑n

i=1 h
∗

β(xi;β) = 0 to obtain β̂.

The estimating equation in Step 4 can be solved via the standard Newton-
Raphson procedure. One nice feature of the above class of estimator is its sim-
plicity. We do not need to estimate the unspecified component η at all. Instead,
only a working model is adopted in its place. Thus, nonparametric estimation is
completely bypassed. Another advantage of the family is in its richness. Differ-
ent choice of the working model η∗ will yield different estimators for β. Thus,
the family includes many different consistent estimators. Finally, the family is
robust, in the sense that regardless of the choice of η∗, the resulting estimator
of β is always guaranteed to be root-n consistent and has the usual asymptotic
normal distribution. We summarize the asymptotic properties of the estimator
in Theorem 1 and write the proof in Appendix A.3.

Theorem 1. Whether or not η∗(t) = η(t), under the regularity conditions listed
in Appendix A.2, the estimator obtained through the above procedure satisfies√
n(β̂ − β) → N(0,A−1BA−1T) in distribution when n → ∞, where

A = E(∂h∗

β/∂β
T), B = E(h∗

βh
∗

β
T).

Here, all the convergence and expectations are under the measure defined by the
true distribution.
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Remark 1. In practice, there are various choices of working models for η∗. To
determine which working model is favorable, a simple practice is to utilize the
result of Theorem 1 to assess the estimation variability. One can then choose
the working model that yields the smallest estimation variability, for example,
smallest trace of var(β̂), as the favorable working model and proceed with the
analysis.

3.3. Extension

In practice, when we select a model η∗, especially when we are selecting a
model with the hope that it captures the true pdf η sufficiently well, we may
want to leave some aspects of the model unspecified. For example, when we
use a normal working model for η∗, we may want to leave the variance of the
model unspecified, although the mean is predetermined to be zero due to the
symmetry requirement of the working model. This implies that instead of a fully
specified function η∗(t), we use a model η∗(t;γ). Generally speaking, as long as

we can estimate γ at a root-n rate, then the resulting β̂ is still root-n consistent
and asymptotically normal. Of course, the variability might be affected when
different γ values are used.

As an example, consider the case when γ is the standard deviation of η and
is undetermined. The relation

E(X2) = (1 − p)

∫
x2f(x;α)dx + p(µ2 + γ2)

leads to the estimating equation
∑n

i=1 hγ(x;β, γ) = 0, where

hγ(x;β, γ) = x2
i − (1− p)

∫
x2f(x;α)dx − p(µ2 + γ2).

This yields an explicit solution

γ̂2(β) =
1

p

{
n−1

n∑

i=1

x2
i − (1 − p)

∫
x2f(x;α)dx− pµ2

}
.

In practice, we can either profile out γ using the above relation or solve for
β, γ jointly from

∑n
i=1 h

∗(x;β, γ) = 0, where h∗(x;β, γ) = {h∗

β(x;β, γ)
T,

hγ(x;β, γ)}T. Regardless of the computational procedure of obtaining the esti-

mator β̂, we have the asymptotic properties of β̂ stated in Theorem 2, with its
proof given in Appendix A.4.

Theorem 2. If the estimator β̂ and γ̂ are obtained by solving
∑n

i=1 h(xi;β, γ) =
0, then under the regularity conditions listed in Appendix A.2, when n → ∞,√
n(β̂ − β) → N(0,A−1BA−1T) in distribution, where A, B are defined in

Theorem 1.

Remark 2. The result in Theorem 2 implies an unusual property of our es-
timator. Because the estimation variance of β̂ does not change from using the
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true parameter value γ to using the parameter value estimated together with
β, it indicates that the estimation of the additional parameter γ does not cost
anything. In other words, if we had known the true variance γ2 of η, and used it
in place of η∗(t) in forming h∗

β(x;β, γ), we will not further improve the estima-

tion efficiency of β̂. From the proof of Theorem 2 in the Appendix, we can see
that this is a direct result of the robustness property of h∗

β, in that it has mean
zero at the true β value regardless which η∗ function is used or which scalar
parameter of η∗ is used.

Remark 3. When the additional parameter γ includes parameters other than
the standard deviation, for example, when γ contains the degrees of freedom
in a student t distribution (Liu and Rubin, 1995), a moment type of estima-
tor may not always apply. A simple approach to estimate the general γ is
through maximum likelihood estimation. Specifically, we can treat g∗(β,γ) ≡
(1 − p)f(x;α) + pη∗(x − µ;γ) as a parametric model, and construct estima-
tor for γ∗ through maximizing the loglikelihood, in combination with solving∑n

i=1 h
∗

β(xi;β) = 0. Computationally, we can either perform a profile likeli-
hood type of procedure or solve joint estimating equations. Specifically, in the
profiling approach, we obtain γ̂(β) from maximizing g∗(β,γ) with respect to

γ, and insert the relation to
∑n

i=1 h
∗

β(xi;β) = 0 to obtain β̂. In the estimat-
ing equation approach, we take derivative of the loglikelihood of the model
g∗(β,γ) with respect to γ to obtain a set of estimating equations, and join with∑n

i=1 h
∗

β(xi;β) = 0 to form the complete set of estimating equations. We then

solve the complete set of estimating equations to obtain (β̂, γ̂). Because g∗(β,γ)
may not be a correct model, the corresponding γ̂ converges to a value γ that
minimizes the Kullback-Leibler distance between g∗(β,γ) and g(β, η) (White,
2002). Replacing all the γ instances in the proof of Theorem 2 in Appendix A.4
with γ, we can obtain the same result as in Theorem 2. Specifically, using γ̂,
the resulting asymptotic variability of β̂ is the same as using γ.

4. Relation to existing estimator

When f is fully specified and centered, Bordes et al. (2006b) proposed an es-
timator that minimizes a distance norm between two functions. While they
used a general Lq distance in their description, they analysed the L2 norm
distance in their implementation. Thus, we focus on the L2 norm here. Write
the corresponding cdf of f and g as F and G respectively, and use Ĝ(x) =
n−1

∑n
i=1 I(xi ≤ x) to indicate the empirical version of G(x). They propose to

estimate µ through minimizing the squared distance
∫
{H1(x;µ)−H2(x;µ)}2dx

with respect to µ, where

H1(x;µ) = n−1
n∑

i=1

{µI(xi ≤ µ+ x) + (xi − µ)F (µ+ x)},

H2(x;µ) = n−1
n∑

i=1

{xi − µI(xi ≤ µ− x) + (µ− xi)F (µ− x)},
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and then obtain p̂ = n−1
∑n

i=1 xi/µ̂. This procedure is equivalent to solving
∫
{H1(x;µ) −H2(x;µ)}

∂{H1(x;µ)−H2(x;µ)}
∂µ

dx = 0

n−1
n∑

i=1

(xi − µ)− (p− 1)µ = 0 (4.1)

jointly. The function x−µ is certainly a qualified choice of a in (3.1). In addition,
E{X−µ−(p−1)µ} = 0. Hence the second equation in (4.1) belongs to the gen-
eral family described in Section 3.1. Let b(x;µ) = E[∂{H1(x;µ)−H2(x;µ)}/∂µ].
We write the first equation in (4.1) equivalently as n−1

∑n
i=1 a(xi;µ) +

op(n
−1/2) = 0, where

a(xi;µ) =

∫
µ {I(xi ≤ µ+ x) + I(xi ≤ µ− x)− 1} b(x;µ)dx

+

∫
(xi − µ) {F (µ+ x) + F (µ− x)− 1} b(x;µ)dx.

It is easy to check that a(x;µ) + a(2µ− x;µ) = 0. In addition,

E{a(X ;µ)} = µ

∫
{G(µ+ x) +G(µ− x)− 1} b(x;µ)dx

− µ

∫
(1− p) {F (µ+ x) + F (µ− x)− 1} b(x;µ)dx

= pµ

∫ {∫ x

−∞

η(t)dt +

∫
−x

−∞

η(t)dt − 1

}
b(x;µ)dx

= 0,

where the first equality used the fact that f is centered, and the last equality
used the symmetry of η. This shows that the first estimating equation of (4.1)
also belongs to the general family described in Section 3.1. Thus, the estimator
by Bordes et al. (2006b) is indeed a special member of our estimator family
described in (3.1). As a byproduct, this analysis shows that we can use the result
in Theorem 1 to obtain the asymptotic result of the estimator of Bordes et al.
(2006b), which is an alternative approach to Bordes and Vandekerkhove (2010).

5. Semiparametric efficient estimator

Having derived a general class of estimators, it is natural to further ask whether
this class contains the efficient estimator and how to achieve the optimal effi-
ciency. We thus need to obtain the efficient score functions. To derive the efficient
score, we calculate the tangent space with respect to the nuisance function η,
denoted Λ and calculate the residual of the projection of the score function Sβ

on Λ. In Appendix A.5 and A.6, we derive the form of Λ and its orthogonal
complement Λ⊥, and further derive the efficient score.

Theorem 3. Assuming the regularity conditions listed in the Appendix hold.
The efficient score is Seff(x− µ) = {Seff,µ(x− µ), Seff,p(x− µ),ST

eff,α(x− µ)}T,
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where

Seffµ(x− µ) = −2p
η′(x− µ)− g(2µ− x)cµ

g(2µ− x) + g(x)

Seffp(x− µ) = −f(x)− f(2µ− x)− g(2µ− x)cp
g(x) + g(2µ− x)

Seffα(x− µ) = (1 − p)
f ′α(x;α)− f ′α(2µ− x;α)− g(2µ− x)cα

g(2µ− x) + g(x)
.

Here,

cµ = E

{
η′(x − µ)

g(x) + g(2µ− x)

}[
E

{
g(2µ− x)

g(x) + g(2µ− x)

}]−1

,

cp = E

{
f(x)− f(2µ− x)

g(x) + g(2µ− x)

}[
E

{
g(2µ− x)

g(x) + g(2µ− x)

}]−1

,

cα = E

{
f ′α(x;α)− f ′α(2µ− x;α)

g(x) + g(2µ− x)

}[
E

{
g(2µ− x)

g(x) + g(2µ− x)

}]−1

.

Theorem 3 reveals that to achieve optimal efficiency, one is obliged to have
the luck of using the true model η as the working model or to estimate the
nuisance function η and its derivative η′. In addition, it is crucial to realize that
the expectation in the denominators of cµ, cp, cα need to be computed using
numerical approximation, instead of using sample average as an approximation
to the expectation. In fact, if we use the sample average, the estimating equation
will become a member in the family described in Section 3.2, corresponding to
the working model η∗ = η and g∗ = g, and the efficiency will not be achieved in
theory. This is different from many semiparametric models, where replacing an
expectation with its estimate via sample average is almost a standard practice.
We can estimate g(x) and its first derivative nonparametrically to obtain g̃(x)
and g̃′(x). Taking into account that η′(x) is an odd function. we can then obtain
η̂′(x) = [g̃′(µ+ x)− g̃′(µ− x)− (1− p){f ′(µ+ x;α)− f ′(µ− x;α)}]/(2p), and
further refine the nonparametric estimator of g(x) as ĝ(x) = {g̃(x) + g̃(2µ −
x)}/2 + (1− p){f(x;α)− f(2µ− x;α)}/2. We can then form

ĉµ = κ−1

∫
η̂′(t)ĝ(µ+ t)

ĝ(µ− t) + ĝ(µ+ t)
dt =

1− p

2κ

∫
η̂′(t){f(µ+ t)− f(µ− t)}

ĝ(µ− t) + ĝ(µ+ t)
dt,

ĉp = κ−1

∫ {f(µ+ t)− f(µ− t)}ĝ(µ+ t)

ĝ(µ− t) + ĝ(µ+ t)
dt

=
1− p

2κ

∫ {f(µ+ t)− f(µ− t)}2
ĝ(µ− t) + ĝ(µ+ t)

dt,

ĉα = κ−1

∫ {f ′α(µ+ t;α)− f ′α(µ− t;α)}ĝ(µ+ t)

ĝ(µ− t) + ĝ(µ+ t)
dt

=
1− p

2κ

∫ {f ′α(µ+ t;α)− f ′α(µ− t;α)}{f(µ+ t)− f(µ− t)}
ĝ(µ− t) + ĝ(µ+ t)

dt,



Mixture model estimation 455

where

κ =

∫
ĝ(µ− t)ĝ(µ+ t)

ĝ(µ− t) + ĝ(µ+ t)
dt.

Finally, we replace η′, g, cµ, cp, cα in Seff with η̂′, ĝ, ĉµ, ĉp, ĉα to obtain the effi-
cient score that can be implemented in practice.

A natural choice of the starting value of the efficient estimator is the result
from a local estimator. The need to estimate the nuisance function η and its
first derivative η′ makes the efficient estimator more computationally intensive in
comparison with the estimators proposed in Section 3.2 and 3.3. In practice, we
have seen the computation time of the efficient estimator about four to five times
that of the other estimators. Our experience is that in finite samples, the optimal
efficiency often does not exhibit a clear gain. Because of these considerations,
unless sample size is very large and one is willing to perform nonparametric
estimation, we would recommend carrying out the estimation under a reasonable
working model η∗.

6. Numerical analysis

6.1. Simulations

To investigate the finite sample performance of the estimator family, we con-
ducted two simulation studies. In the first simulation, f is completely known
and centered, and is set to be the standard normal pdf, while the true η is a
student t-distribution with four degrees-of-freedom recentered to µ 6= 0. Since
both f(x) and η(x) are symmetric about 0, Proposition 1 ensures that model
(1.2) is identifiable.

We generated 1000 data sets each with sample size 1000, and experimented
with three classes of different estimators. In the first class, we used the nor-
mal distribution as a working model. In the second class, we used the student
t-distribution with the wrong degrees-of-freedom three as a working model. Fi-
nally, in the last class, we used the student t-distribution with the correct degrees
of freedom as a working model. In each class, we experimented with a wrong
variance parameter in η∗, which is set to be half of the true variance, as well as
setting the variance parameter as unknown and estimating it together with the
parameters of interest. For comparison, we also implemented the oracle estima-
tor where the true η function is used as a working model, as well as the efficient
estimator, where nonparametric estimation is carried out. Since when f is com-
pletely known and centered, the symmetrization method (Symm) proposed in
Bordes et al. (2006b) can also be used, hence we also included it for comparison.

The results are summarized in Table 1. In all our estimators, the estimated
standard deviations are computed from the asymptotic results, while we replace
the expectation using the sample average and the true parameter values using
their estimates. The confidence interval coverages are based on the asymptotic
normality results, where the confidence intervals are constructed using the esti-
mated standard deviations as well. Similarly, we report the estimated standard
deviations and confidence intervals for Symm using the asymptotic results of
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Table 1

Simulation 1 results. The true value (µ, p), the average estimates (µ̂, p̂), the sample

standard errors (“sd”), the mean of the estimated standard errors (ŝd) and the 95%
confidence interval of 9 different estimators are reported. “Normal”, “t3”, “t4” are the
different working models η∗. Either a fixed wrong variance (fix var) or an estimated

variance (est var) is used in the working model η∗

Normal t3 t4 oracle eff Symm
fix var est var fix var est var fix var est var

µ 3 3 3 3 3 3 3 3 3
µ̂ 2.9955 2.9943 2.9936 2.9976 2.9944 2.9976 2.9962 2.9979 2.9897
sd 0.0850 0.1041 0.1048 0.0839 0.0947 0.0833 0.0832 0.0885 0.0966

ŝd 0.0842 0.1539 0.1047 0.0846 0.0943 0.0832 0.0823 0.0916 0.0826
CI 94.2% 94.8% 92.1% 94.1% 92.7% 94.4% 94.4% 92.6% 94.2%
p 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
p̂ 0.4017 0.4021 0.4021 0.4012 0.4019 0.4012 0.4015 0.4026 0.4020
sd 0.0216 0.0232 0.0259 0.0214 0.0237 0.0213 0.0212 0.0211 0.0242

ŝd 0.0218 0.0309 0.0260 0.0216 0.0237 0.0213 0.0212 0.0221 0.0217
CI 94.7% 93.9% 94.8% 94.5% 95.0%% 94.9% 94.7% 95.0% 95.1%

Bordes and Vandekerkhove (2010). From the table, we can see that our proposed
method gives reasonable estimates regardless of whether the working model is
correct or wrong. When the working model is close to the true model and the
estimated variance is used, the proposed method yields better performance than
the symmetrization method and provides similar results to the oracle one and
the proposed efficient estimator. In addition, the estimated standard errors and
the sample standard errors are reasonably close in all situations. Furthermore,
the coverage percentages of the estimated confidence intervals based on the
proposed methods are very close to the nominal level, which demonstrates the
effectiveness of the inference tools of the proposed methods.

Our second simulation extends the first one by allowing the scale parameter of
f to be unknown and treating its logarithm as the α parameter. Based on (A.1),
we can see that model (1.2) is still identifiable in this case. We implemented three
classes of estimators, as well as the oracle estimator and the efficient estimator
as in simulation one, and reported the results in Table 2. Because Bordes et al.
(2006b) assumes that the first component density f is completely known, the
symmetrization method is not applicable in this case. From the table, we can see
that our proposed method provides reasonable estimates for all working models.
In addition, the estimated standard errors and the average coverage percentages
of the constructed confidence interval are all close to the their nominal values.

A by-produce of the efficient estimator is the density estimation of both the
nuisance function η(x) and the mixture density g(x). We provide the median
estimated curves as well as the 95% confidence bands from both simulations in
Figure 1.

It is often observed in semiparametric models that although an efficient esti-
mator is asymptotically optimal and should perform as well as the oracle estima-
tor, its practical gain over some other sub-optimal estimators can sometimes be
substantial, sometimes not, and its performance may or may not be sufficiently
close to that of the oracle estimator. This is mainly due to the difference between
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Table 2

Simulation 2 results. The true value (µ, p, α), the average estimates (µ̂, p̂, α̂), the sample

standard errors (“sd”), the mean of the estimated standard errors (ŝd) and the 95%
confidence interval of 8 different estimators are reported. “Normal”, “t3”, “t4” are the
different working models η∗. Either a fixed wrong variance (fix var) or an estimated

variance (est var) is used in the working model η∗

Normal t3 t4 oracle eff
fix var est var fix var est var fix var est var

µ 3 3 3 3 3 3 3 3
µ̂ 2.9854 2.9911 2.9933 2.9966 2.9930 2.9960 2.9939 2.9960
sd 0.1112 0.1146 0.1153 0.0875 0.1024 0.0861 0.0858 0.0925

ŝd 0.1083 0.1810 0.1153 0.0888 0.1021 0.0873 0.0863 0.0993
CI 93.9% 95.5% 91.9% 93.3% 92.4% 94.3% 94.2% 93.0%
p 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
p̂ 0.4039 0.4032 0.4023 0.4015 0.4024 0.4017 0.4022 0.4032
sd 0.0346 0.0259 0.0297 0.0230 0.0266 0.0227 0.0227 0.0231

ŝd 0.0290 0.0422 0.0296 0.0231 0.0264 0.0228 0.0227 0.0243
CI 94.8% 96.0% 93.6% 94.4% 94.6% 95.1% 94.7% 94.6%
α 0 0 0 0 0 0 0 0
α̂ -0.0141 -0.0044 -0.0018 -0.0022 -0.0028 -0.0026 -0.0031 -0.0069
sd 0.1081 0.0470 0.0484 0.0401 0.0450 0.0398 0.0399 0.0414

ŝd 0.0825 0.1075 0.0493 0.0411 0.0454 0.0409 0.0409 0.0422
CI 95.8% 96.2% 94.8% 95.5% 94.1% 95.5% 95.7% 95.1%

finite sample performance and asymptotic properties. In practice, the bias and
variance in estimating the nuisance parameters, such as η here, may have an
effect in the second or higher order terms, and in finite samples, the second or
higher order effect can sometimes overwhelm the first order property. The finite
sample performance also depends on the problem setting. The same estimator
may perform well in one problem while not as well in another problem, although
theoretically, the property of the estimator is the same in both models.

6.2. Real data analysis

We further apply the new estimation procedure to three data examples to
demonstrate the applications of the semiparametric mixture model (1.2) in se-
quential clustering problems (Song and Nicolae, 2009) and in multiple testing
problems. Because of the superiority of the efficient estimator demonstrated in
the previous sections, for simplicity of the presentation, we will only report the
results from the efficient estimator.

To illustrate the application of the proposed estimation procedure to sequen-
tial clustering algorithm, we apply the proposed method to the well known Iris
flower data. The Iris flower data has been analyzed by Fisher and many other
researchers and is a popular benchmark data for clustering and classification ap-
plications. The data contains four attributes: sepal length (in cm), sepal width
(in cm), petal length (in cm), and petal width (in cm). There are 3 classes of
50 instances each, where each class refers to a type of Iris plant.

Principal component analysis shows that the first principal component ac-
counts for 92.46% of the total variability, so it is a good practice to con-
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Fig 1. True function (solid line), median estimation (dashed line) and 95% confidence band
(dash-dotted line) of η(x) (left) and g(x) (right) in simulation 1 (upper) and simulation 2
(lower).

sider the one-dimensional subspace of the four-dimensional sample space repre-
sented by the first component. The first principal component loading vector is
(0.36,−0.08, 0.86, 0.35).

Suppose we want to perform clustering based on the first principal compo-
nent of the Iris flower data without using the class indictors. Song and Nicolae
(2009) proposed a sequential clustering algorithm to perform clustering by find-
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Table 3

Parameter estimates and their estimated standard errors (“sd”) for Iris flower data analysis

µ p α

True 3.9469 0.6667 -1.5105

Eff 3.9602 0.6832 -1.7180

ŝd 0.2489 0.0457 0.3264
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Fig 2. Left panel: plot of the estimated density function (solid line) with 95% confidence band
(dashed line) of g(x) overlay with the histogram of the data. Right panel: plot of null (solid
line) and non-null components (dash-dotted line) (weighted respectively by (1 − p̂) and p̂)
overlay with ĝ(x) (dashed line) in the Iris data analysis.

ing clusters sequentially. The sequential clustering algorithm does not require
specifying the number of clusters and it allows some objects not to be assigned
to any clusters. The algorithm starts with finding a local center of a cluster
first, and then identifies whether an object belongs to that cluster or not. It
iterates the above procedure until no new cluster is found. Based on Song and
Nicolae (2009), observation 8 is selected as the center of the first cluster. We
adjust all observations by subtracting observation 8 from each observation. The
first cluster can then be considered as one component that has normal density
with centered mean 0 and unknown variance, and the rest of data can be con-
sidered from the other mixture component with unknown density. Therefore, by
fitting the semiparametric mixture model (1.2), we can classify whether each
observation belongs to the first cluster or not. One might also use a mixture
of normals to approximate the nonparametric component η(·). However, using
the semiparametric mixture model (1.2) avoids the selection of the number of
mixture components.

The results of the analysis on the Iris data are summarized in Table 3. The
parameter α is the logarithm of the standard deviation of the first component.
Noting that the true proportion is 2/3 and the true values for µ and α are
calculated using the class indicators. From Table 3, we can see that the proposed
estimator works quite well. We also plotted the estimated mixture distribution
density, along with the confidence intervals in the left panel of Figure 2. The
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Table 4

Parameter estimates and their estimated standard errors (“sd”) for Breast cancer data
analysis

µ p

Eff 1.7007 0.3137

ŝd 0.1084 0.0285
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Fig 3. Left panel: plot of the estimated density function (solid line) with 95% confidence band
(dashed line) of g(x) overlay with the histogram of the data. Right panel: plot of null (solid
line) and non-null components (dash-dotted line) (weighted respectively by (1 − p̂) and p̂)
overlay with ĝ(x) (dashed line) in the breast cancer data analysis.

right panel of Figure 2 provides the corresponding estimated densities ĝ(x),
(1−p̂)f(x) and p̂η̂(x−µ̂) functions. In this data set, f and η̂ are clearly separated
and ĝ has two distinctive modes. In particular, ĝ overlays with p̂η̂(x − µ̂) and
(1 − p̂)f(x, µ̂) completely in two regions, corresponding to the two distinctive
mixture components.

To illustrate the application of the new method in multiple hypothesis test-
ing, we consider the detection of differentially expressed genes based on the
breast cancer data of Hedenfalk et al. (2001). They examined gene expressions
in breast cancer tissues from women who were carriers of the hereditary BRCA1
or BRCA2 gene mutations, predisposing to breast cancer. The data consist of
3,226 genes on 7 BRCA1 arrays and 8 BRCA2 arrays. Based on Storey and Tib-
shirani (2003), if any gene had one or more measurements exceeding 20, then
this gene was eliminated. This leaves us 3,170 genes. The p-values are calculated
based on permutation tests (Storey and Tibshirani, 2003). We then obtain the
z-scores by the probit transformation of the p-values, given by zi = Φ−1(1− pi)
(McLachlan et al., 2006).

The results are reported in Table 4 and Figure 3. Specifically, Figure 3 in-
dicates an adequate description of the data using the semiparametric mixture
model (1.2). Based on Table 4, the proportion of genes satisfying the alternative
hypothesis is around 31%, which is consistent with the results reported in Lan-
gaas et al. (2005). We now further explain how to perform multiple hypothesis
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Table 5

Estimated FDR for various levels of the threshold c applied to the posterior probability of
nondifferentially expression for the breast cancer data

c Nr F̂DR

0.05 69 0.0413

0.1 186 0.0607

0.2 342 0.1005

0.3 512 0.1496

0.4 689 0.2015

0.5 854 0.2499

testing using the fitted semiparametric mixture model (1.2). Let

τ̂i = (1− p̂)f̂(zi)/{(1− p̂)f̂(zi) + p̂η̂(zi − µ̂)}

be the classification probability that the ith gene is not differentially expressed.
The gene-specific posterior probabilities τ̂i is also referred to as the local false
discovery rate (local FDR) by Efron and Tibshirani (2002) and can be viewed as
an empirical Bayes version of the Benjamini and Hochberg (1995) methodology
(Efron, 2004). We can select all genes with

τ̂i ≤ c

to be differentially expressed. The cut point c can be selected by controlling the
false discovery rate (FDR)(Benjamini and Hochberg, 1995). Based on McLach-
lan et al. (2006), the FDR can be estimated by

F̂DR =
1

Nr

∑

i

τ̂iI[0,c](τ̂i),

where Nr =
∑

i I[0,c](τ̂i) is the total number of differentially expressed genes
identified, and IA(x) is an indicator function which is one if x ∈ A and zero
otherwise. The results are reported in Table 5 based on the proposed efficient
estimator. For example, if c = 0.05, then the estimated FDR is 0.04 and Nr = 69
genes would be declared to be differentially expressed. If the threshold value c
is increased to 0.1 then Nr = 186 genes would be declared to be differentially
expressed with the estimated FDR increased to 0.06. Compared to c = 0.05,
c = 0.1 might be a better choice since it can detect almost three times as
many differentially expressed genes with only slightly larger estimated FDR.
McLachlan and Wockner (2010) applied the normal mixture model on this data
by assuming a normal distribution for η(·) and obtained similar results.

As a last example, we apply the proposed estimation procedure to a lipid
metabolism data of Callow et al. (2000), where the effect of knocking out the
gene apolipoprotein AI gene were investigated. Smyth et al. (2005) analyzed
this data set based on the theory presented in Smyth (2004). The data consist
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Table 6

Parameter estimates and their estimated standard errors (“sd”) for Lipid metabolism data
analysis

µ p

Eff 0.9895 0.1275

ŝd 0.0365 0.0141
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Fig 4. Left panel: plot of the estimated density function (solid line) with 95% confidence band
(dashed line) of g(x) overlay with the histogram of the data. Right panel: plot of null (solid
line) and non-null components (dash-dotted line) (weighted respectively by (1 − p̂) and p̂)
overlay with ĝ(x) (dashed line) in the lipid metabolism data analysis.

of 6,384 genes and the p−values were calculated based on the comparison of
knockout mice with normal mice. We then obtain the z-scores given by zi =
Φ−1(1− pi) and fit the semiparametric model (1.2) on the z-scores.

The results are reported in Table 6 and Figure 4. Based on Figure 4, we can
see that the semiparametric mixture model (1.2) fit the data very well. Com-
pared to the breast cancer data analysis, lipid metabolism data has much smaller
proportion (13%) of genes that satisfy the alternative hypothesis. The estimate
of p is consistent with the four estimates introduced in Langaas et al. (2005).

In addition, similar to the previous example, we report the multiple hypoth-
esis testing results by controlling the FDR in Table 7. For example, if c = 0.55,
then Nr = 11 genes would be declared to be differentially expressed with the
estimated FDR=0.0814; if c = 0.3, then Nr = 10 genes would be declared to
be differentially expressed with a much smaller estimated FDR value (0.0346).
In this example, compared to c = 0.55, c = 0.3 might be a better choice since
it only detects one less differentially expressed gene but has much smaller esti-
mated FDR.

7. Discussion

In this article, we proposed a new class of estimators for a two-component semi-
parametric mixture model where one component distribution belongs to a para-
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Table 7

Estimated FDR for various levels of the threshold c applied to the posterior probability of
nondifferentially expression for the lipid metabolism data

c Nr F̂DR

0.1 8 0.0004

0.2 9 0.0157

0.3 10 0.0346

0.55 11 0.0814

0.57 12 0.1217

0.58 13 0.1564

metric class, while the other is symmetric with unknown center but otherwise
arbitrary. The semiparametric model can be used for large-scale simultaneous
testing/multiple testing, sequential clustering, or robust modeling. The simu-
lation studies and real data applications demonstrate the effectiveness of the
proposed methods.

It will be interesting to know whether the proposed estimators can be ex-
tended to some other semiparametric mixture models, such as model (1.1). In
addition, it will also be interesting to know whether the proposed estimators
can be extended to the semiparametric mixture of regression models where one
component is known while the other component is unknown (Vandekerkhove,
2012) or all the component error densities are assumed to be unknown (Hunter
and Young, 2012).

Our proposed estimators make use of the symmetry nature of η, which is also
assumed by Bordes et al. (2006b). However, in some applications, it might be
infeasible to impose the symmetry assumption on η. Of course, identifiability of
model (1.2) will then require other structures to be imposed on η. Estimation
procedures will inevitably rely on the specific structure, and will need to be
studied in each case.
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Appendix

A.1. Proof of Proposition 1

We first give two Lemmas which will be used later.
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Lemma 1. If η(x) is symmetric about 0, then model (1.2) is non-identifiable if
and only if there exist vectors (p̃, µ̃, α̃) 6= (p, µ,α) such that

η(x − µ̃+ µ)− η(x+ µ̃− µ) (A.1)

=
1− p

p
{f(x+ µ̃;α)− f(−x+ µ̃;α)} − 1− p̃

p
{f(x+ µ̃; α̃)− f(−x+ µ̃; α̃)}

for all x ∈ R.

Proof. Suppose the model (1.2) is non-identifiable and there is another set of
parameter values p̃, µ̃, α̃, η̃ such that it yields the same pdf g(x), i.e.

(1− p̃)f(x; α̃) + p̃η̃(x− µ̃) = (1 − p)f(x;α) + pη(x− µ)

for all x. This implies

p̃η̃(x) = (1 − p)f(x+ µ̃;α)− (1 − p̃)f(x+ µ̃; α̃) + pη(x+ µ̃− µ).

If (p̃, µ̃, α̃) = (p, µ,α), then η(x) = η̃(x) and the model (1.2) is still identifiable.
Therefore, (p̃, µ̃, α̃) 6= (p, µ,α). Note that η̃ is symmetric about 0, hence we
have

(1 − p)f(x+ µ̃;α)− (1− p̃)f(x+ µ̃; α̃) + pη(x+ µ̃− µ)

= (1 − p)f(−x+ µ̃;α)− (1− p̃)f(−x+ µ̃; α̃) + pη(x− µ̃+ µ).

Recall that p and p̃ belong to ]0, 1[ . This leads to

η(x− µ̃+µ)− η(x+ µ̃−µ)

= (
1

p
− 1){f(x+ µ̃;α)− f(−x+ µ̃;α)}− (

1

p
− p̃

p
){f(x+ µ̃; α̃)− f(−x+ µ̃; α̃)}.

All the above statements are reversible. Therefore, the non-identifiable condition
is necessary and sufficient condition.

Lemma 2. When f is completely known, i.e., α does not appear, (1.2) reduces
to the model considered by Bordes et al. (2006b). In this special case, for a
symmetric η(x), the condition in Lemma (1) can be simplified to

η(x − µ̃+ µ)− η(x+ µ̃− µ) = r {f(x+ µ̃)− f(−x+ µ̃)} (A.2)

for all x ∈ R, where µ̃ 6= 0, r 6= 0 and −1 < r < (1 − p)/p.

Proof. If model (1.2) is non-identifiable, based on Lemma (1), we have

(p̃− p){f(x+ µ̃)− f(−x+ µ̃)} = p{η(x− µ̃+ µ)− η(x+ µ̃− µ)}.

If p = p̃, then µ = µ̃ and η̃(x) = η(x) and thus the model is identifiable.
Therefore, p 6= p̃ and

η(x− µ̃+ µ)− η(x + µ̃− µ) = r{f(x+ µ̃)− f(−x+ µ̃)},

where −1 < r = (p̃− p)/p < (1− p)/p and r 6= 0.

Next, we prove Proposition 1.
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Based on the proof in Lemma 2, if there is another set of parameter values
p̃, µ̃, η̃ such that

(1 − p̃)f(x) + p̃η̃(x− µ̃) = (1− p)f(x) + pη(x − µ)

for all x, then r = (p̃− p)/p 6= 0 is required for the non-identifiability of model
(1.2). This implies p 6= p̃. Therefore, if p is estimable, the model (1.2) is identi-
fiable.

Note that g(x) = (1− p)f(x) + pη(x− µ). If f(x) > 0 and limx→∞

η(x−δ)
f(x) =

0 then p = 1 − limx→∞ g(x)/f(x). If limx→−∞

η(x−δ)
f(x) = 0, then p = 1 −

limx→−∞ g(x)/f(x). Therefore, p is identified and model (1.2) is identifiable.
Similarly, we can prove that model (1.2) is identifiable if η(x) > 0 and

limx→∞

f(x)
η(x−δ) = 0 or limx→−∞

f(x)
η(x−δ) = 0.

A.2. Regularity conditions

C1. f(·,α) is continuous and twice differentiable with respect to α.
C2. η(·) and η∗(·) are continuous and twice differentiable with respect to all the
function arguments.
C3. The expectations of ∂h∗

β/∂β
T and h∗

βh
∗

β
T exist, are bounded and nonsin-

gular.

A.3. Proof of Theorem 1

Standard Taylor expansion yields

0 = n−1/2
n∑

i=1

h∗

β(xi, β̂)

= n−1/2
n∑

i=1

h∗

β(xi,β) +
1

n

n∑

i=1

∂h∗

β(xi,β
∗)

∂βT

√
n(β̂ − β)

= n−1/2
n∑

i=1

h∗

β(xi,β) +

[
E

{
∂h∗

β(Xi,β)

∂βT

}
+ op(1)

]√
n(β̂ − β),

where β∗ is a point on the line connecting β and β̂. Thus, we obtain

√
n(β̂ − β) = −A−1n−1/2

n∑

i=1

h∗

β(xi,β) + op(1).

Making use of the properties that a(x;β)+a(2µ−x;β) = 0, and η is symmetric,
we can easily verify that

E{h∗

β(X ;β)}

=

∫
a∗(x+ µ;β)g(x+ µ)dx − r∗(β)
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=

∫
∞

0

a∗(x+ µ;β)g(x+ µ)dx+

∫
∞

0

a∗(µ− x;β)g(µ− x)dx− r∗(β)

=

∫ ∞

0

a∗(x+ µ;β){g(x+ µ)− g(µ− x)}dx− r∗(β)

= (1 − p)

∫ ∞

0

a∗(x + µ;β){f(x+ µ;α)− f(µ− x;α)}dx− r∗(β)

=
1− p

2

∫
a∗(x + µ;β){f(x+ µ;α)− f(µ− x;α)}dx− r∗(β)

= 0

due to the definition of r∗(β). Here in the second last equality, we use the fact
that the integrant is an even function of x. Hence we obtain

√
n(β̂ − β) → N

(
0,A−1BA−1T

)

in distribution when n → ∞.

A.4. Proof of Theorem 2

Because E{h∗

β(X ;β)} = 0 for η∗ function, it is certainly true that E{h∗

β(X ;
β,γ)} = 0. Because E(hγ(X;β, γ)} = 0 as well, so we obtain E{h∗(X ;β, γ)} =
0. Using the same derivation as in the proof of Theorem 1, we thus obtain

(βT, γ)T → N(0,C−1DC−1T) in distribution when n → ∞. HereC = {E(∂h∗/

∂βT), E(∂h∗/∂γ)}, D = E(h∗h∗T). To extract the variance of β̂, we note that
because E{h∗

β(X ;β, γ)} = 0 for all γ, hence E{∂h∗

β(X ;β, γ)/∂γ} = 0. Thus,

C =




E
{
∂h∗

β(X ;β,γ)/∂βT
}

0

E
{
∂hγ(X ;β,γ)/∂βT

}
E {∂hγ(X ;β,γ)/∂γ}




=




A 0

E
{
∂hγ(X ;β,γ)/∂βT

}
E {∂hγ(X ;β,γ)/∂γ}


 ,

where A is defined in Theorem 1. Note that that upper left d×d block of D is B
defined in Theorem 1. Thus, simple matrix calculation directly yields that the

upper left d× d block of C−1DC−1T matrix is A−1BA−1T, hence the result is
shown.

A.5. Derivation of Λ and Λ⊥

To simplify notation, we omit the parameters here whenever it does not cause
confusion. We show that

Λ =

{
a(x− µ)

g(x)
: a(t) = a(−t),

∫
a(t)dt = 0

}
,
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Λ⊥ =

{
b(x− µ) : b(t) + b(−t) +

∫
∞

0
b(t){g(µ+ t)− g(µ− t)}dt∫

∞

0
g(µ− t)dt

= 0

}
.

Proof. To obtain Λ, we can easily obtain that elements in Λ must be of the form
a/g(x), where a has to be even and integrates to zero. This implies Λ.

To prove the form of Λ⊥, use A to denote the set in the right hand side of
the above expression for Λ⊥. First, we show A ⊂ Λ⊥. It is easy to check that
any element b(x− µ) ∈ A satisfies

∫
a(t)bT(t)dt = 0. Further,

∫
b(x− µ)g(x)dx

=

∫
b(t)g(µ+ t)dt

=

∫
∞

0

b(t)g(µ+ t)dt+

∫
∞

0

b(−t)g(µ− t)dt

=

∫ ∞

0

b(t)g(µ+ t)dt−
∫ ∞

0

b(t)g(µ− t)dt

−
∫ ∞

0

g(µ− t)dt

∫∞

0 b(t){g(µ+ t)− g(µ− t)}dt∫
∞

0 g(µ− t)dt

=

∫
∞

0

b(t){g(µ+ t)dt− g(µ− t)}dt−
∫

∞

0

b(t){g(µ+ t)− g(µ− t)}dt

= 0.

Hence b(x−µ) ∈ Λ⊥. This shows A ∈ Λ⊥. We now show Λ⊥ ⊂ A. If b(x−µ) ∈
Λ⊥, then

0 =

∫
a(x− µ)bT(x− µ)dx =

∫
a(t)bT(t)dt

for a ∈ Λ. Since a is even, this implies

0 =

∫
a(−t)bT(−t)dt =

∫
a(t)bT(−t)dt

as well. Summing the above two displays, we have

0 =

∫
a(t){bT(t) + bT(−t)}dt.

Now let a(t) = b(t) + b(−t)−
∫
{b(t) + b(−t)}dt ∈ Λ, we have

∫
{b(t)+b(−t)}{b(t)+b(−t)}Tdt =

∫
{b(t)+b(−t)}dt

∫
{b(t)+b(−t)}Tdt.

Hence b(t) +b(−t) is a constant, say −c. Combined with
∫
b(t)g(µ+ t)dt = 0,

we obtain

0 =

∫ ∞

0

b(t)g(µ+ t)dt+

∫ ∞

0

b(−t)g(µ− t)dt
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=

∫
∞

0

b(t)g(µ+ t)dt+

∫
∞

0

{−c− b(t)}g(µ− t)dt

=

∫ ∞

0

b(t){g(µ+ t)− g(µ− t)}dt− c

∫ ∞

0

g(µ− t)dt.

Thus,

c =

∫
∞

0
b(t){g(µ+ t)− g(µ− t)}dt∫∞

0 g(µ− t)dt

and b(t) + b(−t) + c = 0. This shows Λ⊥ ⊂ A.

A.6. Proof of Theorem 3

To prove the result concerning Seff,µ, we first check Seff,µ(x− µ) ∈ Λ⊥. To this
end,

Seff,µ(t) = −2p
η′(t)− g(µ− t)cµ
g(µ− t) + g(µ+ t)

,

Seff,µ(−t) = −2p
−η′(t)− g(µ+ t)cµ
g(µ− t) + g(µ+ t)

Seff,µ(t) + Seff,µ(−t) = 2pcµ

and
∫

∞

0

Seff,µ(t){g(µ+ t)− g(µ− t)}dt

= −2p

∫ ∞

0

η′(t)− g(µ− t)cµ
g(µ− t) + g(µ+ t)

{g(µ+ t)− g(µ− t)}dt

= −2p

∫
∞

0

η′(t){g(µ+ t)− g(µ− t)}
g(µ− t) + g(µ+ t)

dt

+ 2pcµ

∫ ∞

0

g(µ− t){g(µ+ t)− g(µ− t)}
g(µ− t) + g(µ+ t)

dt

= −p

∫
η′(t){g(µ+ t)− g(µ− t)}

g(µ− t) + g(µ+ t)
dt

+ 2pcµ

∫ ∞

0

g(µ− t){g(µ+ t)− g(µ− t)}
g(µ− t) + g(µ+ t)

dt

= −p

∫
η′(t){g(µ+ t)− g(µ− t)}

g(µ− t) + g(µ+ t)
dt+ 2pcµ

∫
g(µ− t)g(µ+ t)

g(µ− t) + g(µ+ t)
dt

− 2pcµ

∫
∞

0

g(µ− t)dt

= −2pcµ

∫ ∞

0

g(µ− t)dt.
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Thus

Seff,µ(t) + Seff,µ(−t) +

∫∞

0 Seff,µ(t){g(µ+ t)− g(µ− t)}dt∫∞

0 g(µ− t)dt

= 2pcµ +
−2pcµ

∫∞

0 g(µ− t)dt∫
∞

0 g(µ− t)dt
= 0.

Hence Seff,µ(x− µ) ∈ Λ⊥.
Next we prove Sµ(x− µ)− Seff,µ(x − µ) ∈ Λ. We have

Sµ(x− µ)− Seff,µ(x − µ) =
−pη′(x − µ)

g(x)
+ 2p

η′(x− µ)− g(2µ− x)cµ
g(2µ− x) + g(x)

.

Define a(x− µ) = g(x){Sµ(x − µ)− Seff,µ(x− µ)}. Then

a(t) = −pη′(t) + 2p
η′(t)g(µ+ t)− g(µ+ t)g(µ− t)cµ

g(µ− t) + g(µ+ t)

= p
η′(t){g(µ+ t)− g(µ− t)} − 2g(µ+ t)g(µ− t)cµ

g(µ− t) + g(µ+ t)
.

Obviously, a(t) is an even function. We also have
∫
a(t)dt = 0 due to the defi-

nition of cµ. Thus, we showed Sµ(x− µ)− Seff,µ(x− µ) ∈ Λ.
To prove the result concerning Seff,p, we first check Seff,p(x − µ) ∈ Λ⊥. To

this end,

Seff,p(t) = −f(µ+ t)− f(µ− t)− g(µ− t)cp
g(µ− t) + g(µ+ t)

,

Seff,p(−t) = −f(µ− t)− f(µ+ t)− g(µ+ t)cp
g(µ− t) + g(µ+ t)

,

Seff,p(t) + Seff,p(−t) = cp,

and
∫

∞

0

Seff,p(t){g(µ+ t)− g(µ− t)}dt

=

∫
∞

0

f(µ− t)− f(µ+ t) + g(µ− t)cp
g(µ− t) + g(µ+ t)

{g(µ+ t)− g(µ− t)}dt

=

∫ ∞

0

{f(µ− t)− f(µ+ t)}{g(µ+ t)− g(µ− t)}
g(µ− t) + g(µ+ t)

dt

+ cp

∫
∞

0

g(µ− t){g(µ+ t)− g(µ− t)}
g(µ− t) + g(µ+ t)

dt

=

∫ {f(µ− t)− f(µ+ t)}g(µ+ t)

g(µ− t) + g(µ+ t)
dt

+ cp

∫ ∞

0

g(µ− t){g(µ+ t)− g(µ− t)}
g(µ− t) + g(µ+ t)

dt
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=

∫ {f(µ− t)− f(µ+ t)}g(µ+ t)

g(µ− t) + g(µ+ t)
dt+ cp

∫
∞

0

2g(µ− t)g(µ+ t)

g(µ− t) + g(µ+ t)
dt

− cp

∫ ∞

0

g(µ− t)dt

=

∫ {f(µ− t)− f(µ+ t)}g(µ+ t)

g(µ− t) + g(µ+ t)
dt+ cp

∫
g(µ− t)g(µ+ t)

g(µ− t) + g(µ+ t)
dt

− cp

∫
∞

0

g(µ− t)dt

= −cp

∫ ∞

0

g(µ− t)dt.

Thus

Seff,p(t) + Seff,p(−t) +

∫
∞

0 Seff,p(t){g(µ+ t)− g(µ− t)}dt∫
∞

0
g(µ− t)dt

= cp −
cp

∫
∞

0
g(µ− t)dt∫

∞

0
g(µ− t)dt

= 0.

Hence Seff,p(x− µ) ∈ Λ⊥.
Next we prove Sp(x− µ)− Seff,p(x − µ) ∈ Λ. We have

Sp(x− µ)− Seff,p(x− µ) =
η(x− µ)− f(x)

g(x)
− f(2µ− x)− f(x) + g(2µ− x)cp

g(x) + g(2µ− x)
.

Define a(x− µ) = g(x){Sp(x− µ)− Seff,p(x− µ)}. Then

a(t) = η(t)− f(µ+ t)− {f(µ− t)− f(µ+ t) + g(µ− t)cp}g(µ+ t)

g(µ− t) + g(µ+ t)

= η(t)− {f(µ+ t)g(µ− t) + f(µ− t)g(µ+ t)} + g(µ+ t)g(µ− t)cp
g(µ− t) + g(µ+ t)

.

Obviously, a(t) is an even function. We also have
∫

a(t)dt = 1−
∫

f(µ+ t)g(µ− t) + f(µ− t)g(µ+ t)

g(µ− t) + g(µ+ t)
dt

− cp

∫
g(µ+ t)g(µ− t)

g(µ− t) + g(µ+ t)
dt

=

∫ {f(µ+ t)− f(µ− t)}g(µ+ t)

g(µ− t) + g(µ+ t)
dt− cp

∫
g(µ+ t)g(µ− t)

g(µ− t) + g(µ+ t)
dt

= 0

due to the definition of cp. Thus, we showed Sp(x− µ)− Seff,p(x− µ) ∈ Λ.
Finally, to prove the result regarding Seff,α, we first check Seff,α(x−µ) ∈ Λ⊥.

To this end,

Seff,α(t) = (1 − p)
f ′α(µ+ t;α)− f ′α(µ− t;α)− g(µ− t)cα

g(µ− t) + g(µ+ t)
,
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Seff,α(−t) = (1− p)
f ′α(µ− t;α)− f ′α(µ+ t;α)− g(µ+ t)cα

g(µ− t) + g(µ+ t)
,

Seff,α(t) + Seff,α(−t) = −(1− p)cα,

and
∫ ∞

0

Seff,α(t){g(µ+ t)− g(µ− t)}dt

= (1− p)

∫
∞

0

f ′α(µ+ t;α)− f ′α(µ− t;α)− g(µ− t)cα
g(µ− t) + g(µ+ t)

{g(µ+ t)− g(µ− t)}dt

= (1− p)

∫ ∞

0

{f ′α(µ+ t;α)− f ′α(µ− t;α)}{g(µ+ t)− g(µ− t)}
g(µ− t) + g(µ+ t)

− (1− p)cα

∫ ∞

0

g(µ− t){g(µ+ t)− g(µ− t)}
g(µ− t) + g(µ+ t)

dt

= (1− p)

∫ {f ′α(µ+ t;α)− f ′α(µ− t;α)}g(µ+ t)

g(µ− t) + g(µ+ t)
dt

− (1− p)cα

∫ ∞

0

g(µ− t){g(µ+ t)− g(µ− t)}
g(µ− t) + g(µ+ t)

dt

= (1− p)

∫ {f ′α(µ+ t;α)− f ′α(µ− t;α)}g(µ+ t)

g(µ− t) + g(µ+ t)
dt

− (1− p)cα

∫ ∞

0

2g(µ− t)g(µ+ t)

g(µ− t) + g(µ+ t)
dt+ (1− p)cα

∫ ∞

0

g(µ− t)dt

= (1− p)cα

∫ ∞

0

g(µ− t)dt.

Thus

Seff,α(t) + Seffα(−t) +

∫
∞

0 Seff,α(t){g(µ+ t)− g(µ− t)}dt∫
∞

0
g(µ− t)dt

= −(1− p)cα +
(1− p)cα

∫
∞

0
g(µ− t)dt∫

∞

0
g(µ− t)dt

= 0.

Hence Seff,α(x− µ) ∈ Λ⊥.
Next we prove Sα(x− µ)− Seff,α(x − µ) ∈ Λ. We have

Sα(x− µ)− Seff,α(x− µ)

= (1− p)

{
f ′α(x;α)

g(x)
− f ′α(x;α)− f ′α(2µ− x;α)− g(2µ− x)cα

g(2µ− x) + g(x)

}
.

Define a(x− µ) = g(x){Sα(x− µ)− Seff,α(x− µ)}. Then

a(t) = (1− p)
f ′α(µ+ t;α)g(µ− t) + f ′α(µ− t;α)g(µ+ t) + g(µ+ t)g(µ− t)cα

g(µ− t) + g(µ+ t)
.
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Obviously, a(t) is an even function. We also have

∫
a(t)dt

= (1− p)

∫
f ′α(µ+ t;α)g(µ− t) + f ′α(µ− t;α)g(µ+ t) + g(µ+ t)g(µ− t)cα

g(µ− t) + g(µ+ t)
dt

= (1− p)

∫
f ′α(µ+ t;α)g(µ− t) + f ′α(µ− t;α)g(µ+ t)

g(µ− t) + g(µ+ t)
dt

+ (1− p)

∫ {f ′α(µ+ t;α)− f ′α(µ− t;α)}g(µ+ t)

g(µ− t) + g(µ+ t)
dt

= (1− p)

∫
f ′α(µ+ t;α)dt

= 0,

due to the definition of cα and f is a valid pdf. Thus, we showed Sα(x − µ) −
Seffα(x− µ) ∈ Λ.
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