

Flexible evolutionary algorithms for mining structured process
models
Citation for published version (APA):
Buijs, J. C. A. M. (2014). Flexible evolutionary algorithms for mining structured process models. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR780920

DOI:
10.6100/IR780920

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 26. Aug. 2022

https://doi.org/10.6100/IR780920
https://doi.org/10.6100/IR780920
https://research.tue.nl/en/publications/05882541-6414-4980-a436-8572187cbee1

Flexible Evolutionary Algorithms for

Mining Structured Process Models

J.C.A.M. Buijs

Copyright © 2014 by J.C.A.M. Buijs. All Rights Reserved.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Buijs, J.C.A.M.

Flexible Evolutionary Algorithms for Mining Structured Process Models
/ by J.C.A.M. Buijs.
Eindhoven: Technische Universiteit Eindhoven, 2014. Proefschrift.

A catalogue record is available from the Eindhoven University of Tech-
nology Library

ISBN 978-90-386-3681-8

Keywords: business process management, evolutionary algorithm, pro-
cess mining

The work in this thesis has been sponsored by JACQUARD / NWO
under the CoSeLoG project (638.001.211).

SIKS Dissertation Series No. 2014-36
The research reported in this thesis has been carried out under the
auspices of SIKS, the Dutch Research School for Information and
Knowledge Systems.

Cover design and printing by proefschriftmaken.nl

Flexible Evolutionary Algorithms for
Mining Structured Process Models

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen op

dinsdag 28 oktober 2014 om 16:00 uur

door

Joseph Cornelis Antonius Maria Buijs

geboren te Breda

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr. E.H.L. Aarts
1e promotor: prof.dr.ir. W.M.P. van der Aalst
co-promotor: dr.ir. B.F. van Dongen
externe leden: prof.dr.ir. A.H.M. ter Hofstede (Queensland University of

Technology)
prof.dr. M. Dumas (University of Tartu)

overige leden: prof.dr.ir. H.A. Reijers
prof.dr. B. Hammer (Bielefeld University)

lid TU/e: prof.dr.ir. J.J. van Wijk

Dedicated to my family.

Abstract

Process mining automatically produces a process model while considering only
an organization’s records of its operational processes. Over the last decade,
many process discovery techniques have been developed, and many authors
have compared these techniques by focusing on the properties of the models
produced. However, none of the current techniques guarantee to produce sound
(i.e., syntactically correct) process models. Furthermore, none of the current
techniques provide insights into the trade-offs between the different quality di-
mensions of process models.

In this thesis we present the Evolutionary Tree Miner (ETM) framework. Its
main feature is the guarantee that the discovered process models are sound. An-
other feature is that the ETM framework also incorporates all four well-known
quality dimensions in process discovery (replay fitness, precision, generalization
and simplicity). Additional quality metrics can be easily added to the Evolution-
ary Tree Miner. The Evolutionary Tree Miner framework is able to balance these
different quality metrics and is able to produce (a collection of) process models
that have a specific balance of these quality dimensions, as specified by the user.

The third main feature of the Evolutionary Tree Miner is that it is easily ex-
tensible. In this thesis we discuss extensions for the discovery of a collection
of process models with different quality trade-offs, the discovery of (a collec-
tion of) process models using a given process model, and the discovery of a
configurable process model that describes multiple event-logs.

The Evolutionary Tree Miner is implemented as a plug-in for the process
mining toolkit ProM. The Evolutionary Tree Miner and all of its extensions are
evaluated using both artificial and real-life data sets.

Contents

Abstract vii

List of Figures xvii

List of Tables xxv

1 Introduction 1

1.1 Process Mining . 2
1.2 Introduction of Running Examples 5

1.2.1 System with two Event Logs 6
1.2.2 Four Similar Processes . 7

1.3 Challenges in Process Mining . 10
1.3.1 Results of Existing Process Discovery Techniques 10
1.3.2 Challenge 1: Produce Correct Process Models 11
1.3.3 Challenge 2: Separation of Visualization and Representa-

tional Bias . 11
1.3.4 Challenge 3: Balance the Quality of Discovered Process

Models . 13
1.3.5 Challenge 4: Improve Understandability for Non-Experts 14
1.3.6 Challenge 5: Use Existing Knowledge in Process Discovery 15
1.3.7 Challenge 6: Describe a Family of Processes 16
1.3.8 Challenge 7: Compare Similar Observed Behavior 17
1.3.9 An Algorithm that Addresses all Challenges 17

1.4 The CoSeLoG Project . 18

x CONTENTS

1.5 Contributions and Structure of this Thesis 22

2 Preliminaries 25

2.1 Notations . 25
2.2 Process Models . 27

2.2.1 Labeled Transition Systems 27
2.2.2 Petri Nets . 28
2.2.3 Business Process Model and Notation (BPMN) 31

2.3 Event Logs . 32

3 Process Trees 35

3.1 Requirements . 35
3.1.1 Soundness and Relaxed Soundness 36
3.1.2 Expressiveness . 37
3.1.3 Understandability . 39
3.1.4 Formal Semantics . 39
3.1.5 Suitable for the Process Discovery Algorithm 40

3.2 Common Process Modeling Notations 40
3.2.1 Hidden Markov Models . 40
3.2.2 Yet Another Workflow Language (YAWL) 41
3.2.3 Event-Driven Process Chains (EPCs) 43
3.2.4 Causal Nets . 43
3.2.5 Heuristics Net . 45
3.2.6 Fuzzy Models . 46
3.2.7 Process Algebras . 46

3.3 Notations v.s. Requirements . 48
3.4 The Process Tree Notation . 50
3.5 Translations . 57

3.5.1 From Process Trees to Other Notations 57
3.5.2 From other Notations to Process Trees 68

3.6 Conclusion . 73

4 A Framework for Evolutionary Process Mining 75

4.1 The ETM Framework . 75
4.2 Applications of the Evolutionary Framework 77

4.2.1 Process Discovery . 78
4.2.2 Process Model Repair . 79
4.2.3 Process Discovery of a Configurable Model 79
4.2.4 Configuration Discovery using Context 81

CONTENTS xi

4.2.5 Concept Drift . 81
4.2.6 Decision Mining . 83
4.2.7 Other Perspectives . 83
4.2.8 Combinations of Scenarios 85

4.3 General Requirements for Evolutionary Algorithms 85
4.3.1 Population Diversity . 86
4.3.2 Ability to Visit the Whole Search Space 86
4.3.3 Prevention of Bloat . 87
4.3.4 Requirements for the Evaluation of Candidates 87

4.4 Common Implementations of the Phases of an Evolutionary Al-
gorithm . 89
4.4.1 Candidate Evaluation . 89
4.4.2 Selection . 91
4.4.3 Change Operations . 93
4.4.4 Termination . 94

4.5 Conclusion . 95

5 Process Model Quality Dimensions 97

5.1 The Four Process Discovery Quality Dimensions 98
5.2 Theoretical View . 99

5.2.1 Relating the Behavior of the Event Log, the Process Model
and the System . 100

5.2.2 Dealing with an Unknown System 102
5.3 Simplicity . 105

5.3.1 Simplicity by Ratio of Useless Nodes 105
5.3.2 Other Simplicity Metrics . 107

5.4 Replay Fitness . 108
5.4.1 Alignment-based Replay Fitness 108
5.4.2 Other Replay Fitness Metrics 111

5.5 Precision . 113
5.5.1 Escaping Edges . 114
5.5.2 Other Precision Metrics . 115

5.6 Generalization . 116
5.6.1 Frequency of Use . 117
5.6.2 Other Generalization Metrics 118

5.7 The Importance of Considering all Four Quality Dimensions . . . 120
5.8 Quality Metric Considerations . 120
5.9 Additional Quality Dimensions . 122
5.10 Related Work . 122

xii CONTENTS

5.11 Conclusion . 123

6 Discovery of Process Trees 125

6.1 Initial Population Creation . 125
6.1.1 Random Tree Creation . 127
6.1.2 Using Advanced Trace-Model Creation 127
6.1.3 Using Other Process Discovery Algorithms 129

6.2 Random Mutation . 131
6.3 Guided Mutation . 134

6.3.1 Removing Behavior . 134
6.3.2 Adding Behavior . 135
6.3.3 Changing Behavior . 136

6.4 Crossover . 137
6.5 Candidate Selection . 138
6.6 Termination Conditions . 139
6.7 Balancing Search Space Exploration and Exploitation 140
6.8 Application Using a Running Example 142

6.8.1 Searching for the Best Process Tree 142
6.8.2 Discovery of a Pareto Front 145

6.9 Results of Existing Process Discovery Algorithms 145
6.9.1 The α-Algorithm . 147
6.9.2 Genetic Miner . 148
6.9.3 Heuristic Miner . 149
6.9.4 The ILP Miner . 151
6.9.5 Inductive Miner . 152
6.9.6 Language-based Region Theory 153
6.9.7 Multi-phase Miner . 156
6.9.8 State-based Region Theory 157
6.9.9 Why Existing Algorithms Fail 159

6.10 Conclusion . 160

7 Application of Process Tree Discovery 163

7.1 Performance in the Limit . 163
7.1.1 Running Example without Exceptional Behavior 164
7.1.2 Running Example with Exceptional Behavior 170
7.1.3 Pareto Front Evolution on Running Example with Excep-

tional Behavior . 174
7.2 Random versus Guided Change . 183
7.3 Building Permits Process - Receipt Phase 186

CONTENTS xiii

7.4 Building Permits Process - Objections and Complaints 192
7.5 Performance of the ETMd algorithm 197
7.6 Conclusion . 201

8 Balancing Observed and Modeled Behavior 203

8.1 Application Scenarios . 204
8.2 Similarity as the 5th Quality Dimension 205
8.3 Application to Running Example . 208
8.4 Case Study . 214
8.5 Related Work . 221
8.6 Conclusion . 222

9 Discovering Configurable Process Models 223

9.1 Configurable Process Models . 224
9.2 Configurable Process Trees . 228
9.3 Four Different Approaches . 230
9.4 The ETMc algorithm . 232

9.4.1 Configuration Mutation . 233
9.4.2 Configuration Quality . 233

9.5 Application on Running Example 234
9.5.1 Experimental Setup . 234
9.5.2 Approach 1: Merge Individually Discovered Process

Models . 235
9.5.3 Approach 2: Merge Similar Discovered Process Models . . 237
9.5.4 Approach 3: First Discover a Single Process Model and

Then Discover Configurations 240
9.5.5 Approach 4: Discover Process Model and Configurations

at the Same Time . 241
9.5.6 Discovering a Pareto Front for Approach 4 242
9.5.7 Comparison of the Four Approaches 247

9.6 Case Study . 247
9.7 Related Work . 257
9.8 Conclusion . 258

10 Inter-Organizational Process Comparison 259

10.1 Running Example . 260
10.2 Cross-Organizational Comparison Framework 261

10.2.1 Process Model Metrics . 263
10.2.2 Event Log Metrics . 263

xiv CONTENTS

10.2.3 Comparison Metrics . 263
10.2.4 Application on the Running Example 264

10.3 Visualizing Alignments: the Alignment Matrix 265
10.4 Case Study . 268

10.4.1 Setup . 268
10.4.2 Execution . 269
10.4.3 Results . 273

10.5 Related Work . 274
10.6 Conclusion . 275

11 Implementation 277

11.1 Walk through of the ETMd Algorithm 277
11.1.1 Usage via the GUI . 278
11.1.2 Usage via code . 285
11.1.3 Usage via Command Line Interface 285

11.2 Extending the ETMd Algorithm . 288
11.2.1 Adding Quality Metrics . 288
11.2.2 Change Operations and Process Tree Creation 289
11.2.3 Pareto Front Visualizers . 290

11.3 Implementation of the Comparison Framework 290
11.3.1 Metric Settings . 290
11.3.2 Alignment Matrix Settings 293
11.3.3 Extending the Comparison Framework 294

11.4 Conclusion . 295

12 Conclusion 297

12.1 Contributions of this Thesis . 297
12.2 Current Challenges and Open Issues 300

12.2.1 Limitations . 300
12.2.2 Improvements . 301
12.2.3 Opportunities . 303

12.3 Outlook on Process Mining . 305
12.3.1 Closer Collaboration between Academia, Tool Vendors,

Consultants and Clients . 306
12.3.2 Address Hindering Side Issues 306
12.3.3 Improve the Applicability of Solutions on Real Data 307
12.3.4 Improve the Usability of Techniques 308
12.3.5 Create Incentives for Researchers to Publish and Docu-

ment their Solutions . 308

CONTENTS xv

Bibliography 311

Index 335

Summary 339

Samenvatting 341

Acknowledgments 343

Curriculum Vitae 347

SIKS dissertations 351

List of Figures

1.1 Positioning of Process Mining. 3
1.2 The four quality dimensions used to qualify a process model given

the observed behavior. 5
1.3 Process model as executed in the system, represented by a Petri

net. 6
1.4 Petri net process models for the four loan application process

variants. 9
1.5 Result of the heuristics miner on the running example event log. 12
1.6 Two example process models, discovered from the running ex-

amples without and with exceptional behavior. 13
1.7 Alternative process model for the running example. 14
1.8 Configurable process model for variants 1 and 3 of Figure 1.4. . . 17
1.9 Traditional situation and envisioned situation within the CoSeLoG

project. 19

2.1 A labeled transition system with 13 states and 21 transitions. . . . 28
2.2 Example of a Petri net. 29
2.3 Example of a BPMN model. 32

3.1 Examples of unsound Petri nets. 37
3.2 An example HMM model, with 11 (hidden) states and 11 possible

observations. 41
3.3 An example YAWL process model where ❣ cancels a region. . . . 42
3.4 An example EPC model. 44

xviii LIST OF FIGURES

3.5 An example causal net. 45
3.6 An example of a Heuristics net. 46
3.7 Example of Fuzzy models describing the same behavior as the

previous models. 47
3.8 Example process tree and its Petri net translation. 52
3.9 Example process tree with for each node the associated index. . . 54
3.10 Process model that can easily be made block-structured, and its

translation to a process tree. 69
3.11 Process model that is not block-structured but sound, and its

translation to a process tree. 70
3.12 Process model that is not block-structured and unsound, and its

translation to a process tree. 71
3.13 Example CoSeNet from [161] and the corresponding Process Tree

translation. 72

4.1 The basic framework for evolutionary process discovery. 76
4.2 Process discovery scenario. 78
4.3 Process model repair scenario. 79
4.4 Scenario of the discovery of a configurable process model and its

configurations. 80
4.5 Scenario of the discovery of a configurable process model, its

configurations and the context of the log splitting. 81
4.6 Scenario of the discovery of a configurable process model, its

configurations and the time information of the log splitting. . . . 82
4.7 Decision mining scenario. 83
4.8 Pareto Front of the two quality dimensions replay fitness and pre-

cision. 91

5.1 The four quality dimensions for process models in process discov-
ery. 98

5.2 Venn diagram showing that the behavior of the process model
(M), event log (L) and system (S) can be disjoint or overlapping. 99

5.3 Running example used to explain the quality dimensions in pro-
cess discovery. 104

5.4 Process tree with several useless nodes. 107
5.5 Process model without perfect replay fitness. 108
5.6 Example of a token-based replay result. 112
5.7 Example process model to explain precision 114
5.8 Partial state space as constructed during alignment calculation. . 114

LIST OF FIGURES xix

5.9 Example process model which is not general. 116
5.10 Four process models with different quality scores. 121

6.1 The basic framework for evolutionary process discovery. 126
6.2 Example of random construction of a process tree. 127
6.3 Example of advanced trace model creation. 128
6.4 Merging of trace models. 130
6.5 Three types of node addition mutation where leaf ② is added. . . 132
6.6 Removing behavior. 134
6.7 Adding behavior. 135
6.8 Changing behavior. 136
6.9 Example of crossover applied on two parents, creating two off-

spring. 138
6.10 Running example used to discover a process tree (see Section 1.2).143
6.11 Results of the ETMd algorithm on the running example event logs. 144
6.12 Examples of process trees with slightly different trade-offs be-

tween the quality dimensions. 146
6.13 Results of the α-algorithm [20] on the running examples. 147
6.14 Result of the genetic miner [29] (Relaxed sound, tokens left be-

hind). 148
6.15 Result of the heuristic miner [180] (relaxed sound since tokens

are left behind). 150
6.16 Result of the ILP miner [182] (Ensuring empty net after comple-

tion). 151
6.17 Results of the Inductive Miner. 153
6.18 Result of the language-based region theory. 155
6.19 Result of the Multi-phase miner [66]. 156
6.20 Result of the state-based region theory. 158

7.1 Running example used to discover a process tree. 165
7.2 Minimum, average and maximum overall quality of the best can-

didates over 30 runs of ETMd on the running example, all 10,000

runs. 166
7.3 Minimum, average and maximum overall quality of the best can-

didates over 30 runs of ETMd on the running example, first 100

generations. 167
7.4 Process trees discovered by the ETMd algorithm on the running

example in different generations. 168
7.5 Results of the ETMd on the running examples. 169

xx LIST OF FIGURES

7.6 Minimum, average and maximum overall quality of the best can-
didates over 30 runs of ETMd on the running example with ex-
ceptional behavior, all 10,000 generations. 170

7.7 Minimum, average and maximum overall quality of the best can-
didates over 30 runs of ETMd on the running example with ex-
ceptional behavior, the first 100 generations. 171

7.8 Process trees discovered by the ETMd algorithm on the running
example with exceptional behavior in different generations. . . . 173

7.9 Minimum, average and maximum size of the Pareto front over 30

runs of the ETMd algorithm on the running example with excep-
tional behavior, all 10,000 generations. 175

7.10 Distribution of the candidates over the quality dimensions in the
(unprocessed) Pareto front of 1,996 candidates. 176

7.11 Distribution of the candidates over the quality dimensions in the
normalized Pareto front containing 74 candidates. 177

7.12 Example of process tree before (a) and after (b) post-processing
which normalizes a process tree by removing useless nodes. . . . 179

7.13 Visualization of the candidates in the normalized Pareto front. . 180

7.14 Visualization of the candidates in the normalized Pareto front
with both replay fitness and precision above 0.9. 181

7.15 Examples of process trees from the Pareto front of Figure 7.13
with slightly different trade-offs between the quality dimensions. 182

7.16 Comparison of different ratios of random mutation on the run-
ning example with exceptional behavior. 184

7.17 Comparison of different ratios of random change operators on
the building permits event log over 1,000 generations. 185

7.18 Visualization of the candidates in the Pareto front discovered for
the building permits event log. 188

7.19 Process trees from the Pareto front for the building permits event
log. 190

7.20 Results of the α-algorithm, Heuristics miner and Inductive Miner
on the ‘building permits - receipt phase’ event log. 191

7.21 Visualization of the candidates in the Pareto front discovered for
the WABO event logs. 194

7.22 Process trees for each of the event logs with a good balance of
replay fitness and precision with high generalization (other event
logs follow on next page). 195

LIST OF FIGURES xxi

7.22 (continued) Process trees for each of the event logs with a good
balance between replay fitness and precision with high general-
ization (WABO2_BB on previous page). 196

7.23 Performance statistics per generation for the running example. . 198

7.24 Performance statistics per generation while constructing a Pareto
front. 198

7.25 Performance statistics per generation for the WABO event logs. . 200

8.1 Similarity as the 5th quality dimension, influencing the other 4
quality dimensions. 205

8.2 Examples of possible edits on a tree (a) and respective similarities.206

8.3 Process tree as known within the company. 208

8.4 Distribution of the candidates over the quality dimensions in the
Pareto front of 573 candidates for the running example. 210

8.5 Visualization of the Pareto front of process trees discovered by
the ETMr algorithm on the running example event log. 211

8.6 Visualizations of the Pareto front discovered by the ETMr algo-
rithm on the running example, filtered by the number of edits
allowed. 212

8.7 Process trees discovered while maintaining similarity with the
normative model for the running example. 213

8.8 Process tree used as the normative model for the case study ap-
plication of the ETMr algorithm. 214

8.9 Distribution over the quality dimensions of 200 candidates in the
Pareto front for the case study. 215

8.10 Visualization of the Pareto front of process trees discovered by
the ETMr algorithm on the case study event log. 216

8.11 Visualization of the Pareto front filtered by the number of edits
allowed. 219

8.12 Different process trees selected from the Pareto front discovered
by the ETMr algorithm on the case study. 220

9.1 Example of a configurable process model in C-EPC notation. . . . 225

9.2 Examples of configurable process models in C-YAWL notation. . . 227

9.3 Example of a configurable process model in PROVOP notation. . 227

9.4 Effects of blocking nodes in a process tree 229

9.5 Hierarchy of operator downgrade options. 230

9.6 Example of downgrading an ∨-operator to an →-operator. 230

xxii LIST OF FIGURES

9.7 Four approaches to creating a configurable process model from a
collection of event logs. 231

9.8 Results of Approach 1, merging separately discovered process
models, on the running example. 236

9.9 Individual results of approach 2, merging the similar process mod-
els, on the running example. 238

9.10 Configurable process model with quality statistics as discovered
by Approach 2, merging the similar process models, on the run-
ning example. 239

9.11 Results of Approach 3, the two-phase mining approach, on the
running example. 240

9.12 Results of Approach 4, the integrated mining approach, on the
running example. 241

9.13 Distribution of the 382 candidates in the Pareto front over the
quality dimensions for the running example. 243

9.14 Visualization of the Pareto front of configurable process trees dis-
covered by the ETMc algorithm on the running example event
logs. 244

9.15 Configurable process tree in the Pareto front discovered by Ap-
proach 4 for the running example event logs that balances replay
fitness and precision. 245

9.16 Configurable process tree in the Pareto front discovered by Ap-
proach 4 for the running example event logs that has good replay
fitness at the cost of precision. 246

9.17 Results of Approach 1, merging separate discovered process mod-
els, on the case study event logs. 248

9.18 Results of Approach 2, merging the similar process models, on
the case study event logs. 249

9.19 Results of Approach 3, the two-phase mining approach, on the
case study event logs. 250

9.20 Results of Approach 4, the integrated mining approach, on the
case study event logs. 251

9.21 Distribution of the 44 candidates in the Pareto front for the case
study over the quality dimensions. 253

9.22 Visualization of the Pareto front of configurable process trees dis-
covered by the ETMc algorithm on the case study event logs. . . 254

9.23 Configurable process tree found by Approach 4 for the case study
event logs that has the best overall replay fitness (0.972). 255

LIST OF FIGURES xxiii

9.24 Configurable process tree found by Approach 4 for the case study
event logs with best trade-off between replay fitness and precision.256

10.1 The process trees of the four variants of the running example (see
Section 1.2.2). 261

10.2 Alignments and the construction of the alignment matrix. 265
10.3 Two of the analysis results shown to the case study participants. 270
10.4 A photo and an annotated alignment matrix with some observa-

tions made during the case study. 272

11.1 Plug-ins provided by the ETM package in ProM. 279
11.2 ETM parameter wizard screens. 281
11.3 Result of the ‘Mine Pareto front with ETMd in Live mode’-plugin. 282
11.4 Different visualizations and navigators for the live Pareto front

visualization. 284
11.5 Main user interface of the comparison framework. 291
11.6 Overview of the main, event log and model statistic settings panel

as well as the LATEX export settings panel. 292
11.7 Overview of the alignment matrix comparison statistic, and its

settings for the column, row and cell representation. 294

12.1 Example of a ‘long-term dependency’ (LTD) operator, which syn-
chronizes the choices of the two ×-operators. 303

List of Tables

1.1 Example event data. 4

1.2 Running example event logs, with and without exceptional be-
havior. 7

1.3 Event logs of the four loan application process variants. 8

1.4 Comparison of results of process discovery algorithms on the run-
ning example event logs. 10

1.5 Example of a way to compare the four process variants. 18

2.1 Example event data. 33

3.1 Classification of common process modeling notations on process
modeling notation requirements. 49

3.2 Process tree operators, their Petri net translation and their al-
lowed traces. 59

3.3 Process tree operators, their translations to YAWL and examples
of allowed traces. 61

3.4 Process tree operators and their translations to BPMN parts. . . . 63

3.5 Process tree operators and their EPC translations. 65

3.6 Process tree operators and their CCS translation. 67

5.1 Overview of the different fractions and quality dimensions. . . . 103

5.2 Optimal alignments of the three traces of Figure 5.3b on the pro-
cess model of Figure 5.5. 110

xxvi LIST OF TABLES

6.1 Overview of the different operators defined and their contribu-
tion to the search. 141

6.2 Quality of results of process discovery algorithms on the running
example event log. 159

6.3 Quality of results of process discovery algorithms on the running
example event log. 160

7.1 Statistics of the event logs used in this chapter. 164
7.2 Activity codes and corresponding names for the building permits

- receipt phase event log. 187
7.3 Activity codes and corresponding names for the ‘WABO’ event logs.193

8.1 The event log . 208

9.1 Four event logs for the four different variants of the loan applica-
tion process. 234

9.2 Case study event log statistics . 248

10.1 Four event logs for the four different variants of the loan applica-
tion process of Figure 10.1. 262

10.2 The comparison table of the comparison framework approach. . 262
10.3 Application of the comparison framework on the running example 264
10.4 Application of the alignment matrices on the running example. . 267

Chapter 1

Introduction

Nowadays most organizations use information systems to support the execution
of their business processes [72]. These information systems guide and support
the execution of these processes by storing and sharing information, and by
distributing activities and messages between participants.

More and more organizations distribute the execution of a process over dif-
ferent locations. Examples include multinational organizations such as Shell,
Hertz, Unilever, Ahold and Philips. It could be that a particular business process,
for instance the process for handling purchase orders, is executed by branches
of these organizations all over the world. And although the overall process
is similar, local differences exist due to local regulations, cultural differences,
etc. Moreover, most of these multinational organizations operate under multi-
ple brands, targeting different markets. The business processes supporting these
different brands are very similar, often with only minor differences. Hence, the
information systems supporting the business processes have a lot in common,
but are not exactly the same.

The information systems supporting these business processes of different
brands or locations can be run locally, or centrally from the cloud. Because of
the local differences in the execution of the processes, different configurations
of the information systems are required. These differences are not only the
language and currency used by the system, but the process models describing
the process are also different [2, 3]. However, currently there is little to no
support for sharing a common process model with variations.

Most information systems provide freedom during the execution of a pro-

2 Introduction

cess, for instance data-driven systems such as ERP and case management sys-
tems. At the same time these information systems keep detailed records of the
execution of these processes. Process mining provides techniques to analyze
the recorded behavior, and compare it with the modeled process. However,
almost no process mining techniques exist to analyze the commonalities and
differences between similar processes with minor variations.

1.1 Process Mining

By using historical facts, as recorded by the information system, process mining
provides detailed insights into the process execution. An overview and position-
ing of process mining is shown in Figure 1.1. The general view is that process
models aim to describe the ‘real world’. These process models are used to config-
ure the information system that should support this ‘real world’ process. While
executing the defined process using the information system, historical records of
the executed process are kept. This event data, in the form of event logs, is the
main input of process mining analysis. Process mining provides links between
the actual observed process execution and the modeled process behavior.

Three main classes of process mining techniques can be identified: (a) the
discovery of new process models based only on the event log, (b) conformance

verification of the recorded behavior with a provided process model and (c) ex-

tension of existing process models using the information from the event log.
Table 1.1 shows an excerpt of an example dataset used for process min-

ing. Each row in the table represents one event and each column represents
an attribute of this event. Events are associated with cases, and in Table 1.1
the events are already grouped by case and sorted chronologically. The first
recorded event is related to case 1 and represents the execution of the activity
❘❡❣✐st❡r ❛♣♣❧✐❝❛t✐♦♥ by Pete on December 30, 2010. Additional attributes
can be related to this event such as the incurred cost, data attributes entered,
etc. Events need to be uniquely identified, which is achieved by assigning
unique identifiers. It is important that each event is related to a case and that
events are sorted. In general the timestamp of execution is used to sort events
chronologically. The times shown in Table 1.1 should be interpreted as the time
when the corresponding activity was completed. In general events can also be
recorded to register when activities are started, paused and resumed, etc.

Within the area of process mining the main focus of research has been on
process discovery. The goal of process discovery is to, using only the behavior
as recorded in the event log, construct a process model describing the under-

1.1 Process Mining 3

lying behavior. Although this aspect of process mining has received a lot of
attention, and quite a few algorithms currently exist that do this, process dis-
covery remains a challenge. Based on the event data of Table 1.1 for instance,
a process discovery algorithm can discover that the process always starts by
executing the activity ❘❡❣✐st❡r ❛♣♣❧✐❝❛t✐♦♥. Then the three activities ❈❤❡❝❦
❝r❡❞✐t, ❈❛❧❝✉❧❛t❡ ❝❛♣❛❝✐t② and ❈❤❡❝❦ s②st❡♠ are executed in different or-
ders. Moreover, the activity ❈❤❡❝❦ s②st❡♠ is not observed for cases 2 and 4.
These activities are followed by either the activity ❆❝❝❡♣t r❡q✉❡st or ❘❡❥❡❝t
r❡q✉❡st, and the process concludes with ❙❡♥❞ ❞❡❝✐s✐♦♥ ❡✲♠❛✐❧. Extracting
these (control-flow) constructs from observed behavior only is not straight-
forward, especially since the event log might contain exceptions that should
not be included in the process model and at the same time the observed behav-
ior can be incomplete. Furthermore, the event log only contains examples of
allowed behavior, there is no record of behavior that could not have occurred.

Figure 1.1: Positioning of Process Mining (from [5]).

4 Introduction

Table 1.1: Example event data (adapted from [5]).

Case id Event id Properties
Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010 11:02 Register application Pete 50 . . .
35654424 31-12-2010 10:06 Check credit Sue 400 . . .
35654425 05-01-2011 15:12 Calculate capacity Mike 100 . . .
35654426 06-01-2011 11:18 Check system Sara 200 . . .
35654427 07-01-2011 14:24 Reject request Pete 200 . . .
35654427 08-01-2011 09:03 Send decision e-mail Pete 200 . . .

2 35654483 30-12-2010 11:32 Register application Mike 50 . . .
35654485 30-12-2010 12:12 Calculate capacity Mike 100 . . .
35654487 30-12-2010 14:16 Check credit Pete 400 . . .
35654488 05-01-2011 11:22 Accept request Sara 200 . . .
35654489 08-01-2011 12:05 Send decision e-mail Ellen 200 . . .

3 35654521 30-12-2010 14:32 Register application Pete 50 . . .
35654522 30-12-2010 15:06 Check system Mike 400 . . .
35654524 30-12-2010 16:34 Check credit Ellen 100 . . .
35654525 06-01-2011 09:18 Calculate capacity Sara 200 . . .
35654526 06-01-2011 12:18 Accept request Sara 200 . . .
35654527 06-01-2011 13:06 Send decision e-mail Sean 400 . . .

4 35654641 06-01-2011 15:02 Register application Pete 50 . . .
35654643 07-01-2011 12:06 Check credit Mike 100 . . .
35654644 08-01-2011 14:43 Calculate capacity Sean 400 . . .
35654645 09-01-2011 12:02 Reject request Sara 200 . . .
35654647 12-01-2011 15:44 Send decision e-mail Ellen 200 . . .

...
...

...
...

...
...

...

This, combined with the fact that in general the original process model is not
known, provides for an interesting and currently not sufficiently solved chal-
lenge.

The event data shown in Table 1.1 illustrates typical information present in
an event log. However, depending on the applied techniques, more abstract
views on the data are used, ignoring certain attributes for instance. In the re-
mainder of this thesis, we are mainly concerned with the activity order, i.e., in
which order are activities executed for cases. Although order is often deter-
mined based on the recorded timestamp, the timestamp itself can be discarded
for most process discovery applications. Therefore, from here on, we often

1.2 Introduction of Running Examples 5

represent event logs by displaying activity sequences and their occurrence fre-
quency.

To evaluate the quality of the discovered process models, four quality dimen-
sions exists that relate the observed behavior with the process model. These four
quality dimensions are shown in Figure 1.2. The quality dimension of replay fit-

ness evaluates how well the observed behavior of the event log can be replayed
by the process model. Precision evaluates how precise the process model de-
scribes the observed behavior. The less behavior the process model allows that
is not observed in the event log, the more precise the process model describes
the behavior. The third dimension of generalization evaluates whether the pro-
cess model is not too specific for the observed behavior, but actually describes
the process generating the observed behavior. Finally, the quality dimension of
simplicity evaluates how simple, or human-readable, a process model is.

Many of the techniques developed in the context of process mining are avail-
able in the process mining framework ProM. As of version 6.4 ProM contains
more than 120 packages and over 500 plug-ins. ProM can be obtained from
✇✇✇✳♣r♦♠t♦♦❧s✳♦r❣.

1.2 Introduction of Running Examples

Throughout this chapter, and thesis, we use a small collection of running ex-
amples to demonstrate several aspects and issues of process discovery. In this
section we introduce these running examples in detail.

replay fitness

precisiongeneralization

simplicity
“able to replay event log” “Occam’s razor”

“not overfitting the log” “not underfitting the log”

process

discovery

Figure 1.2: The four quality dimensions used to qualify a process model given the ob-
served behavior (from [5]).

www.promtools.org

6 Introduction

1.2.1 System with two Event Logs

The first running example consists of a system model as shown in Figure 1.3.
From this model two event logs are simulated, shown in Table 1.2. The process
model of Figure 1.3 describes a simple loan application process of a financial
institute which provides small consumer credits through a webpage. When a
potential customer fills in a form and submits the request from the website, the
process starts by executing activity ❛ which registers the application in the sys-
tem and notifies the customer of the receipt of the request. Next, the following
actions are performed in parallel. The credit is checked (activity ❜), the capac-
ity is calculated (activity ❝) and the system is checked (activity ❞). However,
the last activity of checking the system can be skipped in some cases. Next, a
decision is made to either accept (activity ❡) or reject (activity ❢) the loan ap-
plication. Finally the customer is informed of the decision by executing activity
❣.

From the system model two event logs are simulated. The event log of Ta-
ble 1.2a contains only traces directly generated by the system model. This event
log contains 11 unique traces spread over 100 traces in total. It is important to
note that the process model allows for 20 unique traces in total, therefore the
event log does not describe all possible behavior. Moreover, some traces oc-
cur more frequently in the event log than others, which emphasizes particular
observed behavior. This is common in event logs since they often represent a
tiny fraction of all the possible behaviors of the system, resulting in many of the
recorded traces being unique.

Additionally an event log is generated that also contains exceptional behav-
ior, i.e., behavior that is not possible according to the system model. This can be
allowed behavior, non-allowed behavior or incorrectly recorded behavior. The

b e

a c g

d f

τ

Figure 1.3: Process model as executed in the system, represented by a Petri net (❛ =
register application, ❜ = check credit, ❝ = calculate capacity, ❞ = check
system, ❡ = accept, ❢ = reject, ❣ = send decision e-mail).

1.2 Introduction of Running Examples 7

Table 1.2: Running example used to discover a process tree.
(❛ = register application, ❜ = check credit, ❝ = calculate capacity, ❞ = check
system, ❡ = accept, ❢ = reject, ❣ = send decision e-mail).

(a) Running example
event log.

Trace #

a b c d f g 38
a b d c f g 26
a b d c e g 12
a b c f g 8
a b c d e g 6
a d c b f g 4
a c d b f g 2
a c b e g 1
a d b c f g 1
a d b c e g 1
a c b f g 1

(b) Running example event log with exceptional be-
havior.

Trace # Trace #

a b c d f g 380 a c d b f g 20
a b d c f g 260 a c b f g 10

a b d c e g 120 a c b d g 4
a b c f g 80 a d e g 4
a b c d e g 60 a b c g 3
a d c b f g 40 a c f g 3
a c b e g 10 a b c d e f g 2
a d b c f g 10 a b d e g 2
a d b c e g 10 a c d f g 2

resulting event log is shown in Table 1.2b. This event log consists of 1,020 traces.
The first 1,000 traces are taken from the event log without exceptional behavior,
which are replicated 10 times. The last 20 traces of the event log do not per-
fectly fit the process model of Figure 1.3. Hence, they describe infrequent, but
exceptional behavior.

1.2.2 Four Similar Processes

The second running example consists of a collection of four process variants,
based on the previous running example. For each of the four variants a pro-
cess model is known, as shown in Figure 1.4, and corresponding event logs are
generated and shown in Table 1.3. Variant 1 is exactly the previous running
example, using the event log without exceptional behavior (cf. Table 1.2a).
The other three variants are more simple variants of this process. Variant 2 for
instance has a fixed execution sequence for checking the credit, which is split
into sending (activity ❜✶) and processing (activity ❜✷) the request, calculating
the capacity (activity ❝) and then checking the paper archive (activity ❞✷). This
variant allows for only two sequences, which differ in either accepting (activity

8 Introduction

Table 1.3: Event logs of the four loan application process variants.
(❛ = register application, ❜ = check credit, ❜✶ = send credit check request,
❜✷ = process credit check reply, ❝ = calculate capacity, ❞ = check system,
❞✷ = check paper archive, ❡ = accept, ❢ = reject, ❣ = send decision e-mail).

(a) Event log for
variant 1

Trace #

a b c d f g 38
a b d c f g 26
a b d c e g 12
a b c f g 8
a b c d e g 6
a d c b f g 4
a c d b f g 2
a c b e g 1
a d b c f g 1
a d b c e g 1
a c b f g 1

(b) Event log for variant 2

Trace #

a b1 b2 c d2 f 50
a b1 b2 c d2 e 20

(c) Event log for variant 3

Trace #

a c b e 120
a c b f 80

(d) Event log for variant 4

Trace #

a b1 d2 b2 c f 60
a b1 d b2 c e 45

❡) or rejecting (activity ❢) the application. Variant 3 also allows for just two
different sequences and does not check the credit (activity ❞). Variant 4 also has
the credit check split in sending (activity ❜✶) and processing (activity ❜✷) the
request. It also includes both variants of checking the archive (digitally by exe-
cuting activity ❞ or manually through the paper archive by executing ❞✷). This
variant allows for four sequences in total, but only two are actually observed,
because whenever the digital archive is searched, the application is accepted,
while if the paper archive is checked the application is always rejected.

1.2 Introduction of Running Examples 9

b e

a c g

d f

τ

(a) Variant 1

a b1 b2 c d2

e

f

(b) Variant 2

a c b

e

f

(c) Variant 3

a b1

d

d2

b2 c

e

f

(d) Variant 4

Figure 1.4: Petri net process models for the four loan application process variants
(❛ = register application, ❜ = check credit, ❜✶ = send credit check request,
❜✷ = process credit check reply, ❝ = calculate capacity, ❞ = check system,
❞✷ = check paper archive, ❡ = accept, ❢ = reject, ❣ = send decision e-mail).
Note that activities ❜✶ and ❜✷ are more detailed versions of activity ❜. Activity
❞ and ❞✷ are two ways to achieve the same goal: check the archive.

10 Introduction

1.3 Challenges in Process Mining

Process mining has gone through a fast development and growth over the past
two decades. However, many challenges exist that need to be addressed. The
process mining manifesto [11], published by the IEEE Task Force on Process
Mining, lists several challenges and guiding principles for process mining. In
this section we discuss a selection of these challenges and guiding principles in
detail, and propose new challenges that should be addressed. These challenges
can be divided into two categories. The first category of challenges is related
to process discovery. The second category addresses the lack of techniques that
support the comparison of process executions. Before we address concrete chal-
lenges, we first discuss the process discovery results of existing algorithms on
the running examples introduced in Section 1.2.1.

1.3.1 Results of Existing Process Discovery Techniques

Table 1.4 shows a qualification of the results of existing process discovery algo-
rithms on the running example event logs of Table 1.2. The results are evaluated
using five criteria. The first criterion is whether the discovered process models
are error-free, i.e., can be executed without errors. The results show that half of
the algorithms actually produce error-free models on the running example data.
The four other algorithms created process models that are ‘relaxed’ error-free
(they can finish but work remains), indicated by the yellow square. However,
none of these algorithms actually guarantee to always produce (relaxed) error-

Table 1.4: Comparison of results of process discovery algorithms on the running example
event logs (f=replay fitness, p=precision, g=generalization, s=simplicity).

Algorithm Error-free? f p g s

α-algorithm ✓ 2 ✓ ✗ ✗

Genetic miner 2 2 2 ✗ ✗

Heuristics miner 2 ✗ ✓ ✗ ✗

ILP miner 2 ✓ ✗ ✓ ✗

Inductive miner ✓ ✓ ✗ ✓ ✓

Language-based region theory ✓ ✗ ✗ ✗ ✗

Multi-phase miner 2 ✓ ✗ ✗ ✗

State-based region theory ✓ ✓ ✗ ✗ ✗

1.3 Challenges in Process Mining 11

free process models.
The resulting process models are also evaluated using the four quality di-

mensions: replay fitness (‘f’ column), precision, (‘p’ column), generalization (‘g’
column) and simplicity (‘s’ column). The main observation is that most process
discovery algorithms perform well on only one quality dimension.

This comparison is based on experimental results discussed in more detail
in Section 6.9. In the remainder of this section we discuss this table in more
detail.

1.3.2 Challenge 1: Produce Correct Process Models

A (discovered) process model is often used for more than just documentation.
Many analysis techniques can be applied on a process model, such as process
validation, process optimization and simulation. However, most of these tech-
niques only work if the process model is correct [69,133], i.e., free of structural
errors such as deadlocks and live locks or improper termination. The correctness
of a process model is therefore crucial for the usability of the process model.
However, very few of the existing process discovery algorithms guarantee to
produce a correct process model, as is illustrated in Table 1.4. This means that
in many cases, and especially for real life event logs, the results produced by
these algorithms cannot be used for further analysis.

Using the simple event log of Table 1.2a, this challenge can be demonstrated
using the heuristics miner. When the heuristics miner is applied to this event
log, the process model as shown in Figure 1.5 is the result. This process model is
incorrect since after executing the sequence 〈a,c,e, g 〉, the process model should
be completed, because there is a token in the last place. However, there is still
a token remaining before or after activity ❜, and there might be a token remain-
ing before or after activity ❞. Therefore, work is still pending even though the
process model is completed. Even on a very simple example event log, some
process discovery algorithms, not only the heuristics miner, fail to produce cor-
rect process models. On many real life event logs even more process discovery
algorithms fail.

1.3.3 Challenge 2: Separation of Visualization and Represen-
tational Bias

Challenge 5 of the process mining manifesto [11] states that “it is important

to separate the visualization of the result from the representation used during the

12 Introduction

actual discovery process”. Furthermore, it states that the representation used
internally by a process discovery algorithm should be a conscious choice, and
not only be driven by the preferred graphical notation.

Most process discovery techniques discover Petri nets, such as the result
shown on the left in Figure 1.6. Although used frequently in academia because
of their formal semantics, Petri nets are not the preferred modeling notation
in industry. And even though Petri nets are very expressive, their graphical
representation is not always compact. Other process discovery algorithms use
special classes of Petri nets to represent their results, such as the result shown
on the right in Figure 1.6. However, most of these classes, such as elementary
nets, are very hard to interpret. Although most algorithms consciously choose a
particular notation that best suits their approach, this is often not the best way
to visualize the result.

There are also process discovery algorithms that use their own representa-
tional bias to communicate their result. Examples of such process modeling no-
tations are causal nets [9], heuristics nets [180,181] and fuzzy models [96,97].
Although these choices are conscious ones, better ways to visualize and com-
municate the discovered process model often exist.

The problem with all these notations is that they do not represent the re-
sults of the algorithm to the end-user in a suitable way. The process models
shown in Figure 1.6 for instance describe the observed behavior quite well.
However, the resulting process models are very hard to interpret, even for an
expert user. Most end-users are not familiar with these notations and would
rather see a process model in BPMN [143] or EPC [159] notation, as used in
industry. Therefore, there should be a separation between the representational
bias used by the algorithm to construct a process model, and the visualization
of the resulting process model.

b e

a c g

d f

Figure 1.5: Result of the heuristics miner on the running example event log of Table 1.2a.
The process model is incorrect since work (‘tokens’) can remain even though
the process model is completed.

1.3 Challenges in Process Mining 13

1.3.4 Challenge 3: Balance the Quality of Discovered Process
Models

As mentioned in Challenge 6 in the process mining manifesto [11], event logs
are far from complete, and may contain exceptional behavior (‘noise’). The four
quality dimensions of Figure 1.2 are used to quantify the quality of the pro-
cess model using the given event log. All process discovery algorithms make
assumptions regarding the event log, and the emphasis of the different qual-
ity dimensions, as is shown in Table 1.4. Some algorithms, such as the Fuzzy
miner [96], purposely simplify the process model, even if this means that not all
behavior is described. Other algorithms always produce process models that de-
scribe all observed behavior, such as the ILP miner, resulting in process models
that are very complex and/or meaningless. Additionally, most algorithms as-
sume that there is exactly one (perfect) process model that describes the event
log.

However, given an event log, there is no single perfect process model that
can be discovered. What is considered to be the ‘best’ process model for a given
event log depends on many factors, including intended use of the model and
characteristics of the event log. Some algorithms allow for some parametriza-
tion, resulting in different process models, but these algorithms do not commu-
nicate clearly what the effect of the parameters is on the quality of the resulting
process model. Typically, algorithms produce a single process model as a result,
instead of providing insights into the trade-offs between the different quality
dimensions.

Figure 1.6: Two example process models, discovered from the running examples with-
out and with exceptional behavior respectively, demonstrating an unsuitable
visualization to the end user.

14 Introduction

Consider for instance the process model of Figure 1.3 and the process model
of Figure 1.7 for the event log of Table 1.2a. Both process models describe
a process that starts with activity ❛ and ends with activity ❣. However, the
description of the other activities differs significantly. The process model of
Figure 1.3 is able to replay all of the behavior of the running example event
log of Table 1.2a, but also allows for additional behavior. On the other hand,
the process model of Figure 1.7 describes the event log in a precise manner,
i.e., does not allow for additional behavior, but at the same time cannot explain
all of the observed behavior. This simple example shows that for a given event
log several process models can be discovered, and that in general none can be
classified as ‘best’.

1.3.5 Challenge 4: Improve Understandability for Non-Experts

The purpose of process mining is to produce process models that can be used
for further analysis, and not merely for documentation. Therefore, Challenge
11 of the process mining manifesto [11] states that the understandability of the
results for non-experts should be improved. The results of an algorithm are only
useful if the user, who most likely is a non-expert in the field of process min-
ing, is able to use the results. One way to ensure understandability is to use a
suitable representation (see Challenge 2). However, it is also important to illus-
trate the trustworthiness of the result. Almost all algorithms always produce a
process model, even if there might be very little data to support this description
of behavior. The quality of the resulting process model should always clearly
be indicated, preferably by using the four quality dimensions. This helps users,
both experts and non-experts, draw correct conclusions from discovered process
models.

Consider again the process models of Figure 1.3 and Figure 1.7 as a descrip-
tion of the observed behavior of Table 1.2a. These two process models alone

b c d f

a c d b e g

b f

Figure 1.7: Alternative process model for the running example of Section 1.2.1.

1.3 Challenges in Process Mining 15

are not enough for a user to decide how trustworthy these process models are.
Additional information is required, for instance the scores for each of the four
quality dimensions. The process model of Figure 1.3 has a perfect replay fitness
and simplicity, a precision of 0.897 and a generalization of 0.870. The process
model of Figure 1.7 has a perfect precision and simplicity, a replay fitness of
0.885 and a generalization of 0.671. Using this information the user can un-
derstand the differences between the process models better. Furthermore, the
quality scores show that there is enough data to support both discovered process
models and that each provides different quality trade-offs.

1.3.6 Challenge 5: Use Existing Knowledge in Process Dis-
covery

A challenge not explicitly mentioned in the process mining manifesto [11] is
that existing knowledge should be reused by process mining algorithms, and
process discovery algorithms in particular. The behavior observed in an event
log usually originates from a system that is configured to support a particular
business process. The configuration phase is usually supported by documen-
tation, e.g. business process models. Although discovering a process model
by using only the observed behavior can be useful, indicating the observed
deviations from the documented process model provides additional analytical
insights. Moreover, instead of only showing deviations, algorithms should be
made available to repair a given process model using observed behavior. By al-
lowing for various gradations of repair, the process owner can investigate how
far the modeled behavior is from the actual observed behavior. This makes it
clear what the exact differences are between the modeled and observed behav-
ior.

Consider for instance the process model as shown in Figure 1.7 for the event
log shown in Table 1.2a. If we assume that this is the process as it is known
and documented in the organization, then we can compare the observed be-
havior with this process model. Many interesting insights can be obtained, for
instance that the observed behavior does not always fit the documented process,
which indicates that the system allows for more behavior. Additionally, the doc-
umented process model assumes that activity ❡ (acceptance of the application),
can only occur after activity ❜ (check credit). The observed behavior does not
always contain this relation, hence some internal rules might be violated. In the
end the organization has two options: either modify the system to disallow the
undesired behavior, or update the (documented) process model to better reflect

16 Introduction

reality.

1.3.7 Challenge 6: Describe a Family of Processes

Almost all process discovery techniques, and process mining techniques in gen-
eral, only consider a single event log and/or process model in isolation. Chal-
lenge 7 of the process mining manifesto [11] states that more attention needs
to be given to cross-organizational process mining. As mentioned in the in-
troduction of this chapter, and as will be further detailed in the discussion of
the CoSeLoG project in Section 1.4, many organizations execute very similar
processes. The event logs from these processes can be seen as describing a fam-
ily of processes. Very few techniques currently exist that are capable of taking
multiple event logs as input, and produce a single process model that describes
a family of processes as output. However, there are many use cases for this
scenario, where this type of process model provides valuable information.

A description of the family of processes does not only add value in the setting
where different organizations execute similar processes. One could also split
the observed behavior based on the customer type (e.g. ‘silver’ versus ‘gold’
member), and then compare the differences in process execution. Numerous
examples can be thought of, for instance: splitting by time period (e.g. year
or season), by the employee responsible for the case, or by the communication
channel the customer used for his application (e.g. physical, telephone or e-
mail). All these very similar, yet different processes, can be described by a
single model, that also indicates where the various process variants differ.

When considering the four process variants as discussed in Section 1.2.2,
one can see the similarities and differences clearly. For instance, one can ob-
serve that the behavior of variant 3 is also described by the process model of
variant 1. It should be possible to create a single process model that, using con-
figurations, describes both processes. An example of such a process model is
shown in Figure 1.8. The process model can be configured to describe variant
1 by removing the arrow connecting activity ❝ with the place after activity ❜, as
well as removing the silent action next to activity ❣. This enables activity ❝ to
be executed in parallel to activities ❜ and ❞, and activity ❣ cannot be bypassed.
The configuration for variant 3 consists of removing activities ❞ and ❣.

In a similar way a configurable process model for variants 2 and 4 could be
created. Moreover, one process model might exist that is able to describe all
four variants. Process mining techniques can be extended to discover such a
process model that describes a family of event logs.

1.3 Challenges in Process Mining 17

1.3.8 Challenge 7: Compare Similar Observed Behavior

Many process mining techniques exist that provide different insights into the ob-
served behavior, without discovering a process model (e.g. the dotted chart [165],
social network analysis [166] and trace alignment [41]). However, few tech-
niques exist that allow for the comparison of similar observed behavior. By vi-
sualizing the observed behavior without direct use of a process model, different
insights can be gained into the (dis)similarities between process executions.

Consider for instance the comparison table shown in Table 1.5. The table
compares the four event logs with four configurations of a configurable process
model (as discussed in the previous section). Currently no technique exists that
is able to compare information considering multiple event logs, and possibly
process models. Without going into detail, the green cell in the middle of Ta-
ble 1.5 indicates the replay fitness score of the event log on the process model
(configuration). This shows for instance that event log 3 can be replayed very
well on the configuration for organization 1. This type of analysis technique
facilitates organizations that want to seek closer collaboration and want to base
their analysis on more than just documented process models.

1.3.9 An Algorithm that Addresses all Challenges

The first four challenges presented in this section discuss fundamental chal-
lenges for process discovery. Challenges 5 and 6 present extensions to process

b e

a c g

d f

Removed for variant 3

Removed for variant 1

Removed for variant 3

Removed for variant 1

Figure 1.8: Configurable process model for variants 1 and 3 of Figure 1.4. In order to
obtain variant 1 the edge between activity ❝ and the place after activity ❜, as
well as the option to skip activity ❣ are removed. To obtain the behavior of
variant 3 activities ❞ and ❣ are removed. The edges connecting the removed
activities are also removed.

18 Introduction

Table 1.5: Example of a way to compare the four process variants (see Table 10.3). The
higher the central value, the better the process model variant describes the
behavior of the event log.

Config 1 Config 2 Config 3 Config 4 Log Stat

Event Log 1 1.000 0.506 0.575 0.580 100
Event Log 2 0.525 1.000 0.553 0.833 70
Event Log 3 0.933 0.656 1.000 0.656 200
Event Log 4 0.579 0.833 0.553 1.000 105

Model Stat 12 9 7 11

discovery and Challenge 7 proposes an extension to process mining analysis
techniques. When addressing the latter three challenges the first four funda-
mental challenges should also be addressed. In order to do so, a proposed
solution should be able to incorporate the fundamental challenges while being
able to be extended in order to address the other three challenges. Additionally,
possible future scenarios should also be supported. This affects the choice for
the type of algorithm used and the internally used process model notation. It
is also important to observe that especially Challenge 3, balancing the quality
of the discovered process models, requires flexibility. In this thesis we therefore
present a flexible framework using an evolutionary algorithm approach (see
Chapter 4) to develop algorithms that address the challenges.

1.4 The CoSeLoG Project

A clear example of organizations that have similar processes are municipalities.
As of January 1, 2014 there are 403 municipalities in the Netherlands [95]. It is
estimated that each municipality offers between 400 and 500 different products
and services, such as driver licences, building permits, subsidies, citizen admin-
istration, and health care support. National rules and regulations apply for most
of these products and services. Still, each municipality defines its own processes
to support the production and delivery of their products and services. Although
each municipality is different in size, organizational culture, etc., there are still
many commonalities in the way processes are executed. Municipalities have the
additional advantage that they can seek collaboration with other municipalities
since they are not direct competitors. This allows municipalities to share knowl-

1.4 The CoSeLoG Project 19

edge and infrastructure and thus reduce costs. However, at the same time they
want to retain their identity and visibility to their inhabitants. This implies that
each municipality has different requirements and priorities for their business
processes. One municipality for instance would like to work as cost-efficiently
as possible, while another municipality considers quality of their service as more
important. This influences the business process, for instance by the number of
quality checks implemented.

The Configurable Services for Local Governments (CoSeLoG) research project

(a) Traditional situation

(b) Envisioned situation

Figure 1.9: Traditional situation and envisioned situation within the CoSeLoG
project (IS=Information System, M=Process Model, E=Event Log, IS-
SaaS=Information System as Software-as-a-Service, CM=Configurable Pro-
cess Model, Cn=Configuration) (from [2]).

20 Introduction

[2, 47, 59] aims at harmonizing processes between municipalities, while at the
same time providing freedom of choice to each municipality. Within this project
the commonalities between processes of municipalities are used to develop a
shared business process management system in a shared software-as-a-service
environment [2,3]. Figure 1.9a depicts the traditional situation with municipal-
ities. Each municipality purchases, configures and runs an information system
to support one or more of their business processes. This information system
is configured with the (intended) business process models, which are used to
execute the processes within the organization. Here, each municipality mainly
works in isolation. Each municipality translated the requirements of the law
for a process to a corresponding process model, implemented this model and
started executing it. Within the CoSeLoG project we envision a situation where
municipalities, and organizations in general, can share an information system,
as is shown in Figure 1.9b. This information system (IS-SaaS) is provided us-
ing the Software-as-a-Service paradigm, i.e., the software is hosted centrally
and municipalities have to have a subscription to use it. However, even though
the processes of the individual organizations have a lot in common, local de-
viations still exist and should be supported. Therefore, the shared information
system uses a process model that can be individualized using configurations of
the shared process model. This reduces the effort, and hence cost, of maintain-
ing the process model, especially when regulations change [2,3]. Moreover, the
solution is cheaper since infrastructure and management costs are shared.

The original information system keeps a record of historical process data,
recorded in event logs. This data can be used to analyze the current execution
of processes by use of process mining. This is necessary for the transfer of
municipalities to the envisioned situation, to ensure continuing support for their
processes.

Once organizations use the IS-SaaS system, the commonly shared event log
allows for easy comparison of behavior between organizations. We envision
that organizations will use this information to learn from each other and share
knowledge. This will lead to a natural way of standardizing the process models,
where the municipalities voluntarily move towards a small number of configu-
rations of the configurable process model.

Within the CoSeLoG project we collaborate with different partners from in-
dustry. Ten participating Dutch municipalities (Bergeijk, Bladel, Coevorden,
Eersel, Emmen, Gemert-Bakel, Hellendoorn, Oirschot, Reusel de Mierden, and
Zwolle) provide use-cases, concrete process models and event data, and re-
quirements from a user perspective. A Dutch cooperation of municipalities for
IT services (DiMPACT) and a commercial IT partner (Perceptive Software) pro-

1.4 The CoSeLoG Project 21

vide insights from a software provider’s point of view.
Within the CoSeLoG project five municipality processes have been investi-

gated in detail:

1. Processing applications for a receipt from the municipality’s basic admin-
istration (‘uittreksel Gemeentelijke Basis Administratie (GBA)’ in Dutch);

2. Dealing with reports regarding the public area (‘Melding Openbare Ruimte
(MOR)’ in Dutch);

3. Processing applications for building and/or environmental permits (‘Wet
Algemene Bepalingen omgevingsrecht (WABO)’ in Dutch);

4. Processing applications for social services (‘Wet Maatschappelijke Onder-
steuning (WMO)’ in Dutch);

5. Handling objections against house taxation (‘Wet Waardering Onroerende
Zaken (WOZ) bezwaar’ in Dutch).

These processes differ in complexity and number of resources, parties and ac-
tivities involved, and the number of cases handled per year. For each of the ten
participating municipalities, each of these five processes were investigated. If
available, the execution history was obtained from the information system used
to support the process. This allowed for the analysis of these processes using
process mining techniques.

The challenges as discussed in Section 1.3 all played a role in the CoSeLoG
project. Since processes cannot easily be merged into one another, analyzing
the observed behaviors helps in finding commonalities and differences between
municipalities. However, first basic process discovery techniques can be applied
to provide insights into the current (traditional) situation, before organizations
move towards the shared infrastructure. Here Challenges 1 through 5 play a
role, as they do in any process discovery project. Solutions to challenge 6 can be
applied to discover the configurable process model that is used to configure the
IS-SaaS, using the individual event logs from the current information systems.
Using the solutions for Challenge 7 insights into the processes can be provided to
participants, based on the similar behavior as recorded in either the traditional
or envisioned situation. Solutions for all challenges are crucial for the adoption
of the IS-SaaS system, since the process model only describes the documented
process. Therefore, process execution data needs to be considered to ensure
that organizations can successfully move to the IS-SaaS system.

22 Introduction

1.5 Contributions and Structure of this Thesis

The contributions of this thesis can be summarized as follows:

1. A guaranteed error-free process model notation. (Chapter 3, addresses Chal-
lenges 1 and 2)
In order to be useful, any process model should be internally consistent,
i.e., have no deadlocks, have no livelocks and be able to terminate prop-
erly. An evaluation of existing process modeling notations however reveals
that very few notations can guarantee this. Therefore we present a process
modeling notation that is guaranteed to be free of such errors. We show
that our process modeling notation can be easily translated to error-free
process models in other notations for further use.

2. A detailed discussion of the four quality dimensions in process discovery.

(Chapter 5, addresses Challenges 3 and 4)
The importance and interrelationship of the four quality dimensions used
in process discovery have never been thoroughly investigated. In this the-
sis we show the influence of each of these quality dimensions on the dis-
covered process model. We also argue that all four quality dimensions
need to be taken into account. At the same time we argue that the di-
mension of replay fitness is the most important one, since it relates the
observed behavior to the process model.

3. A flexible and extensible process discovery algorithm. (Chapter 4 and Chap-
ter 6, addresses Challenges 3, 5 and 6)
The main contributions of this thesis are a process discovery framework
and process discovery algorithm that are both flexible and extensible.
Flexibility is provided by the ability of the algorithm to emphasize certain
process model qualities, as preferred by the user. The four quality dimen-
sions used for evaluation of discovered process models are incorporated.
However, additional quality dimensions can easily be considered:

(a) Mediation between a given process model and observed reality. (Chap-
ter 8, addresses Challenge 5)
The search for the ‘best’ process model is started from a given nor-
mative process model. An additional quality measure is added that
evaluates the similarity between a discovered process model and the
normative process model. This allows for process model improve-
ment by changing a given process model, using the observed behav-
ior.

1.5 Contributions and Structure of this Thesis 23

(b) Discovery of a configurable process model. (Chapter 9, addresses Chal-
lenge 6)
A configurable process model is a process model that can be config-
ured before run-time to (dis)allow certain execution paths. A con-
figurable process model thus describes a family of process models.
The process model notation presented in this thesis is extended to
describe a configurable process model. An additional quality dimen-
sion is added that evaluates how good a configuration is, to find the
best process model and corresponding configuration. This enables
the process discovery algorithm to discover a configurable process
model, describing a family of event logs.

4. Inter-Organizational process comparison. (Chapter 10, addresses Chal-
lenge 7)
This thesis also describes a comparison framework to compare processes
between organizations, by using both a collection of event logs and a col-
lection of (corresponding) process models, possibly from a configurable
process model. By visualizing behavior, differences and commonalities in
the observed behavior of the processes can be detected without necessar-
ily visualizing the process model itself.

The first part of this thesis provides an introduction to process mining and
open challenges in its domain. Furthermore, preliminaries are provided in
Chapter 2.

The second part discusses two fundamental concepts used in the remainder
of this thesis. First process trees are introduced in Chapter 3 as a process mod-
eling notation that is guaranteed to be error-free. Second, our framework for

flexible process discovery, that applies of an evolutionary algorithm, is discussed
in Chapter 4.

Part three discusses the different aspects of the flexible process discovery
framework and an evaluation of the framework based on case studies. In Chap-
ter 5 the quality dimensions commonly used in process discovery are discussed
in detail. A process discovery algorithm implemented in the framework is dis-
cussed in Chapter 6. This process discovery algorithm is evaluated using both

artificial and real-life data in Chapter 7.
The fourth part discusses extensions of the process discovery framework.

Chapter 8 discusses how observed and modeled behavior can be balanced by the
algorithm. The algorithm is extended to consider the behavioral records of
multiple organizations in Chapter 9. A different view on comparing behavior

records of different organizations is discussed in Chapter 10.

24 Introduction

Part five concludes this thesis. In Chapter 11 the use and implementation

of the framework and algorithms as implemented in the process mining toolkit
ProM is detailed. Chapter 12 summarizes the main results and discusses possi-
ble research directions that build on the work presented in this thesis.

Chapter 2

Preliminaries

In Section 2.1 we introduce basic mathematical notations used throughout the
remainder of this thesis. We then discuss the process modeling notations used
in this thesis in Section 2.2. Section 2.3 introduces event logs.

2.1 Notations

In this section we introduce basic notations for sets, functions, sequences and
bags as used in the remainder of this thesis.

We define sets as follows:

Definition 2.1 (Sets)

A set is a possibly infinite collection of elements. We denote a finite set by listing

its elements between braces, e.g., a set A with elements a, b and c is denoted as

{a,b,c}. The empty set, i.e., the set with no elements, is denoted by ;. To denote a

non-empty set we write A+. Let A = {a1, . . . , an} be a set of size n ∈ IN , then |A| = n

denotes the size of set A.

In the remainder of this thesis, we typically use uppercase letters to denote
sets and lowercase letters to denote the elements of that set.

We define the union, intersection and difference operations on sets as fol-
lows:

Definition 2.2 (Union, Intersection and Difference)

Let A = {a,b,c,d} and B = {a,c,d ,e} be non-empty sets. The union of A and B ,

26 Preliminaries

denoted A∪B , is the set containing all elements that are in either A or B , e.g., A∪
B = {a,b,c,d ,e}. The intersection of A and B , denoted A ∩B , is the set containing

elements that are both in A and B , e.g., A∩B = {a,c,d}. The difference between A

and B , denoted A \ B , is the set containing all elements of A that do not exist in B ,

e.g., A \ B = {b}.

We define functions as follows:

Definition 2.3 (Functions)

Let A and B be non-empty sets. A function f from A to B , denoted f : A → B , is a

relation from A to B , where every element of A is associated with an element of B .

For all functions f , Dom(f) and Rng(f) denote the domain and range of function

f respectively.

We define the sequence, concatenation of sequences, and projection on se-
quences as follows:

Definition 2.4 (Sequence)

Let A be a set. A sequence σ= 〈σ1, . . . ,σn〉 can be represented by listing its elements

between angled brackets, where σi refers to the i -th element of the sequence and

|σ| = n denotes its length. 〈〉 denotes the empty sequence. A∗ denotes all possible

sequences from elements of the set A.

Definition 2.5 (Concatenation)

Concatenation of two sequences σ and σ
′ is denoted with σ ·σ′. Similarly, concate-

nation of an element a ∈ A and a sequence σ is denoted a ·σ.

Definition 2.6 (Projection)

For all A′ ⊆ A,σ↓A′ denotes the projection of a sequence σ ∈ A∗ on A′, e.g., 〈a, a,b,c,〉↓{a,c} =
〈a, a,c〉.

We define multi-sets, also known as bags, as follows:

Definition 2.7 (Multi-sets(bags))

Let A be a set. A multi-set M over A is a function M : A → IN . B(A) denotes the set

of all multi-sets over a finite domain A. We write e.g., M = [a,b2] for a multi-set

M over A where a,b ∈ A, M(a) = 1, M(b) = 2, and M(c) = 0 for all c ∈ A \ {a,b}. The

size of a multiset, denoted by |M |, is defined as |M | =∑

a∈A M(a).

2.2 Process Models 27

2.2 Process Models

Process models capture the behavior of a process and are thus an abstraction of
reality, emphasizing certain aspects of a process. The importance of modeling
business processes is illustrated by the plethora of process modeling notations,
sometimes referred to as the new “tower of Babel” [5]. In this section we discuss
two of the most commonly used low-level process modeling notations: labeled

transition systems and Petri nets. Additionally, we discuss the high-level process
modeling notation BPMN, which is commonly used in industry. In Section 3.2
we discuss several other proces modeling notations.

Process models describe if and in which order activities are to be executed.
An activity is a well-defined step in the process. We use the notion of an activity

universe to describe all possible activities, which we define as follows:

Definition 2.8 (Activity Universe)

Let A denote the activity universe, i.e., the universe of all possible activity names.

Let A
τ =A ∪ {τ}, where τ ∉A . The symbol τ represents a silent, or unobservable,

action.

Process models are usually represented in terms of graphs and have a cor-
responding graphical representation. A graph consists of nodes and arcs that
connect them. A directed graph is a graph whose edges have directions. In this
thesis, we consider graphs whose arcs have both directions and labels. Such
graphs are called labeled directed graphs. We formalize labeled directed graphs
as follows:

Definition 2.9 (Labeled Directed Graph)

A labeled directed graph is a tuple DG = (NG ,EG ,LG) where NG is a set of nodes,

LG is a set of labels, and EG ⊆ NG×LG×NG is a set of labeled edges.

2.2.1 Labeled Transition Systems

The most basic process modeling notation is a transition system [33]. A tran-
sition system consists of states and transitions. Figure 2.1 shows a transition
system consisting of 13 states and 21 transitions. The states are represented
by black circles. There is one initial state, marked by s1, and one final state,
marked by s13. Transitions are represented by arcs between two states, and
each transition is labeled with the name of an activity. Multiple arcs can have
the same label.

We define a labeled transition system in the same way as in [5]:

28 Preliminaries

Definition 2.10 (Labeled Transition System)

A labeled transition system is a tuple T S = (S, A,T) where S is the set of states,
A ⊆A

τ is the set of activities, and T ⊆ S × A×S is the set of transitions. Sstart ⊆ S

is the set of initial states, and Send ⊆ S is the set of final states.

The sets Sstart and Send are defined explicitly. In principle S can be infinite,
however for most practical applications the state space is finite. In this case,
the transition system is also referred to as a Finite-State Machine (FSM) or a
finite-state automaton.

Transition systems are very expressive. Many process models with exe-
cutable semantics can be mapped onto a transition system [5]. Thus, analysis
techniques and notions defined for transition systems can be easily related to
other languages such as BPMN, BPEL, EPC, and Petri nets.

However, transition systems cannot express parallelism in a concise way,
since all possible sequences need to be explicitly modeled. For example, if n

activities are in parallel, this results in n! possible execution sequences. The
corresponding transition system requires 2n states and n × 2n − 1 transitions.
Therefore more powerful process modeling notations are required, such as Petri
nets which can express concurrency in a more efficient way.

2.2.2 Petri Nets

One of the best investigated process modeling languages that supports concur-
rency are Petri nets [139]. Petri nets use a very simple notation of circles repre-
senting places and squares representing transitions with arrows connecting them
in a bipartite manner. Transitions can represent a task and when executed they
consume one token, presented by black dots, from each of their input places and

s1 s2 s3 s4

s5

s6

s7 s8 s9

s10

s11

s12 s13

a b

c

d

e

c

c

d

e f

g

h

i

j

j

τ

i

τ

k

Figure 2.1: A labeled transition system with 13 states and 21 transitions.

2.2 Process Models 29

produce a token in each of their output places. In this way, tokens are moved
between places, and the distribution of tokens over the places indicates different
states of the process model, and is called a marking. Special markings are the
initial marking, which indicates how the process starts, and the final marking
which indicates when the Petri net is in a terminate.

An example of a Petri net model is shown in Figure 2.2. The initial marking
is [p0], which means that the model starts with a token in place p0. By firing
transition ❛ the token is consumed from place p0 and produced in place p1. After
transition ❜ has fired, there are tokens in places p2 and p3, i.e., the marking is
[p1, p3], which enables two parallel branches. Of the transitions ❞ and ❡ only
one can fire: they are in a so-called exclusive choice relation. After transition ❝

has also fired, transition ❢ is enabled and after firing consumes the tokens from
places p4 and p5 and produces a token in p6. Now again there is a choice, and if
transition ❣ fires, the token goes back to p1. If transition ❤ fires, both transition
✐ and ❥ are enabled. After transition ✐, transition ❥, or both, have fired, the
token can continue to place p11. This is done by firing a silent, or τ-transition,
denoted by the filled black transitions. These transitions do not correspond to
performing any activity and only distribute the tokens. The final marking [p12]

is reached by firing transition ❦ which places a token in p12.
We define Petri nets in a similar way as in [7]:

Definition 2.11 (Petri net, Marking)

A Petri net is a triplet N = (P,T,F) where P is a finite set of places, T is a finite set

of transitions such that P ∩T =;, and F ⊆ (P ×T)∪(T ×P) is a set of directed arcs,

called the flow relation. A marked Petri net is a pair (N , M), where N = (P,T,F) is

a Petri net and where M ∈ B(P) is a multi-set over P denoting the marking of the

g

t6

p2 c

t2

p4 p7 i

t8

p9

t11

p0

a

t0
p1

b
t1

d

t3

f
t5 p6

h t7 t10

p11

k

t13
p12

p3

e

t4 p5 p8

j

t9
p10

t12

Figure 2.2: Example of a Petri net with initial marking p0 and final marking p12.

30 Preliminaries

net.

A Petri net N = (P,T,F) defines a directed graph with nodes P ∪T and edges
F . For any x ∈ P ∪T , •x = {y |(y, x) ∈ F } denotes the set of input nodes and x• =
{y |(x, y) ∈ F } denotes the set of output nodes. A transition t ∈ T is enabled in a
marking M of net N , denoted as (N , M)[t〉, if each of its input places •t contains
at least one token. For instance, in the Petri net of Figure 2.2, transition t0 is
enabled because all of its input places, in this case p0, are marked.

An enabled transition t may fire, i.e., one token is removed from each of
the input places •t and one token is produced for each of the output places
t•. (N , M)[t〉(N , M ′) denotes that t is enabled in M and firing t results in the
marking M ′. For instance, in the Petri net of Figure 2.2, (N , [p0])[t0〉(N , [p1]),
and (N , [p1])[t1〉(N , [p2, p3]).

Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. (N , M)[σ〉(N , M ′) de-
notes that there is a set of markings M0, M1, . . . , Mn such that M0 = M , Mn = M ′

and (N , Mi)[ti+1〉(N , Mi+1) for 0 ≤ i ≤ n. A marking M ′ is reachable from M if
there exists a σ such that (N , M)[σ〉(N , M ′). For instance, for the Petri net of
Figure 2.2, (N , [p0])[σ〉(N , [p12]) with σ= 〈t1, t1, t2, t4, t5, t7, t9, t12, t13〉.

In order to be able to relate activities to transitions in the Petri net, we define
a labeled Petri net in a similar way as in [7]:

Definition 2.12 (Labeled Petri net)

A labeled Petri net is a tuple N = (P,T,F, A, l) where (P,T,F) is a Petri net as defined

in Figure 2.2.2, A ⊆ A
τ is a set of activity labels, and l : T → A is a labeling

function. Let σ′ = 〈a1, a2, . . . , an〉 ∈A
∗ be a sequence. (N , M)[σ′〉(N , M ′) if and only

if there is a sequence σ ∈ T ∗ such that (N , M)[σ〉(N , M ′) and σ
′ = l (σ1) · l (σ2) · . . . ·

l (σ|σ|).

We define a completed trace of a Petri net, and the language that a Petri net
can produce, as follows:

Definition 2.13 (Completed traces, language of a Petri net)

Let N = (P,T,F, A, l) be a labeled Petri net with initial marking Minit and final

marking Mfinal. A completed trace σc of a Petri net N is a σc ∈ A
∗ for which

there is a sequence σ ∈ T ∗ such that (N , Minit)[σ〉(N , Mfinal) and σc = l (σ1) · l (σ2) ·
. . . · l (σ|σ|). The language of a Petri net N , L (N), is defined as all completed traces

that N can produce.

The (labeled) Petri net of Figure 2.2 can produce the completed traces
〈a,b,c,e, f ,h, i ,k〉 and 〈a,b,e,c, f , g ,b,c,d , f ,h, j , i ,k〉. In principle, multiple tran-
sitions may have the same label. Some transitions however are unobservable,

2.2 Process Models 31

such as transitions t10, t11 and t12. Furthermore, the language described by a
Petri net can be infinite. Consider for instance the Petri net of Figure 2.2, which
contains a loop. In the remainder of this thesis, with ‘Petri net’ we actually mean
a labeled Petri net.

Although the modeling language of Petri nets is basic, it allows for very
expressive descriptions of (concurrent) behavior. Together with its clear se-
mantics, it is the preferred modeling language in business process research [5].
However, it has limitations when used for describing more complicated behav-
ior. As shown in the example process model of Figure 2.2, describing a non-
exclusive choice requires additional (silent) transitions and arcs. There are sev-
eral solutions for modeling non-exclusive choice behavior, however all of them
increase the complexity and reduce readability of the process model.

2.2.3 Business Process Model and Notation (BPMN)

A business process modeling notation used extensively in industry is the Busi-
ness Process Model and Notation (BPMN)1 [143]. The main purpose of the
BPMN language is to create and document process models. In the latest ver-
sions executable semantics are provided, enabling execution of the modeled
process. The BPMN notation is supported by many tool vendors and has been
standardized by the OMG (Object Management Group) [143]. The BPMN no-
tation is rather extensive with different types of (hierarchical) activities, events,
gateways and even conversations and choreographies. This results in the full
BPMN notation containing many different symbols. Moreover, sometimes it is
hard to understand the nuances captured in a process model. Therefore, in this
thesis we only use a more commonly used subset of the notation. This subset is
simpler and commonly understood. Examples of the full BPMN notation can be
found in [142].

The formal semantics of BPMN are complex and problematic for the full
language, but well understood for the subset used in this thesis. Like for Petri
nets, token-based semantics exist for BPMN.

An example of a BPMN process model is shown in Figure 2.3. BPMN has
specific control flow operators, called gateways, to specify how the different
process model parts are related. Before task ❜, there is an exclusive choice
join, merging the two incoming branches. After activity ❜ there is a parallel
gateway, activating both outgoing branches. The branch going down reaches
an event-based gateway, followed by two event triggers. In case a message (e.g.

1Throughout the remainder of this thesis, BPMN refers to BPMN version 2.0

32 Preliminaries

e-mail) comes in, ❞ is activated. If after a certain amount of time no message
has been received, the time-out is triggered, activating ❡. When activity ❝ is also
executed, activity ❢ is enabled. Next a choice is made whether activity ❣ or ❤

is activated. Another gateway is shown after task ❤, which is the non-exclusive
or OR gateway. The behavior is the same as in the Petri net model: tasks ✐ and
❥ can be executed in parallel and at least one has to be executed before the
process can continue. After execution of activity ❦ the process is concluded.

Besides the constructs shown in Figure 2.3 others are available. For instance,
through so-called swimlanes, it can be indicated which group or role executes a
particular activity. Additionally, BPMN proces models may contain information
regarding which activities use which documents or data objects, how messages
flow and how participants within the process interact. However, research [189]
has shown that typically less than 10 different symbols are used, while more
than 50 distinct graphical elements are available.

2.3 Event Logs

An event log stores the execution history of a process. Table 2.1 shows an ex-
cerpt of an example dataset used for process mining. Our example log stores
some execution history of a loan application process (see Section 1.2.1). An
event log contains data related to a single process. Each line in the table repre-
sents one event and each column represents an attribute of this event. An event
is associated with a case, or process instance. In Table 2.1 the events are already
grouped by case and sorted chronologically. The sequence of events that is re-
corded for a process instance is called a trace. The first recorded event in the
table is related to case 1 and represents the execution of the activity ❘❡❣✐st❡r

❛♣♣❧✐❝❛t✐♦♥ by Pete on December 30, 2010. Additional attributes can be re-

start end

a b
c

d

e

f h

g

i

j

k

Figure 2.3: Example of a BPMN model.

2.3 Event Logs 33

Table 2.1: Example event data (from [5]).

Case id Event id Properties
Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010 11:02 Register application Pete 50 . . .
35654424 31-12-2010 10:06 Check credit Sue 400 . . .
35654425 05-01-2011 15:12 Calculate capacity Mike 100 . . .
35654426 06-01-2011 11:18 Check system Sara 200 . . .
35654427 07-01-2011 14:24 Reject request Pete 200 . . .
35654427 08-01-2011 09:03 Send decision e-mail Pete 200 . . .

2 35654483 30-12-2010 11:32 Register application Mike 50 . . .
35654485 30-12-2010 12:12 Calculate capacity Mike 100 . . .
35654487 30-12-2010 14:16 Check credit Pete 400 . . .
35654488 05-01-2011 11:22 Accept request Sara 200 . . .
35654489 08-01-2011 12:05 Send decision e-mail Ellen 200 . . .

3 35654521 30-12-2010 14:32 Register application Pete 50 . . .
35654522 30-12-2010 15:06 Check system Mike 400 . . .
35654524 30-12-2010 16:34 Check credit Ellen 100 . . .
35654525 06-01-2011 09:18 Calculate capacity Sara 200 . . .
35654526 06-01-2011 12:18 Accept request Sara 200 . . .
35654527 06-01-2011 13:06 Send decision e-mail Sean 400 . . .

4 35654641 06-01-2011 15:02 Register application Pete 50 . . .
35654643 07-01-2011 12:06 Check credit Mike 100 . . .
35654644 08-01-2011 14:43 Calculate capacity Sean 400 . . .
35654645 09-01-2011 12:02 Reject request Sara 200 . . .
35654647 12-01-2011 15:44 Send decision e-mail Ellen 200 . . .

...
...

...
...

...
...

...

lated to this event such as the incurred cost, data attributes entered, etc. Events
need to be uniquely identified, which is achieved by assigning unique identi-
fiers. It is important that each event is related to a case and that events are
sorted. In general the timestamp of execution is used to sort events chronologi-
cally. The resulting sequence of events is referred to as a trace. The times shown
in Table 2.1 should be interpreted as completion times, i.e., the time when the
corresponding activity was completed. In general events can also be recorded
to register when activities are started, paused and resumed, etc. For a more
complete overview of the different state changes of activities that can be recor-
ded we refer to [5]. In the remainder of this thesis, when we refer to an event,

34 Preliminaries

we usually refer to the completion of the corresponding activity. Furthermore,
please note that an activity can be executed multiple times for the same case,
resulting in different events relating to the same activity and case.

We formalize an event log as follows:

Definition 2.14 (Trace, Event Log)

Let A ⊆A be a set of activities. A trace t ∈ A∗ is a sequence of activities. An event
log L ∈B(A∗) is a multiset of traces.

The trace for case 1 of Table 2.1 is 〈register application,check credit,

calculate capacity,check system,reject request,send decision e-mail〉. For con-
venience we abbreviate full activity names to single letters, e.g., the trace for
case 1 then becomes 〈a,b,c,d , f , g 〉. The event log of Table 1.2a for instance can
be represented as [〈a,b,c,d , f , g 〉38,〈a,b,d ,c, f , g 〉26, . . . ,〈a,c,b, f , g 〉]. In practice,
each event and trace contains more information that can be considered. In the
remainder of this thesis we refer to traces and events, and only consider a trace
to be a sequence of activities.

An event log can be related to a process model, for instance a Petri net, via
the activities in the process model and traces of the event log. For instance, we
can say that a trace t in an event log L (i.e., t ∈ L) can be replayed in a Petri net
N if t ∈ L (N). Note however that, even when an event log contains observed
behavior that can be related to a specific process, not all traces of the event log
have to fit the associated process model perfectly.

The event data shown in Table 2.1 can be easily converted into an event

log. An event log is a pre-defined structure for storing event data. The de facto
standard for storing event logs on disk is the XES [176] event log format. XES
stands for eXtensible Event Stream and is the successor of the popular MXML [65]
event log format. The XES standard stores information regarding the event log
as a whole, the traces, and the events belonging to the traces.

Chapter 3

Process Trees

One of the main requirements for process discovery algorithms is to produce
correct, also referred to as sound, process models, as is mentioned as Chal-
lenge 1 in Section 1.3. And although the correctness of a process model can
be verified, making an incorrect process model correct is not always possible.
Therefore, this chapter introduces process trees as a process model notation that
guarantees soundness. Besides soundness, process trees are also easy to trans-
late into various other process modeling notations, thus addressing Challenge
2. Moreover, the translated process models are inherently structured and thus
easier to understand.

Section 3.1 discusses several general requirements for process modeling no-
tations in the context of process discovery, of which soundness is the most im-
portant requirement. Section 3.2 lists several commonly used process modeling
notations. In Section 3.3 we then evaluate to what degree these process model-
ing notations meet the requirements discussed in Section 3.1. Next we present
our process tree notation in Section 3.4. Translations to and from process trees
are discussed in Section 3.5 and Section 3.6 concludes this chapter.

3.1 Requirements

When choosing a process modeling notation to use for process discovery, one
has to be fully aware of the implications of such a representational bias [4,
6, 11]. Choosing a suitable process model notation for process discovery is a
very important design decision. The choice of process model notation has great

36 Process Trees

impact on the (im)possibilities of the algorithm. Therefore, in this section we
list the most important requirements that should be considered when choosing
which process modeling notation to use.

3.1.1 Soundness and Relaxed Soundness

As mentioned in Section 1.3 as Challenge 1, it is important that processes are
error-free, i.e., sound. Soundness is a domain-independent but crucial property
that any process model should satisfy [69,133]. However, many process model-
ing notations allow for the creation of unsound models [5,13,101,143]. While
soundness can be determined for some (subclasses of) process modeling nota-
tions [16,172,173], for highly expressive modeling notations this is not always
possible [15,16,67].

Since soundness is defined differently for various notations, we use the def-
inition from [5,16] for Petri nets, which define soundness as:

1. Option to complete: for each possible marking a process can be in, it should
always be possible to reach the final marking.

2. Proper completion: when the process model reaches its final marking (i.e.,
is finished), no other work should be left.

3. No dead transitions: all parts of the process model are potentially reach-
able.

Violating any of these three properties makes a process model unsound. Fig-
ure 3.1 shows three Petri nets that each violate a rule. For each of these Petri
nets place i is the initial marking (Minit = [i]), i.e., the only place that initially
contains a token. Furthermore, each of the Petri nets is finished when there
is a token in place o and nowhere else, hence Mfinal = [o] is the final marking.
The first Petri net, shown in Figure 3.1a, does not have the option to complete.
The final marking [o] cannot be reached once activity ❝ fires, since activity ❞

will never be enabled. In the Petri net shown in Figure 3.1b the proper comple-
tion property is violated. The final marking can never be reached since there
is a token remaining in place p1, after transitions ❝ and ❞ have fired, allowing
for activities to still be executed. Hence marking [o] is unreachable. The third
soundness property is violated in the Petri net shown in Figure 3.1c. In this Petri
net transition ❝ can never be executed since there is never a token both in place
i and p1 at the same time.

3.1 Requirements 37

Whether a process model violates one or more of these requirements cannot
always be detected [173]. Moreover, when a violation is detected, repairing
the model is often far from trivial. The main problem is that several solutions
allowing for different behaviors may be possible, making it hard to choose a
solution. Therefore, we propose to prevent the creation of unsound process
models.

The notion of relaxed soundness [16, 62] is a relaxation of the previous
soundness notion. Relaxed soundness states that a Petri net is sound if every
transition is on a path from the initial marking to the final marking, and thereby
drops the proper completion requirement. Intuitively this means that there exist
enough executions which terminate properly, i.e., without violating the proper
completion requirement. ‘Enough’ in this case means that each transition is
covered. The relaxed soundness notion is meant to be closer to the intuition of
the modeler. However, it allows for execution sequences without proper com-
pletion, and therefore is still not desirable since not all analysis algorithms can
handle this.

3.1.2 Expressiveness

The second requirement for process model notations is that of expressiveness.
The behavior of the main process model notations has been characterized using

i

a p1 b o

c p2 d

(a) Petri net with no option to complete (af-
ter ❝ fires the final marking cannot be
reached)

i

a p1 b o

c p2 d

(b) Petri net with no proper completion (to-
ken left in place p1 after firing ❝ and ❞)

i

a p1 b o

c

(c) Petri net with a dead transition ❝

Figure 3.1: Examples of unsound Petri nets.

38 Process Trees

an extensive collection of control flow patterns [17]. Based on these patterns,
we can conclude that a process model notation should be able to express the
following key aspects of process behavior:

1. Concurrency between different parts of the process is one of the essential
behavioral aspects that a process modeling notation should cover. Since
work is often done by different teams of users, different parts of a case can
be executed in parallel. Enumerating all possible interleavings does not
result in a readable process model, since the total number of interleavings
is exponential in the number of activities, and in case of loops even infi-
nite. Therefore, the process modeling notation should be able to express
concurrency between different parts of the process.

2. Silent actions, although not related to a concrete activity, often express
crucial control-flow aspects such as the possibility to skip an activity. If
the chosen notation does not support silent actions, certain control-flow
constructs cannot be expressed and hence can not be discovered by the
discovery algorithm.

3. Duplication of activity labels should be allowed. The same activity can pos-
sibly be executed in different parts or states of the process, and therefore
it should be possible to model the same activity multiple times within the
same process model.

4. Non-free-choice behavior in a process, i.e., choices that depend on deci-
sions made earlier in the process, should be captured. If the notation
cannot support such long-term dependencies, then a discovery algorithm
is not able to correctly express these in a concise way.

5. The non-exclusive (‘OR’) control-flow construct is a higher-level construct
that is hard to express in a lower-level notation such as Petri nets. The
notation should natively support OR constructs to allow a discovery al-
gorithm to express this construct. Besides native support, the semantics
of the OR construct should be clearly defined in all situations. A lot of
research has been done on the OR-join semantics for different process
model notations [13, 108, 185, 186]. However, only a few robust imple-
mentations have been proposed [108, 185]. This makes expressing non-
exclusive behavior in a process modeling notation a difficult task, since it
could depend on the semantics used whether a process model is sound.

Together, these five requirements cover the basic aspects of control flow ex-
pressiveness of process modeling notations.

3.1 Requirements 39

3.1.3 Understandability

The discovered process model will be interpreted by the process owner or a
process modeling specialist. Therefore, the chosen representation of the pro-
cess model is crucial for the understandability, and thus the usability, of the
discovered process model. Seven process modeling guidelines are mentioned
in [132]. Although these relate to process modeling, and not process discovery,
they do describe crucial aspects of the ease of understanding process models by
the end users.

The key aspect is size: bigger models are harder to read than smaller models.
This does not only refer to the number of nodes (e.g. tasks, events) but also
to the number of routing paths between them. Related to this is hierarchy
in a process model [4, 132]. Especially for larger process models, the ability
to group activities hierarchically together makes the process model easier to
understand for the user. Using the information available in the event log, a
process discovery algorithm could be able to automatically infer a hierarchy for
the process model. However, if the representational bias does not allow for the
grouping of activities into sub-processes, a process discovery algorithm always
finds a flat process model.

Other key features to make a process model understandable are the use of
only one start and end place (or activity), and avoiding OR routing and other
complex control flow constructs.

Our third requirement therefore is that the process modeling notation should
have a representation that is easy for humans to understand.

3.1.4 Formal Semantics

When a process model is discovered from an event log the analysis does not
end. Other algorithms can perform further analysis based on the discovered
process model. In order for these algorithms to understand and correctly inter-
pret a process model, the model has to have clear formal semantics [1, 183].
Although this sounds trivial, for some popular process modeling notations the
semantics are complex or incomplete [57, 64, 108, 185]. For instance the ex-
act semantics of an OR-join can be interpreted in different ways resulting in
different interpretations of the same modeling construct.

Therefore, the fourth requirement is that the process model should have
clear semantics. In case there are multiple ways in which the semantics of a
process model can be interpreted, the process discovery algorithm should be
clear on which interpretation is to be used.

40 Process Trees

3.1.5 Suitable for the Process Discovery Algorithm

One should not forget that the chosen process model notation should be suit-
able for the process discovery approach in mind. The difference between graph-
structured and block-structured modeling notations for instance is important [4].
Usually, the chosen representation and the approach of the process discovery
algorithm are tightly coupled [28,180]. Depending on the approach, some (in-
ternal) notations make more sense than others. Furthermore, the ability of a
process model to express certain behavior is only of use if the process discov-
ery algorithm is able to discover this behavioral construct. A process modeling
notation with less expressive power is therefore not a bad idea if the process
discovery algorithm is not able to find more complicated behavioral constructs.

Therefore the fifth requirement is that the chosen process modeling notation
should be suitable for the process discovery algorithm, and vice versa.

3.2 Common Process Modeling Notations

The importance of modeling business processes is illustrated by the plethora of
process modeling notations, sometimes referred to as the “new Tower of Ba-
bel” [5]. In Section 2.2 we discussed labeled transition systems, Petri nets, and
BPMN. In this section we address some of the other commonly used process
modeling notations. Each of the notations has a different level of expressive-
ness, as is shown by the different example processes provided in this section.

In Section 3.3 we evaluate these common notations based on the require-
ments discussed in Section 3.1.

3.2.1 Hidden Markov Models

Hidden Markov models are an extension of ordinary Markov processes. An ex-
ample of a hidden Markov model is shown in Figure 3.2. A hidden Markov
model has a set of states, represented by circles, and transition probabilities.
Moreover, unlike standard Markov models, in each state an observation is pos-
sible, represented by squares, but the state itself remains hidden. Observations
have probabilities per state as shown in Figure 3.2, e.g. in state s4 there is a
chance of 0.75 of observing activity ❞, and of 0.25 of observing activity ❡.

Three fundamental problems have been investigated for hidden Markov
models [5,26]:

3.2 Common Process Modeling Notations 41

1. Given an activity sequence, how to compute the probability of the se-
quence given a hidden Markov model?

2. Given an activity sequence and a hidden Markov model, how to compute
the most likely “hidden path”, in the model?

3. Given a set of activity sequences, how to derive a hidden Markov model
that maximizes the probability of producing these sequences?

The last problem is related the most to process discovery, but is also the most
difficult problem. Although hidden Markov models are versatile and relevant to
process mining, there are several complications [5]. First of all, there are many
computational challenges due to the time-consuming iterative procedures. Sec-
ond, current techniques for discovering a hidden Markov model from observed
behavior require the number of hidden states to be predefined. Third, the re-
sulting hidden Markov models are typically not very accessible for the end user.
Accurate models are typically large and even for small examples the interpre-
tation of the states is difficult. Clearly, hidden Markov models are at a lower
abstraction level than modeling notations such as BPMN and Petri nets.

3.2.2 Yet Another Workflow Language (YAWL)

YAWL (which stands for “Yet Another Workflow Language”) is an open-source
process execution engine with a corresponding process modeling and execution
language [101]. The aim of YAWL is to offer comprehensive support for the
workflow patterns [17], covering not only the control flow perspective but also

s1 s2 s3

s4 s5

s6 s7 s8 s9 s10

s11

0.5

0.5

0.75

0.25

a b c d e fg h i j k

0.75 0.25

0.25

0.75 0.75 0.75

Figure 3.2: An example HMM model, with 11 (hidden) states and 11 possible observa-
tions. All arcs shown have weights attached, only weights not equal to 1.0

are shown.

42 Process Trees

data patterns, resource patterns, and exception patterns, while at the same time
keeping the language relatively simple. In this chapter, we restrict ourselves to
the control flow perspective.

Figure 3.3 shows an exemplative process in the YAWL notation. The notation
of YAWL has been derived from Petri nets. The initial and final states are marked
clearly by places filled respectively with a play and stop symbol. Furthermore,
for the tasks the split and join semantics can be specified. Task ❜ for instance
has XOR-join semantics, as is indicated by the rectangle facing with the tip
towards the incoming arrows. At the same time ❜ has AND-split semantics, as
is indicated by the rectangle facing with the long edge towards the outgoing
arrows. Although the exclusive split and join semantics can be made explicit
in the tasks, the deferred choice is also still available by using the conventional
Petri net notation, as is shown between tasks ❞ and ❡. After ❜ is executed, it is
also possible to execute ❣, which cancels the execution in the boxed region of
the process model. Task ❢ demonstrates AND-join semantics, and by executing
❢, ❣ is disabled. Task ❢ is followed by task ❤ which has OR-split semantics,
for which the enabled outgoing arcs (at least one) are evaluated using data
conditions.

YAWL is both a rich proces modeling language and an open-source workflow
system. The YAWL language has a sound underlying formalization, and is based
on the workflow patterns [17]. At the same time the YAWL language is kept
simple. Moreover, YAWL models are executable in the YAWL workflow system.

a

b

c

d

e

f

g

h

i

j

k

Figure 3.3: An example YAWL process model where ❣ cancels a region.

3.2 Common Process Modeling Notations 43

3.2.3 Event-Driven Process Chains (EPCs)

The Event-Driven Process Chain (EPC) [159] is another graphical process mod-
eling notation, originally introduced in the context of SAP R/3. An example of
an EPC model is shown in Figure 3.4. EPCs are based on activities, functions in
EPCs, and events. Both functions and events have exactly one input and one out-
put arc. A notable exception are the start and end events which have only one
outgoing or one incoming arc, respectively. Furthermore, functions and events
should alternate, i.e., no two events or two functions can be connected either
directly or through a path of connectors. Additionally, EPCs have connector
nodes, much like the gateways of BPMN. Connector nodes support the control
flow constructs of parallelism, exclusive choice and non-exclusive choice. The
EPC notation was one of the first notations allowing for non-exclusive (i.e., OR)
splits and joins. However, no clear semantics nor reference implementations
were provided [13].

EPCs are supported by commercial products such as ARIS and SAP R/3.
However, EPCs also have much of the same issues as the other languages we
discussed. Since EPCs contain higher-level constructs, as do the BPMN and
YAWL languages, all kinds of subtle semantic problems may arise. For instance
the execution semantics of the vicious circle, where several OR-connectors wait
on each other, is not handled by the EPC definition [108].

3.2.4 Causal Nets

A Causal net (or C-net) is a process model notation tailored towards process
discovery [9]. All of the process modeling languages described so far connect
activities (i.e., transitions (Petri nets), tasks (YAWL and BPMN), and functions
(EPC)) through model elements indicating state and/or control flow (i.e., places
(Petri nets), conditions, connectors and events (EPC), gateways and events
(BPMN)). These elements however do not explicitly leave their footprints in
an event log, which is the input for process discovery. A causal net is a graph
where nodes represent activities and arcs represent causal dependencies. Each
activity has a set of possible input bindings and a set of possible output bindings.
An example of a causal net is shown in Figure 3.5, which describes the same
process as the examples of the previous proces modeling notations. Activity ❛

has only an empty input binding as this is the start activity. There is only one
possible output binding: {❜}. Activity ❜ however has two possible input bind-
ings: {❛} and {❣}, hence ❜ is preceded by ❛ or ❣. After execution of ❜ two
output bindings can be triggered: {❝,❞} or {❝,❡}, indicating that activity ❝ is al-

44 Process Trees

Start

a

×

e1

b

∧

×

e3

d

e4

e

e2

c

×

∧

e5

f

×

e6

h

∨

e7

i

e8

j

∨

e9

k

end

e10

g

Figure 3.4: An example EPC model.

3.2 Common Process Modeling Notations 45

ways enabled, together with either activity ❞ or ❡. The non-exclusive split after
activity ❤ is expressed by indicating that each of the two exiting branches can be
activated alone, or both can be activated. The way causal nets denote activity
bindings allows for a concise way of encoding activity relations.

As a downside, causal nets are hard for humans to quickly read and under-
stand. This is mainly caused by the information density, i.e., the control flow
is encoded in the arcs, and not by explicit symbols. The main disadvantage
however is that causal nets are tailored towards process discovery, and not pro-
ces modeling. In essence, this means that a given sequence of activities can be
verified if it fits a given causal net. However, causal nets are not intended to pro-
vide executionable semantics since they do not fix the moment of choice (they
use trace-based semantics). Therefore, causal nets are mainly used as an inter-
mediary process model notation for process discovery algorithms to discover a
process model. The causal net is then later translated to a more human-friendly
visual representation.

3.2.5 Heuristics Net

A Heuristics net is produced by the heuristics miner [180, 181]. A Heuristics
net is in essence another representation of a causal net, where the activity bind-
ings can be visualized as choices in a BPMN notation style. An example of a
heuristics net is shown in Figure 3.6. Multiple arcs exiting from an activity
are activated simultaneously, and are thus executed in parallel. It should be

a b

d

e

c

f h

g

j

i

k

Figure 3.5: An example causal net.

46 Process Trees

noted however, that some relations are not expressed correctly, such as the OR
construct between ✐ and ❥.

3.2.6 Fuzzy Models

Fuzzy models are the output format used by the fuzzy miner [96, 97]. An ex-
ample of a fuzzy model, based on the behavior as described by the previous
models, is shown in Figure 3.7a. Fuzzy models are called fuzzy because they
have no explicit semantics and are only based on heuristic replay semantics.
The arcs in a Fuzzy model represent a causal relationship. In Figure 3.7 for
instance it is encoded that ❛ is always followed by ❜. It is also shown that af-
ter ❜, activities ❝, ❞ and ❡ appear in any order, and among them also causal
dependencies exist. However, the exact control-flow construct between these
activities remains unclear. The benefit of the Fuzzy models however is that they
allow for aggregation of parts of the model. Figure 3.7b shows an instance of
an aggregated version of the Fuzzy model of Figure 3.7a, where activities ❞, ❡,
❣, ❤, ✐ and ❥ are combined together.

3.2.7 Process Algebras

Process algebras (sometimes also referred to as ‘process calculus’) allow for the
description and analysis of concurrent systems [32, 84, 135]. Many different
process algebra languages exist but in this thesis we mainly consider process
algebras on a high level, while we provide examples using the Calculus of Com-
municating Systems (CCS) process algebra [135]. The main purposes of a pro-
cess algebra are the description and analysis of processes, and most importantly
reasoning about the equivalences between processes. All process algebras have
in common that they are able to represent interactions between processes as
communication between them. Furthermore, they can describe processes and
systems using a small collection of primitives and operators for combining those
primitives. Basic operators of process algebras are the parallel composition of

Figure 3.6: An example of a Heuristics net (with split-join semantics shown).

3.2 Common Process Modeling Notations 47

(a) Example of a Fuzzy model with-
out aggregation.

(b) Example of an aggregated
Fuzzy model.

Figure 3.7: Example of Fuzzy models describing the same behavior as the previous mod-
els.

48 Process Trees

processes, sequentialization of interactions, hiding of interaction points and re-
cursion of process replication.

In the process algebra CCS [135] the processes as modeled in Figure 3.4 and
Figure 3.5 can be defined as follows:

P ::= a.P1.h.P3.k

P1 ::= P2.(;+ g .P1)

P2 ::= b.(c|(d +e)). f

P3 ::= (i + j + (i | j))

Activities are indicated with lower case letters, and a process definition can
refer to other process definitions. Activities and processes are put in sequence
using ‘.’, in choice using ‘+’ and in parallel using ‘|’. The main process definition,
P , consists of a sequence of activity ❛, process P1, activity ❤, process P3 and
activity ❦. Process P1 defines a loop, where first P2 is executed, followed by
nothing or activity ❣ followed by P1 again (i.e., a recursive call). Process P2

contains a sequence of activities including parallelism between ❝ and the choice
between ❞ and ❡. Process P3 describes an OR construct between activities ✐ and
❥, where one of them, or both in parallel can be executed.

3.3 Process Modeling Notations versus

Requirements

In Table 3.1 the requirements for process modeling notations of Section 3.1
are set out against the process modeling notations most often used in process
discovery.

The first requirement of inherent soundness is satisfied by the transition sys-
tem, hidden Markov model, fuzzy model and process algebra notations. Hidden
Markov models and transitions systems are sound under the assumption that
every deadlock state is also a final state, which in general is the case. Fuzzy
models are inherently sound since they have no semantics and only represent
causal dependencies [96]. Process algebras are inherently sound if they do not
communicate [84]. Furthermore, since process algebras are block-structured,
there cannot be a mismatch between splits and joins. Although the other nota-
tions allow for potentially unsound process models, the process discovery algo-
rithm can still prevent this. In Section 6.9 however we show that many process
discovery algorithms may return unsound process models.

All common process modeling notations have support for concurrency, a
crucial construct in process models. Transition systems and hidden Markov

3.3 Notations v.s. Requirements 49

Table 3.1: Classification of common process modeling notations on process modeling
notation requirements.

In
h

er
en

tl
y

S
o
u

n
d

C
o
n

cu
rr

en
cy

S
il

en
t

A
ct

io
n

s

D
u

p
li

ca
te

A
ct

io
n

s

N
o
n

-F
re

e-
C

h
o
ic

e

O
R

co
n

st
ru

ct

H
ie

ra
rc

h
y

C
le

ar
S

em
an

ti
cs

Transition Systems [33] ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓

Hidden Markov models [26] ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓

Petri nets [139] ✗ ✓ ✓ ✓ ✓ 2 2 ✓

YAWL [101] ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

BPMN [143] ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗

EPCs [159] ✗ ✓ ✓ ✓ ✓ ✓ 2 ✗

Causal Nets [9] ✗ ✓ ✓ 2 ✓ 2 ✗ 2

Fuzzy Models [96] 2 ✓ ✗ ✗ ✗ ✗ ✓ ✗

Heuristics Nets [181] ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓

Process Algebras [84] ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

models do not support concurrency, as they are a low level modeling language.
There, one needs to list all interleavings.

Silent actions are supported by all but the heuristics net and fuzzy model. In
the case of the fuzzy model silent actions are not required because of the lack
of semantics, while the heuristics net has no way of expressing silent actions.

Duplication of activities is not possible in heuristic nets and in fuzzy mod-
els. Causal nets support duplication of activities via an extension by Alves de
Medeiros [27].

Non-free-choice behavior cannot be expressed by transitions systems, hid-
den Markov models, causal nets, fuzzy models and process algebras. Since both
transition systems and hidden Markov models describe states and transitions
between states, a choice is always local. Fuzzy models cannot express non-free-
choice behavior because they do not express choices at all, only causal depen-
dencies. And since process algebras do not allow for dependencies between
different parts of the formula, they cannot express non-free-choice behavior be-
tween different parts of the process.

50 Process Trees

The OR-construct is not natively supported by transition systems, hidden
Markov models, Petri nets, causal nets, the heuristics and fuzzy models, and
process algebras. Transition systems and hidden Markov models do not support
the OR-construct because they do not support concurrency. Therefore, they ex-
plicitly model all possible execution sequences. For Petri nets and causal nets
the OR-construct can be expressed by encoding all allowed executions. How-
ever, there is no native support for the OR-construct. The heuristics and fuzzy
models, as well as process algebras, do not support the OR-construct at all. It
should also be noted that for YAWL, BPMN and EPC the OR-join is not specified
for all situations [13,108,185,186].

Hierarchy is supported natively by YAWL, BPMN, Fuzzy models, and process
algebras. Extensions exist for Petri nets [81, 103] and EPCs [131] to include
hierarchy but this is not supported in the basic definition.

The BPMN, EPC and Fuzzy modeling notations have no clear semantics.
For the fuzzy model this is a deliberate choice, hence the name ‘fuzzy’. The
BPMN and EPC notations however have some semantics that work in easy and
straightforward cases, but for more complicated situations different semantics
have been proposed [64, 108, 185]. It should be noted that YAWL has clear
formal semantics, especially regarding the OR-join.

3.4 The Process Tree Notation

The comparison of different process modeling notations with the requirements
for process modeling notations makes it clear that currently there is no perfect
process modeling notation. More importantly, very few notations guarantee
soundness of the process models. Notable exceptions are the Fuzzy model no-
tation and process algebras. However, Fuzzy models have no clear semantics.
Process algebras are block-structured and therefore always sound (if they are
not communicating). And although process algebras are suitable for reasoning
about processes, they are not the proper way to communicate a proces descrip-
tion to a user. The process tree notation introduced in this section allows for
easy reasoning over, and manipulation of, the model. This is a crucial property
for the evolutionary process discovery framework we present in this thesis.

Block-structured process models are inherently sound because they require
that each control-flow split has a corresponding join of the same type. Fur-
thermore, they do not allow for any dependencies or arcs to enter or exit in
between the join and split, so they keep dependencies local. Graph-based no-
tations, such as Petri nets, YAWL and BPMN, can be made block-structured but

3.4 The Process Tree Notation 51

the graph-based notation does not make this easy.
Several block-structured process modeling languages exist, such as XRL [114],

XLang [169], BPEL [144] and Little-JIL [123]. However, all of these languages
are targeted at the execution of business processes, and not at the design of
these processes. Although this means that they have proper formal (or at
least executable) semantics, they are not suitable for process discovery. Within
process discovery the aim is mainly to discover the control flow of a process,
while the additional information required to be able to actually execute the
process cannot be discovered in general. Moreover, the representation of these
languages does not always enforce the block-structure, although only block-
structured models are valid.

A more suitable basic representation for block-structured processes seems to
be a tree notation. Since each split has a corresponding join, and nothing en-
tered or escaped in-between, the split and join do not need to be modeled sep-
arately. This means that a tree is inherently sound, since split-join mismatches
cannot occur. Therefore we use process trees to express block-structured pro-
cesses in a tree structure.

An example process tree and its translation to a Petri net is shown in Fig-
ure 3.8. The root node of the process tree of Figure 3.8a is a sequence operator,
as is indicated by the →-symbol. It defines that its children are to be executed
in a sequence from left to right. Hence, the next child can only start when the
previous child is completely finished. The first child of this root node is the ac-
tivity ❛. The second child of the root node is the parallel operator, indicated by
the ∧-symbol. It allows the execution of activities ❜ and ❝ in any order. The next
sibling is a choice, indicated by the ×-symbol, between ❞ and ❡. Finally, activity
❢ is executed. The Petri net shown in Figure 3.8b describes the behavior of the
process tree. Both the process tree and the Petri net allow for the following four
traces: 〈a,b,c,d , f 〉,〈a,b,c,e, f 〉,〈a,c,b,d , f 〉,〈a,c,b,e, f 〉.

More formally, a process tree can be defined as follows:

Definition 3.1 (Process Tree)

Let A ⊆A be a finite set of activities. A process tree (PT) is a tuple PT = (N ,r,m,c),

where:

• N is the non-empty (ordered) set of nodes in the process tree, which is parti-

tioned in two sets, NL for the leaf nodes and NO for the operator nodes such

that NL ∪NO = N and NL ∩NO =;.

• r ∈ N is the root node.

52 Process Trees

• O is the set of operator types: O = {→,←,×,∧,∨,	}.

• m : N → A ∪O is a mapping function, mapping each node to an operator or

activity: m(n) =
{

a ∈ A∪ {τ} if n ∈ NL

o ∈O if n ∈ NO

• c : N → N∗ is the child-relation function:

c(n) = 〈〉 if n ∈ NL

c(n) ∈ N+ if n ∈ NO

such that

– each node except the root node has exactly one parent:

∀n ∈ N \{r } : ∃p ∈ NO : n ∈ c(p)∧Øq ∈ NO : p 6= q ∧n ∈ c(q);

– the root node has no parent:

Øn ∈ N : r ∈ c(n);

– each node appears only once in the list of children of its parent:

∀n ∈ N : ∀1≤i< j≤|c(n)| : c(n)i 6= c(n) j ;

– a node with a loop as operator type has exactly three children:

∀n ∈ N : (m(n) =) ⇒|c(n)| = 3.

→

f×

ed

∧

cb

a

(a) Example Process Tree

a

b

c

d

e

f

(b) Petri net translation

Figure 3.8: Example process tree and its Petri net translation.

3.4 The Process Tree Notation 53

• s : N → N∗ is the subtree function, returning all nodes of n in a pre-order:

s(n) =
{

n if n ∈ NL

n · s(c(n)1) · . . . · s(c(n)|c(n)|) if n ∈ NO

• A tree cannot contain loops:

∀n ∈ N \{r } : ∃p ∈ NO : n ∈ c(p)∧p ∉ s(n)

• A node n ∈ N can be denoted in shorthand as follows: n = t〈n1, . . . ,nk〉 where

t = m(n) and 〈n1, . . . ,nk〉 = c(n).

Definition 3.1 describes an ordered (rooted) labeled tree structure, where
the pre-order relation ≺ sorts the nodes in a tree. Moreover, each node has one
or more child nodes, except for the leaves.

Process trees have six different operators: sequence (→), the reversed se-
quence (←), exclusive-choice (×), parallelism (∧), non-exclusive choice (∨) and
the loop (). The language of a process tree is defined as follows:

Definition 3.2 (Process Tree Language)

Let A ⊆ A be a set of activities and let PT = (N ,r,m,c) be a process tree. The

language of a Process Tree L : N → A∗ is defined as the language of the root note:

L (r). The language of a node n in a Process Tree is defined as follows:

• if m(n) = τ, then L (n) = {〈〉}

• if m(n) = a ∈ A, then L (n) = {〈a〉}

• if m(n) ∈O and c(n) = 〈n1, . . . ,nk〉, then

– if m(n) = →, then L (n) = {σ|∃σ1∈L (n1)...σk∈L (nk) : σ=σ1 · . . . ·σk }

– if m(n) = ←, then L (n) = {σ|∃σ1∈L (n1)...σk∈L (nk) : σ=σk · . . . ·σ1}

– if m(n) = ×, then L (n) = {σ|∃1≤i≤k : σ ∈L (ni)} =⋃

1≤i≤k L (ni)

– if m(n) = ∨, then L (n) = {σ ∈ A∗|σ = 〈〉 ⇒ (∃n′∈c(n) : 〈〉 ∈ L (n′))∧σ 6=
〈〉⇒ (∃ f :{1...|σ|}→c(n) : ∀n′∈Rng(f) : σ↓n′ ∈L (n′))}

– if m(n) = ∧, then L (n) = {σ ∈ A∗|σ= 〈〉⇒∀n′∈c(n) : 〈〉 ∈L (n′)∧
σ 6= 〈〉 ⇒ (∃ f :{1...|σ|}→c(n) : ∀n′∈Rng(f) : σ↓n′ ∈ L (n′)∧∀n′∈c(n)\Rng(f) : 〈〉 ∈
L (n′))}

– if m(n) =	, then L (n) = {σ1·σ2·σ3 ∈ A∗|σ1 ∈L (c(n)1)∧σ3 ∈L (c(n)3)∧
σ2 ∈ f (c(n)2,c(n)1)} with f : N × N → A∗ : f (n1,n2) = {σ|σ = 〈〉∨ (σ =
σ1 ·σ2 ·σ3 ∈ A∗∧σ1 ∈L (n1)∧σ2 ∈L (n2)∧σ3 ∈ f (n1,n2))}

54 Process Trees

Consider for instance the process tree of Figure 3.8a which can be writ-
ten in shorthand as →〈a,∧〈b,c〉,×〈d ,e〉, f 〉. The language of the node ∧ 〈b,c〉 is
{〈b,c,〉,〈c,b〉}, and the language of × 〈d ,e〉 is {〈d〉,〈e〉}. The language of the whole
tree is {〈a,b,c,d , f 〉,〈a,c,b,d , f 〉,〈a,b,c,d ,e〉,〈a,c,b,d ,e〉}. Furthermore, the lan-
guage of the process tree described by ∨〈a,b〉 is {〈a,b〉,〈b, a〉,〈a〉,〈b〉}. The lan-
guage of the process tree with a loop, 	 〈a,b,c〉 is {〈a,c〉,〈a,b, a,c〉,〈a,b, a,b, a,c〉
, . . .}, which is infinite.

Figure 3.9 shows a slightly more complicated process tree which contains all
operators, except the ←-operator. This process tree can be written in shorthand
as 	 〈a,×〈→ 〈b,c,∨〈d ,e,〉〉,∧〈 f , g 〉〉,h〉. The language of this process tree, L (n0),
can be defined as follows:

• L (n7) = {〈d〉}.

• L (n8) = {〈e〉}.

• L (n6) = {〈d〉,〈e〉,〈d ,e〉,〈e,d〉} with for

– 〈d〉, f is defined as f (1) = n7 and 〈d〉↓n7
= 〈d〉 ∈L (n7);

– 〈e〉, f is defined as f (1) = n8 and 〈e〉↓n8
= 〈e〉 ∈L (n8);

– 〈d ,e〉, f is defined as f (1) = n7 and f (2) = n8 and 〈d ,e〉↓n7
= 〈d〉 ∈

L (n7) and 〈d ,e〉↓n8
= 〈e〉 ∈L (n8);

	

h×

∧

gf

→

∨

ed

cb

a

n0

n1 n2

n3

n5n4

n6

n7 n8

n9

n10 n11

n12

Figure 3.9: Example process tree with for each node the associated index.

3.4 The Process Tree Notation 55

– 〈e,d〉, f is defined as f (1) = n8 and f (2) = n7 and 〈e,d〉↓n7
= 〈d〉 ∈

L (n7) and 〈e,d〉↓n8
= 〈e〉 ∈L (n8);.

• L (n4) = {〈b〉}.

• L (n5) = {〈c〉}.

• L (n3) = {〈b,c,d〉,〈b,c,e〉,〈b,c,d ,e〉,〈b,c,e,d〉} = 〈σ4,σ5,σ6〉 with σ4 ∈L (n4),
σ5 ∈L (n5) and σ6 ∈L (n6).

• L (n10) = {〈 f 〉}.

• L (n11) = {〈g 〉}.

• L (n9) = {〈 f , g 〉,〈g , f 〉} with for

– 〈 f , g 〉, f is defined as f (1) = n10 and f (2) = n11 and 〈 f , g 〉↓n10
= 〈 f 〉 ∈

L (n10) and 〈 f , g 〉↓n11
= 〈g 〉 ∈L (n11);

– 〈g , f 〉, f is defined as f (1) = n11 and f (2) = n10 and 〈g , f 〉↓n10
= 〈 f 〉 ∈

L (n10) and 〈g , f 〉↓n11
= 〈g 〉 ∈L (n11).

• L (n2) = {〈b,c,d〉,〈b,c,e〉,〈b,c,d ,e〉,〈b,c,e,d〉,〈 f , g 〉,〈g , f 〉} =σ3 ∨σ9 with
σ3 ∈L (n3) and σ9 ∈L (n9).

• L (n1) = {〈a〉}.

• L (n12) = {〈h〉}.

• L (n0) = {〈a,h〉,〈a,b,c,d ,h〉,〈a,b,c,e,h〉,〈a,b,c,d ,e,h〉,〈a,b,c,e,d ,h〉,
〈a, f , g ,h〉,〈a, g , f ,h〉,〈a,b,c,d ,b,c,d ,h〉,〈a,b,c,d ,b,c,e,h〉,
〈a,b,c,d ,b,c,e,d ,h〉,〈a,b,c,d , f , g ,h〉, . . .} = 〈σ1,σ f ,σ12〉 with σ1 ∈L (n1),
σ2 ∈ L (n2), σ f ∈ f (n2,n1) and σ12 ∈ L (n12) and function f is defined as
f (n2,n1) = {σ|〈〉∪〈σ2,σ1, f (n2,n1)〉}.

Although soundness is the main motivation for our choice of process trees,
the other requirements are also important. The requirement of expressiveness
is covered since process trees allow for concurrency (using the ∧ and ∨ oper-
ators), and silent actions since τ is a possible leaf and duplication of activity
labels is allowed. Moreover, the non-exclusive choice control-flow construct is
explicitly supported. The only expressive power process trees do not possess
is non-free-choice behavior. Because of the block structure, creating long-term

56 Process Trees

dependencies is not possible. However, since process trees allow for the du-
plication of activities, long term behavior can be explicitly modeled using an
×-operator and duplication of activities.

Besides guaranteed soundness, the block structure also provides a natural
hierarchy within the process model. Since operator nodes are allowed to have
children with the same operator type, hierarchy can be introduced into the pro-
cess model. This allows for better readable process models [132].

Although the process tree notation itself provides a clear description of the
modeled behavior, it might not be the best way to present the process model to
the end user. Therefore we propose to translate the process tree to the process
modeling notation preferred by the user. As we show in Section 3.5.1 a process
tree can easily be translated to other process modeling notations with clear
semantics. Additionally, the hierarchy of the process tree can be maintained,
for instance by creating subprocesses if that is supported by the target process
model notation.

Furthermore, new operator types can easily be added to the process tree
notation, thus allowing for the support of additional control-flow patterns. An
example of a type of operator that could be added is the deferred choice. This
is done in the CoSeNet notation [161], where the deferred choice and deferred
loop variants are added as operator types. However, in this thesis we are only
concerned with the language described by the process tree, and therefore can
abstract from the moment of choice.

Next to meeting all but one of the process modeling notation requirements,
process trees have additional advantages over other process modeling notations:

Reduction of Search Space
Since process trees can only express sound process models, the search
space of process trees does not include unsound process models and is
therefore smaller than that of graph-based process modeling notations.
This makes the notation suitable for search algorithms, such as evolution-
ary algorithms. Moreover, no valuable time has to be spent on soundness
verification and attempts for correction.

Ease of Reasoning
Tree structures are very easy to interpret and modify for algorithms. This
facilitates reasoning over process trees. In a process tree for instance it
is easy to verify whether two activities or parts of the process are mutu-
ally exclusive or in a parallel construct. Moreover, process trees are easy
to modify for algorithms because only a few simple checks need to be
performed to ensure the consistency of the resulting model.

3.5 Translations 57

By choosing process trees as our internal process model notation, we ensure
soundness by design. Moreover, process trees have clear formal semantics and
have rich expressive power. The only price to pay is the inability to express long-
term behavior, caused by the block structure of the process tree. In the next
section we translate process trees to the most used process modeling notations
in process discovery and vice versa.

3.5 Translations

In this section we show translations from the process tree notation to com-
monly used process modeling notations. We also discuss how graph-based pro-
cess modeling notations such as Petri nets can be translated to the process tree
notation, using the blocks presented in the translation to that language.

3.5.1 From Process Trees to Other Notations

Translating process trees to other process modeling notations is easy because
of the clear semantics of process trees. In this section we show translations
from the process tree control flow constructs to well-known process modeling
notations. Although process trees have some control flow constructs that might
not be present in the target process modeling notation, a translation is made
so that the same behavior is described. Strong equivalence notions such as
(branching) bisimilarity [88] are not always preserved. However, these more
strict equivalence notions are not necessary since we are in the domain of pro-
cess discovery where only the resulting behavior recorded in the event log plays
a central role. Therefore, we consider two process models equal when their
described languages are equal.

To Petri Nets

The translations of the different process tree operators to Petri net fragments
describing the same behavior are shown in Table 3.2. For each of the process
tree control-flow constructs a binary process tree part is shown with its corre-
sponding translation to a Petri net. Extending the translation to more than two
children is trivial, and is shown for the translations to other process modeling
notations. The main reason this is harder to do for Petri nets is the fact that Petri
nets do not have a dedicated OR-operator. Correctly expressing the behavior of

58 Process Trees

the OR-operator requires additional places and silent transitions. The provided
translation is only one of several possible trace-equivalent alternatives.

Composing the Petri net blocks for process trees with multiple operators can
also be done in a straightforward way. Transitions in the Petri net translation
can be replaced by the Petri net translation of the sub-tree, where the places are
merged. This is also the reason for the explicit silent transitions in the XOR and
Loop constructs. Consider for instance the composition of an XOR with a direct
loop child. If the silent transitions would not be present in the XOR translation,
it would be possible for the loop to execute its ‘do’ and ‘redo’ parts, after which
another child of the XOR operator could be executed. The silent transitions in
the loop translation are added for the same reason.

3.5 Translations 59

Table 3.2: Process tree operators with two or three children (❛, ❜ and ❝), their Petri net
translation and their allowed traces.

Process Tree Petri net Example traces

→

ba a b 1 trace: {〈a,b〉}
←

ba b a 1 trace: {〈b, a〉}
×

ba

a

b 2 traces: {〈a〉,〈b〉}
∧

ba

a

b
All interleavings of the
children: {〈a,b〉,〈b, a〉}

∨

ba

a

b

All interleavings, with
the option to skip
all but one child:
{〈a〉,〈b〉,〈a,b〉,〈b, a〉}

	

cba

a

b

c
Infinite number of
traces of the pattern
a(ba)∗c :
{〈a,c〉,〈a,b, a,c〉,
〈a,b, a,b, a,c〉, . . .}

60 Process Trees

To YAWL

The translations of the control flow constructs of process trees to YAWL are
shown in Table 3.3. Here the translations are shown for an arbitrary number of
children for each operator. Moreover, the children now represent subprocesses
and not only activities. The first thing to emphasize is the easy translation of the
OR control-flow construct, because of the native support in the YAWL language.
Additionally it should be noted that the translation of the XOR construct can
be done in different ways in YAWL. We chose to use the explicit XOR choice
operator, but this could also have been done by use of the deferred choice, as
in Petri nets. In our case there is no difference since we consider only trace
equivalence. Similar reasoning holds for the choice in the loop translation.

The different translations can be combined by replacing a transition in a
translation with its sub-tree translation. Since YAWL does not enforce the strict
alternation between places and transitions, not all operator translations shown
in Table 3.3 start or end with a place. The start and end places of two con-
structed blocks should still be merged, but if a block starts or ends with a tran-
sition, these can just be connected with another block without an intermediate
place.

3.5 Translations 61

Table 3.3: Process tree operators, their translations to YAWL and examples of allowed
traces. The capitals A1, An , B and C represent subprocesses.

Process Tree YAWL Example traces

→

AnA1
. . . A1 An. . .

{〈A1, . . . , An〉}
←

AnA1
. . . An A1. . .

{〈An , . . . , A1〉}

×

AnA1
. . .

A1

An

.

.

.

{〈A1〉, . . . ,〈An〉}

∧

AnA1
. . .

A1

An

.

.

.

{〈A1, An〉,
〈A11

, An1
, . . . A1x , Any 〉,

. . . ,〈An , A1〉}

∨

AnA1
. . .

A1

An

.

.

.

{〈A1〉, . . . ,〈An〉,〈A1, A2〉, . . .

〈A1, An , . . . , A1〉, . . .}

	

CBA

C

B

A

{〈A,C〉,〈A,B , A,C〉,
〈A,B , A,B , A,C〉, . . .}

62 Process Trees

To BPMN

Translating the different process tree constructs to the BPMN process model-
ing notation is again straightforward, as is shown in Table 3.4. Since BPMN
has built-in support for the OR control-flow construct the translation is straight-
forward. Again, as for the YAWL translation, the exclusive choice can be trans-
lated in two ways, where we chose the explicit choice gateway.

The different BPMN translations can be combined by simply replacing the
BPMN task nodes with the corresponding block for that sub-tree. No nodes
should be merged, to prevent unintended and incorrect behavior.

3.5 Translations 63

Table 3.4: Process tree operators and their translations to BPMN parts. The capitals A1,
An , B and C represent subprocesses.

Process Tree BPMN

→

AnA1
. . .

A1
. . . An

←

AnA1
. . .

An
. . . A1

×

AnA1
. . .

×

A1

.

.

.

An

×

∧

AnA1
. . .

+

A1

An

... +

∨

AnA1
. . .

#

A1

.

.

.

An

#

	

CBA

× A ×

B

C

64 Process Trees

To EPCs

The translation of the different process trees constructs to EPCs is shown in
Table 3.5. Each of the control flow operators used in process trees has a straight-
forward translation to an EPC fragment. The loop is again translated using
exclusive choice operators.

Translating a full process tree instance to an EPC process model can be done
by glueing the EPC fragments together. The functions can be replaced by the
corresponding EPC fragment. Since the requirement for EPCs is that events and
functions alternate, events should be mapped onto each other when building
the final EPC. Functions however should not be mapped. Additionally, since the
EPC should start and end with an event, an end event should be added at the
end of the translated EPC.

3.5 Translations 65

Table 3.5: Process tree operators and their EPC translations (for convenience drawn hor-
izontally). The capitals A1, An , B and C represent subprocesses.

Process Tree EPC

→

AnA1
. . . A1

. . . An

←

AnA1
. . .

An
. . . A1

×

AnA1
. . .

×

A1

.

.

.

An

×

∧

AnA1
. . .

∧

A1

.

.

.

An

∧

∨

AnA1
. . .

∨

A1

.

.

.

An

∨

	

CBA

× A ×

B

C

66 Process Trees

To Process Algebra (CCS)

Process trees are closely related to process algebras; translating a process tree to
a process algebra is therefore straightforward and is shown in Table 3.6 for the
CCS process algebra language. Most process tree operators can be translated
by using the corresponding CCS operators. The 	-operator of process trees can
be translated to CCS by defining two processes to represent the possibly infinite
looping behavior. The ∨-operator cannot be translated to CCS directly and all
possible combinations of the children of the ∨-operator need to be encoded in
CCS.

To CoSeNet

Within the CoSeLoG project another process tree notation has been developed.
In this thesis however, we use a subset of the capabilities of the CoSeLoG
project’s more extensive process tree notation. Since we are only considering
process discovery, constructs such as deferred choice are not required. Further-
more, the CoSeLoG process trees allow for sharing of subtrees, which is not
directly supported in our situation since we need to attach information to each
node on how it relates to the event log (see Section 5.4 and Section 6.3). Since
each subtree, even though they are identical, is positioned in a different part of
the process tree, the related behavior is different and therefore these identical
subtrees need to be modeled multiple times.

Since our process trees only cover a subset, no additional translation steps
are necessary.

3.5 Translations 67

Table 3.6: Process tree operators and their CCS translation. The capitals A1, An , B and
C represent subprocesses.

Process Tree CCS

→

AnA1
. . .

P ::= A1. · · · .An

←

AnA1
. . .

P ::= An . · · · .A1

×

AnA1
. . .

P ::= An +·· ·+ A1

∧

AnA1
. . .

P ::= A1| · · · |An

∨

AnA1
. . . P ::= (A1 +·· ·+ An + (A1|A2)+·· ·+ (A1|An)+

(A1|A2|An)+·· ·+ (A1|An−1|An)+·· ·+ (A1| · · · |An))

	

CBA P ::= A.P1.C with P1 ::=;+B.A.P1

68 Process Trees

3.5.2 From other Notations to Process Trees

Translating a graph-based process model to the process tree notation is not as
easy as the translations as discussed in the previous section. Research has been
done on transforming graph-based process models to block-structured process
models, which are also known as well-structured models [145, 148, 170]. The
proposed approaches work by finding single entry, single exit (SeSe) parts of
the process model. If parts of the process model are not in a SeSe structure,
several approaches [148, 149] can translate the process model, in certain cir-
cumstances, to a SeSe structure. A description of a SeSe process model can be
created by building an RPST (Refined Process Structure Tree) [170]. However,
parts of the RPST might still be unstructured process model sections, captured
in a rigid section, without the SeSe characteristic. The rigid sections can be clas-
sified to define why the given process model is unstructured, but not all classes
can be made structured [148,149].

If the given graph model itself is block-structured, a process tree translation
can be made by following the translations of the previous section in the reverse
order. It should be noted that our process trees do not distinguish between
deferred and explicit choice. Hence, when translating this construct, it must be
reduced to the simple ×-operator. This also holds when translating loops.

However, in the case where the graph model is not block-structured, it has
to be made block-structured before it can be translated to a process tree [148,
149]. Since we mainly focus on the language of the process model, in the
worst case scenario we can simply write out the possible behavior of the process
model. A common way to do this is as a choice between all possible sequences of
activities in that part of the graph-model. Of course, where possible, this should
be generalized to the more general control-flow constructs known by process
trees. Therefore, each graph-based process model that is not block-structured
can be translated into a trace equivalent process tree.

We distinguish three different types of graph-based process models: non-
block-structured process models that can trivially be made block-structured,
sound process models that are not block-structured, and unsound process mod-
els that are not block-structured. Next we show how each of these process
model classes could be translated to a process tree equivalent. It is important to
note that the latter two types of process models cannot always be made block-
structured, as is discussed in [148, 149]. Since structuring process models is
a research field in itself, we only present examples of translations, without go-
ing into all possible cases and details. For a more detailed discussion we refer
to [148, 149]. Additionally we discuss in this section how a CoSeNet can be

3.5 Translations 69

translated to our process tree notation.

Process models that can be trivially made block-structured

Figure 3.10a shows a process model that is not block-structured but can eas-
ily be made so. The process model is not block-structured because the num-
ber of split and join activities is not equal. The process model can be made
block-structured by adding a silent AND-join transition that joins the places af-
ter activities ❞ and ❡, and outputs to a place that is input to ❣. After applying
this small transformation, which does not change the behavior of the process
model, the resulting process model can be easily translated to the process tree
as shown in Figure 3.10b.

Sound process models that are not block-structured

Figure 3.11a shows a process model that is not block-structured but can be
made so by duplicating activity ❞. This Petri net has a long term dependency
between activities ❜ and ❡ and between ❝ and ❢. Since process trees cannot
capture this, activity ❞ is duplicated in the process tree. This results in the
process tree as shown in Figure 3.11b. The resulting process tree has exactly

d

a b e g

c f

(a) Petri net which is not block-structured
but can easily be made so

→

g∧

→

fc

→

∧

ed

b

a

(b) Process tree transla-
tion of this process
model

Figure 3.10: Process model that can easily be made block-structured, and its translation
to a process tree.

70 Process Trees

the same behavior as the original process model.

Unsound process models

Figure 3.12a shows an unsound process model, which cannot be directly trans-
lated to a process tree. The process model is unsound because after executing
〈a,b,c,d , f , g 〉 a token is remaining in the place before activity ❡ while there is
also a token in the last place. Because of this improper completion the process
model is unsound, as discussed in Section 3.1.1. However, a process tree can
still be created, by looking at the traces that can be produced by the Petri net.
This process tree is shown below to this Petri net in Figure 3.12b. Although it is
not a simple process tree, because several possible traces need to be explicitly
encoded, it is a valid translation of the intended behavior of the unsound Petri
net since the process tree describes the same set of possible traces as the original
Petri net.

b e

a d g

c f

(a) Petri net which is not block-structured but sound.

→

g×

→

fdc

→

edb

a

(b) Process tree translation of this process model.

Figure 3.11: Process model that is not block-structured but sound, and its translation to
a process tree.

3.5 Translations 71

b

a c f g

d

e

(a) Petri net which is not block-structured and unsound.

→

g→

∧

b×

→

×

fe

c

×

→

e∧

dc

∧

d→

fc

a

(b) Process tree translation of the unsound process model.

Figure 3.12: Process model that is not block-structured and unsound, and its translation
to a process tree.

72 Process Trees

From CoSeNet to process tree

As mentioned in Section 3.5.1, within the CoSeLoG project another notation
similar to process trees, called CoSeNet, has been developed. Since the CoSeNet
notation is more extensive than the process trees used in this thesis, during the
translation of a CoSeNet to our notation some additional translation is required.
Since we are only considering process discovery, constructs such as deferred
choice are not required for our process trees. The main difference with process
trees is that in the CoSeNet notation there is a distinction between exclusive and
deferred choice, which we both translate to the ×-operator in our process trees.
In a similar way the two types of loop known in the CoSeNet notation (one
with a deferred choice and one with an exclusive choice to redo the loop) are
both translated to our 	-operator. Furthermore, the CoSeNet notation allows
for sharing of subtrees, which is not directly supported in our situation since
we need to attach information to each node on how it relates to the event log.
Since each subtree, even though they are identical, is positioned in a different
part of the process tree, the related behavior is different and therefore these
identical subtrees need to be modeled multiple times. Therefore we duplicate
shared parts during the translation.

An example of a CoSeNet and the corresponding process tree is shown in
Figure 3.13.

→

i∧

×

∨

jf

e

c

h∨

cb

a

Figure 3.13: Example CoSeNet from [161] and the corresponding Process Tree transla-
tion.

3.6 Conclusion 73

3.6 Conclusion

In this chapter we provided solutions to two of the challenges introduced in
Section 1.3. Challenge 1, guaranteeing sound process models, is solved by
the introduction of process trees. Additionally, this chapter also presented an
overview of more requirements for process modeling languages, specifically for
the use in process discovery. Existing process modeling notations were evalu-
ated using these requirements. This showed that most notations only fulfill a
few requirements. The most important observation is that most process models
used for process discovery allow for unsound constructs in the model. Pro-
cess trees, as defined in this chapter, adhere to most of the requirements dis-
cussed. Challenge 2 discussed the separation between visualization and repre-
sentational bias. Translations from process trees to the different existing process
modeling notations ensure that a suitable visualization can be created. We also
showed that translating the intended behavior of a process model to a process
tree is always possible. In the next chapters we introduce our process discovery
algorithm which uses the process tree notation to discover process models.

Chapter 4

A Framework for Evolutionary
Process Mining

As discussed in Section 1.3, in process discovery it is important to balance the
quality of the discovered process models. In Section 1.3.9 is is argued why
evolutionary algorithms are suitable, since they are capable of producing results
while aiming for one or more quality dimensions. Therefore, in this chapter we
introduce our evolutionary process mining framework called the ‘Evolutionary
Tree Miner’, or ETM for short. First, we describe the overall structure and basic
elements of our framework in Section 4.1. We then describe use-cases where
this framework can be applied in Section 4.2. Section 4.3 then discusses general
requirements an implementation of this framework should adhere to. We then
discuss common approaches to the implementation of the different elements of
the framework in Section 4.4. Section 4.5 concludes this chapter.

4.1 The ETM Framework

A structured approach for solving a particular class of problems is not always
known. In these situations evolutionary algorithms [77] can be applied. Evo-
lutionary algorithms are a subclass of random search algorithms, that create,
evaluate and change candidate solutions. These algorithms are inspired by the
natural evolution of species. The benefit of evolutionary algorithms is that no
structured approach for solving a problem needs to be provided. The most im-

76 A Framework for Evolutionary Process Mining

portant part of an evolutionary algorithm is how it should evaluate candidate
solutions. Other aspects to be specified are the representation of candidate so-
lutions, and the definition of change operations on them. By applying some
form of selection, only the better candidate solutions survive to evolve further
in later generations. This can result in new and unexpected results, that can be
significantly superior to what would have been discovered using a structured
approach [102,107].

The basic flow of an evolutionary algorithm is shown in Figure 4.1. An
evolutionary algorithm in general evolves a population of solution candidates
over different generations. Using one or more evaluation metrics, the quality
of each candidate is calculated. By smartly selecting and changing candidates
the quality of candidates can be improved. The ETM framework follows these
generic evolutionary steps and uses process trees (see Chapter 3) as the internal
representation. Another distinguishing factor of the ETM framework is that
evaluation is always done using the four quality dimensions used in process
discovery (see Figure 1.2). This ensures that the process information as stored
in the event log is closely considered during discovery. Furthermore, the ETM
framework allows to use other information sources during discovery.

Technically speaking the ETM framework can be considered an implemen-
tation of a genetic programming algorithm. Genetic programming algorithms
distinguish themselves by the fact that they often use tree(-like) structures to
represent candidates in the population. Moreover, they evolve a solution or de-
scription of a problem, instead of the optimal parameters for another algorithm
to solve the problem. Since the ETM framework evolves process trees, it could
be classified as a genetic programming algorithm. However, we refer to the ETM
framework as an evolutionary algorithm for sake of simplicity and generality.

Stop?Select

Change

EvaluateCreate

Figure 4.1: The basic framework for evolutionary process discovery.

4.2 Applications of the Evolutionary Framework 77

In the first step of the ETM framework an initial population of candidate
solutions is created. Different techniques exist to construct random tree struc-
tures [129] (see Section 6.1.1).

In the next step each of the candidate solutions in the population is evalu-

ated. Each of them is assigned a quality value, resulting in a sorted population
of candidate solutions. In general all four process model quality dimensions are
used. But additional quality dimensions can be considered.

Next, the ETM framework evaluates if it should terminate. Different stop
criteria can be applied here. Common examples are termination after a fixed
number of generations, when the quality of the best candidate reached a certain
minimum value, or when the quality of the best candidate does not significantly
improve any more.

If none of the active stop criteria are satisfied, the ETM framework continues.
First the best candidates in the population are copied to a collection called the
elite. The candidates in the elite are not (to be) changed to ensure that the qual-
ity of the best candidate(s) does not decrease during the run of the evolutionary
algorithm. Next, candidates are selected from the population. Common selec-
tion techniques are tournament selection and roulette-wheel selection [77] (see
also Section 4.4.2). Using these selection techniques, candidates with higher
quality scores are preferred for selection.

The selected candidates are then changed or evolved using different opera-
tions. The main change operators are the crossover and mutation operations.
However, the option to replace a candidate with a new candidate can also be
seen as a(n) (extreme implementation of a) change operation. The crossover
change operation represents the biological breeding process. Crossover takes
two candidates as parents and swaps parts between them to create offspring.
Mutation is also inspired by biology and introduces smaller changes in candi-
dates. Through mutation new genetic material is inserted. Without mutation,
parts of the search space may be unreachable.

In the next step the elite candidates are again added to the population with
the changed candidates, thus forming the population of the next generation.
This population is then again evaluated and the algorithm continues this process
until at least one of the termination conditions is satisfied.

4.2 Applications of the Evolutionary Framework

The ETM framework is applicable in many process mining scenarios. In this
section we describe some scenarios where the ETM framework can be applied.

78 A Framework for Evolutionary Process Mining

In later chapters we discuss and implement some of these scenarios. It should
be noted that of course many other scenarios can be thought of.

4.2.1 Process Discovery

EL ETMd PT

Figure 4.2: Process discovery scenario.

Process discovery is the most well-known process mining task [5]. Although
many process discovery algorithms exist, many challenges remain. The ETMd

algorithm is an implementation of the ETM framework that is able to discover
a process model from an event log, while addressing some of these challenges.

The input is an event log (EL) and the ETMd algorithm produces a process
tree (PT), see Figure 4.2. Evaluation is done by verifying how well the discov-
ered process tree describes the behavior in the event log, using the four common
quality dimensions in process discovery: replay fitness, precision, generalization
and simplicity. By changing the weights of the different quality dimensions the
resulting process model can be influenced. This is only possible because of the
flexibility offered by the ETM framework. The ETMd algorithm provides a solu-
tion for Challenge 3 discussed in Section 1.3.4: balance the quality of discovered
process models.

As a result of the quality evaluation, next to the discovered process tree
diagnostic information is also provided. This diagnostic information describes
how the behavior in the event log relates to the discovered process model. It
can indicate how often certain parts are used or where the event log deviates
from the process model. By providing this information the understandability of
the result is increased since it indicates how good or bad the process model de-
scribes the behavior, in each of the quality dimensions. This is exactly Challenge
4 as discussed in Section 1.3.5.

The process discovery scenario is described in more detail in Chapter 5,
which discusses the quality evaluation, and in Chapter 6, which implements the
ETMd algorithm based on the ETM framework. In Chapter 7 we apply the ETMd

algorithm on artificial and real data.

4.2 Applications of the Evolutionary Framework 79

4.2.2 Process Model Repair

EL + PT ETMr PT

Figure 4.3: Process model repair scenario.

Process discovery is able to discover a process model from the observed be-
havior as recorded in the event log. However, within organizations there often
already is a process model that describes how the process should be executed.
Such a model is often called a reference process model, which typically de-
scribes an idealistic view of the process. As soon as this process is implemented
and executed, the operational process starts deviating from this process model
description.

The ETMd algorithm can be extended to consider this documented process
model during process discovery. The resulting ETMr algorithm, shown in Fig-
ure 4.3, aims to discover a process model that is more similar to the reference
process model. Another way to view this is that the reference model is repaired,
using the observed behavior. Key here is that the resulting process model is
similar enough to the original reference model.

The ‘similarity’ quality dimension provides control over how much the pro-
cess model is allowed to be changed from the input model(s). Similarity is thus
used as an additional quality dimension during the evaluation phase. The out-
put of this scenario is a process model that is similar to the original input process
model, while some changes are applied to improve the other quality dimensions
used to evaluate the process model. By reducing the importance of similarity,
more changes can be made to the process model, which will then better reflect
the observed behavior.

In this scenario the documented process model, which contains external in-
formation, is used during process discovery. This addresses Challenge 5 (see
Section 1.3.6). This scenario is described in more detail in Chapter 8 which
presents the ETMr algorithm.

4.2.3 Process Discovery of a Configurable Model

Different organizations or units within a larger organization may need to exe-
cute similar business processes. Municipalities for instance all provide similar

80 A Framework for Evolutionary Process Mining

EL

1

. . . EL

n

ETMc PT

C

c1

cn

Figure 4.4: Scenario of the discovery of a configurable process model and its configura-
tions.

services while being bound by government regulations. Within the CoSeLoG
project we investigate the similarity of business processes between different mu-
nicipalities (see Section 1.4). However, not only municipalities execute similar
business processes. Large car rental companies like Hertz, Avis and Sixt have
offices in different cities and airports all over the globe, but often there are sub-
tle (and sometimes also striking) differences between the processes followed by
these offices, even though they belong to the same car rental company. To be
able to share development efforts, analyze differences, and learn best practices
across organizations, we need configurable process models that are able to de-
scribe families of process variants rather than one specific process [93,94,154].

The ETMc algorithm is able to discover such a configurable process model
by taking multiple event logs as input, as shown in Figure 4.4. Configurations
are added to the basic process tree notation, describing which behavior is not
allowed for a particular configuration. The ETMc algorithm then evolves a pro-
cess tree, together with its configurations. Evaluation is done using the resulting
process model, after the configurations for the individual input event logs have
been applied. These evaluations per event log are then aggregated to an over-
all quality score. Also, the quality of the configurations itself is considered, for
instance by counting the number of configuration points. This scenario is de-
scribed in more detail in Chapter 9 which presents the ETMc algorithm in more
detail.

The result is one process tree with a configuration for each of the input
event logs. Additionally, diagnostic information is provided that shows how the
behavior of an event log relates to the configured process model. The ETMc

algorithm thus addresses Challenge 6 which is the challenge of describing a
family of processes.

4.2 Applications of the Evolutionary Framework 81

EL ETMcontext PT

C

c1

cn

+ EL

1

. . . EL

n

Figure 4.5: Scenario of the discovery of a configurable process model, its configurations
and the context of the log splitting.

4.2.4 Configuration Discovery using Context

In the previous scenario multiple event logs were the input of the ETM frame-
work. Each of the input event logs described a particular context of the process:
a different organization or unit within an organization. However, the execution
of a process might also differ because of other reasons. Different case charac-
teristics might for instance influence the flow of a case through the process.

In this scenario the ETMcontext algorithm not only discovers configurations,
but also the conditions when to apply these, as shown in Figure 4.5. These
conditions are context dependent, for instance using case properties such as
case type or customer history. This provides insights into the different classes of
cases and how they are handled. Another example of a possible context is the
employee who performs a particular activity during the execution of the case.

The result of this scenario is a process tree with diagnostic information, plus
different distinguishing contextual characteristics and their corresponding pro-
cess model configurations to describe the different behaviors. Therefore, this
scenario can be seen as another way to approach Challenge 6 by observing that
within one process many process variants are executed. This scenario is dis-
cussed and implemented in [141], but is not discussed further in this thesis.

4.2.5 Concept Drift

Concept drift is the phenomenon where the way a process is executed changes
over time [40, 42]. This can be caused by the process model being altered or
by a system update. Where the previous two scenarios identified the organiza-
tion or case characteristics as the distinguishing factor, in this scenario time is
considered as the distinguishing case factor.

The difficulty in this scenario is that there are different types of concept
drift [40, 42]. Sudden drift indicates that one process model is changed to an-

82 A Framework for Evolutionary Process Mining

EL ETMdrift PT

C

c1 + t1

cn + tn

Figure 4.6: Scenario of the discovery of a configurable process model, its configurations
and the time information of the log splitting.

other process model at a particular point in time. All cases, both new and
currently running, now follow the new process model. Gradual drift is the sit-
uation where a process model is changed but only newly arriving cases follow
this new process model. Cases that are already running keep following the orig-
inal process model. In the case of recurring drift different process model vari-
ants re-occur and alternate with each other, for instance because of seasonal
influences. Incremental drift is the concept drift type where there is a series of
gradual changes from one model to another.

Sudden drift is the easiest type to detect since it involves splitting the event
log on a certain point in time. All events executed after that point in time follow
the new process model, which makes the relation between observed events and
which process model is followed clear. With gradual drift only new cases as of a
certain point in time should follow the new process model. This makes it harder
to detect at which point in time the drift took place, but splitting the event log
once this point in time is known is easy. Recurring and incremental drift are
usually sudden and have multiple change points.

In this scenario the input is a single event log. The ETMdrift algorithm, as
shown in Figure 4.6, tries to detect points in time where the process changed,
and then discovers a process model configuration for each of these time peri-
ods. Therefore, the end result is a process model with configurations, each with
a point in time as of which it should be applied. This can be seen as a solu-
tion to Challenge 6 because different process versions can also be considered a
family of processes. Of course, also in this scenario diagnostic information is
provided that shows how the observed behavior relates to the process model
and its configurations.

The difficulty with correctly implementing the ETMdrift algorithm using the
ETM framework is the detection of the different types of drift. Of course, ex-
isting techniques can be used to estimate the point in time where the process
changed [40, 42]. Additionally, the change point and drift type need to be ap-

4.2 Applications of the Evolutionary Framework 83

plied to the input event log.

4.2.6 Decision Mining

EL ETMdec PT +Rules

Figure 4.7: Decision mining scenario.

In this scenario the ETMdec algorithm, shown in Figure 4.7, not only consid-
ers the control flow but also the data flow of the process. Using a given event
log, and possibly a process model, the data conditions for the choices in the
process are discovered. This means that using data attributes of both the case
and the current activity, the conditions for the choice to be made are discov-
ered [156].

Existing evolutionary decision mining techniques can be applied [36]. Evo-
lutionary decision-tree mining has several advantages over structured top-down
recursive approaches. The main benefits are the ability to discover more com-
plex conditions and prevent partitioning of the data set into too small data sets
for attribute selection.

The outcome of this scenario is a process model with conditions that indi-
cate, based on data attributes, which choice in the control flow is made for each
of the points of choice in the process model.

4.2.7 Other Perspectives

In this section we mention several other scenarios that are possible, but which
are not discussed in detail.

Stream Mining

Sometimes the amount of event data provided is too much to store and process
off-line. In this case a full event log cannot be maintained because of the vast
amounts of data. Therefore, only an event stream, with current event data, is
available. This is known as stream mining in the data mining field [85], and
has already been applied to process mining in [55].

84 A Framework for Evolutionary Process Mining

Since the evolutionary framework can work using existing process models,
i.e. the ‘repair’ scenario, applying the framework not on a static event log but
on a stream of event data should be possible. Based on the incoming event
stream, changes are made to the process models currently in the population.
The sensitivity of the model, indicated by the amount of changes allowed within
a certain time frame, can be adjusted. This allows the ETM framework to show
a very recent and volatile version of the process model or the more long term
behavior of the process.

In this scenario the output is a process model that changes over time as the
event stream describes more or different behavior. Again, diagnostic informa-
tion about the behavior of the process is recorded, although on a higher level
than for event logs because of the amount of data. Also, the diagnostic infor-
mation might only cover a certain time period.

One of the key characteristics of stream mining is that the stream of data is
so large that it cannot be stored. A challenge in this scenario therefore is the
characteristic of evolutionary algorithms that they tend to be slower than con-
ventional algorithms. At the same time, the ETM framework is able to improve
on a process model using new data, and therefore can use the currently known
process model.

Enrich Process Model with Simulation Properties

In the event log a lot of information is available that can be used to create or
enrich simulation models [158]. Using simulation models the effects of process
changes can be simulated and forecasted. However, there is not always enough
information available to make the simulation model as rich as desired. For
instance, resource availability and other contextual information are typically
not recorded in the event log. Filling in the missing information is not easy and
assuming incorrect resource behavior can have drastic effects on the simulation
results.

By using the information in the event log, the ETM framework is able to
estimate these parameter settings. Then, by running ‘mini simulations’ these
parameter settings can be compared with the actual values in the event log.
This results in a process model with rich simulation properties. Of course, care
should be taken when using these simulation models. Therefore, the quality
of the simulation models should be thoroughly assessed not only by the ETM
framework but also by the end-user.

Since the evaluation of candidates relies on running ‘mini simulations’, the
performance of the ETM framework in this scenario heavily depends on the time

4.3 General Requirements for Evolutionary Algorithms 85

required to run and analyze these mini simulations.

Social Teams Discovery

Besides control-flow and data-flow aspects, the social aspects of processes [19,
150] can also be considered by the ETM framework. For instance by evaluat-
ing how social teams can be formed between resources. Using the information
stored in the event log, relationships between (groups of) resources can be dis-
covered. By using the discovered process model, more information about the
social aspect of the process can be derived.

Additional quality metrics can be used for evaluating how the teams of re-
sources should be formed. Examples of such metrics are (to minimize) the num-
ber of handovers between teams, and set requirements on the team sizes [150].
This results in a suggestion on how to group the resources used in the process
in teams, based on these different metrics.

4.2.8 Combinations of Scenarios

All the scenarios mentioned in this section can be combined to form new sce-
narios. For instance the ‘Process Model Repair’ and ‘Process Discovery of a Con-
figurable Process Model’ scenarios can be combined. The resulting scenario is
about repairing an existing configurable process model. Another variant of the
same combination of scenarios is the discovery of a configurable process model
where the configured process models are similar to the individual process mod-
els currently known within the organization.

Many other combinations and extensions of the scenarios mentioned in this
section can be made. This illustrates that the proposed framework is very gen-
eral. Later chapters will provide concrete examples for selected scenarios.

4.3 General Requirements for Evolutionary Algo-

rithms

Several general and key requirements should be adhered to for evolutionary
algorithms to perform well. Each step of the evolutionary algorithm should
consider these requirements in order for the whole algorithm to work. In this
section we address some of the most important requirements for, and threats

86 A Framework for Evolutionary Process Mining

to, the ETM framework. There are however many more aspects to consider that
are general to any type of evolutionary algorithm [35,77].

4.3.1 Population Diversity

From a high-level perspective an evolutionary algorithm should balance two
key aspects of search: exploration and exploitation [77]. The exploration aspect
is visiting new untested regions of the search space. Exploitation is when the
search concentrates on the vicinity of known good solutions to further optimize
candidates. There is a clear trade-off between these two aspects. If too much
time is spent in exploration the search is inefficient. On the other hand, if too
much time is spent in the exploitation phase, the search might get stuck in a
suboptimal set of process models. This is called premature convergence [77]
where population diversity is lost too quickly which causes the search to get
trapped in a local optimum.

Evolutionary algorithms also suffer from what is known as anytime behav-

ior [77]. The overall quality of the best candidate often rapidly increases in early
generations. However, after some time the best quality score only marginally
improves. This means that the search can be stopped at any time and the al-
gorithm will have a solution, albeit suboptimal. It also means that running an
evolutionary algorithm for very long is often not worth the amount of time and
effort spent considering the marginal increase in quality. Furthermore, it in-
dicates that spending much effort in optimizing the initial population is often
not worth the effort since the evolutionary algorithm very quickly finds good
candidates.

To combat both premature convergence and anytime behavior, it is impor-
tant that the population is both diverse and not too diverse. In order to cor-
rectly balance the trade-off between exploration and exploitation, the popula-
tion should be very diverse in the initial generations. To prevent premature con-
vergence the population should stay sufficiently diverse after the initial genera-
tions. At the same time, the evolutionary algorithm should be able to perform
exploitation which requires more similar candidates to exist in the population
to allow for small optimizations (i.e., local search).

4.3.2 Ability to Visit the Whole Search Space

As with all search algorithms, an evolutionary algorithm should be able to visit
the whole search space as described by the representation chosen. Having a

4.3 General Requirements for Evolutionary Algorithms 87

diverse population alone is not enough. The evolutionary algorithm should also
be able to cover the whole search space, given enough time [35, 77]. For ini-
tial candidate creation this means that the whole search space should in theory
be covered by running the initial creation algorithms indefinitely. Crossover
and mutation together should cover the whole search space starting from any
initial population. Crossover usually causes bigger jumps in the search space
than mutation since it makes bigger changes to the model. Mutation should
allow for a more fine-grained change of the candidate. This means that enough
randomness should be introduced when creating and changing candidates. An
evolutionary algorithm without randomness, so with only smart or guided cre-
ation and change operators, is unable to discover novel solutions to the problem.
Therefore randomness is an important factor in evolutionary algorithms.

4.3.3 Prevention of Bloat

A common problem in genetic programming algorithms is that the size of the
trees in the population grows over time (this is also known as “Survival of the
fattest”) [35, 77]. Bloat is mainly caused by the introduction of introns [35],
which are pieces present in the candidate that have no effect on the quality of
an individual. Although introns do not directly contribute to the quality of an
individual, introns do increase the likelihood that descendants of the individual
have a better quality. However, introns do not contribute to the direct quality of
an individual and therefore should not be present any more in the final results
of the evolutionary algorithm. Different methods exist to prevent bloat, one
of the easiest methods is preferring smaller solutions over bigger ones in the
evaluation criteria.

4.3.4 Requirements for the Evaluation of Candidates

Evaluation of candidates is an important aspect of any evolutionary algorithm.
Several metrics can be created to indicate the quality of a candidate. Since there
are multiple quality dimensions in process discovery, multiple metrics are com-
bined in the ETM framework. However, there are some important requirements
that each metric should follow.

Efficient Implementation For analysis purposes the quality of a process model
in relation to an event log is in general only evaluated once and on re-
quest. For some metrics the easiest way of calculation often is also the
most time-consuming one. The answer should be provided in a timely

88 A Framework for Evolutionary Process Mining

manner when an analysis is requested. However, evolutionary algorithms,
such as the ETM framework, evaluate many different candidate solutions.
Therefore, the performance of an evolutionary algorithm mainly depends
on the time required by the metrics to evaluate the candidates [105,110].
Approximation of the quality may greatly improve the performance of al-
gorithms depending on the metric. Of course the quality of the approx-
imation should be good enough and not introduce an undesirable bias
towards particular suboptimal solutions.

Intuitive Results Another important requirement for metrics is that the results
are intuitive [105]. This can be achieved by making the quality metrics
continuous: small improvements should result in small value changes and
big improvements in big value changes [35]. Why the quality according
to the metric is better or worse, and by ‘how much’, should also follow the
philosophy of the quality dimension [35,155].

Additionally, the metric should be repeatable and return the same result
every time the metric is calculated on the same input [155]. If results are
different between different calculations on the same input, the results are
not reliable enough.

Finally, the evaluation criteria should not contain loopholes. Since evolu-
tionary algorithms are excellent at optimizing candidate solutions for the
given evaluation criteria, chances are that the algorithm finds and abuses
special cases that are not considered by the metric. Although the qual-
ity dimension seems improved by abusing these loopholes, intuitively the
quality dimension did not improve. Therefore it is important that qual-
ity metrics contain no loopholes that can be abused by the evolutionary
algorithm.

Clear Specification The specification of the metric, i.e., the way it is calcu-
lated, should also be clear. If the specification cannot be understood,
verifying why a certain process model has a certain value assigned to it
can not be done. Furthermore, the metrics should require as few param-
eters as possible since unknown parameter values make interpreting the
results difficult. Moreover, in certain situations, parameters can change
the resulting value of a metric dramatically. This makes a metric unclear
and less authoritative. The metric should be robust to different situations
without requiring parameters.

Orthogonal Different metrics should be orthogonal to each other, in order to be
used in combination. If two metrics both punish or reward the same aspect

4.4 Common Implementations of the Phases of an Evolutionary Algorithm 89

of a process model then that aspect is likely to be over-emphasized. This
should be expressed by aiming for a good score for a single metric that
considers this aspect. If two metrics overlap, the results become unclear
and one of the metrics is redundant. Furthermore, each metric should
only cover a single quality dimension for the same reason.

An exception to this rule is incorporating additional specific preferences
as stated by the end-user. Examples are preventing the use of loop con-
structs or controlling the repetition of activities. Those preferences are
rarely independent of functional requirements of the process model. They
should however be incorporated if the end-user desires it.

4.4 Common Implementations of the Phases of an

Evolutionary Algorithm

In this section we discuss several common implementations for the different
phases of the ETM framework: candidate evaluation, selection, change and ter-

mination.

4.4.1 Candidate Evaluation

Evaluation of candidates is an important aspect of evolutionary algorithms since
it defines what improvement means. The evaluation function determines what
the result of an evolutionary algorithm is. Since the evaluation heavily depends
on the internal representation used and on the problem that is to be solved by
the evolutionary algorithm, no standard evaluation implementation exist.

A common phenomenon in candidate evaluation however is the combina-
tion of several evaluation functions to consider different aspects of the candi-
dates [60]. This is commonly known as multi-objective optimization. Since a
single evaluation value has to be provided for the evolutionary algorithm, these
different values have to be combined into a single value. The most used ap-
proach to do this is by taking the weighted average of the different values. This
provides the freedom to assign different weights to different evaluation func-
tions. However, this method has several drawbacks:

1. Determining the correct weights for the different quality dimensions up-
front is difficult. Several characteristics of the event log have an effect on
the value for the different quality dimensions. It is however impossible to
estimate beforehand what those effects are.

90 A Framework for Evolutionary Process Mining

2. Values need to be normalized for comparison: for the weighted average
the values are usually normalized. However, dimensions can still respond
differently to changes. Furthermore, a normalized value often provides
less information than an absolute value and interpretation may be diffi-
cult.

3. Only one solution is provided: only the candidate with the best weighted
average is presented. However, no insights into the different trade-offs
among the dimensions are provided.

The so-called Pareto front is often used as an alternative to the weighted
average [43, 60, 171] since it is a model that supports reasoning about multi-
objective optimization trade-offs. The general idea of a Pareto front is that all
members are mutually non-dominating. A member dominates another member
if for all quality dimensions it is at least equal to or better, and for one di-
mension strictly better, than the dominated member. Since all members in the
Pareto front are mutually non-dominating (none of them dominates another
member) they represent different trade-offs in the quality dimensions, sacri-
ficing one quality dimension to improve another. This concept was originally
proposed by Vilfredo Pareto to explain economic trade-offs [146].

An example of a Pareto front in two dimensions is shown in Figure 4.8. Each
dot in the graph represents a process model with a certain replay fitness and
precision value. For each dimension a bigger value indicates a better candidate,
i.e., the goal is to obtain a process model in the top right corner of the chart.
However, often there is no single model that is able to score perfectly on all
quality dimensions. The unfilled dots in the lower middle area of Figure 4.8
are non-optimal process models, i.e., one of the dimensions can be improved
without reducing the quality in (any of) the other dimension(s). The closed
black dots represent the current estimation of the Pareto front. For these process
models there is currently no model known where one dimension has a better
score without a reduction of the quality in the other dimension. The bigger dots
show the nine most diverse process models in the current front, which can be
used to truncate the Pareto front by keeping only one representative for a group
of similar process models. The ideal or real Pareto front, as indicated by the
curved line, shows that some improvements can still be made by continuing the
evolutionary search. Of course in practice the ideal Pareto front is unknown.

The ETM framework as shown in Figure 4.1 can be extended with a Pareto
front cache that maintains the current Pareto front during the different genera-
tions of the ETM framework. At the end of each generation the current evolved
and evaluated population is added to the Pareto front. All candidates in the

4.4 Common Implementations of the Phases of an Evolutionary Algorithm 91

Pareto front that are dominated by other candidates in the front are then re-
moved from the Pareto front. At the beginning of the next iteration a fixed
number of candidates is selected from the Pareto front, since the front can grow
larger than the desired population size. When the ETM framework terminates,
the whole Pareto front of process models is returned, instead of only a single
process model. This way the user can be involved in the final process model
selection.

4.4.2 Selection

During the selection phase candidates are selected from the current population
for further evolution. However, to prevent a reduction in the quality of the best
candidate, a group of elite candidates is created first. Usually a fixed number
of best candidates is cloned from the current population into the elite group of
candidates. After the change phase, these elite candidates are added back to
the population.

Replay Fitness

P

r

e

c

i

s

i

o

n (Partly Unknown)

Pareto Front

Non-Optimal

Process Models

Truncated

Members

b c d

e f g

a

b c d fa g

b

c

d f

a g

e

Figure 4.8: Pareto Front of the two quality dimensions replay fitness and precision. The
hollow dots are non-optimal process models, the small black dots are discov-
ered process models representing the current Pareto front and the big black
dots are the 9 most diverse among the currently known process models.

92 A Framework for Evolutionary Process Mining

The remaining part of the new population is created by changing candidates
that are selected from the current population. These selected candidates are
changed in the next phase of the evolutionary algorithm, to improve the quality
of the candidates. Determining which candidates are selected for further evo-
lution should be a balance between the exploration and exploitation aspects of
search (see Section 4.3.1): if population diversity is lost too quickly the algo-
rithm might be trapped in a local optimum. However, if too much diversity is
maintained, the algorithm is not able to perform small optimizations to fine-
tune the candidates.

Several selection strategies exist, most of which consider the quality assigned
to a candidate to maintain population diversity. The most common and well-
known selection strategies are [77,100]:

Fitness Proportional Selection randomly selects a candidate from the popula-
tion with a probability proportional to the quality value of the candidate
as compared to the quality values of the rest of the population.

Sigma Scaling Selection is an extension of the fitness proportional selection
strategy and uses information about the mean and standard deviation of
the quality of the whole population to be more likely to select candidates
with a relatively high fitness.

Ranking Selection first sorts candidates on quality, and then randomly selects
a candidate where a candidate with a high rank is more likely to be se-
lected. In this strategy the absolute difference between the quality values
has no influence on the likelihood of selection.

Roulette Wheel Selection is a method that tries to select candidates in such
a way that the selected sample has the same characteristics as the whole
population. This is achieved by assigning candidates a chance of selection
proportional to the quality of the candidate. A way to visualize this is
by assigning candidates slices of a roulette wheel proportional to their
quality. Roulette wheel selection then spins the roulette wheel as many
times as the number of candidates that need to be selected.

Stochastic Universal Sampling assigns each candidate a chance of selection
proportional to their quality, like roulette wheel selection does. However,
stochastic universal sampling randomly chooses a point on the roulette
wheel to start from, and then advances equally sized steps around the
roulette wheel to select the number of candidates required. This ensures
equal spread of the candidates selected without any bias [34].

4.4 Common Implementations of the Phases of an Evolutionary Algorithm 93

Tournament Selection does not use information about the entire population,
as the previous strategies do. Instead, tournament selection randomly
selects a specified number of candidates and then only returns the one
with the best quality. This process is repeated until the desired number of
candidates is selected.

In case a Pareto front is discovered an overall quality value needs to be as-
signed to a candidate that expresses the quality of that candidate considering
the Pareto front. This is necessary to select the best candidates from the Pareto
front which serve as input of the new generation. Different approaches ex-
ist [61, 188] to assign such an overall quality value to candidates in a Pareto
front. The general idea of all approaches is the same: unique candidates should
have a higher chance of selection. Looking at the example Pareto front as shown
in Figure 4.8, the process models at the extremes of both quality dimensions
have a high chance of being selected. Also the thicker black dots have a higher
chance since they are on the edge of a group of similar process models. This
makes sure that the population that is selected from the Pareto front is diverse,
which increases the chance of discovering a new good candidate. The quality
value calculated for each candidate in the Pareto front is then used as input for
the selection strategies discussed.

4.4.3 Change Operations

Evaluating and selecting candidates alone is not sufficient for evolutionary pro-
cesses. The candidates also need to be created and changed, so that new can-
didates can be found and evaluated. Three types of change operators exist:
candidate replacement by new candidates, candidate crossover and candidate
mutation.

Together, the change operations of an evolutionary algorithm need to ensure
that the whole search space can be covered. This means that by combining
several executions of the different change operations, every candidate should
be possible to create.

Candidate Creation and Replacement

One of the change operations that can be applied is selecting certain (particu-
larly bad) candidates to be replaced by newly created candidates. Candidates
can be created using the same techniques that are used at the start of the evo-
lutionary algorithm to form an initial population of candidates.

94 A Framework for Evolutionary Process Mining

Candidates can be created randomly or by using heuristics to aim at a higher
quality. The key aspect here is that the created candidate does not need to have
a good, or even reasonable, quality, since the quality will be improved during
coming generations. Adding variability to the population is more important
than creating initially good quality candidates.

Crossover

A commonly used operator in evolutionary algorithms is the crossover oper-
ation. This operator is inspired by the mating process of species. Generally
speaking a crossover operator takes two candidate solutions and exchanges in-
formation from the two parents into the two offspring candidates. The choice
of which information to exchange, and the way the information is inserted into
the offspring candidates, varies between implementations.

The main idea behind crossover is that good but different parts of two can-
didates are combined into offspring. This approach works well in the real world
for breeders of plants and livestock to produce species that have higher yields
or other desirable features [77]. Within evolutionary algorithms the offspring
created by random combination might not always result in offspring that has
better quality than their parents. However, if the offspring is better than its par-
ents, it often is significantly better. Unlike nature however, crossover is generally
applied probabilistically.

Mutation

The mutation change operation takes a single candidate solution and creates a
(slightly) modified child of it. The most common types of change applied are the
addition, removal and modification of parts of the candidate solution. Although
this change is usually applied randomly, some mutation operators might incor-
porate heuristics to mutate the candidate in a more targeted fashion. Important
for this operator type however is that there should be enough randomness in-
volved, in order to keep diversity of the population sufficiently high.

4.4.4 Termination

Unlike evolution in nature, an evolutionary algorithm has to terminate at some
point. However, since an optimal solution is unlikely to be found, termination
criteria need to be used. The most commonly used termination conditions are:

4.5 Conclusion 95

Quality Threshold terminates when the best, or average, quality has reached
a certain threshold.

Number of Generation Threshold terminates when a predetermined number
of generations has been executed.

Elapsed Time terminates when a predetermined amount of time has passed.

Quality Stagnation terminates when the best or average quality does not change
significantly for a number of generations.

User Cancelation terminates the evolutionary algorithm when the user manu-
ally cancels the execution.

An interesting feature of an evolutionary algorithm is that it can always
return the best solution found so far. This means that intermediate results can
be inspected and used.

4.5 Conclusion

In order to balance the different quality dimensions during process discovery, a
flexible process discovery algorithm is required. Therefore this chapter presents
the evolutionary process mining framework called the ‘Evolutionary Tree Miner’,
or ETM for short. The general phases of the ETM framework demonstrate the
flexibility of the framework. The applicability of the ETM framework is shown
by several scenarios discussed in Section 4.2.

Next, we discussed important requirements for an evolutionary algorithm.
Population diversity is an important requirement that should be balanced to
allow for the discovery of the optimal solution. Furthermore, the evolutionary
algorithm should be able to visit the whole search space to be able to find the
optimal solution. We also discussed several requirements for the evaluation of
candidates.

Finally, we discussed common implementations of and approaches to the dif-
ferent phases of the ETM framework. One of these approaches was the construc-
tion of a Pareto front to keep the individual quality metrics separate. Moreover,
it allows for multiple candidate solutions to be returned, each with different
trade-offs.

In the next chapter we discuss several quality dimensions and quality metrics
that can be used for process discovery. This is followed by Chapter 6 where we

96 A Framework for Evolutionary Process Mining

present the ETMd algorithm which is the primary implementation of the ETM
framework.

Chapter 5

Process Model Quality
Dimensions

As discussed in Challenge 3, the four different process model quality dimen-
sions should be considered during process discovery. Furthermore, for discov-
ered process models, how well they describe the event log should be indicated
using the same quality dimensions. In the previous chapter we presented a flex-
ible evolutionary process discovery framework that is able to incorporate these
quality dimensions during discovery. The way process model candidates are
evaluated in the evolutionary algorithm determines which process models sur-
vive and are returned by the algorithm. Therefore, the four quality dimensions
need to be well understood before they can be measured.

In Section 5.1 we first discuss the four well-known quality dimensions for
process discovery. Section 5.2 provides a more theoretical view on the quality
of a process model, taking not only the event log, but also an omnipresent but
unknown system into consideration. This is followed by a discussion of sev-
eral ways to measure each of the four quality metrics in Section 5.3 through
Section 5.6. Section 5.7 discusses why all four quality dimensions are neces-
sary. Section 5.8 discusses some of the considerations taken into account in the
quality metric selection. Section 5.9 discusses the possibility to add quality di-
mensions. Section 5.10 summarizes related work and Section 5.11 concludes
this chapter.

98 Process Model Quality Dimensions

5.1 The Four Process Discovery Quality Dimensions

Given an event log, several process models can be presented that describe the
behavior as recorded in that event log. Figure 5.1 shows the four quality di-
mensions that are typically considered when evaluating these process discovery
results [5, 8, 10]. The dimension of replay fitness quantifies the fraction of the
event log supported by the process model. Precision quantifies how much of the
behavior described by the process model is not observed in the event log. The
dimension of generalization quantifies the likelihood of previously unseen but
allowed behavior being supported by the process model. Finally, simplicity eval-
uates the complexity of the process model, where simpler models are preferred
over more complex ones, as per Occam’s Razor [5].

The quality dimension of simplicity is evaluated without explicit use of the
event log. The three quality dimensions of replay fitness, precision and gen-
eralization use the behavior recorded in the event log to evaluate the process
model. In this chapter we first reconsider the notion of quality of a process min-
ing result, by explicitly assuming the notion of a “system” outside the process
model. In previous work the system was not explicitly considered when de-
termining the quality of a process mining result [5,10,21,27,58,89,155,157].
Nevertheless, the notion of a system is often implicitly assumed when discussing
quality issues. A system can be a concrete information system implementation
but usually refers to the context of the process, e.g., the organization, rules,
economy, etc. This system may allow people involved in the operational process
to deviate from the intended behavior of the information system, sometimes for

replay fitness

precisiongeneralization

simplicity
“able to replay event log” “Occam’s razor”

“not overfitting the log” “not underfitting the log”

process

discovery

Figure 5.1: The four quality dimensions for process models in process discovery
(from [5]).

5.2 Theoretical View 99

2

Event

Log (L)

3

4

Process

Model (M)

5

6

System (S)

7

1

Figure 5.2: Venn diagram showing that the behavior of the process model (M), event log
(L) and system (S) can be disjoint or overlapping.

good reasons. We show that explicitly considering the presence of such a sys-
tem leads to new insights into the role of existing quality dimensions in process
mining.

5.2 Theoretical View

In Figure 5.2, we explicitly depict the behavior of a process model, the behavior
observed in the event log and the behavior allowed by an observed system.
As shown, the behavior included in these three entities can partially overlap. In
practice there are many forms in which behavior can be described, such as traces
[8] (see Section 2.3 and Section 3.2), behavioral profiles [179], α-relations [20]
or one of the many process modeling notations (see Section 2.2). In the case
of process trees for instance the language of the root of the process tree (i.e.,
L (r)) can be used. However, for the discussion that follows, we abstract from
the way the behavior is exactly described. The only assumption we make is that
the ‘amount of behavior allowed’ can be counted. Especially in cases of loops,
which theoretically allow for infinite behavior, an estimation on the size of the
behavior is assumed to be available.

100 Process Model Quality Dimensions

5.2.1 Relating the Behavior of the Event Log, the Process
Model and the System

The Venn diagram shown in Figure 5.2 shows seven areas. We can intuitively
describe the behavior contained in each area as follows:

1. Modeled and observed system behavior (L ∩M ∩S). The central black
area in the Venn diagram contains all behavior of the system that is also
observed in the event log and is possible according to the process model.

2. Not modeled but observed exceptions ((L \ M) \ S). All the observed
behavior that is actually non-system behavior is considered an exception.
The exceptions that are not supported by the process model are contained
in this area.

3. Modeled and observed exceptions ((L ∩M) \ S). Modeled and observed
exceptions are those exceptions observed in the event log that are de-
scribed by the process model.

4. Modeled but unobserved and non-system behavior ((M \ S) \ L). This
contains all the behavior described by the process model which is non-
system behavior and is also not found in the event log.

5. Modeled but unobserved system behavior ((M ∩S) \ L). The behavior
described by the process model that is the system’s behavior but is not
seen in the event log.

6. Not modeled and unobserved system behavior ((S \ L) \ M). All the
system behavior that is neither observed in the event log nor modeled by
the process model.

7. Not modeled but observed system behavior ((S ∩L) \ M). The system
behavior that is observed in the event log but not described by the process
model.

It is important to realize that there is generally no way to explicitly describe
the behavior of the system, first of all since this behavior is typically infinite (e.g.
due to loops), but more so because there is always the possibility of unforeseen
behavior in any real-world system. In fact, systems tend to change over time.
Nonetheless, the traditional goal of process mining is to find a process model

that describes the system as accurately as possible, using nothing more than the

observed behavior in the log. In the remainder of this section, we assume that

5.2 Theoretical View 101

the behavior of the system is known. In Section 5.2.2 we discuss how to deal
with the fact that the behavior of the system is generally not known.

By relating the behavior allowed by the process model to that recorded in
the event log, we can distinguish two metrics commonly used in information
retrieval. The precision between the process model and the event log expresses
the amount of behavior that can be produced by the process model but is not
seen in the event log. This can be expressed as1:

Model-log precision= |L∩M |
|M | (5.1)

The recall between the model and the event log quantifies the behavior of
the event log that can be produced by the process model compared to all the
observed behavior in the event log:

Model-log recall= |L∩M |
|L| (5.2)

Precision and recall between the process model and the event log follow the
common notions of precision and recall in information retrieval. However, in
process mining the problem setting is a bit different. In information retrieval,
instances should be classified correctly in a large set of instances. In process
mining however, we have instances of observed behavior, as recorded in the
event log, that the process model should describe. This event log is created
by, or obtained from, a system. So the behavior observed in the event log can
also be related to the (actual) behavior of the system. This can be expressed by
precision between the event log and the system:

Log-system precision= |L∩S|
|L| (5.3)

This expresses the fraction of the observed behavior in the event log that is
included in the system.

The amount of overlap between the observed behavior recorded in the event
log and the behavior of the system can be expressed as follows:

Log-system recall= |L∩S|
|S| (5.4)

1Note that we assumed that the ‘amount of behavior’ can be counted.

102 Process Model Quality Dimensions

This expresses the fraction of the behavior of the system that is seen in the
event log, with respect to all the behavior of the system.

The behavior allowed by the process model can also be compared to the
behavior of the system. Again, precision can be calculated, but now for the
process model with respect to the system. This is expressed as:

Model-system precision= |S ∩M |
|M | (5.5)

This fraction thus expresses the fraction of behavior that is allowed by the
process model but is not part of the behavior of the system.

Finally, recall between the model and the system expresses the fraction of
the behavior expressed by the process model that is also the behavior of the
system:

Model-system recall= |S ∩M |
|S| (5.6)

If all these six fractions are equal to one then the three circles of the Venn
diagram of Figure 5.2 coincide. This means that the event log exactly captured
the behavior allowed by the system, and the process model exactly describes
the event log and thus the system. If all fractions are zero then the three circles
are disjoint. This means that the event log contains only behavior that is not
allowed by the system and the process model describes behavior that is neither
present in the event log nor allowed by the system.

In process mining, we start from a given event log L which comes from a
given system S, i.e., L and S are constant. If we assume that S is known then
we could simply use a genetic algorithm to discover a process model M which
maximizes all of the fractions. However, the behavior of the system is unknown,
but can, to some extent, be estimated from L.

5.2.2 Dealing with an Unknown System

When considering the notion of a system, we rephrase the goal of process min-
ing to: discover a process model M from a given log L taken from an unknown but

constant system S, such that M maximizes all fractions listed in Section 5.2.
Table 5.1 shows a summary of the different precision and recall metrics that

can be calculated on the Venn diagram of Figure 5.2. The table also relates the
four quality dimensions shown in Figure 5.1 to these metrics.

5.2 Theoretical View 103

Table 5.1: Overview of the different fractions and quality dimensions.

Equation Description

- Simplicity (see Section 5.3)

5.1 Model-log precision = |L∩M |
|M | Precision (see Section 5.5).

5.2 Model-log recall = |L∩M |
|L| Replay Fitness (see Sec-

tion 5.4).

5.3 Log-system precision = |L∩S|
|L| Observed non-exceptional be-

havior. This fraction is not con-
sidered here because it does not
depend on the process model.

5.4 Log-system recall = |L∩S|
|S| Log completeness. This fraction

is not considered here because
it does not depend on the pro-
cess model.

5.5 Model-system precision = |S∩M |
|M | Modeled system behavior. Un-

der the assumption that replay
fitness, precision and general-
ization are considered, this frac-
tion is irrelevant.

5.6 Model-system recall = |S∩M |
|S| Generalization (see Sec-

tion 5.6).

The notion of model-log precision directly relates to the quality dimension of
precision and model-log recall relates to the quality dimension of replay fitness.
Furthermore, if L and S are fixed, then the log-system precision and recall are
constant, i.e., these fractions become irrelevant for process discovery. In fact,
most work on process mining [5,27,96,180] uses the notion of noise to describe
exceptional behavior, i.e., behavior observed in the log, but that is not part of the
system (the noise level corresponds to 1−log-system precision). Furthermore, a
certain level of completeness is often assumed which refers to the completeness
of the log with respect to the system, i.e., log-system recall.

Things become more complex when we consider model-system precision
and model-system recall under the assumption that the system is unknown.
Basically, these metrics cannot be computed or estimated without further as-
sumptions. Typically, process discovery algorithms use a hidden assumption
that the process model they discovered from the event log does not include be-

104 Process Model Quality Dimensions

havior outside of the system, i.e., they assume that M ⊆ S, hence model-system
precision is one. This leaves the model-system recall to be estimated.

Finally, model-system recall represents the fraction of the system which is
covered by the model, i.e., if this recall is high, any behavior of the system can be
explained with the model, regardless of whether this is observed or unobserved
behavior. Under the assumption that M ⊆ S, this is what is traditionally referred
to as generalization [5,10].

Based on the discussion in this section, in the remainder of this chapter
we discuss the four well-known process discovery quality dimensions of replay
fitness, precision, generalization and simplicity in more detail. However, we
can now relate the three quality dimensions of replay fitness, precision and
generalization to the more theoretical view discussed in this section.

Throughout the remainder of this chapter we use the running example of
Figure 5.3 to further explain the meaning of these quality dimensions. We use
the event log as shown in Figure 5.3b to illustrate the quality dimensions. For
completeness, the process model that generated this event log is shown in Fig-
ure 5.3a. Please note that the process model in this case represents the (usually
unknown) system.

In the remainder of this chapter L is represented by an event log, and M by
a process model as the description of the behavior.

→

	

gfe

∧

d→

cb

a

(a) (Unknown) system that generated the
event log, represented by a process tree.

Event Log #

a b c d e g 80
a b d c e f e g 5
a d b c e g 15

(b) Generated event log.

Figure 5.3: Running example used to explain the quality dimensions in process discovery.

5.3 Simplicity 105

5.3 Simplicity

The quality dimension of simplicity quantifies the simplicity of the process model
and therefore is the only quality dimension that is not necessarily related to the
behavior of the process model or event log. Simplicity of the process model is
defined by two aspects. The first aspect is related to Occam‘s Razor which states
that “one should not increase, beyond what is necessary, the number of entities
required to explain anything”. Since the other three quality dimension already
evaluate “what is necessary” in the process model, simplicity mainly focusses
on reducing the size of the process model. This aspect therefore also helps to
prevent bloat (see Section 4.3.3).

The second aspect that can be considered in the simplicity dimension is the
simplicity of the process model as perceived by a user. However, this aspect is
hard to capture and measure, since this is related to the understandability of
the process model. Many factors influence the understandability of a process
model [152], one of which is the visualization of the process model [119]. The
main reason process models are perceived to be complex however is the size
of the process model [133]. Other factors are the layout of the process model
and the use of certain control flow constructs. As discussed in Section 3.5, the
process tree notation used in this thesis can be visualized using many process
model notations. Furthermore, since process trees are block-structured, the
graph-based process model translations are also structured and hence have an
increased understandability. However, during discovery of a process model the
representation chosen to present it to the user is unknown. Therefore this can
not be incorporated in the simplicity metric. One could however restrict the
use of certain constructs, such as ∨ or 	-operators, to improve the simplicity, or
understandability, of the discovered process model.

Unlike the other quality dimensions, multiple simplicity metrics can be com-
bined to express the simplicity of a process model.

5.3.1 Simplicity by Ratio of Useless Nodes

Although often ignored, one of the easiest ways to reduce the size of a process
model is to remove elements that do not add or limit behavior. These useless
nodes can be removed without changing the behavior of the process model,
while reducing its size. A simple example is a τ node in a sequence, which can
be removed without changing the behavior of the process model. Additionally,
in the case of evolutionary algorithms, this also helps with the prevention of
bloat (ref. Section 4.3.3). The reasoning behind this metric is that an activity

106 Process Model Quality Dimensions

is added to the process model only if this is beneficial for the other quality
dimensions.

We therefore define simplicity as follows:

Qs = 1− #useless nodes

#nodes
, (5.7)

where a node in a process tree is useless if at least one of the following
conditions hold:

1. The node is a τ node in a sequence or parallel construct;

2. The node is an operator node with only one child;

3. The node is an operator node that has only useless nodes as children;

4. The node is a τ node and is not the first τ node in an exclusive or non-
exclusive choice;

5. The node is a loop consisting of only one other loop function and two τ

children;

6. The node is a τ node of a parent for which condition 5 holds;

7. The node is of the same type as its parent (unless the node is an 	-
operator or if the process tree is configurable (see Chapter 9)).

Figure 5.4 shows a process tree with examples of useless nodes, as indicated by
the gray circles. This process tree contains 6 useless nodes, out of 19 nodes in
total, hence the simplicity is:

Qs = 1− 6

19
= 1−0.3158 = 0.6842. (5.8)

Useless nodes can help candidate solutions to improve in later generations.
However, the goal is to prevent or reduce the number of useless nodes in the
end result.

The useless nodes metric obeys all metric requirements as stated in Sec-
tion 4.3.4. Deciding whether a node is useless or not is a simple evaluation,
which can be performed quickly.

5.3 Simplicity 107

5.3.2 Other Simplicity Metrics

Different simplicity metrics exist that take the size of the process model into con-
sideration. Even more simplicity metrics can be derived from the observations
in [133].

Simplicity by size

One of the simplest ways of quantifying the size of a process model is by just
counting the number of nodes in the process tree. This can be normalized to
return a value between zero and one, by dividing 1 by the size of the process
model. However, one could argue that the size of a process model should be
relative to the number of activities in the process. The benefit of this simple
simplicity metric is that it adheres to all quality metric requirements.

Simplicity by activity occurrence

Another way to evaluate the size of the process tree is to consider the activities
present in the event log. If each activity is represented exactly once in the pro-
cess tree, that process tree is considered to be as simple as possible. Therefore,
simplicity is calculated as follows:

Qs = 1− #duplicate activities+#missing activities

#nodes in process tree+#event classes in event log
(5.9)

Duplication of activities is measured by counting the number of times the ac-
tivity is repeated in the process model. An activity is missing from the process

→

	

ττ	

gfe

∧

×

τdτ

→

cb

a→

τ#1

#2 & #3 & #7

#4

#5

#6

Figure 5.4: Process tree with several useless nodes (marked with gray) and the reason
why they are useless (indicated by the callouts).

108 Process Model Quality Dimensions

model if it is not included in the process model while it is present in the event
log. These numbers are summed up and normalized by the total number of
nodes in the process tree and event classes (or activities) in the event log.

This simplicity metric adheres to all requirements except the orthogonality
requirement. By forcing each activity to be in the process model exactly once,
the other three quality dimensions are influenced. On some occasions it could be
beneficial for the other quality metrics to either exclude or duplicate an activity
to increase their quality dimension.

5.4 Replay Fitness

Replay fitness quantifies the extent to which the behavior of the event log can be
replayed in the process model. Replay fitness therefore evaluates the following
fraction:

Model-log recall= |L∩M |
|L| (5.2 repeated)

The meaning of this quality dimension can be best explained with a simple
example, as shown in Figure 5.5. The process model only allows for the sequen-
tial execution of activities ❛, ❜, ❝, ❞, ❡ and ❣. Although this is exactly the first
trace of the event log of Figure 5.3b, the other two traces do not fit this model.
Several techniques exist to detect and evaluate these mismatches between the
event log and the process model.

5.4.1 Alignment-based Replay Fitness

The main challenge for replay fitness metrics is how to relate the observed
events in traces to nodes in the process model. Especially in situations where the
process model and the trace are in disagreement, it is crucial how this is evalu-
ated by the replay fitness metric. The most robust, flexible, and state-of-the-art

→

gedcba

Figure 5.5: Process model without perfect replay fitness.

5.4 Replay Fitness 109

metric for replay fitness is based on searching for these optimal alignments be-
tween traces of an event log and a process model [10,21,22,24]. Basically, this
technique aligns as many events as possible from the trace with activities in an
execution of the model (this results in a so-called alignment).

The goal is to find the optimal alignment that minimizes the total cost. Each
time the trace and the process model are ‘out of sync’, i.e., only a move on either
the log or model is made, the cost of the alignment increases. This approach
allows us to define different costs per activity and move type. By default devi-
ations from the trace have higher cost than deviations from the process model
since in general the traces are trusted more than the process model. The default
cost when only a move on the model is made is 2 and when only a move on the
trace is performed the cost is 5.

The alignments for the traces of Figure 5.3 on the example process model of
Figure 5.5 are shown in Table 5.2. An alignment aligns the events of the trace
(the top row in each alignment in Table 5.2) with the (enabled) activities in the
process model (the bottom row in the alignment). The alignment between the
trace 〈a,b,c,d ,e, g 〉 and the process model is shown in Table 5.2a. The alignment
is perfect in the sense that each event in the trace can be matched with an
enabled activity in the process model. Moreover, when the trace is finished,
so is the process model. When an event in the trace can be matched with the
execution of an enabled activity in the process model this is called a synchronous

move.
The trace 〈a,d ,b,c,e, g 〉 however cannot be perfectly replayed in the process

model. The alignment of Table 5.2b shows that event ❞ cannot be replayed
correctly since it occurs too early in the trace. This is indicated in the alignments
by moving forward on the trace with ❞, while the process model does not move,
as is indicated by the ≫-symbol. When this happens this is called a move on

log only. However, later when the process model can and must execute ❞, the
trace cannot. In this case in the alignment the trace does not make a move as is
indicated by the ≫-symbol for the trace. Since only the process model makes a
move, this is called a move on model only. The alignment contains one move on
log only and one move on model only, and therefore the cost of the alignment
is 5+2 = 7.

The alignment for the trace 〈a,b,d ,c,e, f ,e, g 〉 on the process model is shown
in Table 5.2c. In total four deviations are recorded, where the first two are
deviations of activity ❞ in a similar way as in the previous alignment. The trace
however also contains activity ❢ which is not included in the process model,
causing a move on log only. Additionally, the trace contains activity ❡ twice
which also causes one move on log only. The alignment contains three move on

110 Process Model Quality Dimensions

Table 5.2: Optimal alignments of the three traces of Figure 5.3b on the process model of
Figure 5.5.

Trace a b c d e g
Model a b c d e g

(a) Alignment between the trace
〈a,b,c,d ,e, g 〉 (which occurs 80

times) and the process model,
where the alignment cost is 0.

Trace a d b c ≫ e g
Model a ≫ b c d e g

(b) Alignment between the trace 〈a,d ,b,c,e, g 〉
(which occurs 5 times) and the process
model, where the alignment cost is 5+2 = 7.

Trace a b d c ≫ e f e g
Model a b ≫ c d e ≫ ≫ g

(c) Alignment between the trace 〈a,b,d ,c,e, f ,e, g 〉 (which occurs
15 times) and the process model, where the alignment cost is
3×5+2 = 17.

log only and one move on model only, resulting in an overall cost of 3×5+2 = 17.
Given optimal alignments between the traces in an event log and the process

model, the final replay fitness score is calculated as follows:

Qrf = 1−
∑

traces cost for aligning model and trace× trace frequency

Cost to align log on model with no synchronous moves
(5.10)

where the denominator is the upper bound of the alignment cost for the optimal
alignment. This is used to normalize the replay fitness to a value between 0 and
1.

It is important to note that the frequency of identical traces matter, hence
frequently occurring traces have a bigger impact on the replay fitness than in-
frequent traces. Furthermore, calculating the cost to align a trace on a model
without synchronous moves is trivial. These costs can be obtained by taking the
length of the trace and the shortest run through the model. Obtaining the opti-
mal alignment between a trace and the model however is the computationally
expensive part.

Using the alignments shown in Table 5.2 we can calculate the replay fitness
of the event log of Table 5.2 on the process model shown in Figure 5.5. The
costs for each alignment are known and shown in Table 5.2. The ‘cost to align
log on model with no synchronous moves’ consists of two parts. First the move
on log only cost for all traces in the event log is calculated. The first trace occurs
80 times and contains 6 events, hence the move on log only costs are 80×6×5 =

5.4 Replay Fitness 111

2,400. In a similar way the cost for the other two traces can be calculated.
The cost for an execution of the process model without any synchronous moves
can be calculated by finding the cost for the shortest path through the process
model, and multiplying that with the number of traces in the event log. Since
the event log contains 100 traces and the process model only allows for one
execution sequence, which consists of executing six activities, these costs are
100×6×2 = 1,200. Filling in Equation 5.10 with these values gives:

Qrf = 1− 80×0+5× (5+2)+15× (3∗5+2)

(80×6×5+5×8×5+15×6×5)+100×6×2

= 1− 0+35+255

(2,400+150+600)+1,200
= 1− 290

4,350
= 1−0.0667 = 0.9333

(5.11)

For the alignments as shown in Table 5.2, the resulting replay fitness therefore
is 0.93.

Unfortunately, computing alignments is a complex task that violates the first
requirement of efficient implementation. However, currently it is the most ro-
bust way of relating a process model with an event log. Moreover, the next two
quality metrics use the information provided by the alignments without requir-
ing additional complex computations. Using alignments, process models can
also be more effectively repaired since an alignment indicates where a process
model needs to be fixed (see Section 6.3).

Alignment based replay fitness provides intuitive results, since it directly
uses the mismatches between event and activity execution, the notion of an
alignment is easy to understand, and the way the final score is calculated can
be clearly specified.

Selecting the best alignment between the traces and the process model is
done by only considering the quality dimension of replay fitness. However, the
choice of alignment directly influences the quality dimensions of precision and
generalization, since they base their calculations on the alignments.

5.4.2 Other Replay Fitness Metrics

Replay fitness is the quality dimension that has attracted the most attention
from researchers in the process mining field. In this section we discuss other
replay fitness metrics that could be used. For a more complete overview of
replay fitness metrics we refer to [21,155].

112 Process Model Quality Dimensions

Token-Based Replay

Token-based replay [155,157] takes the traces of an event log and replays them
on a process model. The result of this approach applied on a Petri net version
of the process model of Figure 5.5 results in the process model as shown in Fig-
ure 5.6. Since activity ❞ was executed twenty times in the event log, before it
actually could, twenty tokens are missing in the place before activity ❞. How-
ever, twenty tokens are also remaining since activity ❞ is not executed after ❝

occurs.
Although this approach indicates where problems exist in the process model,

there are some disadvantages. The addition of missing tokens may allow for
extra behavior that could not have been performed in the original Petri net. Es-
pecially in cases where deviations occur frequently, some places in the Petri net
may be flooded, making the results less reliable. There are also issues with silent
transitions and duplication of tasks. More important however is the assumption
that the event log is always right. Unlike the alignment approach, events cannot
be skipped in the token-based replay and only errors in the process model are
considered. This results in the assumption that L ⊆ S, which is often not correct.

Replay with Artificial Negative Events

This approach applies the same idea as token-based replay, but now includes
negative events [89, 177]. In this approach negative events represent activities
that could not have happend in the event log at specific locations in the trace.
The approach also replays traces individually, and uses local heuristics to decide
whether activities are enabled. This results in a computational complexity that
is linear in the length of the traces. However, negative events are not provided
in the event log and thus need to be derived. Since the real system is not
known, only the event log can be used for this. The current approach introduces
negative events to traces based on the other traces in the log. It is not known
however whether the introduced negative events are really negative events, i.e.,
really capture behavior that is indeed not possible according to the system. This
results in the assumption that L = S, i.e., that the event log demonstrates all

a b c
+20

-20
d -5 e g

Figure 5.6: Example of a token-based replay result using the event log of Figure 5.3b
and a Petri net version of the process model of Figure 5.5.

5.5 Precision 113

possible behavior and does not contain outliers.

Comparing Event Streams with Model Streams

An approach that compares event streams, i.e., traces, with process models to
measure their similarity is proposed in [58] . Much like alignments, the similar-
ity between the streams is measured by the fraction of insertions and deletions
required to match the trace to a model stream. Several techniques are applied
to avoid the well-known state-space explosion problem and reduce the overall
complexity of the approach. However, none of these techniques guarantee that
the result is the same as the one obtained without these techniques enabled.
Moreover, the computational complexity is worse than that of alignments, while
the results are the same at best. For a more detailed discussion of the differences
between this approach and the alignment based replay fitness we refer to [21].

5.5 Precision

Precision indicates how much additional behavior the process model allows that
is not seen in the event log. Precision therefore evaluates the following fraction:

Model-log precision= |L∩M |
|M | (5.1 repeated)

The problem with precision is that the behavior of the process model is po-
tentially infinite in case of loops. Therefore estimates of the size of the allowed
behavior of the process model need to be made.

The process model shown in Figure 5.7 is not very precise given the three
observed traces. The process model allows for the execution of activities ❜, ❝
and ❞ in parallel. This allows for for six different traces to be produced (〈b,c,d〉,
〈b,d ,c〉, 〈c,b,d〉, 〈c,d ,b〉, 〈d ,b,c〉 and 〈d ,c,b〉). Furthermore, ❡, ❢ and ❣ are
children of a 	-construct, resulting in an infinite number of possible traces to
be produced. The event log however only contains three different traces. Hence,
the process model is not very precise.

However, enumerating all possible traces of the process model is not feasi-
ble for larger process models, especially when they have many parallel activ-
ities. Moreover, in case of loops, the allowed behavior is infinite. Therefore
estimations of the allowed behavior of a process model need to be made.

114 Process Model Quality Dimensions

5.5.1 Escaping Edges

By using the alignments calculated for the replay fitness dimension, and the
state space constructed during these calculations, precision can be measured.
An example is shown in Figure 5.8.

The state space shown in Figure 5.8 is constructed during the calculation of
the alignments, where we only consider the process model behavior and thus
ignore events skipped in the event log. The state space is not complete with
respect to all allowed behavior of the process model. However, it does give
insights into which parts of the state space have been used. [138] discusses
how precision can be estimated by considering the escaping edges in a state
space constructed during the calculations of alignments. Each escaping edge
represents a decision in the process model that was possible but never made
in the event log. If there are no escaping edges, precision is considered to be
perfect.

Using the state space constructed by the alignment calculation, we calculate
the precision as follows:

Qp = 1−
∑

visited markings #visits× (#outgoing edges−#used edges by replay)
∑

visited markings #visits×#outgoing edges

(5.12)

→

	

gfe

∧

dcb

a

Figure 5.7: Example pro-
cess model to
explain preci-
sion

100x

85x 5x

80x

15x

a c
b c d e

g

f

d
c e

f

g

e g

f

d b c e

f

g

c

Figure 5.8: Partial state space as constructed during
alignment calculation. Arrows with a dash in-
dicate escaping edges.

5.5 Precision 115

For the example of Figure 5.8 this results in the following calculation:

Qp =1−

100× (1−1)+100× (3−2)+85× (2−2)+5× (1−1)+5× (1−1)+5× (2−1)
+5× (1−1)+5× (2−1)+80× (1−1)+80× (1−1)+80× (2−1)
+15× (2−1)+15× (1−1)+15× (1−1)+15× (1−1)+15× (2−1)

100×1+100×3+85×2+5×1+5×1+5×2+5×1+5×2
+80×1+80×1+80×2+15×2+15×1+15×1+15×2

= 1− 0+100+0+0+0+5+0+5+0+0+80+15+0+0+0+15

100+300+170+5+5+10+5+10+80+80+160+30+15+15+30

= 1− 220

1,015
= 1−0.2167 = 0.7832

(5.13)

For the example of Figure 5.8 the precision is 0.78.
The requirements for evaluation metrics are all satisfied. This metric is effi-

cient, since it reuses information from the alignment metric without significant
overhead. Results of this metric are also intuitive and the specification is clear
since the metric uses the notion of escaping edges, which relates to unused be-
havior. Finally, this metric is also orthogonal to the other quality dimensions.
Although we reuse information obtained by the alignment metric, we measure
only the precision dimension.

5.5.2 Other Precision Metrics

Other precision metrics exist, although not as many as for the replay fitness
quality dimension. In this section we discuss two other metrics: advanced be-
havioral appropriateness and the behavioral specificity metric.

Advanced Behavioral Appropriateness

The advanced behavioral appropriateness metric is an improvement of the ‘ba-
sic’ behavioral appropriateness metric, both of which are presented in [157].
The advanced behavioral appropriateness metric compares pairwise relations
between activities in the event log to the pairwise relations of activities in the
process model. However, the computation of all these pairwise relations is ex-
pensive and therefore not feasible in practice. In [27] a different precision
metric is proposed that utilizes the total number of enabled activities in all vis-
ited states of the process model during replay, using token-based replay. Since
missing tokens might be added when necessary for replay, this metric shows
misleading results for non-perfectly fitting traces: the Petri net is flooded, so
tokens enable an unreasonable number of transitions.

116 Process Model Quality Dimensions

Behavioral Specificity

The behavioral specificity metric uses artificial negative events to measure pre-
cision. It therefore uses the approach as discussed in Section 5.4.2 and [89].
This metric reduces the precision score of a process model whenever negative
events were enabled while replaying the positive events in the event log on the
process model. The main limitation of this approach is the assumption that the
event log is a complete observation of all allowed behavior of the system, i.e.,
L = S.

5.6 Generalization

Generalization estimates how well the process model describes the behavior of
the (unknown) system, and not only the event log with the observed system
behavior. Recall that generalization corresponds to the following fraction:

Model-system recall= |S ∩M |
|S| (5.6 revisited)

→

ge×

→

cbd

→

×

→

dc

→

cd

b

a

100x

100x 100x

85x

85x

85x

5x

5x5x 80x 80x

15x15x

80x

15x

15x

100x 100x

Figure 5.9: Example process model which is not general.

5.6 Generalization 117

Figure 5.9 shows another process model that can be used to explain the
observed behavior of the event log in Figure 5.3b. Although this process model
describes the observed behavior correctly and precisely, it is not as generic as
it should be. It is therefore likely that the process model does not give insights
into the behavior of the system, but instead only describes the observed example
behavior of the event log.

However, since the behavior of the system is not known, the generalization
of a process model needs to be evaluated using derived metrics.

5.6.1 Frequency of Use

If all parts of the process model are frequently used, the process model is likely
to be generic. However, if some parts of the process model are rarely used,
chances are high that the system actually allows for more behavior, and that the
process model is describing certain behavior in an overly precise and specific
way. Therefore we base the generalization metric on how often nodes of the
process tree have been visited while replaying the event log. For this we use the
alignment provided by the replay fitness algorithm. The more a node is visited,
the more certain we are about the statistics obtained via replay, i.e., if the node
explains the observed behavior well of not. If some parts of the tree are visited
very infrequently, generalization is poor. Therefore, generalization is calculated
as follows:

Qg = 1−
∑

nodes(
p

#executions)−1

#nodes in model
(5.14)

The square root of the number of executions is taken because the effect of hav-
ing 10 executions instead of 1 is considered a more significant improvement
than going from 10 to 100 executions. From each of these values the power of
−1 is taken to normalize it to a value between 0 and 1. Then these values are
summed and divided by the total number of nodes in the tree to get the average
for the whole tree. Please note that, unlike the proposed metrics for simplicity,
replay fitness and precision, this metric can only reach the value of 1 in the limit
(because the fraction can never be 0).

However, this equation has one major disadvantage: it contains a loophole
that is used by the ETM framework to (artificially) increase this metric. The
ETM framework introduces a lot of silent steps and useless loops to increase the
number of nodes that are executed. Therefore, we incorporate the notion of

118 Process Model Quality Dimensions

useless nodes from Section 5.3.1 into this metric as follows:

Qg = 1−
∑

non-useless nodes(
p

#executions)−1

#nodes in model
(5.15)

That way, even if simplicity is evaluated using a different metric, only nodes that
actually contribute to the process model are evaluated by the ETM framework
to determine generalization.

In the example process model of Figure 5.9 the number of times each tran-
sition has been executed in the process model is indicated. When using these
frequencies to fill in Equation 5.15 this results in a generalization of:

Qg = 1−

p
100

−1 +
p

100
−1 +

p
100

−1 +
p

85
−1 +

p
85

−1 +
p

85
−1

+
p

5
−1 +

p
5
−1 +

p
5
−1 +

p
80

−1 +
p

80
−1 +

p
80

−1

+
p

15
−1 +

p
15

−1 +
p

15
−1 +

p
15

−1 +
p

100
−1 +

p
100

−1

18

= 1− 3×0.1+3×0.1085+3×0.4472+3×0.1118+4×0.2582+2×0.1

18

= 1− 3.5352

18
= 1−0.1964 = 0.80

(5.16)

Most of the requirements for evaluation metrics are satisfied for the gener-
alization metric of frequency of use. This metric is very efficient, since it reuses
information from the alignment metric without significant overhead. Results of
this metric are also intuitive and the specification is clear. Finally, this metric is
not fully orthogonal to other quality dimensions, since it incorporates the no-
tion of useless nodes from the corresponding simplicity metric. This is however
necessary to prevent this metric from only functioning in combination with this
particular simplicity metric.

5.6.2 Other Generalization Metrics

Not many metrics for generalization currently exist, although it can be eas-
ily shown that this dimension is crucial for evaluating the quality of a process
model, since replay fitness and precision alone are not enough.

Change of a New Observation

One of a few generalization metrics is presented in [10] which uses an estima-
tor from statistics [39] that estimates the chance of a new observation, using

5.6 Generalization 119

the total number of observations and the number of unique observations. The
reasoning is that if each observation was a unique one, the chance that the next
observation will be unique is high. However, if there were many observations
of only a few unique ones, chances are small that a next observation will be
unique. By applying this to state visits, so by calculating the probability that a
next visit to a state will reveal a path not seen before, generalization can be es-
timated. However, this approach does not work for parallelism, since each trace
might be a unique sequence of activities, while the process model is actually
general. The same idea could be applied to the process tree itself, by evaluating
in how many different ways an operator behaved. In this case the problem lies
in the fact that parallel behavior should be abstracted from, to prevent the same
problem as for the state space. At the same time, if only few actual sequences
are observed, an ∧ or ∨-operator is generalizing too much.

Advanced Behavioral Appropriateness

The advanced behavioral appropriateness metric of [157] also includes gener-
alization, since it compares the behavior of the process model and the event
log in both directions. However, here generalization is seen as the inverse of
precision, i.e., if a model is less precise it automatically becomes more general.
The concept of an unknown system is not incorporated in this metric.

Behavioral Recall and Causal Footprint

Other approaches such as behavioral recall [27] and the causal footprint met-
ric [68, 69] are able to quantify how general a given model is by using a ref-
erence model that serves as the system. However, the original model is not
known in the setting of process discovery, and these techniques are therefore
not applicable to our setting.

K-fold Cross Validation

A common way in data mining to evaluate how good a classification algorithm
is, is to use a so-called holdout method, e.g. k-fold cross validation [137]. The
data set is split in k parts and k-1 parts are used for training the algorithm, while
the kth part is used for evaluating the performance of the algorithm. General-
ization however is not about evaluating the performance (or generalization) of
the algorithm, but of the discovered process model with respect to the system.

120 Process Model Quality Dimensions

5.7 The Importance of Considering all Four Qual-

ity Dimensions

Although most process discovery algorithms only consider one or two quality
dimensions, all four should always be considered. The process models used to
explain each of the quality dimensions are repeated in Figure 5.10.

The process model used to explain simplicity is shown in Figure 5.10a. This
process tree can replay all traces, is very precise and general but is not as sim-
ple as it could be. The process tree of Figure 5.10b is very precise, general
and simple, but scores bad on replay fitness. Since replay fitness provides the
relation between the process model and the event log, a low score on replay fit-
ness means that the process model is not really related to the observed behavior.
Therefore, the quality dimensions of precision, generalization and simplicity are
hard to interpret when replay fitness is low.

The other two process models also score well in three out of the four quality
dimensions, but score badly in the remaining quality dimension. The overall
best process model is the process model of Figure 5.3: it is the simplest process
model that is able to replay all behavior, does not allow for additional behavior
and describes the process in a general way.

Figure 5.10 illustrates that all four quality dimensions need to be considered,
and that they are orthogonal to each other. However, the quality dimension
of replay fitness is the most important, since a low replay fitness means that
the process model has little relation to the observed behavior. Unfortunately
none of the current process discovery algorithms incorporates all four quality
dimensions.

5.8 Quality Metric Considerations

In this chapter we proposed a metric for each of the four quality dimensions
such that the ETM framework can incorporate each dimension in the evaluation
of candidates. The four quality dimensions are proposed in previous literature,
mainly [5], and their correctness and completeness have been shown by the
discussion based on the Venn diagram of Figure 5.2.

Defining or choosing the metrics used to evaluate a quality dimension is not
straightforward and multiple options exist for each quality dimension. In this
chapter we have proposed metrics for the quality dimensions for use within
the ETM framework. However, different metrics might be more suitable for

5.8 Quality Metric Considerations 121

different situations.
For evaluating replay fitness for instance one could also count the fraction

of traces can be fully replayed in the process model. In certain scenarios this
might be a better metric than the more detailed alignment calculations. This is

→

	

ττ	

gfe

∧

×

τdτ

→

cb

a→

τ

(a) Process tree that scores good on re-
play fitness, precision and general-
ization but not on simplicity (from
Figure 5.4).

→

gedcba

(b) Process tree that scores good on pre-
cision, generalization and simplicity
but not on replay fitness (from Fig-
ure 5.5).

→

	

gfe

∧

dcb

a

(c) Process tree that scores good on re-
play fitness, generalization and sim-
plicity but not on precision (from
Figure 5.7).

→

ge×

→

cbd

→

×

→

dc

→

cd

b

a

(d) Process tree that scores good on re-
play fitness, precision and simplicity
but not on generalization (from Fig-
ure 5.9).

Figure 5.10: Four process models that each score well on three of the four quality di-
mensions, but none of them are sufficiently describing the system.

122 Process Model Quality Dimensions

also true for metrics for the other quality dimensions. However, it is important
to also consider the chosen metrics together, since they should work well to-
gether. Therefore, the choice of the four quality metrics used in the remainder
of this thesis is a delicate one. And, as is shown in Section 5.7, together these
four quality metrics cover the four quality dimensions and all four metrics are
required.

We do not claim however that these four quality metrics are always the
best or only choice. Therefore the ETM framework is flexible in which specific
metrics are used during the evaluation. We show in the remainder of this thesis,
especially in Section 6.8 and Chapter 7, that the chosen combination of the four
quality metrics works well in practice.

5.9 Additional Quality Dimensions

Although we showed that the four quality dimensions presented here are the
minimal quality dimensions to consider, additional quality dimensions can be
considered. As discussed in the scenarios in Section 4.2, other aspects can be
considered during process discovery. Consider for instance the similarity to a
given process model, or the quality of the configurations present in the discov-
ered configurable process model. Additional quality dimensions can be used to
evaluate other aspects of the process model such as the data or resource per-
spectives. There is no upper limit to the number of quality dimensions that
can be used, but the four quality dimensions discussed in this chapter form a
minimal set of quality dimensions to consider. It is important however that the
requirements as discussed in Section 4.3.4 are taken into consideration when
implementing additional quality dimensions.

5.10 Related Work

Process model quality is expressed by using the four quality dimensions of replay

fitness, precision, generalization and simplicity [5,8,10]. For each of these quality
dimensions several implementations exist.

The most robust metric for replay fitness to date is presented in [10,21,22]
where alignments are calculated between traces of the event log and executions
of the process model This approach finds an alignment with the lowest cost,
where deviations are assigned costs. Many other metrics for replay fitness ex-
ist such as token-based replay [155, 157], artificial negative events [89, 177]

5.11 Conclusion 123

and comparing event streams with model streams [58]. For a more complete
overview of different replay fitness metrics we refer to [21,155].

Precision quantifies the fraction of unseen behavior modeled by the pro-
cess model. However, loops in the process model can generate possibly infinite
behavior, complicating the computation of this quality dimension. A solution is
proposed in [138] where the state space as constructed during the calculation of
the alignments for replay fitness is used. The notion of unused or escaping edges
quantifies the number of unobserved branches in the state space. Other preci-
sion metrics based on token based replay [27, 157] and negative events [89]
are suggested, which suffer from the same issues as the metrics they are based
upon.

The quality dimension of generalization is the most difficult quality dimen-
sion to asses. A metric from statistics is applied in [10] to evaluate the diversity
of a population. However, issues arise in the case of parallelism. In [157] a gen-
eralization metric is proposed but assumed to be the inverse of precision, which
we argue it is not. Additional generalization metrics are proposed in [27,68,69]
that require a given process model to represent the system. However, we argue
that the system is usually unknown and generalization should be calculated
without concrete knowledge of the system.

The fourth quality dimension of simplicity is a quality dimension that is not
directly related to the observed behavior. In [133] different simplicity (or com-
plexity) metrics, and their relation to errors in process models, are extensively
discussed. The main observation is that size is the most important measure for
simplicity.

5.11 Conclusion

In this chapter we positioned the four well-known quality dimensions of sim-
plicity, replay fitness, precision and generalization. By explicitly considering the
(unknown) system we provided insights into the interplay between the behavior
of the system, the observed behavior in the event log and the possible behavior
of the process model. Additionally we explained each quality dimension using
a simple example. This helps in understanding the quality of a process model
given an event log, as is described as Challenge 4 in Section 1.3. In this chapter
we also discussed several possible ways to measure each of these four qual-
ity dimensions. Finally, we showed that all four quality dimensions are really
necessary to evaluate the quality of a process model.

In the next chapter we implement a process discovery algorithm based on

124 Process Model Quality Dimensions

the ETM framework: the ETMd algorithm. The quality dimensions discussed
in this chapter are used by the ETMd algorithm to discover process trees from
several artificial and real life data sets in Chapter 7. In Chapter 8 and Chapter 9
we discuss the ETMr and ETMc algorithms respectively which use additional
quality dimensions.

Chapter 6

Discovery of Process Trees

In this chapter we discuss the implementation of the ETMd algorithm based on
the ETM framework as discussed in Section 4.1 and shown in Figure 6.1. We
start with a discussion on the three different types of change operations de-
fined for evolutionary algorithms: creation of the initial population, mutation
and crossover. The creation of the initial population is discussed in Section 6.1,
followed by a selection of mutation operations, which is divided into random
mutations, discussed in Section 6.2, and guided mutations which is discussed
in Section 6.3. The third and last change operation, which we discuss in Sec-
tion 6.4, is crossover. The next element to be detailed is that of candidate
selection, which is discussed in Section 6.5. The final element in the ETMd

algorithm, termination condition(s), is discussed in Section 6.6.

The ETMd algorithm is applied on a running example in Section 6.8, where
besides the best single process tree, a Pareto front is also discovered. Section 6.9
discusses the results of current state-of-the-art process discovery algorithms on
the same running example. Section 6.10 concludes this chapter.

6.1 Initial Population Creation

As discussed in Chapter 4 the first step of the ETMd algorithm is the creation
of new process trees to form the initial population. Additionally, in each gen-
eration, some process trees might be selected to be replaced by newly created
trees.

126 Discovery of Process Trees

As mentioned in Section 4.4.3, it is important to note that the creation of
new trees does not imply that the initially created process trees should be of
good quality. The evolutionary character of the ETM framework provides the
freedom to construct less-than-optimal process models. The main purpose of
initial population creation is initializing the ETMd algorithm with a diverse set
of candidates. The change operations of mutation and crossover are used to
(possibly) further improve the quality of the candidates according to the used
quality dimensions. Therefore population creation should mainly focus on the
exploration aspect of the evolutionary algorithm, and leave the exploitation to
the other change operations.

In this section we discuss different approaches for the creation of process
trees: (1) random process tree creation, (2) advanced trace-model creation and
(3) creation using existing process discovery algorithms. The random approach
is discussed in Section 6.1.1. This approach almost entirely ignores the informa-
tion recorded in the event log. In Section 6.1.2 we discuss a smarter approach
that creates process trees using traces from the event log. The resulting process
trees are not perfect but are very suitable for the (guided) mutation operators
we define later in this chapter. Finally, in Section 6.1.3 we discuss the possibility
of using other process discovery techniques to build initial process trees.

It is important to note that all these different ‘tactics’ are required because
beforehand it is not known which quality dimensions are included, and what
their relative importance is. Therefore we cannot fully rely on constructive
methods to create the initial population.

Stop?Select

Change

EvaluateCreate

Figure 6.1: The basic framework for evolutionary process discovery.

6.1 Initial Population Creation 127

6.1.1 Random Tree Creation

One of the simplest methods to create new process trees is by randomly con-
structing them. An example of the process of created a random process tree is
shown in Figure 6.2. Using the activities of the event log, the process tree is
randomly built from the root. Each node is assigned at random to represent
either an activity or an operator node. The first step of this process is shown
in Figure 6.2a. If the node is selected to be an operator, the type of operator
is selected by chance, where some operators might have a higher probability of
being selected. In this case the root is chosen to be an ∧-operator. The left-most
child of this operator is again an operator, of type →, as is shown in Figure 6.2b.
If a node represents an activity, this activity is randomly selected from the list of
activities present in the event log. This is shown in Figure 6.2c, Figure 6.2d and
Figure 6.2e.

6.1.2 Using Advanced Trace-Model Creation

Another way of creating new process trees is by first creating process trees that
describe individual traces, and subsequently merging these process models.

Creating trace models

In this step a process tree is created that describes a single trace. If a trace
contains each activity exactly once, building a process tree can simply be done
by placing the activities underneath a →-operator, in the same order as the

∧

??

(a) Step 1

∧

?→

??

(b) Step 2

∧

?→

?a

(c) Step 3

∧

?→

ca

(d) Step 4

∧

f→

ca

(e) Step 5

Figure 6.2: Example of random construction of a process tree. A newly added node is
encircled, the currently selected node to be set has a gray background and
remaining empty places in the process tree have a dashed circle.

128 Discovery of Process Trees

activities are encountered in the trace. This type of tree is called a trace-

model [74,75].
In case the trace contains activities multiple times, a 	-operator can be in-

serted in the process tree. An example of a trace-model with duplicate activities,
for the trace 〈a,b,c,d ,e,b,d ,e, f , g 〉, is shown in Figure 6.3. Determining which
activities need to be assigned to the 	-operator is done in two phases. In the
first phase the activities that are duplicated are detected by counting how often
each activity occurs. In the example of Figure 6.3 activities ❜, ❞ and ❡ are du-
plicated, as is indicated by the gray rectangles in the process tree. In the next
phase the trace-model is again parsed, and at the point where the first activity
that occurs multiple times is encountered, an 	-node is inserted. For the exam-
ple of Figure 6.3 the 	-node is inserted after activity ❛, as is shown by the cloud
symbol in the top right tree. Each activity that occurs multiple times is assigned
randomly to either the ‘do’ or ‘redo’ part of the 	-operator. The order of the
activities within each of these parts is maintained. Hence, the 	 of Figure 6.3
contains activities ❜, ❞ and ❡. As is shown at the bottom of the figure, in total
eight distributions of these three activities are possible over the different ‘do’
and ‘redo’ parts of the 	-operator. All other occurrences of the activities placed
under the 	-operator are removed from the trace-model. This ensures that the

→

gfedbedcba

→

gfca

	

ττ→

edb

	

τe→

db

	

τ→

ed

b

	

τd→

eb

	

τb→

ed

	

τ→

db

e

	

τ→

edb

τ

	

τ→

eb

d

Figure 6.3: Example of advanced trace-model creation for the trace
〈a,b,c,d ,e,b,d ,e, f , g 〉. The top left model shows the (basic) trace model
with the regions of duplicate activities marked. The advanced trace model
(shown at the top right), contains each activity once. The cloud in the top
right model is replaced with one of the possible 	-sub trees.

6.1 Initial Population Creation 129

duplicate activities appear only once in the resulting process tree.

Merging of the initial models

The next step of this approach is merging the created process trees into process
trees that describe multiple traces. Traces are selected randomly from the event
log, and their corresponding trace-models are merged. This process stops when
all selected traces have been processed. Moreover, since duplication of activities
in a process tree allows for multiple mappings between two process trees, the
process also stops when activity duplications are introduced in a process tree.

The first step when merging two process trees is to create a mapping be-
tween the nodes of the process trees [74, 75]. This can be done in a relatively
straight-forward way since the process trees contain no duplicate activities. The
order of activities is ignored, and unmapped leaves of either one of the input
trees are copied into the merged process tree. An example is shown in Fig-
ure 6.4, where three trace models are merged in two steps. For the first two
models on the left all leaves can be mapped, except ❡ (marked gray) in the
upper model of Figure 6.4. The location in the merged tree is determined by
finding the location of the predecessor and successor of this node. In this case
the location is determined to be between ❞ and ❢ in both trees. At this location
an ×-node with ❡ and τ as children is inserted, since in one model ❡ is present
while in the other model no activity is present at that location.

The resulting process model is then merged with a third process model for
the trace 〈a,c,b,h, i , g 〉. In the middle model the part between activities ❝ and
❣ is different (marked with dashed boxes), while in the right model activities ❤
and ✐ are different (marked with dashed circles). These two parts are placed
underneath an ×-operator in the merged process tree.

The approaches for trace-model creation and merging these models follow
a simple and straight-forward approach. Since the goal is to quickly create rea-
sonable process trees, no advanced and time consuming calculations are made.
Different process trees are created that describe the observed behavior. In a
later phase these models are improved by the ETMd algorithm. The models cre-
ated by using these methods are tailored for easy improvement by the guided
mutation operators as discussed in Section 6.3.

6.1.3 Using Other Process Discovery Algorithms

Another way to create process trees is by using the result of other process dis-
covery algorithms. However, most other algorithms produce process models in

130 Discovery of Process Trees

process modeling formalisms that cannot always be translated to process trees
(for a more detailed discussion we refer to Section 3.5.2). One notable excep-
tion is the Inductive Miner (IM) [120,121] that also produces process trees. By
changing some of the parameters of the IM algorithm, different process trees
can be obtained using the same event log.

However, the IM algorithm has some disadvantages the ETMd algorithm
does not have. First of all the IM is relatively sensitive to both exceptional
behavior and incompleteness of the event log, although extensions to combat
this are proposed [121]. Furthermore, in case the IM cannot find a strong
relation in part of the event log, it falls back to the flower model for that part of
the subtree. Within a flower model all activities are able to be executed zero or
more times. This therefore results in one or more 	-operators with the activities
of that part of the event log in a ×-construct in the ‘do’ part.

→

gfedcba

→

gfdbca

→

gf×

τe

dcba

→

gihbca

→

g×

→

ih

→

f×

τe

d

cba

Figure 6.4: Merging of trace models with nodes in the original and merged model
marked for clarity.

6.2 Random Mutation 131

Although the results of the IM are of relatively good quality if the event log
has no exceptional behavior and is complete, the ETMd algorithm is still needed
to make further improvements. For instance, the IM algorithm cannot handle
duplicate activities, i.e., activities with the same label that appear in more than
one location in the process model. The ETMd algorithm does not have this issue
in general, since most of the change operations can introduce activities into the
process tree, regardless of whether they are already included.

Moreover, the IM algorithm uses a fixed approach to discover a process tree.
This causes the resulting process trees to have a specific balance of the different
quality dimensions, where mainly the dimensions of replay fitness and precision
are considered. Additional quality dimensions, such as similarity (which we
discuss in more detail in Chapter 8), cannot be considered by the IM algorithm.
Therefore, the ETMd algorithm is still required to further improve the process
tree according to the quality dimensions currently set. Nonetheless, the process
trees produced by the IM algorithm might have a better quality than process
trees created by the other initial population creation approaches.

In the remainder of this thesis the IM algorithm is not enabled in the ETMd

(and derived) algorithms since this would complicate the discussion regarding
the capabilities of the ETM framework and implemented algorithms. In practice
however, enabling the IM algorithm will result in quicker, but not necessarily
better, results.

6.2 Random Mutation

As discussed in Section 4.4.3 one of the change operations in an evolutionary
algorithm is mutation. Mutations take a single process tree and modify (parts
of) it. In general, three different mutation types can be identified for nodes in
trees:

1. Removal of nodes;

2. Addition of nodes;

3. Updating of nodes.

In theory only the first two mutation types are necessary, since by removing
and adding in sequence, all possible changes can be applied. However, since
the overall quality of the process tree can decrease during this sequence of op-
erations, we also introduce mutation operations that update the nodes in the
process tree, for instance by changing the operator type of a particular node.

132 Discovery of Process Trees

Some of these mutations do not change the behavior described by the pro-
cess tree but only change the structure of the process tree. These operations are
required to restructure the process tree so that future mutation operations can
be performed with a better result. Consider for instance reordering the children
of an ∧-operator such that this operator can be changed to an →-operator in a
next generation.

Several random mutation operators can be defined that add, remove or up-
date nodes:

Random node removal randomly selects a node from the process tree and re-
moves it from the process tree, except when its parent is an 	-node. In
general applying this mutation results in removing behavior.

Random node addition randomly selects a node in the process tree and ran-
domly selects an activity from the event log. Three different situations can
be encountered, as is shown in Figure 6.5:

1. If the selected node in the tree is a leaf, as is shown in Figure 6.5a,
an operator node is randomly chosen. The selected node and the
randomly chosen activity are then placed in the tree at the location
of the selected node under the randomly chosen operator.

2. If the selected node is an operator node the activity can be added as
an additional child, in an arbitrary location, to this operator node.
This situation is shown in Figure 6.5b.

3. It is also possible to add the activity next to the selected operator
node, under a randomly chosen operator, as is shown in Figure 6.5c.

×

ba

×

?

yb

a

(a) New operator child
added.

×

ba

×

yba

(b) New child added.

×

ba

?

y×

ba

(c) New parent operator
added.

Figure 6.5: Three types of node addition mutation where leaf ② is added.

6.2 Random Mutation 133

In case the selected operator is of the type 	, another node in the process
tree is selected instead.

Random node mutation randomly selects a node from the process tree and
changes its type. If the node is a leaf it is assigned a new activity. In case
the node is an operator, it is assigned another operator type, except the 	-
operator (because of the strict 3 children requirement of the 	-operator).

Normalization mutation applies a normalization operation on the whole pro-
cess tree. Normalization consists of two phases: flattening and sorting.
Flattening of a process tree means that operators that have children that
are of the same operator type are ‘flattened’ by absorbing the children of
the child-operator, except when the node is an 	-operator, since flattening
can change the behavior. The sorting phase sorts the children of a node
alphabetically (in case of leaves), by operator type and then by size of the
subtree. Sorting is not applied to → and 	 operators since this changes
the behavior.

Remove useless node mutation randomly selects a useless node from the tree
(if there are any) and removes it without changing the behavior of the
process tree. Useless nodes, as defined in Section 5.3, are nodes that do
not add to or restrict the behavior in a process tree, and therefore can be
removed without changing the behavior of the process tree. For exam-
ple a τ in a →-construct or ∧-construct can simply be removed, without
changing the behavior of the process tree.

Replace tree is a rather aggressive mutation operator which replaces the whole
tree by a randomly created process tree. Here the approaches discussed
in Section 6.1 for the creation of the initial population are used. The
main purpose of this mutation operation is to increase the variation of the
population.

Shuffling nodes rearranges the order of the children in a ×-operator, ∧-operator
and ∨-operator, selected at random from the process tree. The main pur-
pose of this mutation is to change the structure of the process tree to
possibly make it better suited for one of the other mutations to improve
the quality of the process tree.

Although the random mutation operations discussed in this section together
in theory allow for all possible process trees to be created, more directed change
operations help in finding good quality process trees quicker.

134 Discovery of Process Trees

6.3 Guided Mutation

In the previous section examples of random mutations were discussed. Al-
though these mutations together allow for any process tree to be discovered
eventually, more targeted, or guided mutation operators can speed up the search
process. However, most guided mutations require additional information to be
able to apply directed changes to the process tree. Information that relates the
process tree to the behavior of the event log is stored in the alignments, used
to calculate the replay fitness quality, as is explained in Section 5.4.1. Simi-
lar to random mutation, three different mutation types can be distinguished:
removing behavior, adding behavior and changing behavior.

The type of mutation to be applied is determined by first randomly select-
ing a node from the process tree. Using the information from the alignments
the observed behavior is aligned with the behavior as described in the process
tree [74, 75]. If the selected node is a leaf, and this leaf is mainly skipped dur-
ing replay (i.e., mainly move on model only), then behavior regarding that leaf
is removed, which is discussed in Section 6.3.1. If no move on model only is
observed, then the observed behavior in the event log (i.e., move on log only)
is used to add behavior to the process tree, which is discussed in Section 6.3.2.
In the other case, when the selected node is an operator node, the behavior of
that subtree is changed, which is discussed in Section 6.3.3.

6.3.1 Removing Behavior

Removing behavior from process trees can be done by removing leaves or by
making parts of the process tree skippable [74, 75]. Which of these two is best
depends on the behavior shown in the entire event log. Consider for instance
the process tree of Figure 6.6 and an event log consisting of the two traces

Trace a b c
Model a b c

Trace a ≫ c
Model a b c

→

cba

→

c×

τb

a

Figure 6.6: Removing behavior: leaf ❜ is selected, and based on the traces 〈a,b,c〉 and
〈a,c〉, allowed to be skipped.

6.3 Guided Mutation 135

〈a,b,c〉 and 〈a,c〉. The trace 〈a,b,c〉 can be aligned to the process tree perfectly.
For the trace 〈a,c〉 the model has to make a move on model only on leaf ❜. Using
these two alignments the process tree can be repaired by allowing leaf ❜ to be
skipped. This is achieved by adding an ×-operator as a new parent of ❜, and
adding a τ-node as the other child of the ×-operator.

Another example would be when activity ❜ was never observed in this loca-
tion of the process tree, i.e., leaf ❜ would always be a move on model only, and
never be moved synchronously with an event from a trace. In this case leaf ❜
can be removed to improve the process tree. Since 	-operators require exactly
three children, the leaf is replaced with a τ leaf if the parent is an 	-operator.

6.3.2 Adding Behavior

Instead of observing mainly moves on model only, moves on log only can also
be frequently observed. In this case behavior, i.e., a leaf with the corresponding
activity, has to be added to better explain the observed behavior [74,75]. Con-
sider for example the process tree of Figure 6.7, with the observed traces 〈a,b,c〉
and 〈b, a,c〉. Since activity ❜ is not present in the process tree, the move on log
only observations are related to nodes in the process tree just before and after
the observed move on log only in the alignment. Currently node ❛ is selected
for mutation, and to this node the log moves for activity ❜ are also related. This
indicates that at this location in the process tree activity ❜ needs to be added.
Therefore, an operator is added as a new parent of ❛, and ❜ is also added to this
operator. Next, the type of operator needs to be determined. This is done by
investigating the behavior of activities ❛ and ❜ in the alignments.

Determining the operator that best describes a pair of activities is rather
straight-forward by inspecting how they occur together in the traces [74, 75].
In case the activities are always observed in a certain order, an →-operator

Trace a b c
Model a ≫ c

Trace b a c
Model ≫ a c

→

ca

→

c?

ba

→

c∧

ba

Figure 6.7: Adding behavior: leaf ❛ is selected, and based on the traces 〈a,b,c〉 and
〈b, a,c〉, activity ❜ is added under an ∧-operator.

136 Discovery of Process Trees

is added, with the two activities in the correct order. If no particular order
is observed an ∧-operator is used. If only one of each activities is observed
in a trace at the time, an ×-operator is selected. In case sometimes one and
sometimes both activities are observed, an ∨-operator is used. Finally, in case
activities are observed multiple times the 	-operator is added.

6.3.3 Changing Behavior

In case an operator type has been randomly selected in the beginning (see the
introduction of this section), the whole subtree under that operator node is
rebuilt [74, 75]. This is done by randomly selecting two activities from the
subtree, which are then joined using the operator type as detected using the
patterns described in Section 6.3.2. As long as there are unprocessed activities
from the original subtree, the next activity is selected. The operator type that
best explains the relation between the selected activity and the activities in the
current tree is again determined and added to the process tree. This is repeated
until all activities of the selected operator are processed.

This processes is demonstrated in Figure 6.8 where in the leftmost tree the
root is selected for guided mutation. The tree is rebuilt based on the traces
〈a,b,c〉 and 〈b, a,c〉. In the first step, activities ❛ and ❜ are selected, for which
the ∧-operator is detected as is shown by the third process tree. Finally, activity
❝ is added to this subtree using an →-operator.

→

bca

?

cba

?

c∧

ba

→

c∧

ba

Trace a b c ≫
Model a ≫ c b

Trace b a c ≫
Model ≫ a c b

Figure 6.8: Changing behavior: the root operator → selected, and based on the traces
〈a,b,c〉 and 〈b, a,c〉, the whole sub-tree is changed.

6.4 Crossover 137

6.4 Crossover

Crossover is a common operator in evolutionary algorithms and is inspired by
the mating process of species [77]. However, crossover is not beneficial in all
algorithm scenarios [163]. We have found through experimentation [74] that
crossover does not contribute to the efficiency of the ETMd algorithm. The
main cause is that it is very unlikely that parts of two process trees together
explain the observed behavior better than either one of the original process
trees. Therefore, although a basic crossover operation is available in the ETMd

algorithm, we apply it with low frequency and rely more on mutation.
In essence, a crossover operator takes two candidate solutions and creates

offspring by swapping parts between the selected candidates. An example is
shown in Figure 6.9, where in each parent one node is selected and swapped
to create the offspring. The created offspring has the same overall structure
as one of the parents, but the selected node is replaced by that of the other
parent. The main challenge for crossover is to select the correct locations in both
trees such that applying crossover improves the overall quality of at least one
of the offspring with respect to the parents. A basic crossover implementation
randomly selects parts in each parent that are to be swapped. A more advanced
approach to select parts has been discussed and evaluated in [74] but did not
result in a more effective search by the ETMd algorithm.

The general idea of crossover is that both parents have good sections describ-
ing different parts of the process [77], i.e., one parent may have captured the
first half of the process well, whereas the other parent is better at capturing the
second half. The offspring created by crossover is hoped to combine the good
parts of both parents and hence becomes even better. The reason that crossover
does not work in our scenario is that a lot of information that can be used is
stored in the event log, but this information can best be used with mutation op-
erators to correct existing process trees. The information in the event log can be
used to a lesser extent when trying to combine parts of mediocre process trees.
Moreover the chance is small that two selected process trees each contain parts
that together describe non-overlapping parts of behavior well. However, this is
a requirement for crossover to combine two process trees into a better process
tree. This leads us to believe that in our situation crossover is not beneficial for
either the exploitation or the exploration aspect of the search. Although it is
possible to enable crossover in our algorithm, we believe it does not improve
search efficiency.

Our finding supports the observations in evolutionary algorithm research,
known as the “crossover-mutation debate”. Some research [35, 83] suggests

138 Discovery of Process Trees

that crossover can be seen as a ‘macromutation’ operation, i.e., a combination
of multiple mutation operations at once. Other research shows that some prob-
lems are better solved without crossover operations [167]. So, although genetic
programming (which works on parse trees) heavily relies on crossover opera-
tions (and sometimes even disables mutation completely [35]), we have found
that for the ETMd algorithm mutation is far more effective. For a more de-
tailed discussion of the crossover-mutation debate we refer to the literature
study of [163].

6.5 Candidate Selection

In the previous sections we discussed several ways to change candidates in the
population. As is shown in Figure 6.1 and discussed in Section 4.4.2 candidates
from the population should be selected to apply the changes on. This is an-
other important phase for evolutionary algorithms. In the selection phase it is
determined which candidates from the current generation are selected to sur-
vive into the next generation. Again, the balance between the exploration and
exploitation aspects of the search is delicate and not straightforward. In current
literature there is an ongoing discussion on which selection mechanism works

→

gf	

deb

a

(a) Parent 1

∨

fa∧

dcb

g

(b) Parent 2

→

gf∧

dcb

a

(c) Offspring 1

∨

fa	

deb

g

(d) Offspring 2

Figure 6.9: Example of crossover applied on two parents, creating two offspring.

6.6 Termination Conditions 139

best in particular situations [35,100]. We have chosen sigma scaling because it
maintains a relatively constant selection pressure during the run of the evolu-
tionary algorithm. Sigma scaling scales the quality of a candidate according to
the mean and standard deviation of the quality of the whole population. Equa-
tion 6.1 shows the exact formula that is applied. The value after scaling (qσ) is
defined as the original quality (q) minus the mean quality of the population (µ),
divided by 2 times the standard deviation (σ) of the quality of the population.

qσ =max(1+ q −µ

2σ
,0) (6.1)

So, when qσ = 0 this means that the candidate is worse than twice the stan-
dard deviation below average, and is not going to be selected. If qσ = 1 this
means that the candidate is exactly average. Candidates with higher values
for qσ therefore have a bigger chance of being selected. Effectively this means
that extremely good candidates become less good, to reduce the probability that
such candidates are selected. At the same time it reduces the probability that
bad candidates are selected.

Sigma scaling scales the original quality values, to take the mean quality and
standard deviation of the population into account. However, a selection or sam-
pling method still has to be applied. We apply stochastic universal sampling [77,
100] (also see Section 4.4.2), because it is a fitness-proportionate selection
strategy. Stochastic universal sampling assigns each candidate a chance of selec-
tion proportional to their quality, like roulette wheel selection does. However,
stochastic universal sampling randomly chooses a point on the roulette wheel
to start from, and then advances equally sized steps around the roulette wheel
to select the number of candidates required. This ensures equal spread of the
candidates selected with zero bias [34]. The main benefit is that this results in
a diverse collection of selected candidates.

6.6 Termination Conditions

The only remaining element of the evolutionary algorithm to be defined is that
of termination. The purpose of this element was discussed in more detail in
Section 4.4.4. One of the most straightforward termination conditions is to stop
when the perfect candidate has been found. However, in general it is not known
whether such a candidate exists. And even if it exists, it is not guaranteed that
the evolutionary algorithm will discover it in a reasonable time. Moreover, in

140 Discovery of Process Trees

our case the generalization metric as discussed in Section 5.6.1 cannot reach a
perfect score of 1, so the candidate with a perfect quality actually does not exist.

Since it is not known whether the best possible candidate has been found,
other aspects such as elapsed time or the number of attempts need to be consid-
ered. However, there is no guarantee that the best possible candidate is actually
found by the evolutionary algorithm. Therefore termination conditions should
balance the quality of the candidate and the elapsed time, using the probability
of a better candidate being discovered in the near future.

In Section 7.1 we perform several experiments comparing two of the most
commonly used termination conditions: by number of generations and the qual-
ity stagnation termination. As a result of these experiments we observe that for
a practical setting the quality stagnation termination is a good termination con-
dition. However, in this thesis we use the number of generations termination
condition. By setting this to a relatively high number of generations, we can bet-
ter compare different runs of the ETMd algorithm. Furthermore, in this thesis
we mainly focus on the quality of the process models discovered.

In real-life scenarios we propose to combine the stagnation termination with
a ‘live’ version of the ETMd algorithm. In the live version the current best result
is shown directly to the user, allowing them to manually stop the execution if
desired. Furthermore, while the ETMd algorithm is still running, the current
best result can already be used to perform preliminary analysis, while the ETMd

algorithm continues its search for better candidates.

6.7 Balancing Search Space Exploration and

Exploitation

As discussed in Section 4.3, the exploration and exploitation aspects of the search
by an evolutionary algorithm should be balanced. The population should be di-
verse to allow for exploration, but also contain several good candidates for ex-
ploitation. Moreover, it is important that the whole search space can be covered
by a combination of the population creation, mutation and crossover operators
used.

Table 6.1 shows an overview classifying all discussed operators. In general,
exploration is mainly addressed by the random operators defined. The random
operators combined allow for every possible process tree to be eventually cre-
ated, when these operators are run infinitely many times. Thus, they clearly
support exploration. Exploitation is addressed by the smarter guided operators

6.7 Balancing Search Space Exploration and Exploitation 141

Table 6.1: Overview of the different operators defined and their contribution to the
search aspects of exploration and exploitation.

Operation Section Exploration Exploitation

Random Tree Creation 6.1.1 ✓

Trace-Model Creation 6.1.2 ✓

Creation by other Algorithms 6.1.3 ✓

Random Node Removal 6.2 ✓ ✓

Random Node Addition 6.2 ✓ ✓

Random Node Mutation 6.2 ✓ ✓

Normalization Mutation 6.2 ✓

Remove Useless Nodes Mutation 6.2 ✓

Replace Tree 6.2 ✓

Shuffle Nodes 6.2 ✓

Guided Behavior Removal 6.3.1 ✓

Guided Behavior Addition 6.3.2 ✓

Guided Behavior Change 6.3.3 ✓

Crossover 6.4 ✓

Candidate Selection 6.5 ✓ ✓

since they use knowledge to almost certainly improve the quality of a process
tree and thus exploit the neighborhood of the process model.

The random mutation operators that add, remove and change nodes in the
process tree can contribute to both the exploration and exploitation aspects of
the search. If these operations are applied high in the tree the possible effect
is large, which is more explorative, and when applied close to or on the leaves,
the effect is smaller and thus more exploitative. The other random mutation
operators of normalization, removal of useless nodes, and shuffling of nodes
apply behavioral-equivalent mutation operations. This is an exploitative change
which is mainly used to increase the diversity of the population, and to slightly
change the tree so that other mutation operators can improve the model. The
mutation operation of replacing a whole process tree using one of the tree cre-
ation techniques is of an explorative nature since it introduces new candidates
to the population. Crossover is also an explorative operator since it combines
parts of two trees to create two significantly different trees.

Candidate selection supports both the exploration and exploitation aspects
of search. It has a high chance of selecting good candidates, supporting the

142 Discovery of Process Trees

exploitative aspect. However, by also allowing lower quality candidates to be
selected, exploration is supported.

6.8 Application Using a Running Example

Now that all the ingredients of the ETMd algorithm have been discussed for
the scenario of process discovery, we can apply ETMd on the running example
used throughout this thesis (see Section 1.2). The example is illustrated in Fig-
ure 6.10. Figure 6.10a shows the process tree that can be considered the system
that generated the behavior. From the process model two event logs are sim-
ulated. In Figure 6.10b the event log without exceptional behavior, generated
from this process model, is shown. The event log contains 11 unique traces and
100 traces in total. Additionally an event log is generated that contains excep-
tional behavior, as shown in Figure 6.10c. This event log consists of 1,020 traces
of which the first 1,000 traces are taken from the event log without exceptional
behavior, which is replicated 10 times. The last 20 traces of the event log with
exceptional behavior do not perfectly fit the process model of Figure 6.10a.

6.8.1 Searching for the Best Process Tree

The ETMd algorithm can search for the best process tree by weighing the quality
dimensions. As shown in [49] the overall quality can best be calculated by as-
signing a weight to replay fitness of 10, precision 5, and both generalization and
simplicity once. In the first experiment we run the ETMd algorithm on the event
log without exceptional behavior. We search for the best tree by weighing replay
fitness times 10, since it relates the modeled with the observed behavior. Preci-
sion is weighed 5 times since the model should not describe too much additional
behavior. Simplicity is weighed once to prevent useless nodes. Generalization
is given a weight of 0.1 since it is of less importance. The ETMd algorithm has
been executed 30 times for 10,000 generations, and the result that is closest to
the average of these runs is shown in Figure 6.11a. This is not exactly the same
process tree as the (unknown) system that generated the behavior. The major
difference is the fact that there is no option to skip activity ❞, which is only
observed in 10 out of 100 traces. The resulting process tree scores a bit worse
on replay fitness (0.995 instead of 1.000 for the ‘system model’). It is however
a more precise description of the observed behavior since precision of the dis-
covered tree is 0.996 instead of 0.897 of the system model. Generalization also

6.8 Application Using a Running Example 143

improved to 0.886 from 0.870. Simplicity is perfect for both trees since there are
no useless nodes.

When the ETMd algorithm is run on the event log with exceptional behavior
we obtain the process model shown in Figure 6.11b. The behavior of the dis-
covered process tree allows for activity ❞ to be skipped. Furthermore, it allows
to execute only activity ❞ and skip both activities ❜ and ❝, which is observed in
4 traces. It is however not allowed to skip both activities ❡ and ❢ (observed in
7 traces) or execute both (observed in 2 traces). The discovered process model
has the same score on replay fitness as the ‘system model’, but scores much bet-
ter on precision (0.996 instead of 0.867). The increase in precision comes at the
expense of generalization, which reduced from 0.960 to 0.930 due to the dupli-

→

g×

fe

∧

×

τd

cb

a

log (b)
f: 1.000 p: 0.897
s: 1.000 g: 0.870

log (c)
f: 0.999 p: 0.867
s: 1.000 g: 0.960

(a) System that generated
the event log, repre-
sented by a process
tree.

(b) Generated event log of
100 traces, without ex-
ceptional behavior.

Trace #

a b c d f g 38
a b d c f g 26
a b d c e g 12
a b c f g 8
a b c d e g 6
a d c b f g 4
a c d b f g 2
a c b e g 1
a d b c f g 1
a d b c e g 1
a c b f g 1

(c) Generated event log of
1,020 traces, with ex-
ceptional behavior.

Trace #

a b c d f g 380
a b d c f g 260
a b d c e g 120
a b c f g 80
a b c d e g 60
a d c b f g 40
a c d b f g 20
a c b e g 10
a d b c f g 10
a d b c e g 10
a c b f g 10

a c b d g 4
a d e g 4
a b c g 3
a c f g 3
a b c d e f g 2
a b d e g 2
a c d f g 2

Figure 6.10: Running example used to discover a process tree (see Section 1.2).

144 Discovery of Process Trees

cation of activity ❞. Simplicity is perfect for both trees since there are no useless
nodes.

These experiments both show that a single result is not always sufficient.
Questions like “what does the process tree with perfect replay fitness look like”
and “at what cost can perfect replay fitness be achieved” are left unanswered.
Therefore we apply the ETMd algorithm again on the event log with exceptional
behavior, while constructing a Pareto front of solutions.

→

g×

fe

∧

cbd

a

f: 0.995 p: 0.996
s: 1.000 g: 0.886

(a) Result on normal log.

→

g×

fe

×

d∧

×

b∧

db

c

a

f: 0.999 p: 0.996
s: 1.000 g: 0.930

(b) Result on event log with exceptional
behavior

Figure 6.11: Results of the ETMd algorithm on the running example event logs.

6.9 Results of Existing Process Discovery Algorithms 145

6.8.2 Discovery of a Pareto Front

As discussed in Section 4.4.1, instead of aggregating the different quality values,
a Pareto front can be constructed that keeps the different quality dimensions
separated. Here we discuss some of the process trees contained in this Pareto
front. A more detailed discussion of the characteristics of the Pareto front is
provided in Section 7.1.3.

The Pareto front discovered by the ETMd contains 74 process trees, each
with different trade-offs between the quality dimensions considered (see Fig-
ure 7.13). Two process trees from the Pareto front are shown in Figure 6.12.
The process tree of Figure 6.12a is exactly the process tree as discovered by
the ETMd algorithm with weighted quality dimensions on the running example
without exceptional behavior. The process tree in the Pareto front with the best
precision for a perfect replay fitness is shown in Figure 6.12b. This process tree
explains all of the observed behavior, but not in a generalizing way.

The process tree as discovered by the ETMd algorithm using weighted qual-
ity dimensions is not present in the Pareto front. This is caused by the fact that
the ETMd algorithm did not consider this process tree (yet), because it would
be included in the Pareto front, had it been discovered. The discovered Pareto
front is discussed in more detail in Section 7.1.3.

6.9 Results of Existing Process Discovery Algorithms

In this section we apply several process discovery algorithms on the two run-
ning examples also used to evaluate the ETMd algorithm in Section 6.8. Some
algorithms resulted in unsound process models, i.e., process models that are not
semantically correct (see Section 3.1.1). We translated the behavior of each
proces model to a process tree, in order to measure the quality of the result.
Where applicable, we stayed as close as possible to the intended behavior of

In Section 6.9 we revisit results presented in [49,52]:

• J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. On the role of fitness, precision,
generalization and simplicity in process discovery. In R. Meersman, H. Panetto, T.S. Dillon,
S. Rinderle-Ma, P. Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, and I.F. Cruz,
editors, OTM Conferences (1), volume 7565 of Lecture Notes in Computer Science, pages 305–
322. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-33605-8

• J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Quality dimensions in process
discovery: The importance of fitness, precision, generalization and simplicity. International
Journal of Cooperative Information Systems, 2014

.

146 Discovery of Process Trees

the original model. Each process tree is then evaluated on the four quality di-
mensions of process discovery, i.e., replay fitness, precision, generalization and
simplicity.

For all algorithms the publicly available version, as included in the ProM
process mining framework version 6.3, has been used, unless mentioned other-
wise.

In the remainder of this section we discuss the results and most common
issues of these algorithms.

→

g×

ef

∧

cbd

a

f: 0.994 p: 1.000
s: 1.000 g: 0.964

(a) Perfect precision

→

a ×

∧

×

τ d

→

×

τ b

c

→

×

τ b →

c b

d

×

f e →

×

τ b

×

τ e

×

τ f c

g

f: 1.000 p: 0.937
s: 1.000 g: 0.801

(b) Perfect Replay fitness.

Figure 6.12: Examples of process trees with slightly different trade-offs between the
quality dimensions.

6.9 Results of Existing Process Discovery Algorithms 147

6.9.1 The α-Algorithm

One of the first process discovery algorithms is the α-algorithm [20]. The α-
algorithm is one of the most basic process discovery algorithms, and does not
take any parameters. The result of running the α-algorithm on our running
example is the Petri net shown at the left hand side of Figure 6.13a. This Petri
net can be easily translated to the process tree notation without changing the
intended behavior. The process tree that is the result of this translation is shown
at the right hand side of Figure 6.13a. The activities ❡ and ❢ in the Petri net also
function as a silent parallel join. In the process tree this has been split in a
control flow node (as parents of ❜, ❝ and ❞) and a choice between activities ❡

and ❢.
Applying the α-algorithm on the running example event log with excep-

tions, results in the process model and process tree translation as shown in
Figure 6.13b. The only difference with the previous result is the fact that there
no longer is a choice between activities ❡ and ❢, but that both need to be ex-
ecuted. This also shows the main disadvantage of the α-algorithm: it is not
resilient to exceptional behavior. Only two exceptional traces introduced the
activity dependencies which removed the choice between activities ❡ and ❢, re-
ducing replay fitness. For real life event logs the α-algorithm often does not
result in usable process models because of its sensitivity to exceptional behav-

a

b

c

d

e

f

g

→

g×

fe

∧

dcb

a

(a) Result on the running example (sound).

a

b

c

d

e f g

→

gfe∧

dcb

a

(b) Result on the running example with exceptional behavior (coincidentally sound).

Figure 6.13: Results of the α-algorithm [20] on the running examples.

148 Discovery of Process Trees

ior. Furthermore, exceptions quickly result in unsound models being produced
by the α-algorithm.

6.9.2 Genetic Miner

The Genetic Miner [29] is run with a population of 20, a target fitness of 1.0 and
for a maximum of 10,000 generations. The result is a relaxed sound Petri net
since tokens are left before task ❡ when executing activities 〈a,b,c,d , f , g 〉.

→

g∧

b×

→

×

fe

c

→

e∧

dc

∧

d→

fc

a

(a) Result on the running example (relaxed sound, tokens left behind).

→

g×

→

fc

→

×

fe

∧

→

	

τbd

×

τb

c

a

(b) Result on the running example with exceptional behavior (relaxed sound, tokens left
behind).

(c) BPMN translation of the process tree of Figure 6.14b.

Figure 6.14: Result of the genetic miner [29] (Relaxed sound, tokens left behind).

6.9 Results of Existing Process Discovery Algorithms 149

When translating the behavior described by this model, for example the fact
that the activities ❜ and ❞ are parallel to ❢, we obtained the process tree as
shown at the right hand side in Figure 6.14a. Although the translated process
tree can replay all observed behavior, the process tree is not very precise.

The result on the event log with exceptional behavior shows a similar process
tree as a result, as shown in Figure 6.14b. However, the resulting Petri net is
hard to read, which is caused by the many silent transitions moving tokens. The
process tree can replay most of the observed behavior but not in a very precise
way.

The Genetic Miner focusses mainly on replay fitness, which results in pro-
cess models that are less precise. Generalization is not considered, since its in-
terpretation in the Genetic Miner is the inverse of precision (see Section 5.6.2).
The result on the running example with exceptional behavior also shows that
the resulting process model is not easy to understand. Although the process
tree looks complicated, Figure 6.14c shows the BPMN translation of the process
tree, which is easier to understand.

6.9.3 Heuristic Miner

The heuristics miner [180] has been developed to be more resistant to excep-
tional behavior than most other process discovery algorithms. When applied on
the running example the Petri net as shown on the left hand side of Figure 6.15a
is obtained, after converting the Heuristics net to a Petri net. All thresholds and
other default settings (i.e., ‘all tasks connected’ enabled and ‘long distance de-
pendency’ disabled) were maintained. Other settings were experimented with
but did not result in a process model with a better quality score. Unfortunately,
the resulting Petri net is not sound but relaxed sound. Tokens are left in the
Petri net for instance when the following firing sequence is executed: 〈a,c,e, g 〉.
Tokens remain before or after activity ❜. Furthermore, if the bottom left silent
transition is taken, tokens also remain before or after activity ❞.

Since the Petri net is not sound, it is not possible to directly translate it to
a process tree. Therefore the process tree as shown in Figure 6.15a represents
a sound interpretation of the intended behavior of the Petri net. Most notable
is the choice between two different parallel branches, one with ❞ and the other
without. This is how the process model was meant as discovered by the heuristic
miner, which is indicated by the two silent transitions in the beginning of the
Petri net. The process tree can correctly replay all behavior of the event log.

The resulting Petri net for the event log with exceptions is shown in Fig-
ure 6.15b. There are a lot of silent transitions that allow for different combina-

150 Discovery of Process Trees

tions of activities being executed. This Petri net is again relaxed sound, since
after the execution of the trace 〈a,b,c〉, tokens are always left in the place after
❞. The Petri net is also not able to replay the behavior, as can be seen from the
process tree translation.

The results of the heuristics miner are in general relaxed sound, which for
most analysis techniques is not sufficient. And although the heuristics miner
is able to handle exceptional behavior, it results in low replay fitness scores in
case the behavior is slightly more complicated. The heuristics miner however
does consider precision since the behavior of the process model is restricted.
However, this comes at the cost of generalization. Finally, the resulting pro-
cess models are not easy to interpret since the different relationships between
activities are encoded with separate transitions.

b

c

d

e

f

a g

A

A

A

A

A

→

g×

fe

×

∧

dcb

∧

cb

a

(a) Result on the running example (relaxed sound).

→

g×

→

ed

→

f∨

db

c

→

×

fe

c

a

(b) Result on the running example with exceptional behavior (relaxed sound).

Figure 6.15: Result of the heuristic miner [180] (relaxed sound since tokens are left
behind).

6.9 Results of Existing Process Discovery Algorithms 151

6.9.4 The ILP Miner

A process discovery algorithm that ensures perfect replay fitness is the ILP
miner [182]. The result of running this algorithm on the running example’s
event log is shown at the left hand side in Figure 6.16a. This result is obtained
by using the following, mostly default, parameters: ‘Java-ILP and LpSolve’ as
solvers, ‘Petri net (empty after completion)’ as ILP variant, ‘number of places’
set to ‘per causal dependency’, and the option ‘Search for separate initial places’
is enabled. None of the ILP extensions were enabled. The ILP miner produced
the Petri net as shown in Figure 6.16a.

This Petri net can be directly translated to a process tree, without changing
its behavior. The guarantee of the ILP miner, that it always produces a perfectly
fitting process model, still holds for the process model produced. However, this
comes as the cost of precision since the model allows for loops of activity ❞ while
the event log never contains more than one instance of ❞ per trace.

a

b

c

d

e

f

g
→

g×

fe

∧

	

τdτ

cb

a

(a) Result on the running example (sound).

a

b c

d

e

fg

→

	

τ×

gfedcb

τ

a

(b) Result on the running example with exceptional behavior (relaxed sound).

Figure 6.16: Result of the ILP miner [182] (Ensuring empty net after completion).

152 Discovery of Process Trees

Applying the ILP miner on the event log with exceptional behavior demon-
strates this even stronger. The resulting process model is able to express all
observed behavior. However, except for activity ❛, all activities are in a so called
‘flower’ construct. This construct consists of a place, from which one or more ac-
tivities take a token and put it back. The result, in this case, is that all activities,
except activity ❛, can be executed in any order, and zero or more times, without
restriction. Hence, this construct does not add knowledge about the observed
behavior, since in essence it allows for all possible behavior. Furthermore, this
process model is relaxed sound, because when the final marking is reached (the
place in the flower construct), some transitions are still enabled.

The ILP miner often results in relaxed sound models, but with a perfect
replay fitness. This however comes at a significant cost to precision, as is shown
by the result on the running example with exceptional behavior. For larger real-
life event logs the resulting process models are not simple since they contain
many relationships, or many unconnected transitions (which is not a sound
process model). Using other settings than used here may result in a more precise
model with many more places.

6.9.5 Inductive Miner

The Inductive Miner [121] directly discovers process trees from an event log.
We have used the version in ProM 6.4, where we chose the IMin variant, which
is able to deal with infrequent behavior. The result on the running example
event log is shown in Figure 6.17a. It captures most of the behavior correctly,
but places activity ❞ in a flower construct, similar to the ILP miner. So although
this process tree can replay all observed behavior, it is not very precise.

Application of the Inductive Miner on the running example with exceptional
behavior results in the process tree as shown in Figure 6.17b. Here we see that
all activities except ❛ and ❣ are placed in flower constructs. Just like the ILP
miner this results in a process model that is able to replay all observed behavior,
but does not describe the event log in a precise way.

The Inductive Miner is one of few process discovery algorithms that also
work on process trees. This results in simpler process models, especially when
translated to the preferred modeling notation of the user. However, the Induc-
tive Miner takes a constructive approach, where more emphasis is put on replay
fitness than on precision. This is shown by the imprecise process model for
the running example event log with exceptional behavior. Although it should
be noted that there are parameter settings where a better process model is pro-

6.9 Results of Existing Process Discovery Algorithms 153

duced, requiring a user to experiment with parameter settings to obtain the best
process model is not desirable.

6.9.6 Language-based Region Theory

The result of language-based region theory [37] can be obtained by running the
ILP miner plug-in and setting the number of places to ‘Basic Representation’,
disabling the ‘search for separate initial places’ checkbox and checking the op-
tion to discover an ‘Elementary Net’. This produces the Petri net that is shown
in Figure 6.18a. It is clear to see that the resulting model is overly complex and
incomprehensible.

The translation to a process tree results in the process tree shown in Fig-
ure 6.18a. Since there is no option to skip ❞ the replay fitness score is not
perfect. The process model also includes activities ❡, ❢ and ❣ in the parallel
part, which results in a lower precision, since these activities are always strictly
executed at the end of the process. Simplicity of the process tree is perfect since
each activity occurs exactly once. Note however that the translation from the
Petri net to the process tree simplified the model drastically, while maintaining
its behavior. This also indicates the main disadvantage of this technique: it re-
sults in incomprehensible process models that can be simplified. The question
is however if this simplification can be performed automatically.

This is also demonstrated when this technique is applied on the event log
with exceptions. The resulting Petri net is almost impossible to understand. The
process tree shown next to the Petri net in Figure 6.18b describes the intended

→

g×

fe

∧

	

τdτ

cb

a

(a) Result on the running ex-
ample (sound).

→

g	

τfτ

	

τeτ

∧

	

τdτ

	

τcτ

	

τbτ

a

(b) Result on the running example with exceptional be-
havior (sound).

Figure 6.17: Results of the Inductive Miner.

154 Discovery of Process Trees

behavior of the Petri net. The model has several issues when replaying the
observed behavior. For instance, both ❡ and ❢ have to be executed and activities
❝ and ❞ have to be executed twice according to the model. Hence the replay
fitness is bad, and precision is not high either. But most importantly, the Petri net
that is the result of the language-based region theory is very hard to interpret.

Language based region theory has as main disadvantage that the resulting
class of Petri net, an elementary net, is hard to interpret. Moreover, translating
an elementary net to simpler notations is in general not easy. The resulting
process models also score low on replay fitness, precision and generalization.

6.9 Results of Existing Process Discovery Algorithms 155

→

∧

→

g×

fe

∧

cb

×

dτ

a

(a) Result on the running example (sound).

∧

ged→

∧

dc

fc

ba

(b) Result on the running example with exceptional behavior (sound).

Figure 6.18: Result of the language-based region theory [37] (The models are overly
complex and incomprehensible, but sound).

156 Discovery of Process Trees

6.9.7 Multi-phase Miner

The result after running the Multi-phase miner [66] as included in ProM 5.2,
with the default settings, results in an EPC model. Converting this EPC to a
Petri net results in the Petri net as shown at the left hand side of Figure 6.19a.
The process model is relaxed sound but is not easy to understand due to all
the silent transitions before and after activities ❜, ❝ and ❞. The process tree
relations show that all these three activities are included in an ∨ construct, and
can therefore be skipped. Although this process model can replay all observed
behavior, it is not very precise since activities ❜ and ❝ are never skipped in the
event log.

→

g×

fe

∨

dcb

a

(a) Result on the running example (relaxed sound).

→

×

τg

×

τf

×

τe

∨

dcb

a

(b) Result on the running example with exceptional behavior (relaxed sound).

Figure 6.19: Result of the Multi-phase miner [66].

6.9 Results of Existing Process Discovery Algorithms 157

The result of the multi-phase miner on the event log with exceptions results
in a sound but incomprehensible Petri net as shown in Figure 6.19b. The orig-
inal EPC model is easier to understand but due to the combination of ×-splits
and ∨-joins still hard to read. The intended behavior, as is described by the
process tree shown in Figure 6.19b, however, shows that the actual behavior is
not very complicated. The resulting process model is able to replay all observed
behavior, including the exceptional traces. However, precision is not very high
since the model allows for a lot of different behavior.

The multi-phase miner guarantees relaxed sound results, but not sound re-
sults. It furthermore guarantees to provide a result with perfect replay fitness
and the highest possible precision it can obtain. However, more precise process
models exist than the ones discovered by the multi-phase miner. Moreover, the
resulting process models are not easy to interpret, mainly because of the many
silent transitions in the Petri net.

6.9.8 State-based Region Theory

Applying state-based region theory [31, 56, 76, 164], by executing the plug-in
‘Mine Transition System’ followed by a conversion to Petri nets using region
theory, results in the Petri net as shown in Figure 6.20a. For the transition
system mining, the default settings are used with unlimited maximum set size
and inclusion of all activities.

The resulting Petri net is sound and includes the option to execute activities
❡ and ❢ without executing ❞ explicitly, by duplicating activities ❡ and ❢. We
have translated this Petri net to a process tree without duplicating activities ❡

and ❢, which would have reduced simplicity and generalization. The models
can replay all observed behavior. However, the original Petri net is not very
easy to understand, mainly due to the duplication of activities ❡ and ❢.

The result on the event log with exceptional behavior is again a rather large
Petri net, as shown in Figure 6.20b. The process tree translation is also rather
complex due to activity duplication. Although the process model can replay all
observed behavior, it is not very precise.

In general state-based region theory results in sound process models with
a guaranteed perfect replay fitness. However, generalization is not considered,
since irregular behavior is specifically captured to increase precision. A clear
example of this is shown in the result for the running example with exceptional
behavior. This however also results in a Petri net that is difficult to understand.

158 Discovery of Process Trees

→

g×

fe

∧

×

τd

cb

a

(a) Result on the running example (sound).

→

a ×

→

d e

→

∧

c d

f

→

∧

b d

e

→

∨

b c d

×

e τ

×

f τ

→

∧

b c

×

e f τ

f

g

(b) Result on the running example with exceptional behavior (sound).

Figure 6.20: Result of the state-based region theory.

6.9 Results of Existing Process Discovery Algorithms 159

Table 6.2: Quality of results of process discovery algorithms on the running example
event log. Italic algorithm names indicate unsound process models. Best
models are indicated in bold.

Algorithm Fig. Overall f p s g

ETMd 6.11a 0.9951 0.9952 0.99600.99600.9960 1.00001.00001.0000 0.8859

α-algorithm 6.13a 0.9951 0.9952 0.99600.99600.9960 1.00001.00001.0000 0.8859

Genetic Miner 6.14a 0.9675 1.00001.00001.0000 0.8996 1.00001.00001.0000 0.7799

Heuristic Miner 6.15a 0.99540.99540.9954 1.00001.00001.0000 0.9884 1.00001.00001.0000 0.8424

ILP Miner 6.16a 0.9556 1.00001.00001.0000 0.8593 1.00001.00001.0000 0.89130.89130.8913

Inductive Miner 6.17a 0.9556 1.00001.00001.0000 0.8593 1.00001.00001.0000 0.89130.89130.8913

Language-based re-
gion theory

6.18a 0.9456 1.00001.00001.0000 0.8111 1.00001.00001.0000 0.8745

Multi-phase Miner 6.19a 0.9488 1.00001.00001.0000 0.8373 1.00001.00001.0000 0.8859

State-based Region
Theory

6.20a 0.9471 1.00001.00001.0000 0.8966 1.00001.00001.0000 0.8702

6.9.9 Why Existing Algorithms Fail

The results of existing process discovery algorithms as discussed in this section
are summarized in Table 6.2 and Table 6.3. The process models and the quality
metrics clearly indicate that, even on our small artificial dataset, existing algo-
rithms have difficulties balancing the quality dimensions. Existing algorithms
had issues especially on the running example with exceptional behavior. The
algorithms that guarantee perfect replay fitness (i.e., the ILP miner, Inductive
Miner, Multi-phase Miner and State-based Region Theory), were only able to
do so with a great reduction in precision. The other algorithms tried to bal-
ance the quality dimensions more but did not find a proper balance. Moreover,
several algorithms produced an unsound result. The α-algorithm, which per-
formed the best of all algorithms on the running example without exceptional
behavior, was not able to discover an appropriate model for the event log with
exceptional behavior.

Moreover, all process discovery algorithms make several notable assump-
tions. Most algorithms assume there is no exceptional behavior and thus try
to describe all observed behavior. Hence, they focus only on the replay fitness
quality dimension, and try to achieve perfect replay fitness. However, a more
precise description, which often is also simpler, that still describes enough ob-
served behavior can be often be found by relaxing the perfect replay fitness

160 Discovery of Process Trees

Table 6.3: Quality of results of process discovery algorithms on the running example
event log. Italic algorithm names indicate unsound process models. Best
models are indicated in bold.

Algorithm Fig. Overall f p s g

ETMd 6.11b 0.99760.99760.9976 0.9990 0.9958 1.00001.00001.0000 0.9297

α-algorithm 6.13b 0.9676 0.9482 1.00001.00001.0000 1.00001.00001.0000 0.9638

Genetic Miner 6.14b 0.9547 0.9895 0.8775 1.00001.00001.0000 0.8810

Heuristic Miner 6.15b 0.8953 0.8322 1.00001.00001.0000 1.00001.00001.0000 0.9265

ILP Miner 6.16b 0.8151 1.00001.00001.0000 0.4054 1.00001.00001.0000 0.9677

Inductive Miner 6.17b 0.8921 1.00001.00001.0000 0.6532 1.00001.00001.0000 0.96840.96840.9684

Language-based re-
gion theory

6.18b 0.7774 0.8682 0.5374 0.9231 0.8811

Multi-phase Miner 6.19b 0.9279 1.00001.00001.0000 0.7699 1.00001.00001.0000 0.8984

State-based Region
Theory

6.20b 0.9267 1.00001.00001.0000 0.7710 1.00001.00001.0000 0.6459

requirement.
Most process discovery algorithms have several options that can be changed,

however the effects of these options are not always clear to the user. The optimal
parameter settings are hard to obtain, especially in cases where the characteris-
tics of the observed behavior are unknown, e.g. the number of exceptions.

6.10 Conclusion

In this chapter we have discussed all elements of the ETMd algorithm which
is an implementation of the ETM framework tailored towards classical process
discovery. We have discussed several ways to create the initial population in
Section 6.1, from completely random to somewhat smart, including usage of
existing process discovery algorithms. We also presented several mutation op-
erators, some of which are random (Section 6.2) while others (Section 6.3) use
information from the event log and the calculated alignments to apply more tar-
geted changes to the process models. Additionally we discussed the crossover
change operator in Section 6.4, though this operator does not improve the qual-
ity of the process models. Another aspect in evolutionary algorithms is selecting
the candidates that survive to the next generation, which we discussed in Sec-
tion 6.5. Deciding when to terminate the execution of the ETMd algorithm was

6.10 Conclusion 161

discussed in Section 6.6. In all these phases of an evolutionary algorithm the
exploration and exploitation aspects of the search should be considered. We
discussed in Section 6.7 how all phases of the ETMd algorithm contribute to
these aspects. The ETMd algorithm has been applied to two running examples
in Section 6.8.1, and in Section 6.8.2 a Pareto front was constructed for these
data sets. The results of the ETMd algorithm have been compared with that of
existing process discovery algorithms in Section 6.9.

In the next chapter we apply the ETMd algorithm on more data sets, both
artificial and from real life, and investigate the characteristics of the results in
more detail.

Chapter 7

Application of Process Tree
Discovery

In Section 6.8 we applied the ETMd on the running example event logs, and
in Section 6.9 we compared the results with those of existing process discovery
algorithms. In this chapter we evaluate three aspects of the ETMd algorithm
and apply the ETMd algorithm on six real life event logs. Table 7.1 shows an
overview of the different characteristics of the event logs used in this chapter.

The first aspect of the ETMd algorithm we evaluate is how it behaves when
run for a longer period of time by investigating the quality of the results dis-
covered per generation in Section 7.1. Next in Section 7.2 experiments are
performed with different settings for guided versus random mutation. In Sec-
tion 7.3 and Section 7.4 we apply the ETMd algorithm on real life data sets
obtained in the CoSeLoG project and analyze the resulting Pareto front of pro-
cess trees. Finally, in Section 7.5 we discuss the performance aspect of the
ETMd algorithm for the experiments run in this chapter. Section 7.6 concludes
this chapter.

7.1 Performance in the Limit

The ETMd algorithm was run 30 times on each of the two running examples
depicted in Figure 7.1 for 10,000 generations, in order to investigate the long-
term behavior.

164 Application of Process Tree Discovery

Table 7.1: Statistics of the event logs used in this chapter.

Log Name #Traces #Events #Activities

Running example 100 590 7

Running example with excep-
tional behavior

1,020 5,994 7

Building Permits - Receipt
Phase [46]

1,434 8,577 27

WABO1_BB [45] 54 131 15

WABO2_BB [45] 302 586 13

WABO3_BB [45] 37 73 9

WABO4_BB [45] 340 507 9

WABO5_BB [45] 481 845 23

7.1.1 Running Example without Exceptional Behavior

Figure 7.2 shows the overall quality of the best candidate discovered on the
running example without exceptional behavior. The dashed line indicates the
overall quality of the best candidates discovered, averaged over the 30 runs,
which increased rapidly in the first generations. The average overall quality in
the first generation was already 0.9557, and increased to an average of 0.9954

in the final generation. The continuous line, above the average line, shows the
maximal overall quality over all runs. The dotted line shows the worst overall
quality. Between runs there is some difference, but the average is close to the
best overall quality. This indicates that, although there are differences between
runs of the ETMd algorithm, the ETMd algorithm is able to discover good quality
process models in all runs.

Figure 7.3 shows the average, maximum, and minimum overall quality over
the first 100 generations. The average overall quality at generation 100 is 0.9946.
This is only 0.0008 below the average overall quality after 10,000 generations.
This shows that the ETMd algorithm quickly discovers reasonably good process
models in early generations. Improving on these process models however re-
quires more generations, with little impact on the overall quality.

Figure 7.4 shows the process trees closest to the average overall quality for
that generation. For example, the average overall quality for generation 0 is
0.9557. The process tree found by one of the 30 runs in generation 0 with an
overall quality closest to this value is shown in Figure 7.4a and has an overall

7.1 Performance in the Limit 165

quality of 0.9559. The process tree generated in generation 0 is clearly gener-
ated by the advanced tree creation discussed in Section 6.1.2. It allows for a
particular sequence of activities ❜, ❝ and ❞, which is the most frequent sequence
in the event log. Moreover activity ❞ can be skipped and activities ❡ and ❢ are
in an exclusive choice. This results in perfect precision, but the replay fitness
score can be improved. The ETMd algorithm achieves this already in genera-
tion 1 (see Figure 7.4b), where replay fitness improves slightly, at the cost of
generalization, which is caused by the duplication of activity ❞. In generation
2 (see Figure 7.4c) the best model found on average has a further improved

→

g×

fe

∧

×

τd

cb

a

(a) Process model that
generated the event
log

(b) Running example
event log.

Trace #

a b c d f g 38
a b d c f g 26
a b d c e g 12
a b c f g 8
a b c d e g 6
a d c b f g 4
a c d b f g 2
a c b e g 1
a d b c f g 1
a d b c e g 1
a c b f g 1

(c) Running example
event log with excep-
tional behavior.

Trace #

a b c d f g 380
a b d c f g 260
a b d c e g 120
a b c f g 80
a b c d e g 60
a d c b f g 40
a c d b f g 20
a c b e g 10
a d b c f g 10
a d b c e g 10
a c b f g 10

a c b d g 4
a d e g 4
a b c g 3
a c f g 3
a b c d e f g 2
a b d e g 2
a c d f g 2

Figure 7.1: Running example used to discover a process tree (see Section 1.2). In this
chapter various experiments are conducted to see under which circumstances
the ETMd algorithm is able to return a desired model.

166 Application of Process Tree Discovery

replay fitness at the cost of simplicity (because of the →-operator under another
→-operator). Generalization is also reduced because the tree size increased. In-
specting the result at generation 10 (see Figure 7.4d) we see that replay fitness
is further improved, as well as simplicity and generalization. Replay fitness and
generalization are further improved for the best candidate in generation 50 (see
Figure 7.4e), but now at the cost of precision. The result at generation 100 (see
Figure 7.4f) has a perfect score for replay fitness (i.e., 1.000), mainly at the cost

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10
4

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Generation

O
v
e
ra

ll
q
u

a
li

ty

Best overall quality

Average overall quality

Worst overall quality

α-algorithm

Heuristics Miner

State-based region theory

Figure 7.2: Minimum, average and maximum overall quality of the best candidates over
30 runs of ETMd on the running example, all 10,000 generations. This graph
shows that the discovered process models quickly reach a high quality. Fur-
thermore, the quality between different runs of the ETMd algorithm is simi-
lar.

7.1 Performance in the Limit 167

of precision. This is caused by the difference in weights for the quality dimen-
sions. Since replay fitness is weighted twice as much as precision (a weight of
10 versus 5), improving replay fitness at the cost of precision can still improve
the overall quality of the candidate. The final result of the ETMd algorithm on
this event log is shown in Figure 7.5a. This process tree has a higher precision,
at the cost of replay fitness, than the process tree found in generation 100.

0 10 20 30 40 50 60 70 80 90 100

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Generation

O
v
e
ra

ll
q
u

a
li

ty

Best overall quality

Average overall quality

Worst overall quality

α-algorithm

Heuristics Miner

State-based region theory

Figure 7.3: Minimum, average and maximum overall quality of the best candidates over
30 runs of the ETMd algorithm on the running example, first 100 generations.
After 100 generations stable results outperform the α-algorithm, heuristics
miner and state-based region theory results.

168 Application of Process Tree Discovery

→

g×

ef

×

dτ

cba

Overall: 0.9559
f: 0.930 p: 1.000
s: 1.000 g: 0.880

(a) Generation 0 (only initial pop-
ulation creation).

→

g×

ef

∧

dc

bda

Overall: 0.9597
f: 0.937 p: 1.000
s: 1.000 g: 0.863

(b) Generation 1.

→

g×

ef

×

dτ

c→

db

a

Overall: 0.9668
f: 0.956 p: 1.000
s: 0.923 g: 0.809

(c) Generation 2.

→

g×

ef

×

∧

cd

τ

ba

Overall: 0.9854
f: 0.978 p: 1.000
s: 1.000 g: 0.837

(d) Generation 10.

→

g×

fe

×

τb

∧

dc

ba

Overall: 0.9911
f: 0.988 p: 0.998
s: 1.000 g: 0.869

(e) Generation 50

→

g×

fe

∧

c×

b∧

db

a

Overall: 0.9949
f: 1.000 p: 0.986
s: 1.000 g: 0.872

(f) Generation 100

Figure 7.4: Process trees discovered by the ETMd algorithm on the running example in
different generations. The process trees shown are closest to the average
overall quality of all runs.

7.1 Performance in the Limit 169

→

g×

fe

∧

cbd

a

f: 0.995 p: 0.996
s: 1.000 g: 0.886

(a) Final result on running example
without exceptional behavior.

→

g×

fe

×

d∧

×

b∧

db

c

a

f: 0.999 p: 0.996
s: 1.000 g: 0.930

(b) Final result on running example
with exceptional behavior.

Figure 7.5: Results of the ETMd on the running examples. Both process trees balance
the four quality dimensions.

170 Application of Process Tree Discovery

7.1.2 Running Example with Exceptional Behavior

The graph in Figure 7.6 shows the minimum, average and maximum overall
quality over 30 runs for the ETMd applied on the running example with ex-
ceptional behavior. The average overall quality in the first generation is again
0.9557, better than any of the other process discovery algorithms (see Table 6.3).
The overall quality increased to an average of 0.9977 in the final generation.
This is higher than for the running example without exceptional behavior be-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10
4

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Generation

O
v
e
ra

ll
q
u

a
li

ty

Best overall quality

Average overall quality

Worst overall quality

α-algorithm

Figure 7.6: Minimum, average and maximum overall quality of the best candidates over
30 runs of ETMd on the running example with exceptional behavior, all
10,000 generations. The discovered candidates outperform the α-algorithm
(and all other process discovery algorithms, which have an overall quality
below 0.95) in early generations and converge quickly.

7.1 Performance in the Limit 171

cause this event log contains more behavior resulting in a higher generalization
score.

Figure 7.7 shows the overall quality development in the first 100 generations.
The difference between the different runs is bigger than for the running example
without exceptional behavior. The introduced exceptional behavior makes the
observed behavior harder to capture in a process model, therefore the search has
become more difficult. However, after generation 10 a better process model was

0 10 20 30 40 50 60 70 80 90 100

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Generation

O
v
e
ra

ll
q
u

a
li

ty

Overall quality over 30 runs

Best overall quality

Average overall quality

Worst overall quality

α-algorithm

Figure 7.7: Minimum, average and maximum overall quality of the best candidates over
30 runs of ETMd on the running example with exceptional behavior, the first
100 generations. Behavior of the ETMd algorithm is more volatile in early
generations.

172 Application of Process Tree Discovery

already discovered than the best result of the other proces discovery algorithms
(see Table 6.3).

The average process trees for a selection of generations are shown in Fig-
ure 7.8. The process tree in generation 0 is the same as for the running example
without exceptional behavior. However, because of the exceptional behavior the
replay fitness score is reduced to 0.929 (from 0.930). On the other hand, since
there is more observed behavior, generalization increased from 0.880 to 0.962.
Until generation 10 the discovered process trees are similar to the ones discov-
ered for the running example without exceptional behavior. As of generation 50

it can be observed that the ETMd algorithm tries to incorporate the additional
behavior, hence different process trees are discovered. The candidate of gener-
ation 50 for instance allows activity ❞ to be skipped, resulting in high precision
and replay fitness. The best process model in generation 100 however has a
more generic process model, with higher replay fitness at the cost of precision.
This process tree is the same as the final process model found for the running
example without exceptional behavior, as can be seen in Figure 7.5a. However,
for this event log, the process model can be further fine-tuned, increasing both
replay fitness and precision, until the process model is found as is shown in
Figure 7.5b.

7.1 Performance in the Limit 173

→

g×

ef

×

dτ

cba

Overall: 0.9558
f: 0.929 p: 1.000
s: 1.000 g: 0.962

(a) Generation 0 (only initial pop-
ulation creation)

→

g×

ef

c∧

cd

ba

Overall: 0.9572
f: 0.931 p: 1.000
s: 1.000 g: 0.962

(b) Generation 1

→

g×

ef

×

dτ

c→

db

a

Overall: 0.9662
f: 0.954 p: 1.000
s: 0.923 g: 0.887

(c) Generation 2

→

g×

ef

×

∧

dc

τ

ba

Overall: 0.9848
f: 0.976 p: 1.000
s: 1.000 g: 0.949

(d) Generation 10

→

g×

fe

∧

×

→

db

b

c

a

Overall: 0.9927
f: 0.989 p: 1.000
s: 1.000 g: 0.961

(e) Generation 50

→

g×

fe

∧

dbc

a

Overall: 0.9951
f: 0.994 p: 0.997
s: 1.000 g: 0.964

(f) Generation 100

Figure 7.8: Process trees discovered by the ETMd algorithm on the running example with
exceptional behavior in different generations. The process trees shown are
closest to the average overall quality of all runs.

174 Application of Process Tree Discovery

7.1.3 Pareto Front Evolution on Running Example with Ex-
ceptional Behavior

As discussed in Section 6.8.2, instead of weighting the different quality dimen-
sions, the ETMd algorithm is also able to discover a Pareto front of candidates.
We applied the ETMd algorithm, using the same settings as before, on the run-
ning example event log with exceptional behavior. This time, instead of consid-
ering a weighted overall quality, we construct a Pareto front of process trees.

Figure 7.9 shows the development of the size of the Pareto front for the 30

runs up to 10,000 generations. This graph shows that the number of candi-
dates in the Pareto front very rapidly increases in early generations. In later
generations the Pareto front size steadily keeps increasing to on average over
2,000 candidates after 10,000 generations. This indicates that the Pareto front
becomes more detailed, i.e., more intermediate candidates are discovered. The
graph also shows that, especially in early generations, the Pareto front size is
sometimes reduced. This means that candidates are found that dominate can-
didates currently in the Pareto front. Although this results in a reduction of the
size of the Pareto front, the quality of the discovered candidates is improved.

We selected the Pareto front with the size closest to the average size for
further investigation. This Pareto front contains 1,996 candidates. Although the
Pareto front contains a lot of candidates, only a few of these have enough quality
in all quality dimensions to be considered. This is shown in Figure 7.10 which
visualizes the distribution of the almost 2,000 process trees over the values for
the different quality dimensions. The main observation is that although most
candidates have a good replay fitness and precision score, the scores for gener-
alization and simplicity are bad. Most of the candidates with low generalization
or simplicity are ‘bloated’ process trees (see Section 4.3.3), i.e., process trees
that contain a lot of operators that do not contribute to the perceived quality of
the process tree.

Therefore, we post-process the Pareto front to construct a new Pareto front
with the normalized versions (see Section 6.2) of the process trees from the
original Pareto front. Figure 7.12 shows a process tree contained in the original
Pareto front, and the normalized version that is contained in the post-processed
Pareto front. Adding useless nodes, mainly operator nodes with only one child,
improves precision, and the process tree is therefore contained in the Pareto
front. However, the process tree itself is not simple nor generalizing. The re-
sulting process tree after normalization, and re-evaluation of the four quality
dimensions, has the same score for replay fitness. Precision is reduced slightly,
but simplicity and generalization have improved greatly.

7.1 Performance in the Limit 175

The post-processed Pareto front is built by first creating a new empty Pareto
front. To this Pareto front we add the normalized and re-evaluated versions of
all process trees of the original Pareto front. This ensures that all process trees
in the new Pareto front do not contain useless nodes. Applying this process to
the Pareto front originally containing 1,996 candidates results in a Pareto front
containing 74 candidates. The histograms for this Pareto front are shown in Fig-
ure 7.11. The resulting Pareto front has better generalization scores, although

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

500

1,000

1,500

2,000

2,500

3,000

Generation

P
a
re

to
fr

o
n

t
si

ze

Maximum size

Average size

Minimum size

Figure 7.9: Minimum, average and maximum size of the Pareto front over 30 runs of
the ETMd algorithm on the running example with exceptional behavior, all
10,000 generations. Overall the number of candidates in the Pareto front
grows, although between generations the number of candidates might be
reduced.

176 Application of Process Tree Discovery

precision is somewhat reduced.

A visualization of this Pareto front on the quality dimensions of replay fit-
ness, precision and generalization is shown in Figure 7.13. The goal is to dis-
cover a process tree that is positioned in the top-right corner with a bright yellow
color, since this process tree would score perfectly (i.e., 1) on all three quality
dimensions. Although this perfect candidate is not found, several candidates
exist close to this point. A more detailed view of these candidates is shown in
Figure 7.14 which focusses on the top-right grid cell of Figure 7.13. 35 candi-
dates have a score for replay fitness and precision of at least 0.9. This shows that
roughly half of the candidates are located in this section of the Pareto front.

Each candidate provides (slightly) different trade-offs between the three
quality dimensions. Consider for instance the two pink candidates at the top,
far right, which both have (close to) perfect precision. These candidates are
visualized in Figure 7.15a and Figure 7.15d. This shows that, even though the
difference in generalization is marginal, both process trees are contained in the

0 0.2 0.4 0.6 0.8 1
0

500

1,000

1,500

2,000

Replay Fitness

0 0.2 0.4 0.6 0.8 1

Precision

0 0.2 0.4 0.6 0.8 1
0

500

1,000

1,500

2,000

Generalization

0 0.2 0.4 0.6 0.8 1

Simplicity

Figure 7.10: Distribution of the candidates over the quality dimensions in the Pareto
front of 1,996 candidates. Most candidates have high replay fitness and
precision scores but low scores for generalization and simplicity.

7.1 Performance in the Limit 177

Pareto front. When we inspect the two models more closely we can see that the
process tree shown in Figure 7.15a is the process tree that was discovered on
the running example without exceptional behavior (see Figure 7.5a). However,
this process tree does not describe all observed behavior, as is indicated by the
replay fitness score of 0.994. The process with the best precision and perfect
replay fitness is shown in Figure 7.15c. This process tree is however not very
generalizing in the description of the behavior. A process tree with high replay
fitness and precision, and better generalization, is shown in Figure 7.15d.

This experiment shows that constructing a Pareto front returns a (large)
collection of process models to describe the observed behavior. However, not all
candidates in the resulting Pareto front are useful descriptions of the observed
behavior, for instance because many process trees contain unnecessary nodes.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

Replay Fitness

0 0.2 0.4 0.6 0.8 1

Precision

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

Generalization

0 0.2 0.4 0.6 0.8 1

Simplicity

Figure 7.11: Distribution of the candidates over the quality dimensions in the normal-
ized Pareto front containing 74 candidates. Simplicity and generalization
improved while most candidates still have high replay fitness and moderate
to high precision scores. Note that the y-scale changed between this fig-
ure and Figure 7.10, which also contained some candidates with medium
precision scores.

178 Application of Process Tree Discovery

Therefore the resulting Pareto front needs to be post-processed to remove these
unnecessarily large process trees. This results in a smaller but more useful
Pareto front of candidates. The candidates in the Pareto front can be further
inspected and the different trade-offs in the quality dimensions can be evaluated
by the end user.

7.1 Performance in the Limit 179

→

∧

∧

→

a ∧

×

→

×

∧

∧

c

∧

→

d

∧

∧

∧

→

b

×

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

→

d

∧

×

c

c

∧

×

×

→

e

∧

∧

∧

∧

f

g

f: 0.999 p: 0.999
s: 0.291 g: 0.261

(a) Process tree from the unprocessed
Pareto front.

→

a ×

d c ∧

b ×

c ∧

d c

×

f e

g

f: 0.999 p: 0.992
s: 1.000 g: 0.898

(b) Process tree that is normalized, re-
evaluated and added to the post-
processed Pareto front of Figure 7.13.

Figure 7.12: Example of process tree before (a) and after (b) post-processing which nor-
malizes a process tree by removing useless nodes. Replay fitness remains
the same but precision, generalization and simplicity change.

180 Application of Process Tree Discovery

0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

1.0

Replay fitness

P
re

ci
si

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Generalization

Figure 7.13: Visualization of the candidates in the normalized Pareto front. The Pareto
front clearly shows the trade-off between replay fitness and precision. The
×-symbols indicate the four process trees shown in Figure 7.15.

7.1 Performance in the Limit 181

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Replay fitness

P
re

ci
si

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Generalization

Figure 7.14: Visualization of the 35 candidates in the normalized Pareto front with both
replay fitness and precision above 0.9. The fact that many models are still
close together demonstrates that very small trade-offs are made. The ×-
symbols indicate the four process trees shown in Figure 7.15.

182 Application of Process Tree Discovery

→

g×

ef

∧

cbd

a

f: 0.994 p: 1.000
s: 1.000 g: 0.964

(a) Process tree with perfect precision

→

g×

ef

∧

→

∧

cd

a

b

f: 0.994 p: 0.998
s: 1.000 g: 0.965

(b) Process tree with slightly better gen-
eralization than (a)

→

g×

→

×

cfτ

×

eτ

×

bτ

ef

×

→

d×

→

bc

bτ

∧

→

c×

bτ

×

dτ

a

f: 1.000 p: 0.937
s: 1.000 g: 0.801

(c) Process tree with the best precision
for perfect replay fitness.

→

g×

ef

×

→

d×

cτ

∧

×

∧

cd

c

b

c

a

f: 0.999 p: 0.993
s: 1.000 g: 0.822

(d) Better generalization than (c)

Figure 7.15: Examples of process trees from the Pareto front of Figure 7.13 with slightly
different trade-offs between the quality dimensions.

7.2 Random versus Guided Change 183

7.2 Random versus Guided Change

As discussed in Section 4.3 it is important to maintain enough variation in the
population. Furthermore, the search needs to contain both explorative and
exploitative aspects. Although guided operators contribute to the exploitative
aspect of the search, they do not enable exploration of the search space. There-
fore, they might not always be able to find the best possible candidate. This
leads us to believe that random change operators are still required to introduce
the diversity required to be able to discover good quality process trees. In this
experiment we vary the ratio between the random and guided change opera-
tors applied. Figure 7.16 shows the average overall quality of the discovered
candidates for different ratios of random change based on five runs per ratio.

From the graph it can clearly be observed that applying only random change
operations or applying only guided change operations results in lower qual-
ity process trees being discovered. Applying only random change operators
however shows gradual improvement over the generations. When only guided
change operations are applied the growth stabilizes earlier, since guided change
operators include little randomness. Not much (significant) difference can be
observed between applying 25%, 50% or 75% random change operators. Al-
though applying 75% random mutations seems to result in worse candidates in
early generations, this effect is not significant.

The same experiment is run on the ‘building permits - receipt phase’ real
life data set (which is investigated in more detail in Section 7.3). The result-
ing graph is shown in Figure 7.17. This graph shows that the overall quality
of applying only random operators results in significantly worse process trees.
The application of only guided change operators seems to result in good quality
process trees, especially in earlier generations. However, it also quickly reaches
its maximal overall quality, after which it does not show any further improve-
ments. Applying 25%, 50% or 75% random change operators also shows a good
performance and quickly results in good quality process trees. Moreover, these
ratios also show gradual improvement of the overall quality in later generations.

Based on both these experiments we apply a random change operation ratio
of 50% throughout this thesis. Especially for other applications of the ETM
framework, where additional (and initially unknown) quality dimensions are
considered, random change operations are required to construct high-quality
process trees.

184 Application of Process Tree Discovery

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10
4

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Generation

O
v
e
ra

ll
q
u

a
li

ty

Average overall quality over 5 runs per setting

0% random operators

25% random operators

50% random operators

75% random operators

100% random operators

Figure 7.16: Comparison of different ratios of random mutation on the running exam-
ple with exceptional behavior. For each ratio the average over five runs is
taken. The best performance is achieved by a mixture of guided and ran-
dom change behavior.

7.2 Random versus Guided Change 185

0 100 200 300 400 500 600 700 800 900 1,000

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Generation

O
v
e
ra

ll
q
u

a
li

ty

Average overall quality over 5 runs per setting

0% random operators

25% random operators

50% random operators

75% random operators

100% random operators

Figure 7.17: Comparison of different ratios of random change operators on the building
permits event log over 1,000 generations. For each ratio the average over
five runs is taken. The best performance in early generations is achieved
by pure guided change, however a mixture of guided and random change
does not perform significantly worse.

186 Application of Process Tree Discovery

7.3 Building Permits Process - Receipt Phase

The ‘building permits - receipt phase’ event log describes the receipt phase of
a building permits process. It contains 1,434 cases with in total 8,577 events
and 27 different activities. Since the activity names are quite long, they are re-
placed by single letters (and ‘aa’). A translation is shown in Table 7.2. Tasks
have numbers, which indicate a pre-determined order and grouping of activ-
ities. Furthermore, activities ❛ through ❞ are all related to just handling the
confirmation of receipt. It seems that this process is rather detailed with many
checks and loop-backs to fix issues.

The ETMd algorithm was run for 1,000 generations in Pareto front mode,
considering the four quality dimensions of replay fitness, precision, generaliza-
tion and simplicity. The Pareto front was limited to only candidates with at
least a score of 0.6 for replay fitness and precision, a score of at least 0.8 for
simplicity, and to a maximum of 200 candidates. The resulting Pareto front
was post-processed (as described in Section 7.1.3) to contain only process trees
without useless nodes. The final Pareto front contains 104 candidates and is
visualized in Figure 7.18.

The process tree with the best replay fitness is shown in Figure 7.19a. In
order to obtain a high replay fitness, 	- and ∨-operators are introduced. There-
fore precision is low. The process model is not generalizing since many activities
are present multiple times. An observation that can be made is that activity ❧

(Confirmation of receipt) is always executed first. This is however followed by
either no further action or by a very complicated proces.

The process tree with the highest score for generalization is shown in Fig-
ure 7.19b. Despite its high generalization, precision is higher than for the best
replay fitness process tree. The process tree is also small and contains only six
activities. However, replay fitness is low, since many frequent activities are not
included. Again, activity ❧ can be executed first, always followed by activity ❛

(T02 Check confirmation of receipt). Furthermore, activities ❝ (T04 Determine
confirmation of receipt), ❞ (T05 Print and send confirmation of receipt) and ❡

(T06 Determine necessity of stop advice) are often executed together.

A process tree with a good trade-off between replay fitness and precision is
shown in Figure 7.19c. Besides its high scores for replay fitness and precision,
generalization is also high. However, only eight of the 27 activities are included.
Given the high replay fitness score, this indicates that these eight activities occur
very frequent, while the other activities occur less frequently. Again, activity ❧

can be executed first, followed by activities ❛, ❝ and ❞. There exists a loop of

7.3 Building Permits Process - Receipt Phase 187

Table 7.2: Activity codes and corresponding names for the building permits - receipt
phase event log.

Event code Event Name

a T02 Check confirmation of receipt
b T03 Adjust confirmation of receipt
c T04 Determine confirmation of receipt
d T05 Print and send confirmation of receipt
e T06 Determine necessity of stop advice
f T07-1 Draft intern advice aspect 1
g T07-2 Draft intern advice aspect 2
h T07-3 Draft intern advice hold for aspect 3
i T07-4 Draft internal advice to hold for type 4
j T07-5 Draft intern advice aspect 5
k T08 Draft and send request for advice
l Confirmation of receipt
aa T09-1 Process or receive external advice from party 1
m T09-2 Process or receive external advice from party 2
n T09-3 Process or receive external advice from party 3
o T09-4 Process or receive external advice from party 4
p T10 Determine necessity to stop indication
q T11 Create document X request unlicensed
r T12 Check document X request unlicensed
s T13 Adjust document X request unlicensed
t T14 Determine document X request unlicensed
u T15 Print document X request unlicensed
v T16 Report reasons to hold request
w T17 Check report Y to stop indication
x T18 Adjust report Y to stop indication
y T19 Determine report Y to stop indication
z T20 Print report Y to stop indication

activity ❡ (T06 Determine necessity of stop advice), which can be followed by
the sequence of activities ❢ (T07-1 Draft intern advice aspect 1) and ❥ (T07-5
Draft intern advice aspect 5), which seem two related aspects. This is always
followed by activity ♣ (T10 Determine necessity to stop indication) which de-
termines whether the process should be stopped.

188 Application of Process Tree Discovery

We also applied other selected process discovery techniques to the event
log. The results are shown in Figure 7.20. The Petri net discovered by the α-

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Replay fitness

P
re

ci
si

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Generalization

Figure 7.18: Visualization of the candidates in the Pareto front discovered for the build-
ing permits event log, where the color indicates the generalization value.
The ×-symbols mark the three process trees that are visualized in Fig-
ure 7.19. Clearly trade-offs have to be made between replay fitness and
precision. Especially high precision with reasonable replay fitness is hard to
obtain.

7.3 Building Permits Process - Receipt Phase 189

algorithm (see Figure 7.20a) is large and complex. Moreover, the process model
is unsound since the final marking cannot be reached. Therefore, replay fitness
can only be calculated by special replay fitness metrics that can deal with not
reaching a final marking [25]. The resulting replay fitness of 0.372 indicates
that the Petri net discovered by the α-algorithm is not capturing the observed
behavior at all. Moreover, precision is also low because there is a transition (in
the top left) that is unbounded, i.e., this transition can always fire and produce
two tokens each time.

The Petri net translation of the causal net discovered by the Heuristics miner
is shown in Figure 7.20b. This process model allows for a lot of behavior and has
a replay fitness of 0.6626 (calculated on the Petri net using the work of [21,24]).

A process tree with perfect replay fitness is discovered by the Inductive
Miner, as is shown in Figure 7.20c. This however comes at a severe cost of
precision which is reduced to 0.278. The cause of this are the many 	-operators
introduced to describe the different activities. It does however include every
activity that occurs in the event log.

Note that the quality scores of all discovered process models shown in Fig-
ure 7.20 are outside the range of the Pareto front visualized in Figure 7.18. This
indicates that the ETMd algorithm discovered superior process models.

Several observations can be made comparing the process models as discov-
ered by the other process discovery algorithms with those in the Pareto front
as constructed by the ETMd algorithm. First of all the ETMd algorithm is able
to discover proces models with better quality, in all four dimensions. Moreover,
the process models discovered by the ETMd algorithm are semantically correct,
while this is not true for the α-algorithm and Heuristic miner algorithms. Fi-
nally, the translation of the discovered process tree to a BPMN process model
results in a simple and structured process model.

This event log is used again in Chapter 8 where the ETMr algorithm is pre-
sented which is able to incorporate a normative process model.

190 Application of Process Tree Discovery

→

l ×

τ ∧

→

	

×

v n a

×

c b ∨

d ×

o k

τ

×

τ aa f c

d ×

τ ∨

q c

b

×

τ ∨

s ×

r f

∧

u ×

t d

	

→

×

τ v

×

w ∨

o k

x ×

τ n →

y ×

z →

z d

→

	

×

j e ∨

×

i g f

×

aa e h

τ τ

×

τ p

f: 0.996 p: 0.564
s: 1.000 g: 0.747

(a) Process tree on the Pareto front with the best replay fitness value.

∧

→

al

	

τ∨

×

→

pc

d

e

τ

f: 0.843 p: 0.809
s: 1.000 g: 0.976

(b) Process tree on the Pareto front with the
best generalization value.

∧

→

dcal

→

p	

τ→

jf

e

f: 0.935 p: 0.961
s: 1.000 g: 0.946

(c) Process tree on the Pareto front with
a good trade-off between replay fitness
and precision.

Figure 7.19: Process trees from the Pareto front for the building permits event log that
provide different trade-offs between the four quality dimensions. High re-
play fitness is obtained by a big and imprecise process model, where smaller
process models provide a more precise description with lower replay fitness.

7.3 Building Permits Process - Receipt Phase 191

(a) Petri net discovered by the α-algorithm (unsound, replay fitness of 0.372).

(b) Petri net discovered by the Heuristics Miner (unsound, replay fitness of 0.6626)

→

	

τUτ

	

τ×

→

	

τAAτ

	

τNτ

	

τKτ

→

O	

τMτ

→

Y	

τXW

V

→

∧

→

	

τTτ

	

τSτ

∧

	

τQτ

	

τCτ

	

τDτ

×

	

τHτ

	

τRτ

	

τIτ

	

τBτ

	

τAτ

→

	

τFτ

	

τJτ

	

τPτ

	

τGτ

	

τEτ

	

τZτ

L

f: 1.000 p: 0.278
s: 1.000 g: 0.868

(c) Process tree discovered by the Inductive Miner

Figure 7.20: Results of the α-algorithm, Heuristics miner and Inductive Miner on the
‘building permits - receipt phase’ event log. The results of the α-algorithm
and Heuristics miner have low replay fitness scores, while the result of the
Inductive Miner has a very low precision.

192 Application of Process Tree Discovery

7.4 Building Permits Process - Objections and Com-

plaints

In this section we apply the ETMd algorithm on a collection of event logs ob-
tained in the CoSeLoG project. The event logs contain activities related to han-
dling objections and complaints regarding building permits from five municipal-
ities. Basic characteristics of the five ‘WABO’ event logs are shown in Table 7.1
on page 164.

In order to save space and improve readability of the discovered process
models, we use the codes used internally by the municipalities. A translation
from these codes used in the process models to the names of the events is shown
in Table 7.3. The codes in the 500 ranges are related to objections, in the 600

range to preliminary verdicts and in the 700 range to actual court decision. Note
that a complaint or objection might be resolved during the process, so some
cases never actually go to court.

The ETMd algorithm was run using exactly the same settings as before on
each of the five event logs in isolation. The resulting Pareto fronts, after normal-
ization of the candidates, are shown in Figure 7.21. The sizes of the discovered
Pareto fronts vary between 95 candidates for event log WABO1_BB, to 116 can-
didates for event log WABO5_BB.

When we compare the Pareto fronts based on their visualizations, several
observations can be made. The Pareto front for WABO4_BB for instance con-
tains good quality process trees, as is indicated by the many dots close to the
top-right corner. The Pareto fronts of WABO1_BB and WABO2_BB also are close
to the top-right corner, while the Pareto fronts for WABO3_BB and WABO5_BB
are further removed. The Pareto fronts for WABO1_BB and WABO3_BB contain
more process trees with lower generalization than the other three Pareto fronts.
This can be explained by the number of traces in the event logs, where fewer
traces results in a lower generalization score.

From each Pareto front a process model is selected with a good balance of
replay fitness and precision, and a relatively high generalization score. These
selected models are shown in Figure 7.22. A first observation is that the process
models all look significantly different. For event logs WABO1_BB, WABO2_BB
and WABO3_BB activity 770 (Establish decision phase original decree) is added
in parallel to the rest of the process. For event logs WABO4_BB and WABO5_-
BB this activity is modeled in a more specific part of the process. Furthermore,
activities 630 (Appeal set) and 730 (Contested disposal affected) are often exe-
cuted closely together, although the activities seem to have little in common.

7.4 Building Permits Process - Objections and Complaints 193

Table 7.3: Activity codes and corresponding names for the ‘WABO’ event logs.

Event code Event Name

540 Objection to disposal submitted
550 Treat objection
550_1 Treat objection subcase
550_2 Treat objection subcase finished
560 Objection wrapped up
590 Received request for preliminary verdict
600 Treat preliminary verdict
610 Preliminary verdict wrapped up
630 Appeal set
640 Received request for preliminary verdict
670 Treat appeal
680 Appeal wrapped up
700 Higher objection started
730 Contested disposal affected
740 Verdict given by court
760 New decision or new evaluation
765 Phase start 2
766 New decision or new evaluation
770 Establish decision phase original decree
775 Decision phase definite
780_1 Create decree for the purpose of the disposal of the court
780_2 Connect disposal court
780_3 Register date of disposal of court
790 Establish decision phase of the verdict of court

Variations in the quality scores can also be observed, mainly in the scores
for generalization. Although the process models appear to be very different, the
processes should have similarities. Therefore, in Chapter 9 we present the ETMc

algorithm to discover one process model to describe all five event logs.

194 Application of Process Tree Discovery

0.6 0.7 0.8 0.9 1

0.6

0.8

1.0

p
re

ci
si

o
n

WABO1_BB

0.6 0.7 0.8 0.9 1

WABO2_BB

0.6 0.7 0.8 0.9 1

0.6

0.8

1.0

p
re

ci
si

o
n

WABO3_BB

0.6 0.7 0.8 0.9 1

WABO4_BB

0.6 0.7 0.8 0.9 1

0.6

0.8

1.0

Replay Fitness

p
re

ci
si

o
n

WABO5_BB

0.0

0.2

0.4

0.6

0.8

1.0

Generalization

Figure 7.21: Visualization of the candidates in the Pareto front discovered for the WABO
event logs, where the color indicates the generalization value. The ×-
symbols mark the process trees that are visualized in Figure 7.22. Compar-
ing the different Pareto fronts shows that trade-offs between replay fitness
and precision have to made.

7.4 Building Permits Process - Objections and Complaints 195

∨

770 ×

630 540 →

×

755 630 →

670 680

→

540 ∨

550 ∧

590 560

540

×

765 550_1 ∨

730 ×

τ 775 630

f: 0.993 p: 0.927
s: 1.000 g: 0.557

(a) event log WABO2_BB

Figure 7.22: Process trees for each of the event logs with a good balance of replay fitness
and precision with high generalization (other event logs follow on next
page).

196 Application of Process Tree Discovery

∧

770 ×

540 →

540 ×

765 →

∨

590 546

×

∧

630 →

×

765 550_1

550_2

→

560 550 560

730 ×

755 →

740 ×

760 →

755 766

→

630 730

f: 0.978 p: 0.974
s: 1.000 g: 0.282

(b) event log WABO1_BB

∨

770 ×

630 540 →

630 ×

730 →

640 650_1 650_2

	

540 ×

765 730

τ

f: 0.968 p: 0.927
s: 1.000 g: 0.370

(c) event log WABO3_BB

×

630 →

×

∨

770 540

→

630 ×

τ 730

×

τ 765 →

∧

590 →

550 560

∨

730 630

×

τ 770

f: 0.998 p: 0.988
s: 1.000 g: 0.683

(d) event log WABO4_BB

∨

×

770 540 ∧

730 630

×

770 590 765

f: 0.934 p: 0.971
s: 1.000 g: 0.848

(e) event log WABO5_BB

Figure 7.22: (continued) Process trees for each of the event logs with a good balance
between replay fitness and precision with high generalization (WABO2_BB
on previous page).

7.5 Performance of the ETMd algorithm 197

7.5 Performance of the ETMd algorithm

The main advantage of evolutionary algorithms is the great flexibility offered
to obtain high quality solutions under uncertain circumstances. However, this
comes at the cost of performance, since evolutionary algorithms in general are
slower than algorithms tailored towards specific problems [77, 90, 134]. Al-
though evolutionary algorithms are applicable to a wide range of problems,
problem-tailored methods are likely to perform better on specific types of prob-
lem.

As discussed in Section 4.4.1, the evaluation of candidates is usually the
most time-consuming phase of an evolutionary algorithm. This is especially true
for the ETMd and derived algorithms. It is estimated that 99% of all computation
time is spent on calculating the replay fitness score, and in particular obtaining
the optimal alignments between a process tree and the event log. Calculation of
alignments is already heavily optimized in [21], and has been further improved
by exploiting the properties of process trees. The fact that runs of the ETMd

are relatively slow makes it more relevant to understand factors influencing
performance. Therefore we discuss the time required for the ETMd algorithm
to perform the experiments discussed in this chapter.

The experimental results presented in this chapter were obtained by running
the ETMd algorithm on a collection of dedicated machines. Experiments were
run on servers with 8 processor cores each (we did not use the hyperthreading
virtual cores), each clocked at 2 Ghz. Each server contained 12 GB memory and
ran Fedora 14 (64-bit). During the execution detailed statistics of the ETMd al-
gorithm were logged in files. Besides statistics regarding the current population
and Pareto front, performance statistics were also recorded.

Figure 7.23 shows the minimum, maximum and average time in seconds
required per generation for the ETMd algorithm with weighted averages, as
discussed in Section 7.1. Each generation took on average 0.2 seconds for the
running example without exceptional behavior, and 0.4 seconds for the running
example with exceptional behavior. Although execution times are relatively sta-
ble, some generations take longer. The graph of Figure 7.24 shows the time
required to construct a Pareto front for both the running example with excep-
tional behavior, and the building permits process of Section 7.3. The time per
generation steadily increases for the running example. This can be explained
by the fact that the Pareto front was not limited in size or minimum quality of
the process models. Especially big and imprecise process trees increase the time
required to calculate the alignments of the process trees with the event log.
The graph for the building permits process shows that limiting both the size

198 Application of Process Tree Discovery

0 0.2 0.4 0.6 0.8 1

·10
4

0.0

0.2

0.4

0.6

0.8

1.0

Generation

A
v
e
ra

g
e

ti
m

e
(s

e
co

n
d

s)
p
e
r

g
e
n

e
ra

ti
o
n

Without exceptional behavior

Maximal duration

Average duration

Minimal duration

0 0.2 0.4 0.6 0.8 1

·10
4Generation

With exceptional behavior

Maximal duration

Average duration

Minimal duration

Figure 7.23: Performance statistics per generation for the running example. The dura-
tion per generation remains relatively constant.

0 0.2 0.4 0.6 0.8 1

·104

0.0

1.0

2.0

3.0

Generation

A
v
e
ra

g
e

ti
m

e
(s

e
co

n
d

s)
p
e
r

g
e
n

e
ra

ti
o
n

Running example (with exceptional behavior)

Maximal duration

Average duration

Minimal duration

0 200 400 600 800 1,000
0.0

10.0

20.0

30.0

Generation

Building permits

Figure 7.24: Performance statistics per generation while constructing a Pareto front. The
time required per generation steadily increases.

7.5 Performance of the ETMd algorithm 199

and minimum quality of the process trees in the Pareto front does not stabilize
the average time required for a generation. The average time per generation
steadily increases. This real life event log also shows that the time required for
a single generation can vary significantly between generations. While the aver-
age time per generation is 10 seconds, the maximum time observed is almost 28

seconds.
A performance evaluation of the ETMd algorithm while constructing a Pareto

front for the five building permits event logs, as shown in Figure 7.25, shows
that in general the performance is stable over time. The behavior as observed
for the other building permits process (as shown in Figure 7.24) is only seen
for the WABO 4 event log, which peaks to 10 seconds maximum per generation
(not drawn in the chart), while the average is around 0.5 seconds. These graphs
also show that the performance of the ETMd algorithm depends on many fac-
tors. The number of (unique) traces and the number of distinct activities have
the largest influence on performance. This can be seen by comparing the per-
formance of the largest event log, WABO 5, to the other WABO event logs.
The performance of the ETMd algorithm on WABO 5 is more irregular than on
the other WABO event logs. The characteristics of this event log are similar to
the WABO 2 event log regarding size and number of events. Therefore, other
characteristics, such as the underlying process of the event log, have influence
on the performance, where more structured processes result in simpler process
models.

As mentioned before, the performance of the ETMd algorithm mainly de-
pends on the calculation of the alignments. Alignment calculation has already
been heavily optimized and discussed extensively by Adriansyah [21]. Since
alignment calculation is not the topic of this thesis, we do not address this any
further. Therefore, we evaluate the performance of the ETMd algorithm, and
derived algorithms, mainly on the number of generations required.

200 Application of Process Tree Discovery

0 200 400 600 800 1,000
0.0

0.5

1.0

1.5

2.0

T
im

e
(s

e
co

n
d

s)
p
e
r

g
e
n

e
ra

ti
o
n

WABO1_BB

0 200 400 600 800 1,000

WABO2_BB

0 200 400 600 800 1,000
0.0

0.5

1.0

1.5

2.0

T
im

e
(s

e
co

n
d

s)
p
e
r

g
e
n

e
ra

ti
o
n

WABO3_BB

0 200 400 600 800 1,000

WABO4_BB

0 200 400 600 800 1,000
0.0

0.5

1.0

1.5

2.0

Generation

T
im

e
(s

e
co

n
d

s)
p
e
r

g
e
n

e
ra

ti
o
n

WABO5_BB

Figure 7.25: Performance statistics per generation for the WABO event logs. The time
per generation is stable for event logs WABO1_BB through WABO4_BB. For
WABO5_BB the time per generation is higher and less steady.

7.6 Conclusion 201

7.6 Conclusion

Applying the ETMd algorithm on both artificial and real life event logs demon-
strated the importance of considering all four quality dimensions, and commu-
nicating these scores to the user.

In this chapter we applied the ETMd algorithm on both artificial and real life
event logs. We have demonstrated that the ETMd algorithm is able to quickly
discover process models of superior quality in comparison to other process dis-
covery algorithms. This is especially true for real life event logs, as demon-
strated by the results of current process discovery algorithms in Section 7.3.
The analysis also showed that although quality increases quickly in early gener-
ations, improving the discovered process models becomes harder in later gen-
erations.

This chapter also demonstrated the actual process trees contained in a Pareto
front. After post-processing, process trees of high quality remain in the Pareto
front. This also demonstrates that, even for simple artificial event logs, different
process models can describe the observed behavior. We have also shown that
the Pareto front provides additional insights into real life event logs.

The experiments with applying different ratios of random change operators
demonstrated that neither only random, nor only guided, change is a good
idea. Although guided change operators use existing knowledge to improve the
process model, randomness is still required to explore different parts of the state
space.

We also analyzed the performance of the ETMd algorithm in this chapter. We
showed that performance of the ETMd is stable during the run of the algorithm.
An exception is when the ETMd algorithm is constructing a Pareto front without
lower boundaries for the quality of the process models included. In this case
the time per generation steadily increases because the Pareto front contains
more and more low-quality process models which require long computation
times. Therefore limiting the candidates allowed in the Pareto front increases
the performance of the ETMd algorithm.

Chapter 8

Balancing Observed and
Modeled Behavior

In this chapter we address Challenge 5, “Use Existing Knowledge in Process
Discovery”, and present the ETMr algorithm. The system that supports a busi-
ness process is usually configured using a (paper) process model. This means
that for most event logs, a process model exists that also describes the observed
behavior. However, differences between the modeled and observed behavior
might exist. The description might not be accurate since the system might allow
for deviations, or the implementation deviated from the documented process
model. This given process model is currently mainly used for analysis purposes,
e.g. comparing modeled behavior with observed behavior. Current analysis
techniques can compare the given process model to observed behavior by eval-
uating the four quality dimensions of replay fitness, precision, generalization
and simplicity. Furthermore, deviations of the observed behavior from the pro-
cess model can be visualized on both the process model and the observed traces.
However, given a process model and observed behavior, only few techniques ex-
ist that are able to repair this process model using the observed behavior. Much
more insight into the observed deviations of the process model can be provided

Parts of this chapter are based on the work presented in [53]:
J.C.A.M. Buijs, M. La Rosa, H.A. Reijers, B.F. van Dongen, and W.M.P. van der Aalst. Improving
business process models using observed behavior. In P. Cudre-Mauroux, P. Ceravolo, and D. Gaše-
vić, editors, SIMPDA, volume 162 of Lecture Notes in Business Information Processing, pages 44–59.
Springer Berlin Heidelberg, 2012. ISBN 978-3-642-40918-9.

204 Balancing Observed and Modeled Behavior

by, instead of showing where deviations occur, showing how the process model
can be changed to support these deviations. In this chapter we explicitly use
the given process model during process discovery. This idea is also presented as
one of the possible applications of the ETM framework in Section 4.2.2.

In this chapter we present the ETMr algorithm which, given an event log
and one or more process models, is able to repair the given process model(s)
while maintaining a certain similarity to the original process model. Section 8.1
discusses several application scenarios of the ETMr algorithm. This is followed
by a discussion on measuring similarity in Section 8.2. We then apply the ETMr

algorithm on the running example of Section 1.2.1 in Section 8.3. This is fol-
lowed by an application on a case study data set from the CoSeLoG project in
Section 8.4. In Section 8.5 related work in the area of process model repair is
discussed. Section 8.6 concludes this chapter.

8.1 Application Scenarios

Given a process model and an event log, deviations can be visualized on both
the process model and the traces in the event log. However, the process model
can also be updated using the observed behavior, in essence performing pro-

cess model repair using observed behavior. By comparing the modeled and ob-
served behavior, changes can be made to the process model to better describe
the observed behavior. Activities can be added or removed, and relationships
between activities can be changed. By allowing less similarity to the input pro-
cess model(s) a more rigorous repair can be performed, thus increasing the
scores on the four quality dimensions.

When the similarity to the input process model(s) is relaxed, more freedom
is allowed when repairing the process model. However, the resulting process
model is likely to still have a similar overall structure to the original process
model. Moreover, since behavior can be modeled and discovered using many
different process modeling constructs, by considering the input process model
the discovered process model is more similar to the process model as it is known
within the organization. This can also help in adopting and understanding the

discovered process model, since it is similar to the process model known within
the organization.

An additional scenario could be the comparison of a previously discovered
process model with a more current event log. By using the previously discovered
process model as input, this model is repaired using a more recent event log.
This indicates what has changed in the behavior between the two event logs.

8.2 Similarity as the 5th Quality Dimension 205

This can be concept drift, change in laws or customer behavior, etc. Although
this approach does not explain why something changed, or exactly when, it does
show what has changed which aids further investigation.

8.2 Similarity as the 5th Quality Dimension

In order to extend the ETMd algorithm to support process model improvement
we only need to add a metric that measures the similarity of the candidate
process model to the reference process model. Similarity of business process
models is an active area of research [18, 63, 68, 104, 115, 118, 124–126, 187].
We distinguish two types of similarity: behavioral similarity and structural simi-

larity. Approaches focusing on behavioral similarity, e.g. [18, 63, 68, 115, 187],
encode the behaviors described in the two process models to compare using dif-
ferent relations. Examples are causal footprints [68], transition adjacency rela-
tions [187], and behavioral profiles [115]. By comparing two process models
using such relations, it is possible to quantify behavioral similarity in different
ways.

Approaches focusing on structural similarity only consider the graph struc-
ture of models and abstract from the actual behavior. Heuristic approaches
like [124–126] reduce the process model to an order matrix and calculate the
difference from that representation. Most approaches [63, 104, 118] provide a
similarity metric based on the minimum number of edit operations required to
transform one model into another model. An edit is an atomic operation that
inserts or removes either a node or an arc.

Optimal

Process Model

Reference

Process Model

Similarity

 Boundary

Replay

Fitness
Simplicity

GeneralizationPrecision

Candidate

Process Model

Figure 8.1: Similarity as the 5th quality dimension, influencing the other 4 quality di-
mensions.

206 Balancing Observed and Modeled Behavior

Both behavioral and structural similarity approaches first require a suitable
mapping of nodes between the two models. This mapping can be achieved by
combining techniques for syntactic similarity (e.g. using string-edit distance)
with techniques for linguistic similarity (e.g. using synonyms) [63].

The ETMr algorithm however only needs to consider the structural similarity

between candidate process trees and the reference process model. The event log
already captures the behavior that the process model should describe, and the
goal is to improve the process model to better describe the observed behavior.
Recall that the behavior of the reference model with respect to the logs is already
measured by means of three of the four process discovery quality dimensions
(replay fitness, precision and generalization). Hence, we only use structural
similarity to quantify the fifth dimension.

Since we use process trees as our internal representation, similarity be-
tween two process trees can be expressed by the tree edit distance for ordered
trees [147]. The tree edit distance indicates the minimum number of simple
edit operations (add, remove and change) that need to be made to nodes in
one tree in order to obtain the other tree. For process trees, each edit adds, re-
moves or changes one node in the tree. Adding a node can for instance mean to
add a node as a child of an existing node, or in between two existing nodes (in
between a parent and its child). Removing a single node from the tree counts
as one edit, hence removing a subtree counts as removing all individual nodes
in that subtree. Furthermore, the type of a node can be changed, which also
counts as one edit.

In the case of a weighted overall quality, the other four quality metrics are
normalized to values between 0 and 1. Therefore we need to do the same for

→

×

cb

a

(a) Reference tree.

→

×

c

a

Qsim: 0.889

1 edit

(b) Removing b.

→

×

cb

∧

da

Qsim: 0.833

2 edits

(c) Adding d in
parallel to a.

∧

×

cb

a

Qsim: 0.900

1 edit

(d) Change root
to ∧.

Figure 8.2: Examples of possible edits on a tree (a) and respective similarities.

8.3 Application to Running Example 207

the edit distance. Thus, the similarity, using the edit distance Qsim, is calculated
as follows:

Qsim = 1− #edits

#nodes in reference model+#nodes in candidate
(8.1)

Hence, a similarity score of 1.000 means that the process model is the same
as the reference model. In case the similarity score is 0.000, this means that
there was no overlap whatsoever between the two process trees. Please note
that this is an extreme case, and in general change operations prevent this score
(since one change is equivalent to adding and removing one node). In case the
ETMr algorithm constructs a Pareto front, the number of edits is used instead of
the normalized edit distance.

Figure 8.2 shows examples for each of the three edit operations. The ref-
erence tree is shown in Figure 8.2a. Figure 8.2b shows the result of deleting
activity ❜ from the tree. This leaves the ×-operator with only one child. The
removal of activity ❜ from the tree results in an edit distance of 1, and hence the
resulting similarity is 1− 1

5+4
= 0.889.

The process tree shown in Figure 8.2c has activity ❞ added in parallel to
activity ❛. This results in two edits since a new ∧-operator node needs to be
added, including a leaf for activity ❞. The similarity of 0.833 is lower than when
part of the tree is deleted, since two nodes have been added. Finally, changing
a node as shown in Figure 8.2d, where the root →-operator is changed into an
∧-operator, only requires 1 edit operation and in this case results in a similarity
of 0.900.

We use the Robust Tree Edit Distance (RTED) algorithm [147] to calculate
the edit distance between two ordered trees. The RTED approach first computes
the optimal strategy to use for calculating the edit distance. It then calculates
the edit distance using that strategy. Since the overhead of determining the
optimal strategy is minimal, this ensures the best performance and memory
consumption, especially for larger trees. However, it is important to realize that
our approach is not limited to the RTED algorithm, any similarity notion can be
used. The only requirement is that this new metric used to express the similarity
notion adheres to the metric requirements as discussed in Section 4.3.4.

208 Balancing Observed and Modeled Behavior

8.3 Application to Running Example

Throughout this section we re-use the running example of Section 1.2.1 to ex-
plain our approach. We assume that next to the event log, shown in Table 8.1,
there is also a process model known within the organization, as is shown in
Figure 8.3. The organization wants to know how this proces model should be
changed to better reflect the recorded behavior.

The process model of Figure 8.3 describes the following process flow. When
a potential customer fills in a form and submits the request from the website,
the process starts by executing activity ❛ which notifies the customer of the
receipt of the request. Next, according to the process model, there are two
ways to proceed. The first option is to start with checking the credit (activity ❜)
followed by calculating the capacity (activity ❝), checking the system (activity
❞) and rejecting the application by executing activity ❢. The other option is
to start with calculating the capacity (activity ❝) after which another choice
is possible. If the credit is checked (activity ❜) then finally the application is
rejected (activity ❢). Another option is the only one resulting in executing ❡,
concerned with accepting the application. Here activity ❞ follows activity ❝, after
which activity ❜ is executed, and finally activity ❡ follows. In all three cases the

Table 8.1: The event log

Trace #

a b c d f g 38
a b d c f g 26
a b d c e g 12
a b c f g 8
a b c d e g 6
a d c b f g 4
a c d b f g 2
a c b e g 1
a d b c f g 1
a d b c e g 1
a c b f g 1

→

g×

→

×

→

fb

→

ebd

c

→

fdcb

a

f: 0.885 p: 1.000
s: 1.000 g: 0.671

Figure 8.3: Process tree as known within
the company.

8.3 Application to Running Example 209

process ends with activity ❣, which notifies the customer of the decision made.
However, the observed behavior, as is recorded in the event log shown in

Table 8.1, deviates from this process model. The event log contains 11 different
traces whereas the original process model only allows for 3 traces. The modeled
and observed behavior thus differ significantly. To demonstrate the effects of
considering the similarity between process trees, we run the ETMr algorithm on
the example data shown in Table 8.1 and Figure 8.3. We construct a Pareto front
of process models where the number of edits applied on the reference process
model is used as the fifth quality dimension.

The ETMr algorithm constructed a Pareto front containing 573 candidates
in 10,000 generations. Figure 8.4 shows the distribution of the process trees
over the quality dimensions. The maximum number of edits applied to one of
the candidates is 21. In general between 3 and 14 edits are applied. A two-
dimensional view on the Pareto front is shown in Figure 8.5 where the trade-off
between replay fitness and precision is shown. The colors indicate the number
of edits applied. This demonstrates that most candidates have very high scores
for precision and replay fitness. Views filtering different ranges of edits applied
are shown in Figure 8.6. This demonstrates that applying only one edit already
can improve the process tree significantly, considering that the normative pro-
cess tree has a perfect precision and a score of 0.885 for replay fitness. Allowing
more edits increases the quality of the process tree with regard to the original
four quality dimensions. As can also be observed in Figure 8.4, most process
trees have between 3 and 14 edits applied.

Figure 8.7 shows a selection of three process models from the Pareto front.
The process tree shown in Figure 8.7a shows the process tree with the best
replay fitness score, while maintaining perfect precision. This process tree can
be obtained by applying 11 edits to the normative process tree. By applying 11

different edits to the normative process tree the model shown in Figure 8.7b
can be obtained with perfect replay fitness, while still scoring high on precision.
The process tree with the most edits is shown in Figure 8.7c. This process tree
does not score best in any of the individual quality dimensions but provides a
good trade-off between replay fitness and precision.

A side-effect of the required similarity is that the process tree of Figure 8.7c
contains many useless nodes, which cannot be removed without increasing the
edit distance. However, not all useless nodes in this process tree are present
in the original process model. By adding useless nodes precision is improved
since the fraction of escaping edges is reduced. Normalizing the process tree
is not possible since removing certain useless nodes reduces the similarity with
the reference model. Therefore we use the non-normalized Pareto front in this

210 Balancing Observed and Modeled Behavior

chapter.

0 0.2 0.4 0.6 0.8 1
0

200

400

600

Replay Fitness

0 0.2 0.4 0.6 0.8 1

Precision

0 0.2 0.4 0.6 0.8 1
0

200

400

600

Generalization

0 0.2 0.4 0.6 0.8 1

Simplicity

0 5 10 15 20
0

200

400

600

Number of Edits

Figure 8.4: Distribution of the candidates over the quality dimensions in the Pareto front
of 573 candidates for the running example.

8.3 Application to Running Example 211

0.75 0.8 0.85 0.9 0.95 1

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Replay fitness

P
re

ci
si

o
n

0 2 4 6 8 10 12 14 16 18 20

Number of Edits

Figure 8.5: Visualization of the Pareto front of process trees discovered by the ETMr

algorithm on the running example event log.

212 Balancing Observed and Modeled Behavior

0.8 0.9 1

0.7

0.8

0.9

1.0

p
re

ci
si

o
n

1 edit

0.8 0.9 1

2 edits

0.8 0.9 1

0.7

0.8

0.9

1.0

p
re

ci
si

o
n

3-5 edits

0.8 0.9 1

5-10 edits

0.8 0.9 1

0.7

0.8

0.9

1.0

Replay Fitness

p
re

ci
si

o
n

10-14 edits

0 5 10 15 20

Number of Edits

0.8 0.9 1

Replay Fitness

14-21 edits

Figure 8.6: Visualizations of the Pareto front discovered by the ETMr algorithm on the
running example, filtered by the number of edits allowed.

8.3 Application to Running Example 213

→

g×

e→

f×

τb

×

∧

cd

c

ba

f: 0.992 p: 1.000
s: 1.000 g: 0.858
Nr. edits: 11

(a) Process tree with best replay fitness
while maintaining perfect precision, re-
quiring 11 edits.

→

g×

e→

f

∧

×

c∧

dc

b

a

f: 1.000 p: 0.990
s: 0.929 g: 0.809
Nr. edits: 11

(b) Process tree with perfect replay fitness,
requiring 11 edits.

∧

∧

→

a ×

→

∧

b ∧

∧

∧

d ∧

×

c

×

→

f

e

→

b c ∧

f

g

f: 0.999 p: 0.998
s: 0.640 g: 0.529
Nr. edits: 21

(c) Process tree with the most edits, 21,
resulting in a good balance between
replay fitness and precision, but with
many useless nodes.

Figure 8.7: Process trees discovered while maintaining similarity with the normative
model for the running example.

214 Balancing Observed and Modeled Behavior

8.4 Case Study

One of the municipalities participating in the CoSeLoG project (see Section 1.4)
implemented the process for receiving permits using a business process manage-
ment (BPM) system. The BPM system was configured using a process model.
The municipality is interested in comparing the described behavior with the ob-
served behavior. The process tree representation of the process model used to
configure the BPM system is shown in Figure 8.8. Activities have been relabeled
to letters for readability, a translation is provided in Table 7.2 on page 187. The
process model foresees that activity ❧ (Confirmation of receipt) is executed first,
followed by a complicated process, which includes loops, handling different as-
pects. The normative process model allows for improvements in both the replay
fitness and precision quality dimensions.

The obtained event log contains 1,434 cases and 8,577 events representing 27

activities. The event log describes the process for the receipt phase of building

→

l ∧

→

	

e ∨

→

f g h i j

k

τ

p ×

τ →

	

→

	

r s τ

t

s τ

u

→

v 	

→

	

w x τ

y

x τ

z

→

	

c b τ

d

f: 0.841 p: 0.884
s: 1.000 g: 0.766

Figure 8.8: Process tree used as the normative model for the case study application of
the ETMr algorithm. The meaning of the letters is defined in Table 7.2 on
page 187.

8.4 Case Study 215

permits. It consists of activities for notifying the applicant of the receipt of their
request, but also activities for creating, testing and finalizing documents. Due to
space restrictions, the activities are relabeled to single letters (and ‘aa’). A more
detailed discussion of the process, and an application of the ETMd algorithm on
the same event log, can be found in Section 7.3.

The ETMr algorithm is run for 10,000 generations to construct a Pareto front
that was limited to 200 process trees and scores of at least 0.6 for replay fitness,

0 0.2 0.4 0.6 0.8 1
0

50

100

Replay Fitness

0 0.2 0.4 0.6 0.8 1

Precision

0 0.2 0.4 0.6 0.8 1
0

50

100

Generalization

0 0.2 0.4 0.6 0.8 1

Simplicity

0 50 100 150
0

50

100

Number of Edits

Figure 8.9: Distribution over the quality dimensions of 200 candidates in the Pareto front
for the case study.

216 Balancing Observed and Modeled Behavior

precision and simplicity. The distribution of the process trees over the values for
the different quality dimensions is shown in Figure 8.9. This demonstrates that
most process trees have high replay fitness. At most 141 edits have been applied
to a process tree, which results in a process tree with little resemblance to the
reference process model. Relatively more process trees have between 30 and 40

edits applied than other edit ranges.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Replay fitness

P
re

ci
si

o
n

0 20 40 60 80 100 120 140

Number of Edits

Figure 8.10: Visualization of the Pareto front of process trees discovered by the ETMr

algorithm on the case study event log.

8.4 Case Study 217

The Pareto front projected on the two dimensions of replay fitness and pre-
cision is shown in Figure 8.10, where the color indicates the number of edits
applied. This visualization shows that balancing replay fitness and precision
appears to be difficult for this event log.

Figure 8.11 shows the different Pareto fronts for different edit ranges. This
demonstrates that, especially for up to 50 edits, the Pareto front moves towards
both better replay fitness and better precision. Process trees with 50 or more
edits applied seem to mainly improve on replay fitness, instead of precision.

A selection of process trees from the Pareto front is shown in Figure 8.12.
When allowing at most 10 edits, as is shown in the filtered Pareto front at the
top-left of Figure 8.11, less improvements can be made. A process tree with at
most 10 edits, that provides a good tradeoff between replay fitness and preci-
sion, is shown in Figure 8.12a. This process model is mainly improved by adding
activity ❛ (T02 Check confirmation of receipt) next to activity ❧ (Confirmation
of receipt) and removing a big part of the ‘redo’ part of the leftmost 	-operator,
all of which was done in 7 edits. Applying these edits improved replay fitness
from 0.841 to 0.930 and improved precision from 0.884 to 0.898. The nodes on
the left-hand side of the model, in the loop with ❡, for instance remain after
removing parts of the process tree and become the two useless nodes of the
process model. When removing these two useless nodes the resulting process
model shows many similarities with the normative process model, while replay
fitness and precision are significantly improved.

The process tree with the best replay fitness given perfect precision is shown
in Figure 8.12b. By applying 39 edits the process model is reduced in size mak-
ing it more precise and significantly more general, at the cost of replay fitness.
A good trade-off between replay fitness and precision can be obtained within 49

edits of the normative process model, as is shown in Figure 8.12c. This process
tree also demonstrates that useless nodes are not removed since it might in-
crease the edit distance. Obtaining a perfect replay fitness score requires 92 ed-
its on the normative model, resulting in the process tree shown in Figure 8.12d.
These process trees demonstrate that the normative model does not describe all
observed behavior and requires quite some modification for it to do so.

This case study demonstrates that the Pareto front of (repaired) process trees
discovered by the ETMr algorithm provides several insights into the relationship
between the modeled and observed process. By providing process models with
different gradations of change applied, the municipality is able to investigate
how the process as they know it is actually executed. For instance, it became
clear that by applying seven edits, the process model can be significantly re-
paired based on the observed behavior. Many more repairs, up to 150, can be

218 Balancing Observed and Modeled Behavior

performed to improve the process model to better reflect the observed behav-
ior. Moreover, the Pareto front, by applying several filters, provides a way to
investigate several repaired process models.

8.4 Case Study 219

0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1.0

p
re

ci
si

o
n

1-10 edits

0.6 0.7 0.8 0.9 1

10-20 edits

0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1.0

p
re

ci
si

o
n

20-30 edits

0.6 0.7 0.8 0.9 1

30-40 edits

0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1.0

Replay Fitness

p
re

ci
si

o
n

40-50 edits

0.6 0.7 0.8 0.9 1

Replay Fitness

50-150 edits

Figure 8.11: Visualization of the Pareto front filtered by the number of edits allowed.

220 Balancing Observed and Modeled Behavior

→

→

l a

∧

→

	

e ∨

→

f

τ

p ×

τ →

	

→

	

r s τ

t

s τ

u

→

v 	

→

	

w x τ

y

x τ

z

→

	

c b τ

d

f: 0.930 p: 0.898
s: 0.932 g: 0.762
Nr. edits: 7

(a) Process tree with less than 10 edits but
still a good balance between replay fit-
ness and precision.

→

∧

→

d×

b×

a

→

pe

l

f: 0.812 p: 1.000
s: 0.917 g: 0.880
Nr. edits: 39

(b) Process tree with best replay fitness
given perfect precision.

×

∧

→

	

e ×

→

×

×

j h

∧

×

f k

×

×

×

i g

τ

×

→

p

∧

→

l ×

→

	

→

a c

τ τ

d

→

l

f: 0.956 p: 0.954
s: 0.658 g: 0.597
Nr. edits: 49

(c) Process tree with a good trade-off be-
tween replay fitness and precision.

∧

→

l 	

→

×

τ a

×

∧

τ

c

b τ

×

τ d

→

	

×

d ×

→

j

m

×

τ

×

×

×

h →

aa

∨

×

×

e n

×

g →

i

∨

k ∧

o

f

τ

×

p τ

×

×

×

	

→

	

×

×

w y

v

×

×

τ

x

τ

×

y z e

r τ

τ

×

	

×

	

→

×

q ×

s

→

×

→

×

τ

∧

r

τ τ

×

→

∧

∧

×

t τ

×

u τ

τ

f: 1.000 p: 0.608
s: 0.689 g: 0.547
Nr. edits: 92

(d) Process tree with perfect replay fitness.

Figure 8.12: Different process trees selected from the Pareto front discovered by the
ETMr algorithm on the case study.

8.5 Related Work 221

8.5 Related Work

Only a few approaches exist that consider similarity in the context of process
discovery. Several approaches exist that consider similarity between process
models, without the use of an event log.

Li et al. [124–126] discuss how a reference process model can be discovered
from a collection of process model variants. In their heuristic approach they
consider the structural distance of the discovered reference model to the origi-
nal reference model as well as the structural distance to the process variants. By
balancing these two forces they make certain changes to the original reference
model to make it more similar to the collection of process model variants. Com-
pared to our approach, here the starting point is a collection of process variants,
rather than an event log.

An approach aiming to automatically correct errors in an unsound process
model (i.e., a process model affected by behavioral anomalies) is presented by
Gambini et al. [86]. Their approach considers three dimensions: the structural
distance, behavioral distance and ‘badness’ of a solution with respect to the un-
sound process model. The ‘badness’ dimension indicates the ability of a solution
to produce traces that lead to unsound behavior. The approach uses simulated
annealing to simultaneously minimize all three dimensions. The edits applied
to the process model are aimed at correcting the model rather than balancing
the four quality dimensions used in process discovery.

Within the area of process mining there currently is a gap between process
discovery and conformance analysis. Conformance analysis, such as the work of
Adriansyah et al. [21,24,25], detects conformance of, and deviations from, ob-
served behavior compared to modeled behavior. When deviations are detected,
these are visualized on either the process model or the observed behavior. How-
ever, no fixes are suggested to improve the process model using the observed
behavior. Vice versa, only a few process discovery algorithms exist that are able
to incorporate a given process model and improve or repair it.

The work of Fahland et al. [79, 80] provides a first integrated attempt at
repairing process models based on alignments between the process model and
event log. In their approach, a process model needs repair if the observed be-
havior cannot be replayed by the process model. This is detected by using the
alignment between the process model and the observed behavior. The detected
deviations are then repaired by extending the process model with sub-processes
nested in a loop block. These fixes are applied repeatedly until a process model
is obtained that can perfectly replay the observed behavior. This approach ex-
tends the original process model’s behavior by adding new fragments that en-

222 Balancing Observed and Modeled Behavior

able the model to replay the observed behavior. As a post-processing step some
infrequently used parts of the process model can be removed to improve preci-
sion. The main disadvantage of this approach is that mainly the replay fitness
quality dimension is considered when repairing mis-alignments. Although post-
processing steps are introduced to improve precision, these steps do not always
succeed. Moreover, since repairs mainly add transitions to the model, by defi-
nition the model can only become more complex. It is unclear how to correctly
balance all five quality dimensions when extending the work in [79,80].

8.6 Conclusion

In this chapter we presented the ETMr algorithm which extends the ETMd algo-
rithm to consider a given process model. The main goal is to mediate between
the observed behavior and some a priori model (e.g. a reference model). The
desired trade-off is achieved by adding an additional quality dimension that
evaluates the edit distance between the provided process model and the discov-
ered process model. We applied the ETMr algorithm on both a running example
and a real life event log. By constructing a Pareto front, the amount of change
applied to the process model can be varied to investigate how much change
should be applied to better describe the observed behavior.

Chapter 9

Discovering Configurable
Process Models

In this chapter we address Challenge 6: “Describe a family of processes”. Dif-
ferent organizations or units within a larger organization often execute similar
business processes. Municipalities for instance all provide similar services while
being bound by government regulations. Large car rental companies like Hertz,
Avis and Sixt have offices in different cities and airports all over the globe.
Often there are subtle (but sometimes also striking) differences between the
processes handled by these offices, even though they belong to the same car
rental company. To be able to share development efforts, analyze differences,
and learn best practices across organizations, we need configurable process mod-

els that are able to describe a family of process variants rather than one specific
process [93,116,154].

Given a collection of event logs that describe similar behavior we can dis-
cover a process model using existing process mining techniques [5]. However,
existing techniques are not tailored towards the discovery of a configurable pro-
cess model based on a collection of event logs. In this chapter, we present
and compare four approaches to mine configurable models. The first two ap-

Parts of this chapter are based on the work as presented in [51]:
J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Mining configurable process models
from collections of event logs. In F. Daniel, J. Wang, and B. Weber, editors, BPM, volume 8094 of
Lecture Notes in Computer Science, pages 33–48. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-
40175-6.

224 Discovering Configurable Process Models

proaches use a combination of existing process discovery and process merging
techniques. The third approach uses a two-phase approach where first a process
tree is discovered which is then configured. The fourth approach uses a new,
integrated approach, implemented in the ETMc algorithm.

9.1 Configurable Process Models

A configurable process model describes a family of process models, i.e., variants
of the same process. A configurable process model contains additional options
to configure, or individualize, the process model to one of the process model
variants. Two different mechanisms can be used: restriction and extension of
behavior. A configurable process model notation can restrict the behavior by
removing activities or activity combinations. The second mechanism is to allow
extensions of the configurable process model, i.e., adding behavior, to obtain the
process model variant. Some configurable process modeling notations support
both mechanisms, and all notations allow for restricting the behavior [116]. In
this section we briefly discuss three configurable process model notations: C-
EPCs, C-YAWL and PROVOP, which extends BPMN. A more extensive discussion
on configurable process model notations can be found in [116].

Configurable EPCs (C-EPCs) [70,71,117,154] extend the EPC language (see
Section 3.2.3). An example C-EPC is shown in Figure 9.1. C-EPCs restrict the
described behavior by applying configuration options. In C-EPCs configurable
control-flow connectors can be configured to be an equally or more restrictive
connector. If a function (i.e., activity) is made configurable then this function
can be set as activated (on), deactivated (off) or allowed to be skipped. In
the example of Figure 9.1 for instance, functions ❛, ❡ and ❢ are configurable,
as is indicated by the thicker borders. Furthermore, the XOR connector is also
configurable and allows one or more of its outgoing paths to be blocked. Addi-
tionally, requirements can be specified which restrict the possible configurations
allowed. Guidelines can also be specified which suggest configuration settings,
for instance that if either activity ❡ or ❢ is on, the other should also be on.

The C-YAWL notation [14, 93], which is an extension of the YAWL notation
(see Section 3.2.2), allows YAWL models to be configured. Process models can
be customized by applying two operators to process model activities: hiding

and blocking. Both operators restrict the behavior of the process model and are
applied on the ports of activities. A port is a combination of allowed incoming
or outgoing edges for a particular activity. Hiding results in the execution of
that activity to become unobservable, but the path to the activity is in is still

9.1 Configurable Process Models 225

possible. Blocking disables the execution of the activity, which means that the
path the activity is in cannot be taken anymore. An example of a C-YAWL model
with two configurations applied is shown in Figure 9.2. A green arrow indicates
that no restriction is configured. Hiding is indicated by an orange arrow, while
blocking is indicated by a stop-sign. In the example of Figure 9.2 the process
model variant for the travel agency only allows the activity ❜♦♦❦ r❡❞✉❝t✐♦♥

1

AND

a b

AND

2

c

XOR AND

3 4 5

d e f

6 7 8

Configurable function Normal function

Configurable connector

Normal connector

Requirement 1:

a=OFF⇒
XOR1 6=SEQ3

Guideline 1:

e=ON⇔ f=ON

Figure 9.1: Example of a configurable process model in C-EPC notation (adapted
from [154]).

226 Discovering Configurable Process Models

❝❛r❞ to be executed if ❜♦♦❦ tr❛✐♥ t✐❝❦❡t is also enabled. This is indicated
by blocking the outgoing ports ❜ and ❜✱❝ of activity ❘❡❝❡✐✈❡ ♦r❞❡r, while the
outgoing port ❛✱❜ is not blocked. For the internet shop the activity s❡❧❡❝t

♣❛②♠❡♥t ♠❡t❤♦❞ can be skipped since only credit card payments are accepted.
Several extensions to the BPMN notation exist that introduce configuration

options [98, 112, 113, 140, 160]. Figure 9.3 shows an example of one of these
approaches, the PROVOP (PROcess Variants by OPtions) approach [98]. Within
the PROVOP approach four operations are defined: delete, insert, move and
modify. Applying the delete operation removes part of the process model, and
thus restricts the allowed behavior. Insertion extends the behavior of the process
model by adding predefined process model fragments at specified locations. The
move operation allows a specific process model part to move to one of several
other predefined locations in the process model. Finally, the modify operation
allows attributes of model elements to change, such as the role assigned to an
activity.

Restricting behavior is common across all configurable process modeling no-
tations. However, only the C-EPC notation allows for operator downgrading,
which also limits behavior. In the next section we propose to extend process
trees by allowing for the restriction of the behavior in two ways: by removing
parts of the process tree and by downgrading operators.

9.1 Configurable Process Models 227

Figure 9.2: Examples of configurable process models in C-YAWL notation (from [93]).

Figure 9.3: Example of a configurable process model in PROVOP notation (from [98]).

228 Discovering Configurable Process Models

9.2 Configurable Process Trees

In this section we extend the process tree notation to configurable process trees
such that a configurable process tree describes a family of process trees. By
applying a configuration, an individualized process tree is obtained. Each node
in the configurable process tree contains a configuration point for each configu-
ration. Each configuration point can be set to a configuration option, which can
be blocked or hidden, and operator nodes can be downgraded to another opera-
tor type. By applying all configurations options for all configuration points of a
specific configuration to a configurable process tree, an individual process tree
is obtained.

Hiding and blocking work in a similar way as in the C-YAWL notation but
on nodes instead of ports. Hiding makes the node unobservable and in essence
replaces it with a τ-node. If a node is blocked, the path leading to that ac-
tivity cannot be taken anymore. In case of blocking, several situations can be
distinguished, which are visually explained in Figure 9.4:

1. In case the parent of the blocked node is an ×- or ∨-operator:

(a) If the blocked node is the last remaining child, then the parent itself
is also blocked (Figure 9.4b and Figure 9.4d).

(b) Otherwise, the blocked node is removed from the parent (Figure 9.4a
and Figure 9.4c).

2. In case the parent of the blocked node is an →- or ∧-operator, that operator
is also blocked, since it enforces the execution of all of its children (see
Figure 9.4e and Figure 9.4f).

3. In case the parent of the blocked node is an 	-operator:

(a) If the blocked node is the ‘do’ or ‘exit’ child, then the parent is also
blocked (see Figure 9.4g and Figure 9.4h).

(b) If the blocked node is the ‘redo’ child, then the 	 parent is replaced
by an →-operator with the ‘do’ and ‘exit’ of the loop node as children
(see Figure 9.4i).

4. In case the blocked node is the root node then the root is replaced by a
τ-node since the process tree does not allow for any behavior (see Fig-
ure 9.4j).

9.2 Configurable Process Trees 229

×

ba [B]

×

a

(a) Blocking a child of a ×-operator.

×

a [B]

×

a

[B]

(b) Blocking the only child of a ×-operator.

∨

ba [B]

∨

a

(c) Blocking a child of a ∨-operator.

∨

a [B]

∨

a

[B]

(d) Blocking the only child of a ∨-operator.

→

ba [B]

→

ba

[B]

(e) Blocking a child of a →-operator.

∧

ba [B]

∧

ba

[B]

(f) Blocking a child of a ∧-operator.

	

cba[B]

	

cba

[B]

(g) Blocking the ‘do’ child of a 	-operator.

	

cba [B]

	

cba

[B]

(h) Blocking the ‘exit’ child of a 	-operator.

	

cba

[B]

→

ca

(i) Blocking the ‘redo’ child of a 	-operator.

?

. . .

[B]

τ

(j) Blocking the root of a process tree.

Figure 9.4: Effects of blocking nodes in a process tree

230 Discovering Configurable Process Models

Since blocking a node can have an effect higher up in the process tree, the
configurations have to be applied recursively.

Additionally we allow for operators to be downgraded following the down-
grade hierarchy shown in Figure 9.5. By downgrading an operator, the behavior
of the operator is restricted to a subset of the initially possible behavior. The ∨-
operator for instance can be downgraded to an ∧- (forcing all children to be
executed), ×- (only allowing for one child to be executed), and a →-operator
(executing all children in a particular order). However, since in one configura-
tion the order of the children might be different than in another, the ←-operator,
representing a reversed sequence, is added which executes the children in the re-
versed order, i.e., from right to left. Similar to the ∨, an ∧ can be downgraded
to an →- or ←-operator.

An example of operator downgrading is shown in Figure 9.6 where an ∨-
operator is downgraded to a →-operator. Configuration points are visualized
using a gray callout, pointing at the node to which it belongs. Within the call-
out the configuration options set for each configuration are displayed in a se-
quence. The process tree of Figure 9.6 contains one configuration point and one
configuration, set to the →-operator.

9.3 Four Different Approaches

We consider four approaches to discover a configurable process tree from a
collection of event logs. These four approaches are shown in Figure 9.7.

Approach 1, as is shown in Figure 9.7a, applies process discovery on each in-
put event log to obtain the corresponding process model. Then these processes
models are merged using model merge techniques. This approach was first pro-
posed in [92]. We execute this approach by applying the ETMd on each of the

∨

×∧

←→

Figure 9.5: Hierarchy of operator
downgrade options.

∨

cba

[→]

→

cba

Figure 9.6: Example of downgrading an ∨-
operator to an →-operator.

9.3 Four Different Approaches 231

Step 2b:

Process

Configu-

ration

event

log 1

event

log 2

event

log n

Configurable

Process

model

C1

C2

Cn

...

Step 2a:

Process

Model

Merging

Step 1:

Process

Mining

ETMd

Process

model 1

Process

model 2

Process

model n

(a) Approach 1: Merge individually discovered process models

Step 1c:

Process

Individual-

ization

event

log 1

event

log 2

event

log n

Common

Process

model

C1

C2

Cn

...

Step 1b:

Process

Mining

EMTd

Step

1a:

Merge

Event

Logs

Merged

event log

Process

model 1

Process

model 2

Process

model n

Step 1d:

Process

Model

Merging

Step 2:

Process

Configu-

ration

Configurable

Process

model

(b) Approach 2: Merge similar discovered process models

Step 2:

Process

Configu-

ration

event

log 1

event

log 2

event

log n

Configurable

Process

model

C1

C2

Cn

...

Step

1b:

Process

Mining

ETMd

Step

1a:

Merge

Event

Logs

Merged

event log

(c) Approach 3: First discover a single process model
and then discover configurations

event

log 1

event

log 2

event

log n

Configurable

Process

model

C1

C2

Cn

...

Step 1&2:

Process

Mining

&

Process

Configuration

ETMc

(d) Approach 4: Discover pro-
cess model and configura-
tions at the same time

Figure 9.7: Four approaches to creating a configurable process model from a collection
of event logs.

232 Discovering Configurable Process Models

input event logs and merging the resulting process trees using the technique
presented in [161].

Since the process models of the first approach are discovered independently
of each other, they might differ significantly, hence merging them correctly is
difficult. Therefore we present Approach 2 as an improvement of the previous
approach. The overall idea is shown in Figure 9.7b. From the merged input
event logs first one process model is discovered that describes the behavior re-
corded in all event logs. Then the single process model is taken and individu-
alized for each event log using the ETMr algorithm as discussed in Chapter 8.
In the next step these individual process models are merged into a configurable
process model using the approach of [161]. By making the individual process
models more similar, merging them into a configurable process model should
be easier.

Approach 3, as shown in Figure 9.7c, is an extension of the second approach
presented in [92]. A single process model is discovered that describes the be-
havior of all event logs. Then, using each individual event log, configurations
are discovered for this single process model. In this approach the common pro-
cess model should be less precise than in the other approaches since we can
only restrict the behavior using configurations, but not extend it. Therefore,
the ETMd algorithm applied needs to put less emphasis on precision. For the
second phase we only change the configuration options without changing the
structure of the process tree. We do this by applying the ETMc algorithm, which
we introduce in Section 9.4, without change operations that modify the tree
structure.

The fourth approach is a novel approach implemented in the ETMc algorithm
where the discovery of the process model and the configurations is combined,
see Figure 9.7d. This approach is added to overcome the disadvantages of the
other three approaches. By providing an integrated algorithm, where both the
process model and the configuration options are discovered simultaneously, bet-
ter trade-offs between the different quality dimensions can be made. In the next
section we present the ETMc algorithm.

9.4 The ETMc algorithm

The ETMc algorithm is an extension of the ETMd algorithm for discovering con-
figurable process trees. The input of the ETMc algorithm is a collection of event
logs and the output is a configurable process model. For each of the input
event logs a configuration is discovered that blocks, hides, or downgrades cer-

9.5 Application on Running Example 233

tain nodes in the configurable process tree. Besides operating on configurable
process trees, two elements are added to the ETMd algorithm: changing the
configurations and evaluating the configurable process tree.

9.4.1 Configuration Mutation

Initially a process tree has one configuration for each input event log, where
none of the configuration points is configured. Currently we apply a random
mutation to the configurable process tree that picks a configuration for one of
the event logs. It then randomly selects a configuration point and randomly
changes the configuration option to one of the allowed options for that configu-
ration point. This simple random mutation allows coverage of the whole search
space.

9.4.2 Configuration Quality

The overall quality of the configurable process tree consists of two aspects: the
quality of each of the individualized process trees (i.e., the process trees ob-
tained after application of the configurations), and the quality of the configu-
ration aspect of the configurable process tree. These two aspects are weighted
using an α parameter. The overall quality of a configurable process tree is thus
evaluated as follows:

Definition 9.1 (Quality of a configurable process tree)

Let LC be the collection of all input event logs such that L ∈ LC is an event log in this

collection. Let PT c be a configurable process tree and PT c
L

the individual process

tree obtained from PT c for event log L. Furthermore, let the function Q(PT c
L

,L) be

a quality metric for PT c
L

on the corresponding event log L.

We define the average quality in a certain quality dimension as follows:

Q(PT c
,LC) =

∑

L∈LC |L|×Q(PT c
L

,L)
∑

L∈LC |L| (9.1)

We define the configuration quality as follows:

Qc (PT c
) = 1− number of configured nodes in PT c

number of nodes in PT c
(9.2)

234 Discovering Configurable Process Models

Table 9.1: Four event logs for the four different variants of the loan application process
of Section 1.2.2.

(a) Event log for
variant 1

Trace #

a b c d f g 38
a b d c f g 26
a b d c e g 12
a b c f g 8
a b c d e g 6
a d c b f g 4
a c d b f g 2
a c b e g 1
a d b c f g 1
a d b c e g 1
a c b f g 1

(b) Event log for variant 2

Trace #

a b1 b2 c d2 f 50
a b1 b2 c d2 e 20

(c) Event log for variant 3

Trace #

a c b e 120
a c b f 80

(d) Event log for variant 4

Trace #

a b1 d2 b2 c f 60
a b1 d b2 c e 45

9.5 Application on Running Example

Our running example is based on four variants of the same process. The event
logs of this running example are shown in Table 9.1. The four variants are
discussed in more detail in Section 1.2.2.

Although the four variations of the loan application process seem similar,
automatically discovering a configurable process model turns out to be far from
trivial.

9.5.1 Experimental Setup

In the remainder of this section we use the ETMd and ETMc algorithms as our
discovery techniques to construct a process model, in the form of a process
tree, from an event log. For Approach 1 the ETMd algorithm is ran for 10,000

generations on each event log, after which the resulting process models were
merged. For Approach 2 the ETMd algorithm first ran for 5,000 generations
on the merged event log of the four variants. This was followed by 10,000

generations per event log of the ETMr algorithm in order to individualize the

9.5 Application on Running Example 235

process models before merging. In Approach 3 the ETMd algorithm ran for
10,000 generations to discover an imprecise process model for the combined
event log, after which configurations were discovered using the ETMc algorithm
during another 10,000 generations while retaining the control-flow structure.
Within Approach 4 the ETMc algorithm ran for 10,000 generations discovering
the process tree structure and configurations at the same time. The quality
dimension of replay fitness is given a weight of ten, and a weight of five for
precision made sure the model does not allow for too much additional behavior.
Simplicity is weighted by one, and a weight of one-tenth for generalization
makes the models more general. In Approach 2 the similarity quality dimension,
as discussed in Section 8.2, is added with a weight of five. The rest of the
settings are the same as used in the experiments as discussed in Chapter 7.

For the resulting configurable process trees we calculate the four quality
dimensions for each of the individualized process trees on the corresponding
event log. We aggregate these values to the configurable process tree by using
a weighted average using the number of traces in each event log. Additionally,
the size of both the configurable process tree and the individualized process
trees are calculated. The number of configuration points (#C.P.) set in the
configurable process tree, as well as the number of configuration points applied
per variant, are shown in a table for each approach. The similarity of individual
process trees to the configurable process tree is also calculated.

9.5.2 Approach 1: Merge Individually Discovered Process
Models

The results of applying Approach 1 on the running example are shown in Fig-
ure 9.8. Each of the individual process models (see Figure 9.8a through Fig-
ure 9.8d) clearly resembles the corresponding event log. The combined config-
urable process model as shown in Figure 9.8e however is nothing more than a
choice between each of the individual input process models. The table shown in
Figure 9.8f shows the different quality scores for both the configurable process
models and for each of the configurations. Moreover, the simplicity statistics
of size, number of configuration points (#C.P.) and similarity of the configured
process model to the configurable process model are shown. The fact that the
four configuration options block a big part of the process model is reflected in
the low similarity of the configured process models with the configurable pro-
cess model. This is also shown by the relatively large size of the configurable
process tree with respect to the size of the individual process tree variants.

236 Discovering Configurable Process Models

→

a ∧

×

∧

c d

c

b

×

e f

g

(a) Process model mined on event log 1.

→

a b1 b2 c d2 ×

e f

(b) Process model mined on event log 2.

→

a c b ×

e f

(c) Process model mined on event log 3.

→

a b1 ×

→

d b2 c e

→

d2 b2 c f

(d) Process model mined on event log 4.

×

→

a ∧

×

∧

c d

c

b

×

e f

g

→

a b1 b2 c d2 ×

e f

→

a c b ×

e f

→

a b1 ×

→

d b2 c e

→

d2 b2 c f

[-,B,B,B] [B,-,B,B]

[B,B,-,B]

[B,B,B,-]

(e) Configurable process tree.

(f) Quality statistics of the configurable process model of (e).

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity

Combined 0.975 1.000 0.998 0.903 0.805 44 4 -
Variant 1 0.982 1.000 0.990 0.929 0.809 14 3 0.483
Variant 2 0.981 1.000 1.000 0.900 0.780 10 3 0.370
Variant 3 0.981 1.000 1.000 0.875 0.805 8 3 0.308
Variant 4 0.985 1.000 1.000 0.933 0.815 15 3 0.508

Figure 9.8: Results of Approach 1, merging separately discovered process models, on the
running example.

9.5 Application on Running Example 237

9.5.3 Approach 2: Merge Similar Discovered Process
Models

In Approach 2 we try to increase similarity amongst the individual process mod-
els by discovering a common process model from all event logs combined. This
combined model for the input event logs is shown in Figure 9.9a. This process
model has difficulties with describing the combined behavior of the four vari-
ants. For instance, it tries to distinguish variants 1 and 3 from variants 2 and 4

by introducing an ×-operator high in the process tree. The four individual pro-
cess models derived from this common process model are shown in Figure 9.9b
through Figure 9.9e. However, the unused child of the ×-operator for a variant
is not removed, since it would significantly decrease similarity with the com-
bined model. This results in each of the individual process trees being large and
having relatively low scores for precision and generalization. The four individ-
ual process trees are however very similar to each other. The combined process
tree is shown in Figure 9.10a. Despite the similarity of the individual process
models, the combined configurable process model is still a choice between the
four input process models. Figure 9.10b shows the statistics of this configurable
process model. The overall quality of this model is worse than that of Approach
1, which is mainly due to the lower scores for precision and generalization.
Similar to the previous approach, the number of configuration points is low.
Unfortunately, the similarity between the configurable process model and the
process model variants is also low.

238 Discovering Configurable Process Models

→

a ×

→

∧

×

∧

b d

b

c

×

e f

×

g τ

→

b1 ×

→

d2 b2

→

×

d τ

b2

c ×

d2 τ

×

e f

(a) Process model discovered from combined event log.

→

a ×

→

∧

×

∧

b d

b

c

×

e f

×

→

g τ

→

b1 ×

→

d2 b2

→

×

d τ

b2

c ×

d2 τ

×

e f

(b) Process model mined on event log 1.

→

a ×

→

∧

×

∧

b d

b

c

×

e f

×

g τ

→

b1 ×

→

×

τ

b2

c ×

→

d2 τ

×

e f

(c) Process model mined on event log 2.
→

a ×

→

∧

→

∧

c

b

×

e f

×

τ

→

b1 ×

→

d2 b2

→

×

d τ

b2

c ×

d2 τ

×

e f

(d) Process model mined on event log 3.

→

a ×

→

∧

×

∧

b d

b

c

×

e f

×

g τ

→

b1 ×

→

d2 b2

→

d τ b2

c ×

τ

×

e f

(e) Process model mined on event log 4.

Figure 9.9: Individual results of approach 2, merging the similar process models, on the
running example.

9.5 Application on Running Example 239

×

→

a ×

→

∧

×

∧

b d

b

c

×

e f

×

→

g τ

→

b1 ×

→

d2 b2

→

×

d τ

b2

c ×

d2 τ

×

e f

→

a ×

→

∧

×

∧

b d

b

c

×

e f

×

g τ

→

b1 ×

→

×

τ

b2

c ×

→

d2 τ

×

e f

→

a ×

→

∧

→

∧

c

b

×

e f

×

τ

→

b1 ×

→

d2 b2

→

×

d τ

b2

c ×

d2 τ

×

e f

→

a ×

→

∧

×

∧

b d

b

c

×

e f

×

g τ

→

b1 ×

→

d2 b2

→

d τ b2

c ×

τ

×

e f

[-,B,B,B] [B,-,B,B] [B,B,-,B] [B,B,B,-]

(a) Configurable process tree.

(b) Quality statistics of the configurable process model of (a).

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity

Combined 0.929 1.000 0.891 0.890 0.362 134 4 -
Variant 1 0.937 1.000 0.926 0.919 0.379 37 3 0.433
Variant 2 0.927 1.000 0.909 0.848 0.370 33 3 0.395
Variant 3 0.919 1.000 0.889 0.879 0.308 33 3 0.395
Variant 4 0.918 1.000 0.851 0.912 0.441 34 3 0.405

Figure 9.10: Configurable process model with quality statistics as discovered by Ap-
proach 2, merging the similar process models, on the running example.

240 Discovering Configurable Process Models

9.5.4 Approach 3: First Discover a Single Process Model and
Then Discover Configurations

In Approach 3 we first try to discover a process tree that describes the combina-
tion of all event logs. This is achieved by reducing the weight for precision by
a factor 10, resulting in a weight of 0.5 for precision. In the second phase we
only change configuration options to increase the precision of configured pro-
cess trees, but the structure of the configurable process tree remains the same.
The resulting configurable process model is shown in Figure 9.11. From this
model it can be seen that we relaxed the precision weight, in order to discover
an ‘over fitting’ process model. Then, by applying configurations, the behav-
ior is restricted in such a way that the model more precisely describes each
of the variants, as is indicated by the perfect replay fitness for all but variant
1. The resulting configurable process model however scores lower on precision
the previous two approaches. This might be caused by a disconnect between the
two phases. It appears that adding configuration options in the second phase

→

a ×

→

b1 ×

d τ d2

b2 c ×

d2 τ

∧

×

∧

b d

b

c

×

→

f ×

g τ

e

[-,→,←,-]

[-,-,B,-]

(a) Configurable process tree.

(b) Quality statistics of the configurable process model of (a).

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity

Combined 0.908 0.994 0.794 0.983 0.494 28 2 -
Variant 1 0.920 0.973 0.880 1.000 0.500 28 0 1.000
Variant 2 0.882 1.000 0.694 1.000 0.528 28 1 0.982
Variant 3 0.918 1.000 0.841 0.960 0.439 25 2 0.925
Variant 4 0.883 1.000 0.689 1.000 0.571 28 0 1.000

Figure 9.11: Results of Approach 3, the two-phase mining approach, on the running ex-
ample.

9.5 Application on Running Example 241

cannot restrict the behavior of the process model sufficiently. The resulting con-
figurable process tree however is much smaller and has less configuration points
than the results of Approaches 1 and 2. Moreover, the similarity of each of the
individualized process trees to the configurable process tree is high.

9.5.5 Approach 4: Discover Process Model and Configura-
tions at the Same Time

The result of applying Approach 4, an integrated approach, is shown in Fig-
ure 9.12. This configurable process tree is smaller than the ones obtained by
the first three approaches. Moreover, it clearly includes the common parts of all
variants only once, e.g. it always starts with ❛ and ends with a choice between
❢, which is sometimes followed by ❣, and ❡. This process model hides some
of the activities that do not occur in certain variants, for instance activity ❞ for
variant 2. However, it does not find all configuration options, since ❣ can also

→

a ×

∧

c d b

→

b1 ×

d2 d

b2 c d2

×

e →

f g

[-,-,→,-]

[-,-,H,-]

[-,B,-,-]

[-,-,B,-] [-,H,-,-]

(a) Configurable process tree.

(b) Quality statistics of the configurable process model of (e).

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity

Combined 0.913 0.957 0.934 0.946 0.646 20 5 -
Variant 1 0.931 0.970 0.919 1.000 0.532 20 0 1.000
Variant 2 0.913 0.950 0.915 0.895 0.548 19 2 0.949
Variant 3 0.963 0.971 1.000 0.909 0.751 11 3 0.677
Variant 4 0.883 0.921 0.835 1.000 0.622 20 0 1.000

Figure 9.12: Results of Approach 4, the integrated mining approach, on the running ex-
ample.

242 Discovering Configurable Process Models

be hidden for variants 3 and 4 without reducing replay fitness. In this approach
the parallelism present in variant 1 is correctly discovered (in the left-most sub-
tree) and downgraded for variant 3. Variants 2 and 4 are explained by the right
branch of the leftmost ×-operator under the root. However, the two children
of the ×-operator are not correctly blocked to increase precision for each of the
variants.

9.5.6 Discovering a Pareto Front for Approach 4

The ETMc algorithm can also construct a Pareto front of candidates, where the
number of configuration points is used in addition to the other four quality
dimensions. The other four quality dimensions of replay fitness, precision, gen-
eralization and simplicity are aggregated over the individual values for the dif-
ferent configurations and weighted by the number of traces in the event log.

The ETMc algorithm discovered a Pareto front containing 382 candidates for
the running example. The distribution of the candidates over the five quality
dimensions is shown in Figure 9.13. The Pareto front projected on the quality
dimensions of replay fitness and precision, where the color indicates the number
of configuration points, is shown in Figure 9.14. This shows that the best trade-
off between replay fitness and precision is made with two or three configuration
points. Two of the process trees with three configuration points are shown in
Figure 9.15 and Figure 9.16. They demonstrate slightly different trade-offs be-
tween replay fitness and precision. The process tree of Figure 9.15 is reasonably
precise, while scoring good on replay fitness. This is achieved mainly by intro-
ducing a choice between three different descriptions of the middle part of the
process. Configuration options are added only for the third variant. Figure 9.16
shows a process tree that scores very well on replay fitness, but very badly on
precision. This is mainly caused by the ∧-operator as root, which is downgraded
to a →-operator only for configuration 3. The resulting process tree is therefore
more of a general description of all behavior, than of a configurable process tree
that also describes the behavior precisely.

9.5 Application on Running Example 243

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

Replay Fitness

0 0.2 0.4 0.6 0.8 1

Precision

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

Generalization

0 0.2 0.4 0.6 0.8 1

Simplicity

0 1 2 3
0

100

200

300

400

Configuration Points

Figure 9.13: Distribution of the 382 candidates in the Pareto front over the quality di-
mensions for the running example.

244 Discovering Configurable Process Models

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Replay fitness

P
re

ci
si

o
n

0 1 2 3

Configuration points

Figure 9.14: Visualization of the Pareto front of configurable process trees discovered
by the ETMc algorithm on the running example event logs. The ×-symbols
indicate the process trees shown in Figure 9.15 and Figure 9.16.

9.5 Application on Running Example 245

→

a ×

∧

d c b

→

b1 d2 d b2 c

→

b1 b2 c

×

e →

f g

[-,-,→,-]

[-,-,H,-] [-,-,B,-]

(a) Configurable process tree.

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity

Combined 0.892 0.941 0.856 1.000 0.540 22 3 -
Variant 1 0.908 0.970 0.852 1.000 0.483 22 0 1.000
Variant 2 0.817 0.839 0.813 1.000 0.434 22 0 1.000
Variant 3 0.925 0.971 0.881 1.000 0.613 15 3 0.784
Variant 4 0.879 0.921 0.841 1.000 0.524 22 0 1.000

(b) Quality statistics of the configurable process model of (a).

Figure 9.15: Configurable process tree in the Pareto front discovered by Approach 4 for
the running example event logs that balances replay fitness and precision.

246 Discovering Configurable Process Models

∧

a ×

∧

b1 d2 b2 c

∧

c b

×

e f →

d ×

e ∧

f g

[-,-,→,-]

[-,-,B,-]

(a) Configurable process tree.

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity

Combined 0.836 0.988 0.526 1.000 0.572 21 2 -
Variant 1 0.822 0.969 0.541 1.000 0.592 21 0 1.000
Variant 2 0.746 1.000 0.244 1.000 0.455 21 0 1.000
Variant 3 0.903 1.000 0.750 1.000 0.593 14 2 0.771
Variant 4 0.748 0.977 0.272 1.000 0.589 21 0 1.000

(b) Quality statistics of the configurable process model of (a).

Figure 9.16: Configurable process tree in the Pareto front discovered by Approach 4 for
the running example event logs that has good replay fitness at the cost of
precision.

9.6 Case Study 247

9.5.7 Comparison of the Four Approaches

The four approaches yield very different configurable process trees when ap-
plied to the running example event logs. The first two approaches are able to
discover a configurable process tree that scores high on replay fitness and pre-
cision. However, the resulting configurable process tree is large and is mainly a
global choice between the four input process trees.

The resulting configurable process trees of Approaches 3 and 4 are signifi-
cantly smaller than the results of the first two approaches. The third approach,
which first discovers a process tree and discovers the configurations in the sub-
sequent phase, results in a configurable process tree with relatively high replay
fitness, at the cost of precision and generalization. The fourth approach, the
ETMc algorithm, balances all quality dimensions better, scoring high on replay
fitness, precision and generalization. At the same time the number of configu-
ration points is kept low, and the similarity of the process tree variants to the
configurable process tree is high.

The Pareto front discovered by Approach 4, the ETMc algorithm, allows for
further investigation of the trade-offs between the different quality dimensions.
The process trees in the Pareto front have few configuration points, at most
three, while there are four input event logs. Furthermore, configurable pro-
cess trees that explain most of the behavior (as shown in Figure 9.16) are also
discovered, ensuring high replay fitness.

The first two approaches seem to struggle with merging process models
based on their behavior. Because they only focus on the structure of the model,
the frequencies of parts of the process model being visited are not considered
during the merge. The third and fourth approach both directly consider the
behavior and frequencies as recorded in the event log. This seems to be benefi-
cial for building a configurable process model since these latter two approaches
outperform the first two in terms of size of the configurable process tree.

9.6 Case Study

To validate our findings we use a collection of five event logs from the CoSeLoG
project, each describing a different process variant. The main statistics of the
event logs are shown in Table 9.2. The event logs are extracted from the IT
systems of five different municipalities. The process considered deals with ob-
jections related to building permits. Earlier, we already applied the ETMd algo-
rithm on each of these event logs in isolation (see Section 7.4).

248 Discovering Configurable Process Models

Table 9.2: Case study event log statistics

#traces #events #activities

Combined 1,214 2,142 28

WABO1_BB 54 131 15

WABO2_BB 302 586 13

WABO3_BB 37 73 9

WABO4_BB 340 507 9

WABO5_BB 481 845 23

Both Approach 1 (merging individually discovered process models) and Ap-
proach 2 (merging similar discovered process models) result in large config-
urable process trees. These are shown in Figure 9.17 and Figure 9.18 respec-
tively. Both models are large and cannot be understood easily, and again consist
of an ×-operator as the root with each of the five original models as their chil-

×

×

→

×

→

540 ∧

×

546 τ

590

×

→

550 560

→

550_1 550_2

770

630 ×

→

×

730 τ

×

730 770

→

∧

730 740

×

→

755 766

760

∧

→

540 ×

→

×

τ

765

770

×

630 →

×

630 τ

755

550_1 ∨

×

765 770

×

→

×

630 540 →

540 ∨

∧

→

560 630

590

550

×

730 770 →

770 ×

→

670 680

775

540

×

∨

→

×

→

540 ×

540 765

∧

×

→

630 ×

→

640 650_1 650_2

730 →

×

730 τ

×

755 τ

540

770

630

×

630 →

630 ×

→

730 755

→

730 770

→

×

∨

540 770

630

×

765 τ

×

τ 770 ∧

→

550 560 ∨

→

730 ×

770 τ

630

590

∨

∧

→

×

540 ∧

×

∧

×

→

540 ∧

550 590

600 610

590

766

→

550 ×

τ →

×

560 630

∧

×

730 640 →

730 ∧

740 →

780_1 780_2

×

→

×

→

780_3 790

→

755 ×

760 τ

630

630 →

630 670 ∧

→

680 700

730

560

→

630 ×

730 τ

×

765 τ

770

[-,B,B,B,B] [B,-,B,B,B]

[B,B,-,B,B]

[B,B,B,-,B]

[B,B,B,B,-]

(a) Configurable process model.

(b) Quality statistics of the configurable process model discovered using Approach 1 on
the case study.

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity

Combined 0.953 0.989 0.973 0.946 0.460 215 5 -
Variant 1 0.941 0.989 0.976 0.913 0.328 46 4 0.352
Variant 2 0.946 0.978 0.974 0.947 0.481 38 4 0.300
Variant 3 0.938 1.000 0.954 0.867 0.313 30 4 0.245
Variant 4 0.961 1.000 0.980 0.944 0.490 36 4 0.287
Variant 5 0.949 0.988 0.967 0.957 0.452 69 4 0.486

Figure 9.17: Results of Approach 1, merging separate discovered process models, on the
case study event logs.

9.6 Case Study 249

dren that are then blocked, similar to the running example results. The statis-
tics in Figure 9.17b and Figure 9.18b show that the replay fitness and precision
scores are relatively high. However, the generalization and similarity scores of
these process tree variants are very low. This is mainly caused by the unneces-
sarily large configurable process trees.

Approach 3, where the ETMc algorithm first discovers a common process
model that is not very precise, and then applies configuration options, results in
the process tree shown in Figure 9.19a. The resulting configurable process tree
is significantly smaller than the results of the other two approaches. In total
five configuration points are discovered to configure the process model for the
individual event logs. Except for variant 2, for which a large part of the process
tree is blocked, similarity scores are high.

Approach 4 results in the process tree shown in Figure 9.20a. In this ap-
proach the ETMc algorithm discovers the control flow and configuration points
at the same time. The statistics are shown in Figure 9.20b. With only one
configuration point, and better quality scores for all of the four quality dimen-
sions than the result of Approach 3, this process tree is even smaller and hence
simpler. The discovered configurable process tree scores significantly better on
precision and generalization. This is mainly due to the more restrictive opera-
tors and less activity duplication. The discovered process tree does show that

×

∨

×

540→

×

τ→

650_2650_1640

730

630

×

∧

∨

×

770

→

×

τ∨

∧

×

∨

×

τ640

→

∨

700680

670

→

766755

630

×

730∧

740×

760∧

→

780_2780_1

→

790780_3

765775

×

765→

∨

×

550_1560770

×

590546→

×

610∨

610550

∧

590600

550

770

∨

×

540→

×

τ→

650_2650_1640

730

630

×

×

∧

×

770590

→

×

τ∨

∧

×

∨

×

τ640

→

∨

700680

670

→

766755

630

×

730∧

740×

760∧

→

780_2780_1

→

790780_3

765775

×

765770→

∨

×

550_1560770

×

590546→

×

610∨

610550

∧

590600

550

765

770

∨

×

540→

×

τ→

650_2650_1640

∨

755730

630

∧

×

×

770

×

540→

→

×

τ∨

∧

×

∨

×

τ640

→

∨

700680

670

→

766755

630

×

730∧

740×

760∧

→

780_2780_1

→

790780_3

765775

×

765→

∨

×

550_1560770

×

590546→

×

610∨

610550

∧

590600

550

770

∨

×

540→

×

τ→

650_2650_1640

730

630

×

∧

→

×

τ∨

∧

×

∨

×

τ640

→

∨

700680

670

→

766755

630

×

730∧

740×

760∧

→

780_2780_1

→

790780_3

765775

×

→

∨

×

550_1560770

×

590546→

×

610∨

610550

∧

590600

550

765770

∧

∧

×

540→

×

τ→

650_2650_1640

730

630

×

∧

×

770590

→

×

τ∨

∧

×

∨

×

τ640

→

∨

700680

670

→

766755740

550_2630

×

730∧

740×

760∧

→

780_2780_1

→

790780_3

765775

×

765→

∨

×

550_1560770

×

590546→

×

610∨

610550

∧

590600

550

∧

×

τ770

[-,B,B,B,B] [B,-,B,B,B] [B,B,-,B,B] [B,B,B,-,B] [B,B,B,B,-]

(a) Configurable process model.

(b) Quality statistics of the configurable process model discovered using Approach 2 on
the case study.

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity

Combined 0.937 0.987 0.933 0.962 0.329 376 5 -
Variant 1 0.901 0.991 0.852 0.963 0.187 80 4 0.351
Variant 2 0.919 0.965 0.953 0.958 0.259 71 4 0.318
Variant 3 0.913 1.000 0.903 0.923 0.091 78 4 0.344
Variant 4 0.930 0.998 0.912 0.974 0.300 77 4 0.340
Variant 5 0.943 0.992 0.947 0.959 0.429 74 4 0.329

Figure 9.18: Results of Approach 2, merging the similar process models, on the case
study event logs.

250 Discovering Configurable Process Models

there are few differences between the five variants, since the process model can
explain all five variants with high quality and only one configuration point.

The Pareto front that is constructed by the ETMc algorithm is limited to con-
tain 200 configurable process trees. After 10,000 generations and normalization
44 process trees remain. Figure 9.21 shows the distribution of these 44 can-
didates over the different quality dimensions. Most configurable process trees

∨

×

770 765 ∨

→

550 ×

τ ∨

×

∨

→

600 610

740 770

630

560

755

×

→

550_1 755 766

590

×

540 ∧

540 770

∨

630 730

[∧,-,-,-,-]

[←,B,-,→,→]

[∧,-,→,-,-]

[-,→,←,→,→]

[→,→,∧,×,∧]

(a) Configurable process tree.

(b) Quality statistics of the configurable process model discovered using Approach 3 on
the case study.

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity

Combined 0.918 0.961 0.920 0.972 0.539 34 5 -
Variant 1 0.881 0.948 0.842 1.000 0.290 34 4 0.941
Variant 2 0.950 0.948 0.979 1.000 0.768 12 3 0.478
Variant 3 0.831 0.927 0.729 1.000 0.210 34 3 0.956
Variant 4 0.927 0.984 0.917 0.941 0.394 34 3 0.956
Variant 5 0.920 0.957 0.909 0.971 0.551 34 3 0.956

Figure 9.19: Results of Approach 3, the two-phase mining approach, on the case study
event logs. The resulting configurable process tree is smaller than the re-
sults of Approaches 1 and 2.

9.6 Case Study 251

have only one configuration point set. The Pareto front projected on the quality
dimensions of replay fitness and precision is shown in Figure 9.22. This shows
that most configurable process trees are precise, but that high replay fitness is
hard to achieve. The configurable process tree with the best overall score for
replay fitness is shown in Figure 9.23. The resulting configurable process tree
has 95 nodes to precisely describe the observed behavior, as is shown by the
many → and ×-operators. Only one configuration point is set, for variant 5,
which removes an option in a choice. The resulting configurable process tree is
not very precise, which might be solved by adding more configuration points.
A smaller configurable process tree, that has a better trade-off between replay

→

×

630 540 →

×

770 540 →

630 730 755

×

τ 540 →

550 560 630 730

→

630 730

×

τ 765

×

τ 770

[-,H,-,-,-]

(a) Configurable process tree.

(b) Quality statistics of the configurable process model discovered using Approach 4 on
the case study.

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity

Combined 0.952 0.966 0.968 1.000 0.672 29 1 -
Variant 1 0.893 0.913 0.921 1.000 0.448 29 0 1.000
Variant 2 0.959 0.980 0.962 1.000 0.704 28 1 0.982
Variant 3 0.905 0.948 0.894 1.000 0.435 29 0 1.000
Variant 4 0.960 0.986 0.978 1.000 0.573 29 0 1.000
Variant 5 0.949 0.949 0.975 1.000 0.765 29 0 1.000

Figure 9.20: Results of Approach 4, the integrated mining approach, on the case study
event logs. The resulting configurable process tree is smaller than the result
of Approach 3 while scoring better on replay fitness, precision, generaliza-
tion and similarity.

252 Discovering Configurable Process Models

fitness and precision, is shown in Figure 9.24. Although it has a lower score
for replay fitness, it has a very high score for precision, while it is also a very
small model. This configurable process tree also contains just one configuration
point, this time for variant 3.

The application of the different approaches on the real-life event logs shows
similar results as on the running example. The first two approaches seem to
have difficulties in merging the process models based on the behavior of the
process model. The third approach has problems in finding a precise config-
urable process tree. The fourth approach was able to find a good quality config-
urable process tree. The Pareto front discovered by Approach 4 showed various
process trees with different trade-offs.

9.6 Case Study 253

0 0.2 0.4 0.6 0.8 1
0

20

40

Replay Fitness

0 0.2 0.4 0.6 0.8 1

Precision

0 0.2 0.4 0.6 0.8 1
0

20

40

Generalization

0 0.2 0.4 0.6 0.8 1

Simplicity

0 1 2
0

20

40

Configuration Points

Figure 9.21: Distribution of the 44 candidates in the Pareto front for the case study over
the quality dimensions.

254 Discovering Configurable Process Models

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Replay fitness

P
re

ci
si

o
n

0 1 2

Configuration points

Figure 9.22: Visualization of the Pareto front of configurable process trees discovered by
the ETMc algorithm on the case study event logs.

9.6 Case Study 255

×

∧

770 →

610 ×

τ 755

→

×

540 ∧

×

τ 630 770

×

755 630 540

×

τ 730

→

540 ×

τ 770 765 540 765

×

τ 770

×

τ 670 →

×

650_1 →

790 540

→

×

τ 770 630 760

×

τ 765 →

×

680 550_1 →

∧

540 540

630

→

×

780_2 600

×

760 546 630 730 ∧

730 630

×

τ 790 730 546

630

630 730 550 540

×

τ 540 775 765 630 →

540 680

×

τ 770

[-,-,-,-,B]

(a) Configurable process tree.

(b) Quality statistics of the configurable process model of (a).

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity

Combined 0.859 0.972 0.664 1.000 0.319 95 1 -
Variant 1 0.790 0.928 0.582 1.000 0.246 95 0 1.000
Variant 2 0.850 0.990 0.644 1.000 0.338 95 0 1.000
Variant 3 0.824 0.977 0.611 1.000 0.184 95 0 1.000
Variant 4 0.861 0.984 0.704 1.000 0.272 95 0 1.000
Variant 5 0.837 0.957 0.661 1.000 0.358 94 1 0.995

Figure 9.23: Configurable process tree found by Approach 4 for the case study event logs
that has the best overall replay fitness (0.972).

256 Discovering Configurable Process Models

→

×

→

540 ×

τ 765

→

×

770 540

×

630 730 540

×

τ 770

[-,-,H,-,-]

(a) Configurable process tree.

(b) Quality statistics of the configurable process model of (a).

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity

Combined 0.937 0.914 0.987 0.997 0.836 18 1 -
Variant 1 0.872 0.831 0.959 1.000 0.714 18 0 1.000
Variant 2 0.934 0.909 0.992 1.000 0.830 18 0 1.000
Variant 3 0.852 0.843 0.914 0.889 0.600 18 1 0.972
Variant 4 0.960 0.951 0.993 1.000 0.837 18 0 1.000
Variant 5 0.933 0.906 0.987 1.000 0.870 18 0 1.000

Figure 9.24: Configurable process tree found by Approach 4 for the case study event logs
with best trade-off between replay fitness and precision.

9.7 Related Work 257

9.7 Related Work

Configurable process models can be constructed in different ways. They can
be designed from scratch, but if a collection of existing process models already
exists, a configurable process model can be derived by merging the different
variants. The original models used as input correspond to configurations of the
configurable process model.

Different approaches exist to merge a collection of existing process models
into a configurable process model. A collection of EPCs can be merged using the
technique presented in [91]. The resulting configurable EPC may allow for ad-
ditional behavior, not possible in the original EPCs. La Rosa et al. [118] describe
an alternative approach that allows merging process models into a configurable
process model, even if the input process models are in different formalisms. In
such merging approaches, some configurations may correspond to an unsound
process model. Li et al. [124–126] discuss an approach where an existing refer-
ence process model is improved by analyzing the different variants derived from
it. However, the result is not a configurable process model but an improved ref-
erence process model, i.e., variants are obtained by modifying the reference
model rather than by process configuration. The CoSeNet approach [161] has
been designed for merging a collection of block-structured process models. This
approach always results in sound and reversible configurable process models.
Since the CoSeNet approach works on a structure similar to process trees, this
approach is used as the process model merging algorithm in the experiments
discussed in this chapter.

Another way of obtaining a configurable process model is not by merging
process models but by applying process mining techniques on a collection of
event logs. This idea was first proposed in [92] where two different approaches
were discussed, but these were not supported by concrete discovery algorithms.
In this chapter we implemented both approaches as Approach 1 and Approach
3. Assy et al. [30] propose to mine configurable business process fragments.
Their approach is twofold: first sublogs are extracted around selected activities
from which configurable process fragments are discovered in a second phase.
All extracted sublogs for an activity are merged and fragments are discovered
on these merged sublogs. The discovered fragments are then merged into a
single configurable process model. Additionally, configuration guidelines are
deduced. Although extracting several sublogs reduces the complexity of the
individual problems to be solved, it also introduces new problems. For instance,
behavior is not replayed but (un)shared activities are detected. This approach

258 Discovering Configurable Process Models

does not work when the extracted sublogs around the selected activities are
too small or too varied, which is an issue in the case of choices, parallelism
or loop constructs consisting of many activities. Furthermore, it is unclear how
fragments should be merged when there is no overlap or when multiple merging
options exist.

9.8 Conclusion

In this chapter we presented four approaches to addressing Challenge 6 which
states that a family of processes should also be described. In this chapter we first
discussed several configurable process model notations that are able to repre-
sent a family of processes. We then extended the process tree notation to sup-
port configurations which reduce the allowed behavior of a process tree. Four
approaches were presented in this chapter in order to discover a configurable
process model from a collection of event logs. The fourth approach applies the
ETMc algorithm which adds configuration mutation and change operations to
the ETMd algorithm. All four approaches have been applied, and their results
have been compared, on both a running example and a real life data set. The re-
sults showed that merging process models produces larger, and therefore more
complex, process models. Discovering a configurable process model from the
event logs results in smaller process models with fewer configuration points. At
the same time, each of the individualized process trees score high on all four
quality dimensions.

Chapter 10

Inter-Organizational Process
Comparison

In this chapter we address Challenge 7: “Compare similar observed behavior”.
In Chapter 9 we discussed several ways in which a configurable process model
can be discovered from a collection of event logs. The discovered configurable
process model describes a family of processes, based on the individual event
logs. However, no insights into differences such as throughput time or a more
detailed comparison of the observed behavior are provided.

In this chapter we present a new analytical technique that allows for a dual

comparison. In the first place, it allows for a comparison between the intended
and the actual execution of a business process. Secondly, it supports the com-
parison of various parties (organizations) executing that same process. These

This chapter is based on the work presented in [47,54]

• J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Towards cross-organizational pro-
cess mining in collections of process models and their executions. In F. Daniel, K. Barkaoui,
S. Dustdar, W.M.P. van der Aalst, J. Mylopoulos, M. Rosemann, M. Shaw, and C. Szyper-
ski, editors, Business Process Management Workshops (2), volume 100 of Lecture Notes in
Business Information Processing, pages 2–13. Springer Berlin Heidelberg, 2011. ISBN 978-3-
642-28115-0

• J.C.A.M. Buijs and H.A. Reijers. Comparing business process variants using models and event
logs. In I. Bider, K. Gaaloul, J. Krogstie, S. Nurcan, H.A. Proper, R. Schmidt, and P. Soffer,
editors, BMMDS/EMMSAD, volume 175 of Lecture Notes in Business Information Processing,
pages 154–168. Springer, 2014. ISBN 978-3-662-43744-5

260 Inter-Organizational Process Comparison

comparisons are visualized through a so-called alignment matrix. We also de-
scribe a comparison framework that shows the methodical application of this
aid.

We introduce a comparison table between modeled and observed behavior
and we extend it by explicitly incorporating the process model, i.e., the intended
behavior, into the comparison. By replaying the actual behavior on that initial
model, as witnessed through event logs, and showing where different organiza-
tions deviate, the process model can be used as a common means to compare
against. This cross-comparison can help organizations get a better understand-
ing of how a process is executed and act on that insight. Such actions may be
diverse: It may be decided to fix the common process if it allows for too much
deviation, but individual organizations may also want to imitate the practices
of another partner when these seem preferable.

The presented comparison framework is evaluated using a case study with
five of the municipalities participating in the CoSeLoG project (see Section 1.4).
These municipalities have decided to start working more closely together while
maintaining their legal autonomy. After having executed a commonly designed
process for a prolonged amount of time, they have an interest in the type of
comparison we sketched earlier: How is each organization carrying out this
process and how do they differ from each other in different respects?

The remainder of this chapter is organized as follows. First, a running exam-
ple is introduced in Section 10.1. Section 10.2 presents the comparison frame-
work used to compare behaviors of different processes and organizations. In
Section 10.3 the alignment matrix is presented that visualizes alignments of ob-
served behavior on process models. The overall comparison approach is applied
in a case study, which is described in Section 10.4. In Section 10.5 we reflect
on related work that also aims to analyze and compare processes. Section 10.6
summarizes our findings and conclusions.

10.1 Running Example

We use the running example of Section 1.2.2 to illustrate our approach. The
running example consists of four process model variants, shown in Figure 10.1,
and four corresponding event logs, as shown in Table 10.1. All four variants
describe the process for handling loan applications. Even though the processes
differ slightly, each process sends an e-mail (activity ❛) and in the end either
accepts (activity ❡) or rejects (activity ❢) the application, followed by sending
the decision via e-mail (activity ❣) for variant 1. The order in which the other

10.2 Cross-Organizational Comparison Framework 261

activities can be executed differs as well. Moreover, each variant differs as to
which activities are included. For instance, either activity ❜ is part of the vari-
ant, or both activities ❜✶ and ❜✷, which are more fine-grained, are included.
The corresponding event logs describe possible executions of the corresponding
process model. Please note that in this example the traces align perfectly with
the corresponding process model. This is generally not the case for real-life pro-
cesses. However, we can always use alignments to squeeze observed behavior
into the process models.

10.2 Cross-Organizational Comparison Framework

In order to compare processes between organizations we propose a cross-organi-

zational comparison framework. The framework aims to facilitate a comparison
of business processes by using both the process models and the observed behav-
ior.

The general approach of the comparison framework is shown in Table 10.2.

→

g×

fe

∧

×

τd

cb

a

(a) Variant 1

→

×

fe

d2cb2b1a

(b) Variant 2

→

×

fe

bca

(c) Variant 3

→

×

fe

cb2×

d2d

b1a

(d) Variant 4

Figure 10.1: The process trees of the four variants of the running example (see Sec-
tion 1.2.2).

262 Inter-Organizational Process Comparison

Table 10.1: Four event logs for the four different variants of the loan application process
of Figure 10.1.

(a) Event log for
variant 1

Trace #

a b c d f g 38
a b d c f g 26
a b d c e g 12
a b c f g 8
a b c d e g 6
a d c b f g 4
a c d b f g 2
a c b e g 1
a d b c f g 1
a d b c e g 1
a c b f g 1

(b) Event log for variant 2

Trace #

a b1 b2 c d2 f 50
a b1 b2 c d2 e 20

(c) Event log for variant 3

Trace #

a c b e 120
a c b f 80

(d) Event log for variant 4

Trace #

a b1 d2 b2 c f 60
a b1 d b2 c e 45

Table 10.2: The comparison table of the comparison framework approach. Event logs L1

through Ln and process models M1 through Mm are used as input. Three
types of metric are shown: (event)log metrics, model metrics and compari-
son metrics.

M1 . . . Mm Log Stat

L1 compareMetric(L1,M1) . . . compareMetric(L1,Mm) logMetric(L1)
.
.
.

...
. . .

...
...

Ln compareMetric(Ln ,M1) . . . compareMetric(Ln ,Mm) logMetric(Ln)

Model Stat modelMetric(M1) . . . modelMetric(Mm)

10.2 Cross-Organizational Comparison Framework 263

The main result of the comparison framework is a comparison table which com-
pares event logs and process models. The input of the comparison framework
is one or more event logs, which are displayed as rows in the comparison table
of Table 10.2. Additionally, one or more process models are used and displayed
as columns in the comparison table. An event log metric (‘logMetric’) can be
selected and the result is visualized for each individual event log in the com-
parison table. Similarly, a process model metric (‘modelMetric’) is displayed for
each individual process model in the comparison table. For each combination
of event log and process model a comparison metric (‘compareMetric’) is dis-
played. Note that the term metric is a bit stretched in this chapter in the sense
that a metric might produce a graphic such as a chart or a graph.

Within the framework several metrics exist for each of the three types. The
user can select which one to use for each type.

10.2.1 Process Model Metrics

Process model metrics are metrics calculated using only the process model. Many
metrics based on process models exist [130], for example metrics that measure
size, density, partitionability, connector interplay, cyclicity or concurrency. An-
other example is metrics that measure simplicity, as discussed in Section 5.3.

Currently the comparison framework provides two process model metrics:
process model size and a visualization of the process model. The main focus
of the comparison framework is the inclusion of the observed behavior in the
comparison. However, additional process model metrics can easily be added, as
is explained in Section 11.3.3.

10.2.2 Event Log Metrics

Event log metrics can range from simple metrics counting the number of traces
and events, to more general metrics related to different performance indicators.
Currently over ten event log metrics are included in the comparison framework,
which include number of traces, average trace duration, occurrence frequency
per activity and social network.

10.2.3 Comparison Metrics

The third category of metrics is comparison metrics. This relates to compar-
isons between an event log and a process model. The alignments discussed in

264 Inter-Organizational Process Comparison

Table 10.3: Application of the comparison framework on the running example, with the
event log metric set to number of traces, the process model metric to the
number of nodes in the model and the comparison metric to the replay fit-
ness.

Config 1 Config 2 Config 3 Config 4 Log Stat

Event Log 1 1.000 0.506 0.575 0.580 100
Event Log 2 0.525 1.000 0.553 0.833 70
Event Log 3 0.933 0.656 1.000 0.656 200
Event Log 4 0.579 0.833 0.553 1.000 105

Model Stat 12 9 7 11

Section 5.4.1 are an example of a comparison metric, as are the precision and
generalization metrics discussed in Chapter 5. The alignment matrix that we
present in Section 10.3 is currently the most advanced comparison metric.

10.2.4 Application on the Running Example

An application of the comparison framework on the running example is shown
in Table 10.3. The specific process model metric chosen here is the number
of nodes in the process model. The number of cases in the event log defines
the event log metric. Each comparison cell displays the replay fitness score
(see Section 5.4.1), calculated on the alignments. Higher values indicate better
alignments, which are emphasized by increasingly darker shades of green as
background color.

When comparing the size of the event logs, one can see that event log 3

has the most traces, and event log 2 contains the fewest traces. The process
model metric indicates that organization 3 with 7 nodes has the smallest process
model, while organizations 1 and 4 have the biggest process models, with 12 and
11 nodes respectively. When we investigate the replay fitness scores, we can see
that the diagonal has a perfect score of 1.000. This means that the process model
of each organization perfectly explains the observed behavior. Furthermore, the
process model of organization 1 describes the observed behavior of organization
3 quite well. However, the process model of organization 3 does not explain the
observed behavior of any of the other organizations very well. Organizations
2 and 4 have reasonable replay fitness scores on each other’s process models,
which might allow these organizations to start a collaboration.

10.3 Visualizing Alignments: the Alignment Matrix 265

Trace a b c ≫ d e g
Model a ≫ c b ≫ e ≫

(a) Alignment between the trace 〈a,b,c,d ,e, g 〉 from event log variant 1 and the process
model of variant 3.

a b c d . . .

Alignment 1 (a,a) (b,≫) (≫,b) (c,c) (d,≫) . . .
...

...
...

...
...

. . .

Alignment 100 (a,a) (b,b) (c,c) . . .

(b) A concrete instance of the alignment matrix with alignment steps shown in the cells.

Figure 10.2: Alignments and the construction of the alignment matrix.

The simple replay fitness scores give some preliminary insights, but do not
provide a deep understanding of the level of similarity of behavior between
the different organizations. To provide more in-depth insights we propose the
alignment matrix visualization as a comparison metric.

10.3 Visualizing Alignments: the Alignment

Matrix

The purpose of the alignment matrix visualization is to visualize the alignments,
calculated using both the process model and the event log, in a concise but
clear way. However, we do not project alignments on either the event log or
the process model. Instead, we want to exploit the utilization of the available
space, whether this concerns a digital display or a physical canvas, to allow for
a wider exploration. Furthermore, we synchronize the settings of the different
alignment matrices to ensure all matrices are indeed comparable.

The input for the alignment matrix consists of the alignments for the traces
of the event log. Figure 10.2a shows such an alignment between a trace from the
event log and a completed trace of the process model. The alignment consists of
several alignment steps. Each alignment step contains information about which
trace and process model it relates to. It also contains a relation to an event in
that trace, to an activity in the process model, or both.

Within the alignment matrix, alignment steps are assigned to one or more
cells, which are distributed over columns and rows. An example is shown in

266 Inter-Organizational Process Comparison

Figure 10.2b. Here, the columns are defined to be the activities, while each row
is an alignment instance. In this way, each cell contains those alignment steps
that for a particular alignment are related to a certain activity.

Other settings for the column and row definitions are possible, for instance,
changing the rows to represent the different users in the process, and the columns
to represent a day or week each. This visualizes when certain users are active
and if they execute the activities according to the process model.

In the example of Figure 10.2b, most cells contain one alignment step. An
exception is the cell for trace 1 and activity ❜. Since the alignment contained
both a log move and a model move on this activity, this cell contains two align-
ment steps. Furthermore, since trace 100 (the last trace of event log variant 1
of Table 10.1) did not contain activity ❞ and the process model did not enforce
the execution of this activity, the corresponding cell is empty.

Since in general there can be many alignment steps in a cell, we do not
show these individual steps. Instead, we aggregate them and express them with
various colors:

• If the cell is empty, i.e. there are no alignment steps, we color the cell
white;

• In case the cell mainly contains log move steps, we color the cell black;

• If the cell mainly contains model move steps we color that cell gray;

• In case the cell mainly contains synchronous steps, we color the cell ac-
cording to a pre-defined color that is assigned to that activity (red, yellow,
green, blue, purple, etc.).

An application of the comparison framework using exactly the settings as
discussed is shown in Table 10.4. Here, the four event logs of Table 10.1 are
replayed on the four process models of Figure 10.1. Each of these replays is
visualized using an alignment matrix. The columns in each alignment matrix
represent the activities (❛ through ❣), while each row is a single alignment of a
trace.

Let us examine, for the example, the replay of event log 1 on process model
variant 3. It shows both black and gray cells, which indicate mismatches, log
move and model move steps respectively. It can be seen that activity ❛ can be
replayed correctly, as indicated by the red color. The gray column, however,
indicates that activity ❜ cannot be replayed correctly, except in the last couple
of traces as visualized by the orange color in that column.

10.3 Visualizing Alignments: the Alignment Matrix 267

Table 10.4: Application of the alignment matrices on the running example. Each col-
umn of the comparison framework represents a process model variant from
Figure 10.1 and each row an event log from Table 10.1. Inside each cell
an alignment matrix is shown where the columns are activities, the rows
are traces and the color is determined by move type and activity. Event log
metrics and process model metrics are not shown here.

Variant 1 Variant 2 Variant 3 Variant 4

Event log 1

Event log 2

Event log 3

Event log 4

We can now also further investigate the previous observation that the pro-
cess model of organization 1 seems to match quite well with the observed behav-
ior of organization 3. The alignment matrix of this combination shows mainly
white and colored columns, but the last column for activity ❣ is completely gray.
This indicates that activity ❣ is always a move on model only. Therefore, if the
process model of organization 1 simply allows for the option to skip activity ❣,
the same process model can be used without any problems by organization 3. In
other words, these organizations basically work in the same way, which could
be exploited in various ways.

268 Inter-Organizational Process Comparison

10.4 Case Study

In order to validate our comparison framework we applied it to a building per-
mits process. Five municipalities from the CoSeLoG project are collaborating on
the building permits process and jointly selected and configured an information
system to support this process. However, the five municipalities use their own
instances of the system with slightly different settings for each. Moreover, the
system allows for some flexibility during the execution of the process. Because
of these reasons, several differences still exist in the way the municipalities ex-
ecute the process. The long-term goal of the municipalities is to centralize and
standardize the process to reduce costs, but this goal can only be attained by
making gradual steps. For this reason, it is crucial for the municipalities to un-
derstand individual differences between these processes and address them one
by one.

In this section we describe the set-up of the case study and how it was exe-
cuted. We also provide the insights that we extracted from it.

10.4.1 Setup

We planned a meeting in February 2014 and invited representatives of each
of the five involved municipalities. The meeting was set up to consist of two
parts. The aim of the first part was to present general information (number of
cases and average throughput time), together with dotted chart [165] and social
network [166] visualizations of cases from 2013, detailed along different case
types. No process models or activity details were given in that part. Roughly
one hour was devoted to this first part.

In the second part, planned to cover approximately another hour, we set out
to explain the global idea of the comparison table, i.e., comparing the behav-
ior of a municipality with the discovered model from the behavior of another
municipality. The idea for this part was to show the comparison table with the
replay fitness scores, as shown in Figure 10.3a. This was then followed by an
example of the alignment matrix (the matrix of event log 1 on variant 4 from
Table 10.4). During a small break of 5 minutes we laid out the 25 (5 by 5) print-
outs of the alignment matrices on a table. After the break the idea was to gather
everyone around the table and provide each participant with an individual color
marker. In this way, each participant could mark observations on the printouts.
During this part, participants were stimulated to make observations and initiate
discussion.

10.4 Case Study 269

We invited seven representatives for the meeting, of which six eventually
joined. The expertise from all participating municipalities was present except
for municipality 2, whose representative was unable to attend. Fortunately, the
representative of municipality 5 also had knowledge of the process in munici-
pality 2. Two representatives were present for municipalities 1 and 3. For each
of these two municipalities a coordinator of the process within their respective
municipality was present, and both also collaborated in the process. For munic-
ipality 4 a building permits expert working in the process was present. As such,
these three people had a very good understanding of the whole process. The
remaining three representatives were a coordinator of automation and internal
affairs (municipality 1), a specialist on internal control and electronic services
(municipality 3), and a policy officer for environmental law (municipality 5).
As such, these three people had a more high-level understanding of the whole
process, but also detailed knowledge of (parts of) the process.

The event logs used in the case study contain cases that were started at some
point in 2013 within any of the five municipalities. The logs cover between 150

and 300 cases for each of the municipalities. Both the event logs and the process
models contain the 47 most frequent activities across all municipalities. The
process models used were automatically discovered using the ETMd algorithm
based on the data of the event logs. The reason for this is that the municipalities
in question immediately configured the information system to their individual
preferences without the use of an explicit process model. While the logic of
a configuration setting in principle could be translated in a process model, we
opted for the use of the discovered model as a reasonable proxy for it.

10.4.2 Execution

First, before showing the alignment matrices to the representatives, we showed
the replay fitness table as shown in Figure 10.3a. We first explained that each
number roughly corresponded to the fraction of correctly explained events. The
participants quickly noticed that these ratios were not overly high, and in many
combinations even very low. They also noticed differences between municipal-
ities. After being asked if they could identify distinct clusters of municipalities
they replied they could recognize a group consisting of municipalities 1, 3 and
4 which is likely to display highly similar behavior.

Next a small break was introduced and the 25 alignment matrices were dis-
tributed on the table, where municipality 2 was moved between municipalities
4 and 5, so that 1, 3 and 4 (as a group of similar municipalities) were close

270 Inter-Organizational Process Comparison

(a) Comparison table shown with replay fitness scores (green) as comparison metric.

(b) Example of one of the 25 alignment matrices shown, more specifically of the
behavior of municipality 5 on the model of municipality 1.

Figure 10.3: Two of the analysis results shown to the case study participants.

10.4 Case Study 271

together. An example of one of the 25 alignment matrices is shown in Fig-
ure 10.3b.

After the break we gathered everyone around the laid-out alignment matri-
ces, as is shown in Figure 10.4a. One of the first things that was noticed on the
basis of the alignment matrices was that there was a considerable number of
black cells, which the participants understood to be ‘bad’. One of the represen-
tatives of municipality 3 contributed that he noticed that each municipality had
significantly fewer black cells on their own matrix, which can be expected.

Another observation made was that one municipality had a lot of white cells
in the alignment matrix. From this, the participants concluded that the specific
case types dealt with by this municipality could be different than those of the
others, since they show different activities in their behavior.

Based on the alignment matrix of municipality 4 on its own model three
observations were made, as is shown in Figure 10.4b. The first observation,
denoted by the bigger blue circle on the left, is that first of all there is not much
black (‘zwart’ in Dutch) visible in this matrix. A second observation, made by
two of the participants, was that in two of the columns there was a mix of color
and black. They correctly concluded that this was caused by correctly executing
this activity some of the time, and deviating from the process model at other
times.

The third observation made on this matrix, as indicated by the blue circle
in the bottom-right, is that the last activity shows a lot of gray for the last few
traces. A brief remark by us that the cases were sorted from old in the top rows
to the new in the bottom rows, quickly resulted in the correct conclusion that
these cases did not reach that particular activity in the process just yet. Quickly
after this, the participants observed that some of the newer cases actually were
further along in the process. They expected a diagonal line from bottom left to
upper right. They also noticed that this was not the case for all municipalities.

All-in-all, 22 observations were counted. Each of these triggered a discussion
and an exploration of explanations for it between the participants. In the end,
one participant remarked that he would like to rearrange the alignment matri-
ces and only show the matrices of the replay on the municipality’s own process
models. In this set-up, another 11 observations were made.

We then gently ended the discussion and asked the participants if they
thought this approach was easy to understand and use. Although we noticed
that the participants seemed somewhat overwhelmed during the introduction
of the rather colorful pictures in the beginning, they did not mention this dur-
ing the evaluation. All people involved noted that detecting the gray and black,
and also white, worked well. Furthermore, the colors helped participants with

272 Inter-Organizational Process Comparison

(a) Photo of the set-up and the participants. Participants faces are obscured except
for the third person from the left which is the author of this thesis.

(b) The alignment matrix of municipality 4 on its own model, shown with annota-
tions.

Figure 10.4: A photo and an annotated alignment matrix with some observations made
during the case study.

10.4 Case Study 273

relating parts of the process across alignment matrices. A further remark that
was made was that the colors made it easy to distinguish between irregular
behavior and more structured executions of the process, which was considered
highly useful.

From a content perspective, the participants expressed satisfaction with what
they could observe using the alignment matrices. From the various insights that
were obtained by observing the alignment matrices of each other’s processes,
we provide two striking examples. The first of these relates to the observation
that one municipality actually did not execute certain steps, while their products
still adhered to the regulations. All people involved mentioned that it would be
valuable to investigate whether this way of working could be adopted by all mu-
nicipalities. Secondly, the participants could recognize the effect of a change of
personnel within a particular municipality. They expressed that it would be in-
teresting to keep following the execution of the process to see if the behaviorial
differences caused by this would stabilize over time.

Improvement suggestions with respect to the comparison approach were
also made. One suggestion was to add more visual anchors, which could help
to better determine the location in the alignment matrices, i.e., to remember
which column represented which part of the process, and for the rows in which
month the case arrived. Also, the participants would prefer additional features
for increased interactivity with the data. They were particularly interested in
selecting specific case types to see how these compared across municipalities.
Another interactive feature they proposed was selecting only certain employees,
since they had the intuition that certain employees performed well (or badly),
in particular municipalities.

10.4.3 Results

The goal of our visualization is to provide insights into the commonalities and
differences in behavior between organizations. After a brief explanation of the
alignment matrix, we let all participants observe and discuss based on align-
ment matrix printouts. We noticed that some picked up how to read the figures
quicker than others, but after a few minutes almost all participants joined in the
discussion. All but one of them regularly made observations, supported observa-
tions from others or came up with possible explanations for observations. More-
over, actual input from the organizers to clarify certain things was required only
very infrequently after the initial explanation of the alignment matrix. Over-
all, we counted over 30 observations in about half an hour of discussion, which
underscores how helpful the approach is in comparing the involved processes.

274 Inter-Organizational Process Comparison

One of the main comments we noted was that the participants would favor
more interaction opportunities with the visualization. By hovering over a cell
they would like to see more details of that cell, such as the activity, resource
and case involved. They also showed real interest in the ability to filter on case
types and resources, in order to validate certain assumptions they may have.

However, the main thing we noticed was that the alignment matrices, and
the comparison of process executions in general, triggered a lot of discussions
between the participants. Participants often asked each other questions of the
type “But how do you do this?”, or “Why are you faster?”, or “Does this role per-
form this type of activity?”. We see these as proof that the comparison approach
triggers a meaningful discussion based on actual analysis results.

10.5 Related Work

For a considerable time now, organizations seek to learn from others how to
adapt their own processes to improve competitiveness [153]. Process bench-
marking, however, is primarily a manual process, requiring the involvement of
experts to collect and interpret process-related data [168]. The main problem
that has been recognized is that processes across different organizations are of-
ten modeled with different levels of granularity and for different purposes. This
makes their comparison hard. Previous research in the area of process bench-
marking [82,106,168] has mainly focused on semantic approaches to overcome
these types of barriers.

In the context of our work, the processes that are to be compared can be
considered variants of each other [127]. This means that the processes are dif-
ferent, but share essential characteristics through their conformance to a shared
set of constraints [128] or their derivation from a common template [99]. Be-
cause of this starting point, their semantical matching is not really an issue. Yet,
the emphasis of existing work on model variants is on the management, spec-
ification, and comparison of models, i.e., the design-time perspective of these
processes. Our approach widens this scope by incorporating the actual behav-
ior of these variants, i.e., the run-time perspective. In other words, we extend
process model variant management with analytical approaches that allow for
comparing the supposed/intended behavior of processes with their actual exe-
cution.

Two categories of approaches with respect to comparing the supposed or
intended behavior with the actual behavior of a process can be identified. The
first of these encompasses approaches that pursue delta analysis between a pre-

10.6 Conclusion 275

defined process model on the one hand and the discovered model derived from
event logs on the other [78, 109]. Here generic approaches also play a role
that relates to process model matching, see [178]. The second category aims to
project the actual behavior of a process onto the predefined process model, as
in [111]. The aim is then to show how individual instances relate to pre-defined
process model parts. Our research is most related to the latter category. In con-
trast to existing work, however, it specifically builds on the notion of process
alignments (see Section 5.4.1). Another innovative angle in this context is our
interest in the comparison of multiple, related processes.

Since our work strongly emphasizes the visualization of the analysis results,
it also relates to other approaches that help make better sense of process models.
These approaches cover the usability aspects of the employed notation [136],
ways to emphasize the logical relations between model elements [151], and
bringing in new perspectives [38], to name a few.

In summary, our work is at the intersection of the streams of analytical and
visualization research to support process benchmarking across process variants.
We extend existing work by taking both the supposed behavior and the actual
behavior of the process variants into account.

10.6 Conclusion

In this chapter we presented the comparison framework that allows for a com-
parison of event logs and process models. The comparison framework shows
metrics that give insights into the individual event logs, process models, and
the combinations of these. This provides insights into (dis)similarities between
organizations beyond the control flow perspective. Additionally we presented
the alignment matrix comparison metric that aims to provide a quick compari-
son between the different event logs and process models. By synchronizing the
settings between the alignment matrices, easy comparison is aided. Further-
more, both the comparison framework and the alignment metric are flexible
and can be extended easily to incorporate new metrics. The applicability of
the alignment matrix, as part of the encompassing comparison framework, was
demonstrated using a case study.

Chapter 11

Implementation

The ETM framework and the ETMd, ETMr and ETMc algorithms are all imple-
mented in the open-source framework for process mining ProM [174,176]. All
algorithms are implemented in the Evolutionary Tree Miner package, which is
distributed with ProM version 6.4 and later1,2. In this chapter we discuss the im-
plementation aspect of the ETM framework in more detail. Section 11.1 shows
how an experiment from this thesis can be performed via the graphical user in-
terface of ProM, via code and via command line calls. The ETM framework can
easily be extended by adding new quality dimensions, quality metrics, change
operations, and much more, as is discussed in Section 11.2. In Section 11.3 we
discuss the implementation of the comparison framework presented in Chap-
ter 10. Section 11.4 concludes this chapter.

11.1 Walk through of the ETMd Algorithm

In this section we demonstrate different uses of the ETM framework, and the
ETMd algorithm in particular. We do this by replicating the experiment per-
formed in Section 7.1.3 where a Pareto front is discovered on the running ex-
ample with exceptional behavior. This experiment is first replicated via the

1A preliminary implementation is included in ProM 6.3 as a ‘runner up’-package but significant
improvements have been made since.

2Please note that this chapter was written before the official release of ProM 6.4, therefore the
plug-ins and code described in this chapter can differ slightly from the released version of the ETM
package. Up-to-date and extensive documentation will be provided upon release.

278 Implementation

ProM graphical user interface (GUI) as is explained in detail in Section 11.1.1.
In Section 11.1.2 we replicate this experiment via Java code calls. We then show
how the experiment can be performed via command line interface (CLI) calls,
which is discussed in more detail in Section 11.1.3.

11.1.1 Usage via the GUI

With ProM started and the event log of the running example with exceptional
behavior loaded, we can search for all plug-ins containing ‘ETM’. The result of
this search is shown in Figure 11.1. A total of nine plug-ins have been found. Six
of these can be run on an event log without additional input. The three plug-ins
marked with yellow require additional input. Currently the ‘Mine Pareto front
with ETMd in Live mode’ is selected, which produces a ‘Running ETMd Live
Pareto Instance’, as is shown on the right-hand side of Figure 11.1.

The following nine ETM plug-ins are available:

1. Mine a Process Tree with ETMd

(input: event log; output: process tree)

2. Mine a Process Tree with ETMr

(input: event log, process tree(s); output: (repaired) process tree)

3. Mine Configured Process Tree with ETMc

(input: event logs; output: configured process tree)

4. Mine Pareto front with ETMc

(input: event logs; output: Pareto front of configured process trees)

5. Mine Pareto front with ETMc in Live mode
(input: event logs; output: live view of the ETMc algorithm constructing a

Pareto front of configured process trees)

6. Mine Pareto front with ETMd

(input: event log; output: Pareto front of process trees)

7. Mine Pareto front with ETMd in Live mode
(input: event log; output: live view of the ETMd algorithm constructing a

Pareto front or process trees)

8. Mine Pareto front with ETMr

(input: event log, process tree(s); output: Pareto front of (repaired) process

trees)

11.1 Walk through of the ETMd Algorithm 279

9. Mine Pareto front with ETMr in Live mode
(input: event log, process tree(s); output: live view of the ETMr algorithm

constructing a Pareto front of (repaired) process trees)

Each of the three ETM algorithms (ETMd, ETMr and ETMc) is available in
three versions. The basic version produces a process tree and provides high-level
progress information such as the current generation and the overall quality of
the best process tree. The Pareto version produces a Pareto front of process
trees while high-level progress information is provided. The live Pareto version
shows a live view of the Pareto front while the ETM algorithm continues to run
in the background and adds process trees to it.

We would like to repeat the discovery of a Pareto front of process trees us-

Figure 11.1: Plug-ins provided by the ETM package in ProM.

280 Implementation

ing the ETMd algorithm. Plug-ins 6 and 7 both produce a Pareto front using
the ETMd algorithm. We select plugin 7 (‘Mine Pareto front with ETMd in Live
mode’) since this provides detailed insights into the progress of the ETMd al-
gorithm. All of the plug-ins present the same set of setting screens, which are
shown in Figure 11.2. These setting screens help the user configure the required
settings to run the selected ETM algorithm. All plug-ins utilize the same wizards
with slight modifications depending on the algorithm type and version.

The first wizard screen, shown in Figure 11.2a, allows the user to define
the population size and elite count. When the user hovers his mouse over the
labels, an explanation is shown of the meaning of each setting together with
value recommendations. The event classifier can be used to indicate how ac-
tivities are defined. Note that this allows all ETM algorithms to also discover
a social network when an activity is defined as the resource that executed an
event. Finally, the message interval determines the interval at which progress is
communicated.

In the quality calculation settings wizard, shown in Figure 11.2b, the user
can specify which metrics should be used during evaluation. Note that different
metrics may exist for a given quality dimension. The drop-down box at the top
right allows the user to set the number of CPU cores to utilize during the evalu-
ation. In case of a Pareto front discovery, the Pareto front can be pruned by pro-
viding upper and lower limits for each of the quality metrics. Candidates with
a value outside of these bounds are not included in the Pareto front. However,
since the quality of candidates in early generations might not be good enough,
the second parameter allows the user to set the generation at which these lim-
its are actually applied. The third line in the wizard allows the user to add
all currently known quality metrics by selecting the metric from the drop-down
box and then pressing the ‘+’-button. These quality metrics could be defined
outside the ETM package, as is explained in Section 11.2.1. For each quality
metric several parameters can be defined. For the replay fitness quality metric
for instance the lower fitness limit can be provided. If, during calculation, it
becomes clear that a process tree will have a quality value below this threshold,
the calculation is aborted. Additionally, the second parameter allows the user
to set how long the calculation per trace is allowed to take. Since both are set
to −1 here these are not applied. Next the ‘ignore models with values below’
parameter is the limit applied on the Pareto front, as is explained by the blue
explanation box shown. In case an algorithm is not run in Pareto front mode
weights can be provided for each quality metric. These weights are used to
calculate a weighted average over all quality metrics in order to obtain a single
quality value per process tree.

11.1 Walk through of the ETMd Algorithm 281

The termination settings screen, shown in Figure 11.2c allows the user to
specify several conditions which cause the ETM algorithms to terminate execu-
tion as soon as at least one of these conditions is met. Again, negative values
indicate that the condition is disabled.

The last settings screen allows the user to specify the likelihood of different
mutation operators being applied. Here again weights are used that indicate
the relative chance of a mutation operator being applied. The blue box explains
the last mutation operator which removes useless nodes.

The moment the user presses the ‘Finish’-button in the wizard the ETMd

algorithm is started and a Pareto front visualization is displayed, as shown in
Figure 11.3. On the right-hand side of this visualization different navigators are
presented that allow the user to inspect the Pareto front and the process trees
contained in it. On the left-hand side of this view the currently selected process

(a) General settings. (b) Quality evaluation settings.

(c) Termination settings. (d) Change operator settings.

Figure 11.2: ETM parameter wizard screens.

282 Implementation

tree is shown, in this case visualized as a BPMN model.
The currently selected process tree can be pushed to the ProM workspace

using the ‘Push Process Tree to ProM Workspace’-button. This provides the
process tree as an object in the ProM workspace so that it can be used for further
analysis. In a similar way the currently discovered Pareto front can be made
available in the ProM workspace. Next to these buttons the current size of the
Pareto front is shown.

The ETM framework can be stopped by pressing the ‘Cancel’-button at the
top. A forced update of the GUI of the current Pareto front can also be triggered,
since updates can be delayed (currently the graphical user interface is set to
update at most every 10 seconds). Next to these two buttons the currently
visualized generation is shown.

At the right-hand side of the GUI different visualizations and Pareto front
navigators are shown. Currently the ‘2 Dimensional Scatter Plot’-visualization is
shown which projects the candidates of the Pareto front onto a two-dimensional
scatter plot. The x-axis is currently set to show the replay-fitness quality metric,
and the y-axis shows the precision (escaping edges) quality metric. The drop-

Figure 11.3: Result of the ‘Mine Pareto front with ETMd in Live mode’-plugin. The cur-
rent process tree is shown on the left as a BPMN model. The 2d scatter plot
Pareto front navigator is shown on the right.

11.1 Walk through of the ETMd Algorithm 283

down boxes below the plot allow the user to freely change the quality metric
shown on each of the axes. Each dot in this scatter plot is a process tree currently
in the Pareto front. The chart is currently zoomed to show all candidates, and
the user is free to zoom in and out. The process trees that together form a sub-
front on the two selected dimensions are connected with a solid line. By clicking
on the graph the process tree located closest to that location is selected and
shown on the left. The currently selected process tree is indicated by the two
crossing blue lines. This candidate is not on the sub-front of replay fitness and
precision. In this example the currently selected process tree is also visualized
as a square in the dot plot, instead of a dot. This indicates that this process tree
should actually be removed from the Pareto front. This can happen if better
process trees were found after the user selected this process tree. As soon as
another process tree is selected using any of the visualizations, this process tree
is removed from the Pareto front.

Several Pareto front visualizations and navigators are currently provided,
and more can easily be implemented for (live) Pareto front visualizations. Fig-
ure 11.4 shows a selection of the other Pareto front visualizations that are cur-
rently provided.

Figure 11.4a shows the ‘dimension navigators’ for each of the quality metrics
considered. Using the corresponding buttons, each dimension navigator allows
the user to navigate to the worst candidate (‘<<’), one candidate worse than
the current process tree (‘<’), one candidate better than the current process tree
(‘>’), and to the best candidate (‘>>’) for that quality metric. Below the buttons
the values for the worst, one candidate worse, current, one candidate better and
best candidate are shown. For the quality dimension of precision these values
are 0.458 (worst), 0.875 (one worse), 0.876 (current), 0.876 (one better) and
1.000 (best). In the third row the number of candidates worse or better than the
currently selected candidate are shown. For example, for precision there are 24

worse and 18 better candidates than the currently selected one.
Another visualization, which is also used in this thesis, is a histogram view,

as shown in Figure 11.4b. This graph shows the distribution of the candidates
in the Pareto front over the values of a quality metric. One histogram is shown
for each of the quality metrics. The histogram of Figure 11.4b for instance
shows the distribution of the candidates over the replay fitness quality dimen-
sion. Most candidates have a value between 0.95 and 1.0, while some have
values as low as 0.4.

Since the Pareto front is still evolving in the live view, information over the
generations can also be shown. The graph of Figure 11.4c for instance shows
the number of candidates in the Pareto front for each of the generations. From

284 Implementation

this graph it can clearly be observed that the size increases quickly in early
generations and is sometimes reduced in later generations. The time required
per generation can also be visualized, as is shown in Figure 11.4d. This graph

(a) Dimension navigators, one for each
quality dimension.

(b) Quality dimension histogram.

(c) Graph showing the Pareto front size
over the generations.

(d) Graph showing time per generation.

Figure 11.4: Different visualizations and navigators for the live Pareto front visualiza-
tion.

11.1 Walk through of the ETMd Algorithm 285

shows that the time on average is stable, but that the first generation took more
time.

As soon as one of the termination conditions is triggered, the ETMd algo-
rithm will stop updating the Pareto front. The visualization continues to allow
the user to further investigate the Pareto front, for instance by saving it to file,
or by extracting process trees from it for further analysis.

11.1.2 Usage via code

The ETM framework can also be run via (Java) code. The minimal code re-
quired to perform the experiment of Section 7.1.3 is shown in Listing 11.1. The
code first instantiates an event log. In this case we use a function to create the
running example event log, but using the OpenXES library [176] event logs can
also be loaded from file. Next the required parameters are initialized for the
experiment. These include for instance the population size, chance of crossover
and random mutation, as well as the maximum number of generations to run.
Next an ❊❚▼P❛r❛♠P❛r❡t♦ parameter object is instantiated using the event log
and parameters. The parameter object contains all information and settings re-
quired by the ETMd algorithm to run. Most parameters have default settings,
such as the selection mechanism, change operations and quality metrics used.
Currently these are set to default values which can be used in most situations.
The ❊❚▼P❛r❛♠❋❛❝t♦r② class also contains other methods that allow for more
detailed instantiation of the parameter object. Furthermore, after instantiation
of the parameter object all parameters can be inspected and changed, if desired.

With the parameter object correctly instantiated the ETM algorithm can be
instantiated and run, in this case to discover a Pareto front. When the ETM
algorithm is finished, the Pareto front can be obtained and processed further.
In this example we first output the size of the discovered Pareto front and then
save the Pareto front to file for further analysis.

11.1.3 Usage via Command Line Interface

A third option to run the ETM algorithms is by calling them via a command line
interface (CLI). The main purpose of the command line interface is to allow ETM
algorithms to be run on remote computers. It does not provide the usability and
extensibility features offered via the graphical user interface or code interaction.

Calling ETM algorithms via the command line can be done by first calling
the java application and providing it with the ETM code in the form of a JAR

286 Implementation

Listing 11.1: Minimal example to the run ETMd algorithm from code.

1 ✴✯✯
✯ ▼✐♥✐♠❛❧ ❝♦❞❡ t♦ r✉♥ t❤❡ ❊❚▼❞ t♦ ❞✐s❝♦✈❡r ❛ P❛r❡t♦ ❢r♦♥t
✯
✯ ❅♣❛r❛♠ ❛r❣s
✯✴

6 pub l i c s t a t i c void ♠❛✐♥✭❙tr✐♥❣ ❬❪ ❛r❣s✮ throws ■❖❊①❝❡♣t✐♦♥ ④
✴✴❲❡ ✐♥st❛♥t✐❛t❡ ♦♥❡ ♦❢ ♦✉r ❞❡❢❛✉❧t ❡✈❡♥t ❧♦❣s ✱ ❛♥ ❡①t❡r♥❛❧ ❡✈❡♥t ❧♦❣

❝❛♥ ❛❧s♦ ❜❡ ❧♦❛❞❡❞✳
❳▲♦❣ ❡✈❡♥t❧♦❣ ❂ ❙t❛♥❞❛r❞▲♦❣s✳❝r❡❛t❡❉❡❢❛✉❧t▲♦❣❲✐t❤◆♦✐s❡✭✮❀

✴✴ ■♥✐t✐❛❧✐③❡ ❛❧❧ ♣❛r❛♠❡t❡rs✿
11 i n t ♣♦♣❙✐③❡ ❂ ✶✵✵❀ ✴✴ ♣♦♣✉❧❛t✐♦♥ s✐③❡

i n t ❡❧✐t❡❙✐③❡ ❂ ✷✵❀ ✴✴♥r ♦❢ tr❡❡s ✐♥ t❤❡ ❡❧✐t❡
i n t ♥r❘❛♥❞♦♠❚r❡❡s ❂ ✷❀ ✴✴♥r ♦❢ r❛♥❞♦♠ tr❡❡s t♦ ❝r❡❛t❡ ❡❛❝❤ ❣❡♥❡r❛t✐♦♥
double ❝r♦ss❖✈❡r❈❤❛♥❝❡ ❂ ✵✳✶❀ ✴✴ ❝❤❛♥❝❡ ♦❢ ❛♣♣❧②✐♥❣ ❝r♦ss♦✈❡r
double ❝❤❛♥❝❡❖❢❘❛♥❞♦♠▼✉t❛t✐♦♥ ❂ ✵✳✺❀ ✴✴ ❝❤❛♥❝❡ ♦❢ ❛♣♣❧②✐♥❣ ❛ r❛♥❞♦♠

♠✉t❛t✐♦♥ ♦♣❡r❛t♦r
16 boolean ♣r❡✈❡♥t❉✉♣❧✐❝❛t❡s ❂ t rue ❀ ✴✴ ♣r❡✈❡♥t ❞✉♣❧✐❝❛t❡ ♣r♦❝❡ss tr❡❡s

✇✐t❤✐♥ ❛ ♣♦♣✉❧❛t✐♦♥ ✭❛❢t❡r ❝❤❛♥❣❡ ♦♣❡r❛t✐♦♥s ❛r❡ ❛♣♣❧✐❡❞✮
i n t ♠❛①●❡♥ ❂ ✶✵✵✵✵❀ ✴✴ ♠❛①✐♠✉♠ ♥✉♠❜❡r ♦❢ ❣❡♥❡r❛t✐♦♥ t♦ r✉♥
double t❛r❣❡t❋✐t♥❡ss ❂ ✶❀ ✴✴ t❛r❣❡t ❢✐t♥❡ss t♦ st♦♣ ❛t ✇❤❡♥ r❡❛❝❤❡❞
double ❢r❲❡✐❣❤t ❂ ✶✵❀ ✴✴ ✇❡✐❣❤t ❢♦r r❡♣❧❛② ❢✐t♥❡ss
double ♠❛①❋ ❂ ✵✳✻❀ ✴✴st♦♣ ❛❧✐❣♥♠❡♥t ❝❛❧❝✉❧❛t✐♦♥ ❢♦r tr❡❡s ✇✐t❤ ❛ ✈❛❧✉❡

❜❡❧♦✇ ✵✳✻ ❢♦r r❡♣❧❛② ❢✐t♥❡ss
21 double ♠❛①❋❚✐♠❡ ❂ ✶✵❀ ✴✴ ❛❧❧♦✇ ❛ ♠❛①✐♠✉♠ ♦❢ ✶✵ s❡❝♦♥❞s ♣❡r tr❛❝❡

❛❧✐❣♥♠❡♥t
double ♣❡❲❡✐❣❤t ❂ ✺❀ ✴✴ ✇❡✐❣❤t ❢♦r ♣r❡❝✐s✐♦♥
double ❣❡❲❡✐❣❤t ❂ ✵✳✶❀ ✴✴ ✇❡✐❣❤t ❢♦r ❣❡♥❡r❛❧✐③❛t✐♦♥
double s✉❲❡✐❣❤t ❂ ✶❀ ✴✴ ✇❡✐❣❤t ❢♦r s✐♠♣❧✐❝✐t②
✴✴t❤❡ ❢✐rst ♥✉❧❧ ♣❛r❛♠❡t❡r ✐s ❛ Pr♦▼ ❝♦♥t❡①t ✱ ✇❤✐❝❤ ❞♦❡s ♥♦t ♥❡❡❞ t♦

❜❡ ♣r♦✈✐❞❡❞
26 ✴✴t❤❡ s❡❝♦♥❞ ♥✉❧❧ ♣❛r❛♠❡t❡r ✐s ❛♥ ❛rr❛② ♦❢ s❡❡❞ ♣r♦❝❡ss tr❡❡s ✱ ✇❤✐❝❤

✇❡ ❞♦ ♥♦t ♣r♦✈✐❞❡ ❤❡r❡
✴✴t❤❡ ❧❛st ❵✵✬ ✐s t❤❡ s✐♠✐❧❛r✐t② ✇❡✐❣❤t
❊❚▼P❛r❛♠P❛r❡t♦ ❡t♠P❛r❛♠ ❂ ❊❚▼P❛r❛♠❋❛❝t♦r②✳❜✉✐❧❞❊❚▼P❛r❛♠P❛r❡t♦✭❡✈❡♥t❧♦❣

✱ nul l ✱ ♣♦♣❙✐③❡ ✱ ❡❧✐t❡❙✐③❡ ✱
♥r❘❛♥❞♦♠❚r❡❡s ✱ ❝r♦ss❖✈❡r❈❤❛♥❝❡ ✱ ❝❤❛♥❝❡❖❢❘❛♥❞♦♠▼✉t❛t✐♦♥ ✱

♣r❡✈❡♥t❉✉♣❧✐❝❛t❡s ✱ ♠❛①●❡♥ ✱ t❛r❣❡t❋✐t♥❡ss ✱
❢r❲❡✐❣❤t ✱ ♠❛①❋ ✱ ♠❛①❋❚✐♠❡ ✱ ♣❡❲❡✐❣❤t ✱ ❣❡❲❡✐❣❤t ✱ s✉❲❡✐❣❤t ✱ nul l ✱ ✵✮❀

31

❊❚▼P❛r❡t♦ ❡t♠ ❂ new ❊❚▼P❛r❡t♦✭❡t♠P❛r❛♠✮❀ ✴✴ ■♥st❛♥t✐❛t❡ t❤❡ ❊❚▼
❛❧❣♦r✐t❤♠

❡t♠✳r✉♥✭✮❀ ✴✴◆♦✇ ❛❝t✉❛❧❧② r✉♥ t❤❡ ❊❚▼ ❛❧❣♦r✐t❤♠ ✱ t❤✐s ♠✐❣❤t t❛❦❡ ❛
✇❤✐❧❡

✴✴ ❊①tr❛❝t t❤❡ r❡s✉❧t✐♥❣ P❛r❡t♦ ❢r♦♥t
36 P❛r❡t♦❋r♦♥t ♣❛r❡t♦❋r♦♥t ❂ ❡t♠✳❣❡t❘❡s✉❧t ✭✮❀

❙②st❡♠✳♦✉t✳♣r✐♥t❧♥✭✧❲❡ ❤❛✈❡ ❞✐s❝♦✈❡r❡❞ ❛ P❛r❡t♦ ❢r♦♥t ♦❢ s✐③❡ ✧ ✰
♣❛r❡t♦❋r♦♥t✳s✐③❡✭✮✮❀ ✴✴ ♦✉t♣✉t t❤❡ s✐③❡

P❛r❡t♦❋r♦♥t❊①♣♦rt✳❡①♣♦rt✭♣❛r❡t♦❋r♦♥t ✱ new ❋✐❧❡✭✧♠②P❛r❡t♦❋r♦♥t✳P❚P❛r❡t♦
✧✮✮❀ ✴✴❛♥❞ ✇r✐t❡ t♦ ❢✐❧❡

⑥

✌✆

11.1 Walk through of the ETMd Algorithm 287

file. This is followed by the command line parameters which are parsed by the
ETM algorithm. The call used to run the experiment of Section 7.1.3 via the
command line interface is shown in Listing 11.2.

In this command, first Java is started and instructed to read a JAR file. Ad-
ditionally the library path is set since the ETM requires an additional library3.
Next the ETMCLI.jar is passed and parameter options are set. The first option
is always the ‘mode’ in which the ETM algorithm should run, in this case Pareto
mode. Other modes include ‘NORMAL’ (i.e., ETMd), and several specific modes
for the four variants for discovering a configurable process tree as discussed in
Chapter 8. The second option is always the output log directory, in which the
intermediate and end results are written. The ❧♦❣ parameter indicates which
event log should be loaded. Next the weights for the four quality metrics are
provided. The ♠❛①●❡♥ parameter indicates the maximum number of genera-
tions to run. Population and elite size are set next. The time limit (in seconds)
for a single trace alignment by the replay fitness metric is set to 10 seconds. The
random mutation ratio is set to 0.50. The ❧♦❣♠♦❞✉❧♦ parameter indicates after
how many generations a log file should be created. Since we set this parameter
to 10, every 10 generations the current Pareto front is written to a file for anal-
ysis purposes. Additionally, a single statistics file is maintained with details of
each generation.

All experiments performed in this thesis are executed via the command
line interface. This allowed us to utilize a cluster of servers perform the ex-
periments. The interested reader is referred to the ❙❙❍❊①♣❡r✐♠❡♥ts class in
the ♦r❣✳♣r♦❝❡ss♠✐♥✐♥❣✳♣❧✉❣✐♥s✳❡t♠✳❡①♣❡r✐♠❡♥ts Java package in the ETM
source code4. This class automatically starts specified batches of experiments
on a given set of servers. It also logs the console output to local files and starts
new experiments when a server has finished its current experiment. In case an

3The LPSolve library is required, files for several operating systems can be found in the ‘locallib’
folder of the ETM source code.

4The initial version of the ❙❙❍❊①♣❡r✐♠❡♥ts class was implemented by Boudewijn van Dongen.

Listing 11.2: CLI call to start the experiment from Section 7.1.3.

❥❛✈❛ ✲❥❛r ✲❉✧❥❛✈❛✳❧✐❜r❛r②✳♣❛t❤ ❂✳✴❧✐❜✴✧ ❊❚▼❈▲■✳❥❛r P❆❘❊❚❖ ✱ ✴❧♦❣❉✐r✴✱ ❧♦❣
❂✴✵✵✵ ❘✉♥❊① ✲❉❡❢❛✉❧t ✲◆♦✐s❡✳①❡③ ✱ ❋r❂✶✵✱ P❡❂✺✱ ❙♠❂✶✱ ●✈❂✳✶✱ ♠❛①●❡♥
❂✶✵✵✵✵ ✱ ♣♦♣❙✐③❡ ❂✶✵✵✱ ❡❧✐t❡❙✐③❡ ❂✷✵✱ ❧✐♠✐t❋❚✐♠❡ ❂✶✵✱ r❛♥❞♦♠▼✉t❘❛t✐♦
❂✵✳✺✵✱ ❧♦❣▼♦❞✉❧♦ ❂✶✵

✌✆

288 Implementation

experiment failed, it is restarted. When all experiments for a particular experi-
ment batch are completed, the log files of the servers are compressed and down-
loaded to the local log directory. If a next batch of experiments exists this batch
is then started. The ♦r❣✳♣r♦❝❡ss♠✐♥✐♥❣✳♣❧✉❣✐♥s✳❡t♠✳❡①♣❡r✐♠❡♥ts✳t❤❡s✐s

Java package in the ETM source code contains all experiment settings used in
this thesis in the ❚❤❡s✐s❊①♣❡r✐♠❡♥t❙❡tt✐♥❣s class. Some of the experiment re-
sults can be processed by using functions in the ❚❤❡s✐s❊①♣❡r✐♠❡♥tPr♦❝❡ss♦r

class. Note that this last class contains experimental code and may not function
‘out of the box’.

11.2 Extending the ETMd Algorithm

The ETM framework can easily be extended by adding more quality metrics,
change operators and Pareto front visualizations. In this section we discuss in
more detail how each of these can be included in the ETM algorithms.

The ETMd algorithm can be further extended by using new termination con-
ditions, selection mechanisms, observer and logging classes and even with new
engines and process tree extensions. The ETM package uses the Watchmaker
framework [73] for evolutionary computing as the underlying framework, but
extends (and modifies) it in many areas. The specific extensions can be included
by following the guidelines for the Watchmaker framework [73].

11.2.1 Adding Quality Metrics

The main focus of the ETM framework is the incorporation of different quality
metrics during process discovery. Therefore, it is very easy to implement new
quality metrics and use them in the ETM framework. A quality metric should
extend the abstract quality metric Java class ❚r❡❡❋✐t♥❡ss❆❜str❛❝t. This comes
with the obligation to implement the ❣❡t❋✐t♥❡ss function which, given a pro-
cess tree and the current population, returns a numeric value. Additionally, a
new quality metric can implement a graphical user interface that is able to con-
figure that quality metric. This graphical user interface is shown in the ProM
wizard for the user to configure the quality metric.

Any new quality metric should also provide a ❚r❡❡❋✐t♥❡ss■♥❢♦ object which
contains information such as a two-character code, name and description of the
metric. It also contains the quality dimension the metric is related to, which is
one the four common quality dimensions (replay fitness, precision, generaliza-
tion and simplicity), a meta quality dimension that combines several other met-

11.2 Extending the ETMd Algorithm 289

rics, or ‘other’ to indicate that it measures another quality dimension. This in-
formation object also contains other quality metrics the current metric depends
on. For instance, the metric that calculates precision by using escaping edges,
as used in this thesis, depends on the replay fitness quality metric. Therefore,
the replay fitness metric should be evaluated first, before the precision metric
can be evaluated. Finally, the information object indicates whether bigger or
smaller values are better according to this metric.

When the ETM plug-ins are run from within the ProM framework, all quality
metrics are listed in the dropdown box shown at the top of Figure 11.2b. Via the
ProM framework all known classes extending the ❚r❡❡❋✐t♥❡ss❆❜str❛❝t class
are listed in this dropdown box. This means that authors can implement quality
metrics in their own packages and the ETM framework is able to find them and
present them to the user via the graphical user interface.

If the ETM is run via code, then the new quality metric can easily be added in
the parameter object to use. Currently it is not possible to use arbitrary quality
metrics via the command line interface without modifying the ETM source code.

11.2.2 Change Operations and Process Tree Creation

The performance of the ETM algorithms can be improved by including smarter
operations to create and change process trees. New process tree creation mech-
anisms should extend the ❚r❡❡❋❛❝t♦r②❆❜str❛❝t class and implement a func-
tion that, given an event log, produces a process tree. In a similar way, classes
providing new mutation operators should extend the ❚r❡❡▼✉t❛t✐♦♥❆❜str❛❝t

class and return a new process tree from a given process tree. New crossover
operations should extend the ❆❜str❛❝t❈r♦ss♦✈❡r❁◆❆r②❚r❡❡❃ class and should
provide a function that, given two process trees, returns two modified process
trees. These operations have access to the event log, quality scores of the pro-
cess tree(s) and the alignment of the process tree(s) with the event log.

New creation and change operations are currently not automatically de-
tected in the graphical user interface or the command line interface. There-
fore, these can currently only be used by adding them to the parameter object
via code or by modifying the code for the graphical user interface and com-
mand line. We plan to implement automatic detection of these operators for
the graphical user interface, as exists for the quality metrics, before the official
release of the code.

290 Implementation

11.2.3 Pareto Front Visualizers

For the visualization of the Pareto front many visualizers and navigators are
possible. Currently several interactive visualizers are implemented which are
shown in Figure 11.4. New visualizers can be added to the Pareto front visual-
ization as long as these new classes extend ❆❜str❛❝tP❛r❡t♦❋r♦♥t◆❛✈✐❣❛t♦r.

This visualization is notified when the currently selected process tree is up-
dated. The visualizer itself has access to the Pareto front and its visualization
and can therefore also update the selected process tree. This keeps all visualiz-
ers synchronized.

11.3 Implementation of the Comparison Framework

The comparison framework has been implemented as a plug-in in the ProM
framework [176] in the ❈♦♠♣❛r✐s♦♥❋r❛♠❡✇♦r❦ package. This package is avail-
able as of ProM 6.4 and is currently included in the ProM nightly build5. The
comparison framework package provides several plug-in variants that take one
or more event logs, and one or more process trees.

The comparison framework visualization that is shown when the plug-in is
started is shown in Figure 11.5. It consists of two main areas: the comparison
table on the left and the settings on the right. In the figure the event logs
and models from the case study of Section 10.4 are loaded. The event log
metric selected is the average trace duration in days. The current process model
metric simply displays the number of nodes in the process tree. Replay fitness
is currently selected as the comparison metric, and replicates Figure 10.3a.

11.3.1 Metric Settings

The settings panel of the comparison framework consists of several sections,
which are shown in Figure 11.6. The top panel, shown in Figure 11.6a, allows
the user to select which event logs and process models to show in the compari-
son table. By default event logs are rows and process models are columns, but
this can be swapped by selecting the ‘transpose table’-checkbox.

Next the event log, process model and comparison metric can be selected
in their respective panels. Each metric produces an object of a certain type
(or more specifically, a certain Java class). These objects are stored in a cache
so time consuming calculations only need to be performed the first time the

5ProM 6 nightly can be obtained from ❤tt♣✿✴✴✇✇✇✳♣r♦♠t♦♦❧s✳♦r❣✴♣r♦♠✻✴♥✐❣❤t❧②✴.

http://www.promtools.org/prom6/nightly/

11.3 Implementation of the Comparison Framework 291

metric is selected. In essence, we follow a model-view-controller approach [87]
where metrics are the controllers that create objects. Since each object type can
have multiple visualizers, the visualizers provide different views of the created
object. Numbers for instance can be visualized by just showing the number, but
also by coloring the cell background using different color scales, as is shown in
Figure 11.5.

We shall not go into the details of the settings for all metrics and visualizers,
but we choose to highlight some. Consider for instance the event log metric
‘average trace duration’, for which the settings panel is shown in Figure 11.6b.
The time unit or time abstraction can be selected from nanoseconds, seconds,
days, weeks, months and years. Furthermore, the activities can be selected
between which the duration should be calculated. In case no activity is selected,
the first or last activity in the trace is used to determine the start or end time
of the trace respectively. This metric results in a statistics object, which can

Figure 11.5: Main user interface of the comparison framework.

292 Implementation

(a) Main settings panel that allows the
user to select which models and
event logs to show and to transpose
the matrix.

(b) Settings panel to select the event log
statistic. Currently the settings for
the average trace duration statistic
are shown.

(c) Settings panel to select the process
tree statistic. Currently the process
tree size statistic is shown with the
color scale visualizer chosen and set
to the purple color scale.

(d) Additional feature to export the cur-
rent comparison framework view to
a LATEX file and separate image files.

Figure 11.6: Overview of the main, event log and model statistic settings panel as well
as the LATEX export settings panel.

11.3 Implementation of the Comparison Framework 293

currently only be visualized by displaying the mean as a number with a colored
background.

The settings panel for the process tree metric is shown in Figure 11.6c.
In this case the metric only shows the size and has no additional parameters.
Again, the number can be visualized using a color scale which can be selected.

In order to make the presentation of the comparison framework in case
studies, papers and PhD theses easier, export functionality to LATEX is also im-
plemented, as is shown in Figure 11.6d. The output folder can be specified for
the LATEX file that represents the currently visualized comparison table. Each cell
of the LATEX table consists of text or includes a graphic that is also exported. Both
the LATEX file and the graphics have a file name that is prefixed with the ‘code’
field, which is also used to label the table. Finally, the caption of the table can
already be filled in in the ‘description’ field.

11.3.2 Alignment Matrix Settings

We explain the settings of the alignment matrix, which is discussed in Sec-
tion 10.3, as a comparison metric. The alignment matrix again consists of
columns, rows and cells that can be colored. In order to reproduce the align-
ment matrices used in Chapter 10, we require the following settings, which are
also shown in Figure 11.7. The columns are set to represent the values of an
event classifier (see [176]), as is shown in Figure 11.7a. The event classifier in
turn is set to the activity name, but resources can also be specified. Now, each
column represents an activity and the columns are sorted alphabetically. Fig-
ure 11.7b shows the other representation options for columns and rows. These
can be set to represent traces, time periods or the position in the trace or align-
ment. The rows, as shown in Figure 11.7c, are currently set to represent traces,
sorted chronologically on the first event (i.e., oldest traces first). The color of
each cell is set to represent the activity or move type, as shown in Figure 11.7d.
This means that a cell is white (no move), gray (model moves), black (log
moves) or ‘colored’ where each activity is assigned a unique color. In case the
‘Color move type?’-checkbox is not checked, all cells are colored according to
the activity of the model move or log move, i.e., there are no black or gray cells.
The many setting combinations allow the alignment matrix to visualize many
different comparisons between an event log and a process model.

294 Implementation

11.3.3 Extending the Comparison Framework

The comparison framework is set up in a flexible way so new metrics and visu-
alizers can easily be added. Other packages can provide new event log metrics,
process tree metrics, comparison metrics or visualizations of objects. These are
automatically included in the user interface of the comparison framework.

Metrics need to extend the corresponding abstract metric class. The extend-
ing classes should provide the class of their return type (e.g. number, alignment
matrix or a Java graphical element). Additionally they should implement a
function that provides an instance of this class, based on the provided event log
and/or process tree.

Visualizers should indicate which Java class they are able to visualize. In
case a subclass is produced, visualizers of superclasses are also included and

(a) Column settings set to event
classier, here the event name,
sorted alphabetically.

(b) The other possible column (and
row) settings.

(c) Row settings set to individual traces
sorted by occurrence of first event.

(d) Cell settings set to event name by
color, with special colors for the
non-synchronous move types.

Figure 11.7: Overview of the alignment matrix comparison statistic, and its settings for
the column, row and cell representation.

11.4 Conclusion 295

can be called. Additionally, visualizers can implement a specific function that
can decide on a concrete object instance whether they can visualize the instance.
Visualizers should of course produce a Java graphical element (more concretely
a ❏❈♦♠♣♦♥❡♥t or subclasses thereof) when objects of the declared type are pro-
vided.

Both metrics and visualizers can provide a settings panel for the user to
configure the calculation and visualization.

11.4 Conclusion

In this chapter we discussed how the ETM framework and the ETM algorithms
can be used. We have shown how one of the experiments performed in this
thesis can be reproduced using three approaches. The graphical user interface
of ProM provides the most user friendly interaction. Java code calls allow for
the most flexibility and parameter tuning. The command line interface is of use
when many experiments are to be performed automatically, but this approach
provides less parameter options.

Additionally, in this chapter we have discussed several ways in which new
elements, such as quality metrics or change operators, can be added to the ETM
framework for use by all ETM algorithms.

In this chapter we have also discussed the implementation and use of the
comparison framework as presented in Chapter 10. The currently implemented
statistics were discussed, with emphasis on the alignment matrix. Additionally
it was discussed how new metrics and visualizations can be added to the com-
parison framework.

Chapter 12

Conclusion

In this chapter we summarize our main findings. In Section 12.1 we highlight
the contributions and results of this thesis. Section 12.2 lists some of the current
challenges and open issues that remain. Finally, in Section 12.3 we present an
outlook for further research and some general issues that should be addressed
in the general area of process mining.

12.1 Contributions of this Thesis

In the introduction of this thesis we presented seven challenges related to pro-
cess discovery, process model repair and the analysis of process families. These
seven challenges are:

1. Produce correct process models;

2. Separate visualization and the representational bias;

3. Balance the quality of discovered process models;

4. Improve understandability for non-experts;

5. Use existing knowledge in process discovery;

6. Describe a family of processes;

7. Compare similar observed behavior.

298 Conclusion

In Chapter 3 we addressed Challenges 1 and 2. We first discussed several
requirements for process modeling notations. One of the main requirements
is that a process model should be sound, i.e., error free, which is presented
as Challenge 1. Common process modeling notations were then discussed and
evaluated using the requirements identified. This showed that none of the ex-
isting process modeling notations can guarantee soundness without imposing
severe restrictions. Therefore, we presented process trees as a new process mod-
eling notation. Process trees are inherently sound because of their block struc-
ture. Additionally, we have shown that process trees can easily be translated
to sound and well-structured process models in several different notations. As
a result, the process tree notation also addresses Challenge 2 since it can be
visualized using most of the common process modeling notations. We also dis-
cussed when and, if possible, how existing process models can be translated to
process trees.

The Evolutionary Tree Miner (ETM) framework was presented in Chapter 4.
This framework allows for flexible process discovery using evolutionary algo-
rithms and is required to address the other challenges. After an introduction
of the ETM framework several application scenarios were discussed where a
flexible process discovery framework was required. The requirements for the
different phases of the ETM framework were also discussed in detail. The main
aspect to consider during implementation of the ETM framework is the balance
between exploring all possibilities in the search space and quickly converging
to optimal solutions. We also presented several common approaches from the
field of evolutionary computing for the different phases of the ETM framework.

The relationships between observed behavior as recorded in the event log,
the behavior of process models and the behavior of an unknown system were
discussed in detail in Chapter 5. This is necessary to address Challenges 3 and
4, since balancing quality and improving understandability of process models
heavily rely on a good understanding of the quality of a process model. The
four well-known quality dimensions of replay fitness, precision, generalization
and simplicity were considered in this discussion. Furthermore, for each of these
four quality dimensions a metric was proposed. These are used to evaluate the
quality in that dimension for a given process tree and event log. Several other
metrics in each dimension were discussed and additionally we showed that all
four quality dimensions should be considered in order to obtain meaningful and
useful process models.

The first flexible evolutionary algorithm based on the ETM framework, the
ETMd algorithm for process discovery, was presented in Chapter 6. The ETMd

algorithm addresses Challenge 3 by considering all four quality dimensions dur-

12.1 Contributions of this Thesis 299

ing discovery. The implementation of all aspects of the ETM framework was
discussed. These implementation efforts first resulted in the ETMd algorithm
for process discovery. The ETMd algorithm is a flexible process discovery algo-
rithm that is able to balance the quality dimensions discussed in Chapter 3. In
Chapter 6 the ETMd algorithm was applied to an event log to show the discov-
ered process trees. The discovered process trees were also compared with the
results of existing process discovery techniques.

The applicability of the ETMd algorithm was further demonstrated in Chap-
ter 7 where more extensive experiments were performed. The ETMd algorithm
was applied to several artificial and real life datasets. We showed that the result-
ing process models are of equal or better quality than those created by existing
process discovery algorithms. We also demonstrated, by presenting the discov-
ered Pareto front of process trees, that there is no single process model that de-
scribes the observed behavior the best. Different aspects of the behavior of the
ETMd algorithm were discussed such as the long-term behavior and the effects
of random versus guided change operations. Since evolutionary algorithms are
applicable to a wide range of problems, they are in general slower than prob-
lem tailored methods. Therefore, we investigated the performance of the ETMd

algorithm in detail and concluded that the performance mainly depends on the
calculation of the alignments.

In Chapter 8 we presented the ETMr algorithm which considers a norma-
tive process model during discovery, thus addressing Challenge 5. We showed
that the only change required to transform the ETMd algorithm into the ETMr

algorithm is the addition of similarity as a fifth quality dimension. By applying
the ETMr algorithm on both a running and real life event log we demonstrated
that the resulting process models indeed provide a good balance between the
provided normative model(s) and the observed behavior.

In Chapter 9 we presented the ETMc algorithm which is able to discover
a configurable process model, describing a collection of event logs, which ad-
dresses Challenge 6. After discussing configurable process models in general
we discussed how the process tree notation was extended to capture configu-
rations. We then introduced a way to change configurations in a configurable
process tree and how to measure the configuration quality of a configurable
process tree. We compared the ETMc algorithm with three other approaches for
the discovery of a configurable process model proposed in literature. However,
the ETMc algorithm has a clear advantage over these other approaches, for in-
stance because it can construct a Pareto front of configurable process trees. We
demonstrated this by comparing all four approaches on both a running example
and real event logs.

300 Conclusion

Chapter 10 presented a comparison framework to compare inter-organizational
processes, thus addressing Challenge 7. Within this framework we support the
visualization of alignments between observed and modeled behavior without
showing the process model. We have evaluated the framework, and mainly the
alignment visualization, in a case study with partners from the CoSeLoG project.

The implementation of the ETM framework and the ETM algorithms pre-
sented in this thesis were discussed in more detail in Chapter 11. The ETM
framework is implemented in the ETM package in the ProM framework and is
included as of ProM 6.4. We demonstrated how one of the experiments per-
formed in this thesis can be replicated via the graphical user interface of ProM,
via Java code calls and via a command line interface. We also discussed how
new elements, such as quality metrics and change operations, can easily be
added to the ETM framework. The ProM framework and the ETM package can
be obtained from ✇✇✇✳♣r♦❝❡ss♠✐♥✐♥❣✳♦r❣.

12.2 Current Challenges and Open Issues

In this section we discuss some of the limitations of the techniques presented
in this thesis. We also present improvements that can still be made and discuss
opportunities that we see based on extensions of the techniques presented.

12.2.1 Limitations

The work presented in this thesis provides a comprehensive approach to pro-
cess mining and answers novel questions. However, the current approach and
implementation also suffers from some limitations. Most notable improvement
opportunities are:

Performance Improvement of Alignment Calculations. The performance of
the ETM framework is currently mostly limited by the alignment calcu-
lations. Great effort has already been put into optimizing the alignment
calculations for process trees. Also, for the ETM framework, in some cases
estimations might be sufficient. Furthermore, given a process tree, its
alignment and the change applied on this process tree, the new alignment
could be deduced instead of calculated from the beginning.

Smarter Guided Mutation. In order to improve the performance of the ETM
framework and the quality of the produced process models, more guided

www.processmining.org

12.2 Current Challenges and Open Issues 301

mutations should be implemented. If higher quality process models are
created quicker, less alignments need to be calculated, so the performance
of the ETM improves significantly. Additionally, smarter selection of which
guided mutation to apply on a particular process tree results in better
performance of the ETM algorithms and better quality of the discovered
process trees. For instance, using the current quality of a process model,
the guided mutation can be selected that is likely to improve a particular
quality aspect of the process model the most.
Furthermore, guided mutations should not be restricted to control flow
only, since guided repair and configuration mutations can also be created.
In [141] a guided configuration mutation is discussed. This makes the
search more effective by considering the alignments of each of the given
event logs on the process model, in order to detect a suitable configura-
tion.

Better Precision Metric. Currently the best metric for precision is the approach
of [138] which uses the ‘escaping’ (i.e., not-used) edges in the state space
that is created during the alignment calculations. When operator nodes
are added that have only one child, the ratio of escaping edges is reduced,
and thus precision is improved. These operator nodes are useless accord-
ing to the definition of Section 5.3.1. The generalization metric proposed
in this thesis already ignores useless nodes, and precision should do the
same. Another issue related to the current precision metric is that the frac-
tion of escaping edges is an estimation of the non-observed but modeled
behavior, since the modeled behavior might be infinite. A single escap-
ing edge, which is not investigated further, might therefore hide a lot of
behavior that is currently not considered. This is reflected by the mild
punishment for loops in process trees. A loop with children ❛, ❜ and ❝ and
an event log consisting only of the trace 〈a,c〉 currently has a calculated
precision of 0.667. This score does not express the imprecision of the loop
operator well given the observed behavior.

12.2.2 Improvements

The work in this thesis can be further improved and extended by applying the
following ideas:

Further Theoretical Discussion. In this thesis we discussed the relationships
between the event log, process model and system. This theoretical dis-
cussion can be further investigated to thoroughly understand the quality

302 Conclusion

dimensions and their interactions. For instance, currently it is unclear
how noise and completeness can be measured. The main cause for this is
that they reason about the behavior of the unknown system. Furthermore,
there is no common understanding and agreement on the exact meaning
and interpretation of generalization, noise and completeness. Some argue
that noise should be removed from the event log before discovery is ap-
plied, while we and others see noise as infrequent or exceptional behavior
that cannot be detected before process discovery is started.

New Generalization Metrics. In this thesis we proposed a generalization met-
ric that follows our understanding of the generalization quality dimension.
Few generalization metrics have been proposed in literature. We do not
claim that our proposal is the definite and only metric to express this qual-
ity dimension. Although it seems to work well in the context of the ETM
framework and ETM algorithms, other metrics might better capture the
philosophy of the dimension. At the same time the generalization quality
dimension is hard to measure since it reasons about an unknown process.
However, by further reasoning about the quality dimensions, and the in-
terplay between the process model, event log and the real process, new
ideas for generalization metrics might be obtained.

Visualization of Quality Metrics on Process Trees. Currently the quality of a
process tree is indicated by a numeric value for each of the quality dimen-
sions. However, more detailed information is available. Alignments for
instance can be projected onto process trees and process models in gen-
eral [21]. However, precision, generalization and simplicity should also
be projected onto the process tree. Furthermore, information such as visit
frequencies and time-related information should also be visualized on a
process tree to give insights into the quality of the process tree. A first
approach has recently been presented in [184] but we foresee more ways
of visualizing these properties.

Extend Expressiveness of Process Trees. Although process trees are able to
express the five basic control-flow constructs (sequence, exclusive choice,
parallelism, non-exclusive choice and loops), additional operators could
be added. For instance, a ‘long-term dependency’(LTD)-operator would
be able to synchronize choices made in one part of the process with the
choice to be made in another part. An example is shown in Figure 12.1.
An LTD-operator would take three children, of which the first and the last
are ×-operators with the same number of children. The choice made at the

12.2 Current Challenges and Open Issues 303

first ×-operator is synchronized with the last ×-operator, which activates
the subtree at the same index. For the example of Figure 12.1, subtree ❳

is executed if subtree ❆ was executed before, and subtree ❨ is executed if
subtree ❇ was executed before. Note that long-term dependencies could
also be encoded when data is included in the process discovery phase.
Other operators that could be added to process trees are the milestone
construct [17], cancelation regions [17] and interleaved routing [17].

12.2.3 Opportunities

The work presented in this thesis provides many opportunities for future work,
some of which are discussed here.

Testing new Quality Metrics using the ETM Framework. One of the research
purposes of the ETM framework is to investigate the quality dimensions
and proposed quality metrics. New quality metrics can easily be added,
and their effects on the resulting process models can be investigated. The
ETM framework applies evolutionary techniques to optimize each of the
quality dimensions provided. By inspecting whether the resulting process
models correspond with the intention of the quality metric, these metrics
can be improved. For instance, during early experiments using the ETMd

algorithm we found process trees that scored very well on generalization,
but did not correspond to our notion of a generalizing process tree. This
was mainly caused by the ETMd algorithm adding many nodes to the pro-
cess tree that were frequently visited but did not change the behavior. By
ignoring these useless nodes in the generalization calculation the resulting
process trees improved.

LTD

×

YX

×

BA

Figure 12.1: Example of a ‘long-term dependency’ (LTD) operator, which synchronizes
the choices of the two ×-operators.

304 Conclusion

Structured Approach to Flexible Process Discovery. The ETM framework pro-
vides a framework for flexible process discovery. However, since the ETM
framework applies evolutionary techniques, the approach is not struc-
tured. A more structured and constructive approach is necessary to be
able to apply flexible process discovery on larger event logs within a rea-
sonable execution time. The ETM framework allows for the addition of
new tree creation, crossover and (guided) mutation change operations.
By investigating which change operators work well together, a more struc-
tured and constructive approach can be discovered. This can eventually
result in a structured approach that does not depend on the ETM frame-
work any more. It is however a challenge to combine this with flexible
discovery.

Use Available Information During Discovery. The event log contains more in-
formation than only the order in which activities are executed. Each event
for instance contains information about the lifecycle state of the activity,
i.e., if the activity was started, completed, canceled, paused, resumed, and
so on. Using this information during mutation and evaluation can help in
creating better process trees. It is for instance known that an activity (usu-
ally) can only be completed once it has started. This restricts the possible
combinations of the activities in the process tree. Other knowledge such
as activity duration, resource allocation, and recorded data values can also
be used. All this information can help in deducing relationships between
activities and thus help in providing better guided mutations.

Make ETM Algorithm Execution Interactive. During the execution of the ETM
algorithms more interaction with the user can help focus efforts of the
ETM algorithms. This can increase the quality of the discovered process
trees or Pareto front by incorporating the user’s requirements. The user
can for instance indicate the area in the Pareto front they are interested in
so the ETM algorithm can focus its efforts creating better and more pro-
cess trees in that area. The user could also introduce additional quality
dimensions, or remove existing quality dimensions that do not contribute
to good quality process trees, at run-time.

Extended Usage of Process Trees. Process trees provide a unique structure to
process models that can be used for other purposes than process discovery.
For instance, calculation of alignments for the replay fitness dimension is
more efficient on process trees than on Petri nets because of the structure
of process trees. The process tree structure can however be used for more

12.3 Outlook on Process Mining 305

analysis and visualization techniques. A process tree can for instance give
insights into the hierarchical grouping of activities. This can help in clus-
tering activities in order to ensure that all activities are on the same level
of abstraction. Another use case would be to support business process
modeling by using a process tree. The user could directly model a pro-
cess tree, or model in their preferred process modeling notation while a
process tree is constructed in the background. This results in sound and
structured process models.

Integration of the Comparison Framework into the Dashboard of the Cloud IS.
Within the CoSeLoG project we envision a cloud-based information sys-
tem [162] that supports the execution of similar processes across organi-
zations (see Section 1.4). The techniques presented in this thesis, but es-
pecially the discovery of a configurable process model presented in Chap-
ter 9 and the comparison framework presented in Chapter 10, can be in-
tegrated into the dashboard of this cloud system. The configurable proces
model discovery can be integrated into the dashboard to provide up-to-
date insights into suitable configurations based on the observed behavior.
Incorporating the comparison framework into the dashboard enables a
live and interactive comparison between the recorded behavior and pro-
cess models of the different organizations. By investigating the process
configurations of other organizations, and comparing these with the pro-
cess execution characteristics such as costs and processing time, organi-
zations can quickly learn and improve. Furthermore, new collaborations
can be triggered on a daily basis.

12.3 Outlook on Process Mining

When we look beyond the scope of the work presented in this thesis, we observe
that process mining consists of several areas, of which process discovery is often
seen as the most important. In the other areas analysis techniques such as
alignments between process models and event logs, visual analytics of event
logs, and online process mining exist. In general these techniques are mature
and robust enough to be applied on real life cases. However, process discovery
is not that mature and robust yet. This can be explained by the observation
that process discovery is much more difficult to grasp than visualizing observed
events or predicting a next event. In this section we propose several aspects that
should be addressed to improve the quality of process discovery algorithms, and

306 Conclusion

process mining research in general.

12.3.1 Closer Collaboration between Academia, Tool Vendors,
Consultants and Clients

There are several parties involved in developing and applying process mining
techniques. Researchers in academia provide solutions to selected problems re-
lated to process mining. Some of these solutions are picked-up by tool vendors
which incorporate similar solutions in their commercial (process mining) anal-
ysis tools. The tools, or sometimes even the academic solutions themselves, are
used by consultants to answer questions they are asked to solve for their clients.

For all parties involved it is crucial that each party communicates with the
other parties. In order to be able to answer questions that are asked by clients,
consultants need appropriate tools. In essence, most of these tools can only
be provided by the tool vendors if they have been researched and developed
by researchers in academia. However, although researchers are very capable
of finding new challenges to solve, they should be aware of the most pressing
questions in industry.

Therefore, there should be feedback loops in order for current issues of
clients to be collected by consultants and tool vendors so they reach researchers
in academia. Of course, the results of researchers should be evaluated on client
data, possibly via tool vendors and consultants, to validate the proposed solu-
tions. In the end the researched solutions can be picked up by tool vendors, and
used by consultants. However, researchers should not ignore the fact that con-
sultants might use their solutions directly, and the solutions should be suitable
for such usage.

12.3.2 Address Hindering Side Issues

There are several ‘side issues’ that are hindering the development and adoption
of process mining as a whole. These issues involve privacy, transparency, lack
of a clear approach or set of tools, and immature process discovery algorithms.

Within the CoSeLoG project we experienced a fruitful collaboration between
the clients (the municipalities) and the involved tool vendors. Using the con-
crete questions but more importantly the concrete data of the municipalities, we
found interesting questions to address and we were able to test our proposed
solutions. It is however crucial that clients are willing to share their data with
researchers in academia. Many colleague researchers have difficulties obtaining

12.3 Outlook on Process Mining 307

data because of lack of trust or privacy concerns from the clients. Research from
a more privacy and security oriented perspective is necessary to address these
concerns, probably as part of the whole ‘big data’ discussion. Only if privacy
and related issues are addressed, closer collaborations between academia and
clients become possible. Ideally there should be a standard agreement on how
data is obtained, processed, stored and shared, as well as on how results are
presented in publications.

12.3.3 Improve the Applicability of Solutions on Real Data

One of the main results from the proposed increased collaboration is the appli-
cability of solutions proposed by academia on real data. Currently most pro-
posed techniques and solutions are mainly validated on artificial data, some-
times with an evaluation on a specific real life data set included. The problem
this causes is demonstrated by the low quality of the results of existing process
discovery algorithms on the real life data used in this thesis (see Section 7.3).
Although all process mining solutions should be applicable to real data, for pro-
cess discovery algorithms this is crucial.

In the early days of process discovery simple techniques, such as the α-
algorithm, were proposed. These algorithms were developed to discover pro-
cess models while making strong assumptions about the process and event data.
Furthermore, the whole problem of process discovery required further investi-
gation and understanding which these simple algorithms helped achieve. How-
ever, currently many process discovery techniques exist and our understanding
of the process discovery challenge has improved. Most of the current process
discovery techniques have trouble addressing all challenges discussed in this
thesis: producing correct results, providing insights into what makes a process
model good, and providing alternative solutions. The ETM framework and ETM
algorithms are not the definitive answer to these challenges. The ETM frame-
work is a first implementation of what will hopefully become a new generation
of process discovery algorithms that will actually produce useful results.

Developing good process discovery algorithms is also crucial for process min-
ing as a whole. The discovered process models enable further analysis via
a large collection of techniques. However, the quality of the process model,
amongst several other characteristics, has a big influence on the quality (and
therefore usefulness) of the subsequent analysis results.

308 Conclusion

12.3.4 Improve the Usability of Techniques

Many interesting process mining techniques and approaches have been pro-
posed by researchers all over the world. Usability of most of these process
mining techniques however remains an issue. Most techniques present the user
with many parameters. Although these settings are often very clear and under-
standable for the author(s), other researchers have little knowledge of the inner
workings of these proposed techniques. Therefore, if techniques are to be used
by other researchers, or even by consultants in industry, there should at the
very least be a simple set of parameters to specify. Explanations should be pro-
vided of the purpose and recommended values of these parameters, preferably
in both the graphical user interface and code documentation. If the parame-
ters are unclear, and researchers obtain bad results in experiments caused by
incorrect parameter settings, adoption of a new technique will be hindered.

12.3.5 Create Incentives for Researchers to Publish and Doc-
ument their Solutions

Although proposed techniques and solutions should be user-friendly, documen-
tation is always necessary. But more crucially, before new techniques can be
used and extended, they have to be made public. Currently however there is
little incentive for researchers to publish their solutions and provide good qual-
ity documentation. Especially new researchers and consultants, who often have
great interest in process mining, have little idea where to start. Providing a
simple explanation of the basic usage of the different plug-ins which are for
instance available in the ProM framework would help all users select the cor-
rect techniques for their tasks. This also will inspire them to contribute new
ideas and techniques. One approach would be to make a specific code version,
including documentation, into a publication that can be cited, and thus would
contribute to an author‘s h-index. However, currently code and documentation
are not regarded as quality publications so researchers have no reason to put
effort into these.

12.3 Outlook on Process Mining 309

Bibliography

[1] W.M.P. van der Aalst. Three good reasons for using a petri-net-based
workflow management system. In S. Navathe and T. Wakayama, editors,
Proceedings of the International Working Conference on Information and

Process Integration in Enterprises (IPIC’96), pages 179–201. Camebridge,
Massachusetts, Nov 1996. (Cited on page 39.)

[2] W.M.P. van der Aalst. Configurable services in the cloud: Support-
ing variability while enabling cross-organizational process mining. In
R. Meersman, T.S. Dillon, and P. Herrero, editors, OTM Conferences (1),
volume 6426 of Lecture Notes in Computer Science, pages 8–25. Springer,
2010. ISBN 978-3-642-16933-5. (Cited on pages 1, 19, and 20.)

[3] W.M.P. van der Aalst. Business process configuration in the cloud:
How to support and analyze multi-tenant processes? In G. Zavattaro,
U. Schreier, and C. Pautasso, editors, ECOWS, pages 3–10. IEEE, 2011.
ISBN 978-1-4577-1532-7. (Cited on pages 1 and 20.)

[4] W.M.P. van der Aalst. On the representational bias in process mining
(keynote paper). In S. Reddy and S. Tata, editors, Proceedings of the 20th

Workshops on Enabling Technologies: Infrastructure for Collaborative En-

terprises (WETICE 2011), pages 2–7. IEEE Computer Society Press, Paris,
2011. (Cited on pages 35, 39, and 40.)

[5] W.M.P. van der Aalst. Process Mining - Discovery, Conformance and En-

hancement of Business Processes. Springer, 2011. ISBN 978-3-642-19344-

312 BIBLIOGRAPHY

6. (Cited on pages 3, 4, 5, 27, 28, 31, 33, 36, 40, 41, 78, 98, 103, 104,
120, 122, and 223.)

[6] W.M.P. van der Aalst. What makes a good process model? - Lessons
learned from process mining. Software and System Modeling, 11(4):557–
569, 2012. ISSN 1619-1366. (Cited on page 35.)

[7] W.M.P. van der Aalst. Decomposing Petri nets for process mining: A
generic approach. Distributed and Parallel Databases, 31(4):471–507,
2013. (Cited on pages 29 and 30.)

[8] W.M.P. van der Aalst. Mediating between modeled and observed behav-
ior: The quest for the "right" process: Keynote. In R. Wieringa, S. Nurcan,
C. Rolland, and J.L. Cavarero, editors, RCIS, pages 1–12. IEEE Comput-
ing Society, 2013. ISBN 978-1-4673-2912-5. (Cited on pages 98, 99,
and 122.)

[9] W.M.P. van der Aalst, A. Adriansyah, and B.F. van Dongen. Causal nets: A
modeling language tailored towards process discovery. In J. Katoen and
B. Koenig, editors, CONCUR, volume 6901, pages 28–42. 2011. ISBN
978-3-642-23216-9. (Cited on pages 12, 43, and 49.)

[10] W.M.P. van der Aalst, A. Adriansyah, and B.F. van Dongen. Replaying
history on process models for conformance checking and performance
analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 2(2):182–192, 2012. ISSN 1942-4795. (Cited on pages 98,
104, 109, 118, 122, and 123.)

[11] W.M.P. van der Aalst, A. Adriansyah, A.K.A. de Medeiros, F. Arcieri,
T. Baier, T. Blickle, R.P.J.C. Bose, P. van den Brand, R. Brandtjen,
J.C.A.M. Buijs, A. Burattin, J. Carmona, M. Castellanos, J. Claes, J. Cook,
N. Costantini, F. Curbera, E. Damiani, M. de Leoni, P. Delias, B.F. van
Dongen, M. Dumas, S. Dustdar, D. Fahland, D.R. Ferreira, W. Gaaloul,
F. van Geffen, S. Goel, C.W. Günther, A. Guzzo, P. Harmon, A.H.M. ter
Hofstede, J. Hoogland, J.E. Ingvaldsen, K. Kato, R. Kuhn, A. Kumar, M. La
Rosa, F.M. Maggi, D. Malerba, R.S. Mans, A. Manuel, M. McCreesh,
P. Mello, J. Mendling, M. Montali, H.R.M. Nezhad, M. zur Muehlen,
J. Munoz-Gama, L. Pontieri, J. Ribeiro, A. Rozinat, H.S. Pérez, R.S. Pérez,
M. Sepúlveda, J. Sinur, P. Soffer, M. Song, A. Sperduti, G. Stilo, C. Stoel,
K.D. Swenson, M. Talamo, W. Tan, C. Turner, J. Vanthienen, G. Varvares-
sos, H.M.W. Verbeek, M. Verdonk, R. Vigo, J. Wang, B. Weber, M. Wei-

BIBLIOGRAPHY 313

dlich, T. Weijters, L. Wen, M. Westergaard, and M.T. Wynn. Process min-
ing manifesto. In F. Daniel, K. Barkaoui, and S. Dustdar, editors, Business

Process Management Workshops (1), volume 99 of Lecture Notes in Busi-

ness Information Processing, pages 169–194. Springer Berlin Heidelberg,
2011. ISBN 978-3-642-28107-5. (Cited on pages 10, 11, 13, 14, 15, 16,
35, and 349.)

[12] W.M.P. van der Aalst, J.C.A.M. Buijs, and B.F. van Dongen. Towards
improving the representational bias of process mining. In K. Aberer,
E. Damiani, and T. Dillon, editors, SIMPDA, volume 116 of Lecture Notes

in Business Information Processing, pages 39–54. Springer Berlin Heidel-
berg, 2011. ISBN 978-3-642-34043-7. (Cited on page 349.)

[13] W.M.P. van der Aalst, J. Desel, and E. Kindler. On the semantics of EPCs:
A vicious circle. In M. Nüttgens and F. Rump, editors, EPK, pages 71–
79. Gesellschaft für Informatik, Bonn, Trier, Germany, November 2002.
(Cited on pages 36, 38, 43, and 50.)

[14] W.M.P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, and M.H.
Jansen-Vullers. Configurable process models as a basis for reference mod-
eling. In C. Bussler and A. Haller, editors, Business Process Management

Workshops, volume 3812, pages 512–518. 2005. ISBN 3-540-32595-6.
(Cited on page 224.)

[15] W.M.P. van der Aalst, K.M. van Hee, A.H. ter Hofstede, N. Sidorova,
H. Verbeek, M. Voorhoeve, and M. Wynn. Soundness of workflow nets
with reset arcs is undecidable! In Proceedings of the International Work-

shop on Concurrency Methods Issues and Applications (CHINA’08), pages
57–72. Xidian University, 2008. (Cited on page 36.)

[16] W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova,
H.M.W. Verbeek, M. Voorhoeve, and M. Wynn. Soundness of workflow
nets: Classiffication, decidability, and analysis. Formal Aspects of Com-

puting, 23(3):333–363, 2011. (Cited on pages 36 and 37.)

[17] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A. Bar-
ros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–51,
2003. (Cited on pages 38, 41, 42, and 303.)

[18] W.M.P. van der Aalst, A.K.A. de Medeiros, and A.J.M.M. Weijters. Process
equivalence: Comparing two process models based on observed behav-

314 BIBLIOGRAPHY

ior. In S. Dustdar, J.L. Fiadeiro, and A.P. Sheth, editors, Business Pro-

cess Management, volume 4102 of LNCS, pages 129–144. Springer, 2006.
ISBN 978-3-540-38901-9. (Cited on page 205.)

[19] W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering so-
cial networks from event logs. Computer Supported Cooperative Work,
14(6):549–593, 2005. ISSN 0925-9724. (Cited on page 85.)

[20] W.M.P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining:
Discovering process models from event logs. IEEE Transactions on Knowl-

edge and Data Engineering, 16(9):1128–1142, 2004. (Cited on pages xix,
99, and 147.)

[21] A. Adriansyah. Aligning Observed and Modeled Behavior. Ph.D. thesis,
Eindhoven University of Technology, 2014. (Cited on pages 98, 109,
111, 113, 122, 123, 189, 197, 199, 221, and 302.)

[22] A. Adriansyah and J.C.A.M. Buijs. Mining process performance from
event logs. In M.L. Rosa and P. Soffer, editors, Business Process Man-

agement Workshops, volume 132 of Lecture Notes in Business Information

Processing, pages 217–218. Springer Berlin Heidelberg, 2012. ISBN 978-
3-642-36284-2. (Cited on pages 109, 122, and 348.)

[23] A. Adriansyah and J.C.A.M. Buijs. Mining process performance from
event logs: the BPI Challenge 2012 case study. Technical report, BPM
Center Report, No. BPM-12-15, 2012. (Cited on page 350.)

[24] A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Conformance
checking using cost-based fitness analysis. In EDOC, pages 55–64. IEEE
Computer Society, 2011. ISBN 978-1-4577-0362-1. (Cited on pages 109,
189, and 221.)

[25] A. Adriansyah, N. Sidorova, and B.F. van Dongen. Cost-based fitness in
conformance checking. In B. Caillaud, J. Carmona, and K. Hiraishi, edi-
tors, ACSD, pages 57–66. IEEE, 2011. ISBN 978-0-7695-4387-1. (Cited
on pages 189 and 221.)

[26] E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2010.
(Cited on pages 40 and 49.)

[27] A.K. Alves de Medeiros. Genetic Process Mining. Ph.D. thesis, Eindhoven
University of Technology, 2006. (Cited on pages 49, 98, 103, 115, 119,
and 123.)

BIBLIOGRAPHY 315

[28] A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst.
Using genetic algorithms to mine process models: Representation, op-
erators and results. BETA Working Paper Series, WP 124, Eindhoven
University of Technology, Eindhoven, 2004. (Cited on page 40.)

[29] A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst.
Genetic process mining: An experimental evaluation. Data Mining

and Knowledge Discovery, 14(2):245–304, 2007. (Cited on pages xix
and 148.)

[30] N. Assy, W. Gaaloul, and B. Defude. Mining configurable process frag-
ments for business process design. In M. Tremblay, D. VanderMeer,
M. Rothenberger, A. Gupta, and V. Yoon, editors, DESRIST, volume 8463
of Lecture Notes in Computer Science, pages 209–224. Springer Interna-
tional Publishing, 2014. ISBN 978-3-319-06700-1. (Cited on page 257.)

[31] E. Badouel and P. Darondeau. Theory of regions. In W. Reisig and
G. Rozenberg, editors, Petri Nets, volume 1491, pages 529–586. 1996.
ISBN 3-540-65306-6. (Cited on page 157.)

[32] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cam-

bridge tracts in theoretical computer science. Cambridge University Press,
Cambridge, 1990. (Cited on page 46.)

[33] C. Baier and J. Katoen. Principles of Model Checking. MIT Press, 2007.
(Cited on pages 27 and 49.)

[34] J.E. Baker. Reducing bias and inefficiency in the selection algorithm. In
Proceedings of the second international conference on genetic algorithms,
pages 14–21. 1987. (Cited on pages 92 and 139.)

[35] W. Banzhaf, F.D. Francone, R.E. Keller, and P. Nordin. Genetic Program-

ming: An Introduction: on the Automatic Evolution of Computer Programs

and Its Applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1998. ISBN 1-55860-510-X. (Cited on pages 86, 87, 88, 137,
138, and 139.)

[36] R.C. Barros, M.P. Basgalupp, A.C.P.L.F. de Carvalho, and A.A. Freitas.
A survey of evolutionary algorithms for decision-tree induction. IEEE

Transactions on Systems, Man, and Cybernetics, Part C, 42(3):291–312,
2012. ISSN 1094-6977. (Cited on page 83.)

316 BIBLIOGRAPHY

[37] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process mining based
on regions of languages. In G. Alonso, P. Dadam, and M. Rosemann, edi-
tors, BPM, volume 4714, pages 375–383. 2007. ISBN 978-3-540-75182-
3. (Cited on pages 153 and 155.)

[38] S. Betz, D. Eichhorn, S. Hickl, S. Klink, A. Koschmider, Y. Li, A. Oberweis,
and R. Trunko. 3d representation of business process models. In P. Loos,
M. Nüttgens, K. Turowski, and D. Werth, editors, MobIS, volume 141 of
LNI, pages 73–87. GI, 2008. (Cited on page 275.)

[39] C.G.E. Boender and A.H.G.R. Kan. A bayesian analysis of the number of
cells of a multinomial distribution. Journal of the Royal Statistical Society.

Series D (The Statistician), 32(1/2):pp. 240–248, 1983. ISSN 00390526.
(Cited on page 118.)

[40] R.P.J.C. Bose. Process Mining in the Large: Preprocessing, Discovery, and

Diagnostics. Ph.D. thesis, Eindhoven University of Technology, 2012.
(Cited on pages 81 and 82.)

[41] R.P.J.C. Bose and W.M.P. van der Aalst. Process diagnostics using trace
alignment: Opportunities, issues, and challenges. Information Systems,
37(2):117–141, 2012. (Cited on page 17.)

[42] R.P.J.C. Bose, W.M.P. van der Aalst, I. Zliobaite, and M. Pechenizkiy. Han-
dling concept drift in process mining. In H. Mouratidis and C. Rolland,
editors, CAiSE, volume 6741 of Lecture Notes in Computer Science, pages
391–405. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-21639-8.
(Cited on pages 81 and 82.)

[43] J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors. Multiobjec-

tive Optimization, Interactive and Evolutionary Approaches [outcome of

Dagstuhl seminars]., volume 5252 of Lecture Notes in Computer Science.
Springer, 2008. ISBN 978-3-540-88907-6. (Cited on page 90.)

[44] J.C.A.M. Buijs. Mapping Data Sources to XES in a Generic Way. Master’s
thesis, Eindhoven University of Technology, 2010. (Cited on page 350.)

[45] J.C.A.M. Buijs. Environmental permit application process
(‘WABO’), CoSeLoG project. ❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✹✶✷✶✴✉✉✐❞✿

✷✻❛❜❛✹✵❞✲✽❜✷❞✲✹✸✺❜✲❜✺❛❢✲✻❞✹❜❢❜❞✼❛✷✼✵, 6 2014. (Cited on
page 164.)

http://dx.doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270
http://dx.doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

BIBLIOGRAPHY 317

[46] J.C.A.M. Buijs. Receipt phase of an environmental permit applica-
tion process (‘WABO’), CoSeLoG project. ❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✹✶✷✶✴
✉✉✐❞✿❛✵✼✸✽✻❛✺✲✼❜❡✸✲✹✸✻✼✲✾✺✸✺✲✼✵❜❝✾❡✼✼❞❜❡✻, 6 2014. (Cited on
page 164.)

[47] J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Towards
cross-organizational process mining in collections of process models and
their executions. In F. Daniel, K. Barkaoui, S. Dustdar, W.M.P. van der
Aalst, J. Mylopoulos, M. Rosemann, M. Shaw, and C. Szyperski, edi-
tors, Business Process Management Workshops (2), volume 100 of Lec-

ture Notes in Business Information Processing, pages 2–13. Springer Berlin
Heidelberg, 2011. ISBN 978-3-642-28115-0. (Cited on pages 20, 259,
and 349.)

[48] J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. A genetic
algorithm for discovering process trees. In IEEE Congress on Evolutionary

Computation, pages 1–8. IEEE, 2012. ISBN 978-1-4673-1510-4. (Cited
on page 349.)

[49] J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. On the role of
fitness, precision, generalization and simplicity in process discovery. In
R. Meersman, H. Panetto, T.S. Dillon, S. Rinderle-Ma, P. Dadam, X. Zhou,
S. Pearson, A. Ferscha, S. Bergamaschi, and I.F. Cruz, editors, OTM Con-

ferences (1), volume 7565 of Lecture Notes in Computer Science, pages
305–322. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-33605-8.
(Cited on pages 142, 145, and 348.)

[50] J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Discover-
ing and navigating a collection of process models using multiple quality
dimensions. In N. Lohmann, M. Song, and P. Wohed, editors, Business

Process Management Workshops, volume 171 of Lecture Notes in Business

Information Processing, pages 3–14. Springer, 2013. ISBN 978-3-319-
06256-3. (Cited on page 348.)

[51] J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Mining con-
figurable process models from collections of event logs. In F. Daniel,
J. Wang, and B. Weber, editors, BPM, volume 8094 of Lecture Notes in

Computer Science, pages 33–48. Springer Berlin Heidelberg, 2013. ISBN
978-3-642-40175-6. (Cited on pages 223 and 349.)

http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6

318 BIBLIOGRAPHY

[52] J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Quality di-
mensions in process discovery: The importance of fitness, precision, gen-
eralization and simplicity. International Journal of Cooperative Informa-

tion Systems, 2014. (Cited on pages 145 and 348.)

[53] J.C.A.M. Buijs, M. La Rosa, H.A. Reijers, B.F. van Dongen, and W.M.P.
van der Aalst. Improving business process models using observed behav-
ior. In P. Cudre-Mauroux, P. Ceravolo, and D. Gašević, editors, SIMPDA,
volume 162 of Lecture Notes in Business Information Processing, pages 44–
59. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-40918-9. (Cited
on pages 203 and 348.)

[54] J.C.A.M. Buijs and H.A. Reijers. Comparing business process variants us-
ing models and event logs. In I. Bider, K. Gaaloul, J. Krogstie, S. Nurcan,
H.A. Proper, R. Schmidt, and P. Soffer, editors, BMMDS/EMMSAD, vol-
ume 175 of Lecture Notes in Business Information Processing, pages 154–
168. Springer, 2014. ISBN 978-3-662-43744-5. (Cited on pages 259
and 348.)

[55] A. Burattin, A. Sperduti, and W.M.P. van der Aalst. Heuristics miners for
streaming event data. CoRR, abs/1212.6383, 2012. (Cited on page 83.)

[56] M.P. Cabasino, A. Giua, and C. Seatzu. Identification of petri nets
from knowledge of their language. Discrete Event Dynamic Systems,
17(4):447–474, 2007. (Cited on page 157.)

[57] D.R. Christiansen, M. Carbone, and T.T. Hildebrandt. Formal semantics
and implementation of BPMN 2.0 inclusive gateways. In M. Bravetti and
T. Bultan, editors, WS-FM, volume 6551 of Lecture Notes in Computer

Science, pages 146–160. Springer Berlin Heidelberg, 2010. ISBN 978-3-
642-19588-4. (Cited on page 39.)

[58] J.E. Cook and A.L. Wolf. Software process validation: Quantitatively
measuring the correspondence of a process to a model. ACM Transactions

on Software Engineering and Methodology, 8(2):147–176, 1999. (Cited
on pages 98, 113, and 123.)

[59] CoSeLoG. Configurable services for local governments (coselog) project
home page (last accessed 2014-04-24). www.win.tue.nl/coselog. (Cited
on page 20.)

BIBLIOGRAPHY 319

[60] K. Deb. Multi-objective optimization. In E. Burke and G. Kendall, editors,
Search Methodologies, pages 273–316. Springer US, 2005. ISBN 978-0-
387-28356-2. (Cited on pages 89 and 90.)

[61] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II. Lecture notes in computer science, 1917:849–858, 2000. (Cited
on page 93.)

[62] J. Dehnert and P. Rittgen. Relaxed soundness of business processes. In
K. Dittrich, A. Geppert, and M. Norrie, editors, CAiSE, volume 2068,
pages 157–170. 2001. ISBN 3-540-42215-3. (Cited on page 37.)

[63] R.M. Dijkman, M. Dumas, B.F. van Dongen, R. Käärik, and J. Mendling.
Similarity of business process models: Metrics and evaluation. Infor-

mation Systems, 36(2):498 – 516, 2011. ISSN 0306-4379. (Cited on
pages 205 and 206.)

[64] R.M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analysis of
business process models in bpmn. Information & Software Technology,
50(12):1281–1294, 2008. ISSN 0950-5849. (Cited on pages 39 and 50.)

[65] B.F. van Dongen and W.M.P. van der Aalst. A meta model for process min-
ing data. In J. Casto and E. Teniente, editors, EMOI-INTEROP, volume 2
of CEUR Workshop Proceedings, pages 309–320. FEUP, Porto, Portugal,
2005. (Cited on page 34.)

[66] B.F. van Dongen and W.M.P. van der Aalst. Multi-phase mining: Ag-
gregating instances graphs into EPCs and Petri nets. In D. Marinescu,
editor, Proceedings of the Second International Workshop on Applications

of Petri Nets to Coordination, Workflow and Business Process Manage-

ment, pages 35–58. Florida International University, Miami, Florida,
USA, 2005. (Cited on pages xix and 156.)

[67] B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek. Verifica-
tion of EPCs: Using reduction rules and petri nets. In O. Pastor and
J.F. e Cunha, editors, CAiSE, volume 3520 of Lecture Notes in Computer

Science, pages 372–386. Springer Berlin Heidelberg, 2005. ISBN 3-540-
26095-1. (Cited on page 36.)

[68] B.F. van Dongen, R.M. Dijkman, and J. Mendling. Measuring similarity
between business process models. In Proceedings of CAiSE, volume 5074

320 BIBLIOGRAPHY

of LNCS, pages 450–464. Springer, 2008. (Cited on pages 119, 123,
and 205.)

[69] B.F. van Dongen, J. Mendling, and W.M.P. van der Aalst. Structural pat-
terns for soundness of business process models. In EDOC, EDOC ’06,
pages 116–128. IEEE Computer Society, Washington, DC, USA, 2006.
ISBN 0-7695-2558-X. (Cited on pages 11, 36, 119, and 123.)

[70] A. Dreiling, M. Rosemann, W.M.P. van der Aalst, L. Heuser, and K. Schulz.
Model-based software configuration: patterns and languages. EJIS,
15(6):583–600, 2006. (Cited on page 224.)

[71] A. Dreiling, M. Rosemann, W.M.P. van der Aalst, W. Sadiq, and S. Khan.
Model-driven process configuration of enterprise systems. In O. Ferstl,
E. Sinz, S. Eckert, and T. Isselhorst, editors, Wirtschaftsinformatik, pages
687–706. Physica-Verlag HD, 2005. ISBN 978-3-7908-1574-0. (Cited on
page 224.)

[72] M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware

Information Systems: Bridging People and Software Through Process Tech-

nology. Wiley, 2005. ISBN 978-0-471-66306-5. (Cited on page 1.)

[73] D. Dyer. Watchmaker framework version 0.7.1.
http://watchmaker.uncommons.org/, 2010. (Cited on page 288.)

[74] M. van Eck. Alignment-based Process Model Repair and its Application

to the Evolutionary Tree Miner. Master’s thesis, Eindhoven University of
Technology, 2013. (Cited on pages 128, 129, 134, 135, 136, and 137.)

[75] M. van Eck, J.C.A.M. Buijs, and B.F. van Dongen. Alignment-based pro-
cess model repair. In BPI 2014 Workshop. 2014. (Cited on pages 128,
129, 134, 135, and 136.)

[76] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures - part 1 and
part 2. Acta Informatica, 27(4):315–368, 1989. (Cited on page 157.)

[77] A. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer
Verlag, 2003. ISBN 978-3-662-05094-1. (Cited on pages 75, 77, 86, 87,
92, 94, 137, 139, and 197.)

[78] E. Esgin and P. Senkul. Delta analysis: A hybrid quantitative approach
for measuring discrepancies between business process models. In E. Cor-
chado, M. Kurzynski, and M. Wozniak, editors, HAIS (1), volume 6678 of

BIBLIOGRAPHY 321

Lecture Notes in Computer Science, pages 296–304. Springer, 2011. ISBN
978-3-642-21218-5. (Cited on page 275.)

[79] D. Fahland and W.M.P. van der Aalst. Repairing process models to re-
flect reality. In A.P. Barros, A. Gal, and E. Kindler, editors, BPM, volume
7481 of LNCS, pages 229–245. Springer, 2012. ISBN 978-3-642-32884-8.
(Cited on pages 221 and 222.)

[80] D. Fahland and W.M.P. van der Aalst. Model repair - aligning process
models to reality. Information Systems, (0):–, 2013. ISSN 0306-4379.
(Cited on pages 221 and 222.)

[81] R. Fehling. A concept of hierarchical Petri nets with building blocks.
In G. Rozenberg, editor, Applications and Theory of Petri Nets, volume
674 of Lecture Notes in Computer Science, pages 148–168. Springer Berlin
Heidelberg, 1991. ISBN 978-3-540-56689-2. (Cited on page 50.)

[82] H.G. Fill. Using semantically annotated models for supporting business
process benchmarking. In J. Grabis and M. Kirikova, editors, BIR, vol-
ume 90 of Lecture Notes in Business Information Processing, pages 29–43.
Springer, 2011. ISBN 978-3-642-24510-7. (Cited on page 274.)

[83] D.B. Fogel and J. Atmar. Comparing genetic operators with gaussian
mutations in simulated evolutionary processes using linear systems. Bio-

logical Cybernetics, 63:111–114, 1990. (Cited on page 137.)

[84] W. Fokkink. Process algebra: An algebraic theory of concurrency. In
S. Bozapalidis and G. Rahonis, editors, CAI, volume 5725 of Lecture

Notes in Computer Science, pages 47–77. Springer, 2009. ISBN 978-3-
642-03563-0. (Cited on pages 46, 48, and 49.)

[85] M.M. Gaber, A.B. Zaslavsky, and S. Krishnaswamy. Mining data streams:
a review. SIGMOD Record, 34(2):18–26, June 2005. ISSN 0163-5808.
(Cited on page 83.)

[86] M. Gambini, M. La Rosa, S. Migliorini, and A.H.M. ter Hofstede. Au-
tomated error correction of business process models. In S. Rinderle-Ma,
F. Toumani, and K. Wolf, editors, BPM, volume 6896 of LNCS, pages 148–
165. Springer, 2011. ISBN 978-3-642-23058-5. (Cited on page 221.)

[87] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley Professional,
1 edition, November 1994. ISBN 0201633612. (Cited on page 291.)

322 BIBLIOGRAPHY

[88] R. Glabbeek and W. Weijland. Branching time and abstraction in bisim-
ulation semantics. J. ACM, 43(3):555–600, 1996. (Cited on page 57.)

[89] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens. Robust process
discovery with artificial negative events. Journal of Machine Learning Re-

search, 10:1305–1340, June 2009. ISSN 1532-4435. (Cited on pages 98,
112, 116, 122, and 123.)

[90] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning, volume 412. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1989. ISBN 0201157675. (Cited on
page 197.)

[91] F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-Vullers. Merging
event-driven process chains. In R. Meersman and Z. Tari, editors, OTM

Conferences (1), volume 5331 of Lecture Notes in Computer Science, pages
418–426. Springer Verlag, Berlin Heidelberg, November 2008. ISBN 978-
3-540-88870-3. (Cited on page 257.)

[92] F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-Vullers. Mining ref-
erence process models and their configurations. In R. Meersman, Z. Tari,
and P. Herrero, editors, OTM Workshops, volume 5333 of Lecture Notes

in Computer Science, pages 263–272. Springer Verlag, Berlin Heidelberg,
November 2008. ISBN 978-3-540-88874-1. (Cited on pages 230, 232,
and 257.)

[93] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa.
Configurable workflow models. International Journal of Cooperative In-

formation Systems, 17(2):177–221, 2008. (Cited on pages 80, 223, 224,
and 227.)

[94] F. Gottschalk and M. La Rosa. Process configuration. In A.H.M. ter Hof-
stede, W.M.P. van der Aalst, M. Adams, and N. Russell, editors, Modern

Business Process Automation, pages 459–487. Springer, 2010. ISBN 978-
3-642-03120-5. (Cited on page 80.)

[95] Government of the Netherlands. List of dutch municipalities (in Dutch,
last accessed 2014-04-24). ❤tt♣✿✴✴❛❧♠❛♥❛❦✳♦✈❡r❤❡✐❞✳♥❧✴❝❛t❡❣♦r✐❡✴
✷✴●❡♠❡❡♥t❡♥❴❆✲❩✴. (Cited on page 18.)

[96] C.W. Günther. Process Mining in Flexible Environments. Ph.D. thesis, Eind-
hoven University of Technology, September 2009. (Cited on pages 12, 13,
46, 48, 49, and 103.)

http://almanak.overheid.nl/categorie/2/Gemeenten_A-Z/
http://almanak.overheid.nl/categorie/2/Gemeenten_A-Z/

BIBLIOGRAPHY 323

[97] C.W. Günther and W.M.P. van der Aalst. Fuzzy mining - adaptive pro-
cess simplification based on multi-perspective metrics. In G. Alonso,
P. Dadam, and M. Rosemann, editors, BPM, volume 4714 of Lecture Notes

in Computer Science, pages 328–343. Springer, 2007. ISBN 978-3-540-
75182-3. (Cited on pages 12 and 46.)

[98] A. Hallerbach, T. Bauer, and M. Reichert. Capturing variability in busi-
ness process models: the Provop approach. Journal of Software Mainte-

nance, 22(6-7):519–546, 2010. (Cited on pages 226 and 227.)

[99] A. Hallerbach, T. Bauer, and M. Reichert. Configuration and manage-
ment of process variants. In Handbook on Business Process Management

1. Springer, 2010. (Cited on page 274.)

[100] P.J.B. Hancock. An empirical comparison of selection methods in evolu-
tionary algorithms. In T. Fogarty, editor, Evolutionary Computing, AISB

Workshop, volume 865 of Lecture Notes in Computer Science, pages 80–
94. Springer Berlin Heidelberg, 1994. ISBN 978-3-540-58483-4. (Cited
on pages 92 and 139.)

[101] A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell.
Modern Business Process Automation - YAWL and its Support Environ-

ment. Springer, 2010. ISBN 978-3-642-03120-5. (Cited on pages 36,
41, and 49.)

[102] G.S. Hornby, A. Globus, D.S. Linden, and J.D. Lohn. Automated antenna
design with evolutionary algorithms. 2006. (Cited on page 76.)

[103] K. Jensen and G. Rozenberg. High-level Petri nets: Theory and Applica-

tions. springer, 1991. (Cited on page 50.)

[104] T. Jin, J. Wang, and L. Wen. Efficient retrieval of similar business pro-
cess models based on structure - (short paper). In R. Meersman, T.S.
Dillon, P. Herrero, A. Kumar, M. Reichert, L. Qing, B.C. Ooi, E. Damiani,
D.C. Schmidt, J. White, M. Hauswirth, P. Hitzler, and M.K. Mohania, edi-
tors, OTM Conferences (1), volume 7044 of LNCS, pages 56–63. Springer,
2011. ISBN 978-3-642-25108-5. (Cited on page 205.)

[105] Y. Jin. A comprehensive survey of fitness approximation in evolutionary
computation. Soft Comput., 9(1):3–12, 2005. Fitness metrics require-
ments: survey of approximation. (Cited on page 88.)

324 BIBLIOGRAPHY

[106] Y.C. Juan and C. Ou-Yang. A process logic comparison approach to sup-
port business process benchmarking. The International Journal of Ad-

vanced Manufacturing Technology, 26(1-2), 2005. (Cited on page 274.)

[107] A.J. Keane and S.M. Brown. The design of a satellite boom with en-
hanced vibration performance using genetic algorithm techniques. In
I.C. Parmee, editor, Proceedings of the Conference on Adaptive Computa-

tion in Engineering Design and Control, pages 107–113. 1996. (Cited on
page 76.)

[108] E. Kindler. On the semantics of EPCs: A framework for resolving the
vicious circle. In J. Desel, B. Pernici, and M. Weske, editors, Business

Process Management, volume 3080 of Lecture Notes in Computer Science,
pages 82–97. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-22235-
4. (Cited on pages 38, 39, 43, and 50.)

[109] N. Kleiner. Delta analysis with workflow logs: aligning business process
prescriptions and their reality. Requirements Engineering, 10(3):212–222,
2005. (Cited on page 275.)

[110] J.R. Koza. Genetic programming - on the programming of computers by

means of natural selection. Complex adaptive systems. MIT Press, 1993.
ISBN 978-0-262-11170-6. (Cited on page 88.)

[111] S. Kriglstein, G. Wallner, and S. Rinderle-Ma. A visualization approach
for difference analysis of process models and instance traffic. In F. Daniel,
J. Wang, and B. Weber, editors, BPM, volume 8094 of Lecture Notes

in Computer Science, pages 219–226. Springer, 2013. ISBN 978-3-642-
40175-6. (Cited on page 275.)

[112] V. Kulkarni and S. Barat. Business process families using model-driven
techniques. In M. zur Muehlen and J. Su, editors, Business Process Man-

agement Workshops, volume 66 of Lecture Notes in Business Information

Processing, pages 314–325. Springer, 2010. ISBN 978-3-642-20510-1.
(Cited on page 226.)

[113] A. Kumar and W. Yao. Design and management of flexible process vari-
ants using templates and rules. Computers in Industry, 63(2):112–130,
2012. (Cited on page 226.)

[114] A. Kumar and J.L. Zhao. Workflow support for electronic commerce ap-
plications. Decision Support Systems, 32(3):265–278, 2002. (Cited on
page 51.)

BIBLIOGRAPHY 325

[115] M. Kunze, M. Weidlich, and M. Weske. Behavioral similarity - a proper
metric. In S. Rinderle-Ma, F. Toumani, and K. Wolf, editors, BPM, vol-
ume 6896 of Lecture Notes in Computer Science, pages 166–181. Springer,
2011. ISBN 978-3-642-23058-5. (Cited on page 205.)

[116] M. La Rosa, W.M.P. van der Aalst, M. Dumas, and F.P. Milani. Business
process variability modeling : A survey, 2013. ACM Computing Surveys.
(Cited on pages 223 and 224.)

[117] M. La Rosa, M. Dumas, A.H.M. ter Hofstede, and J. Mendling. Config-
urable multi-perspective business process models. Information Systems,
36(2):313–340, 2011. (Cited on page 224.)

[118] M. La Rosa, M. Dumas, R. Uba, and R.M. Dijkman. Business process
model merging: An approach to business process consolidation. ACM

Transactions on Software Engineering and Methodology, 22(2):11, 2013.
(Cited on pages 205 and 257.)

[119] M. La Rosa, A.H.M. ter Hofstede, P. Wohed, H.A. Reijers, J. Mendling,
and W.M.P. van der Aalst. Managing process model complexity via con-
crete syntax modifications. IEEE Transactions on Industrial Informatics,
7(2):255–265, 2011. (Cited on page 105.)

[120] S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering block-
structured process models from event logs - a constructive approach. In
J.M. Colom and J. Desel, editors, Petri Nets, volume 7927 of Lecture Notes

in Computer Science, pages 311–329. Springer Berlin Heidelberg, 2013.
ISBN 978-3-642-38696-1. (Cited on page 130.)

[121] S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering block-
structured process models from incomplete event logs. In Petri Nets 2014,
page to appear. 2014. (Cited on pages 130 and 152.)

[122] M. de Leoni, J.C.A.M. Buijs, W.M.P. van der Aalst, and A.H.M. ter Hof-
stede. Facilitating process analysis through visualising process history:
Experiences with a dutch municipality. (Cited on page 350.)

[123] B.S. Lerner, L.J. Osterweil, S.M. Sutton Jr., and A.E. Wise. Program-
ming process coordination in little-jil. In V. Gruhn, editor, EWSPT, vol-
ume 1487 of Lecture Notes in Computer Science, pages 127–131. Springer,
1998. ISBN 3-540-64956-5. (Cited on page 51.)

326 BIBLIOGRAPHY

[124] C. Li. Mining Process Model Variants: Challenges, Techniques, Examples.
Ph.D. thesis, University of Twente, November 2010. (Cited on pages 205,
221, and 257.)

[125] C. Li, M. Reichert, and A. Wombacher. Discovering reference models by
mining process variants using a heuristic approach. In U. Dayal, J. Eder,
J. Koehler, and H.A. Reijers, editors, BPM, volume 5701 of Lecture Notes

in Computer Science, pages 344–362. Springer, 2009. ISBN 978-3-642-
03847-1. (Cited on pages 205, 221, and 257.)

[126] C. Li, M. Reichert, and A. Wombacher. The MinAdept clustering approach
for discovering reference process models out of process variants. Inter-

national Journal of Cooperative Information Systems, 19(3-4):159–203,
2010. (Cited on pages 205, 221, and 257.)

[127] R. Lu and S.W. Sadiq. Managing process variants as an information
resource. In S. Dustdar, J.L. Fiadeiro, and A.P. Sheth, editors, Busi-

ness Process Management, volume 4102 of Lecture Notes in Computer Sci-

ence, pages 426–431. Springer, 2006. ISBN 3-540-38901-6. (Cited on
page 274.)

[128] R. Lu and S.W. Sadiq. On the discovery of preferred work practice
through business process variants. In C. Parent, K.D. Schewe, V.C. Storey,
and B. Thalheim, editors, ER, volume 4801 of Lecture Notes in Com-

puter Science, pages 165–180. Springer, 2007. ISBN 978-3-540-75562-3.
(Cited on page 274.)

[129] S. Luke. Two fast tree-creation algorithms for genetic programming.
IEEE Transactions on Evolutionary Computation, 4(3):274–283, Septem-
ber 2000. ISSN 1089-778X. (Cited on page 77.)

[130] J. Mendling. Metrics for Process Models: Empirical Foundations of Verifica-

tion, Error Prediction, and Guidelines for Correctness, volume 6 of Lecture

Notes in Business Information Processing. Springer, 2008. ISBN 978-3-
540-89223-6. (Cited on page 263.)

[131] J. Mendling and M. Nüttgens. EPC markup language (EPML): an XML-
based interchange format for event-driven process chains (EPC). Infor-

mation Systems and e-Business Management, 4(3):245–263, 2006. (Cited
on page 50.)

BIBLIOGRAPHY 327

[132] J. Mendling, H.A. Reijers, and W.M.P. van der Aalst. Seven process mod-
eling guidelines (7PMG). Information & Software Technology, 52(2):127–
136, 2010. ISSN 0950-5849. (Cited on pages 39 and 56.)

[133] J. Mendling, H.M.W. Verbeek, B.F. van Dongen, W.M.P. van der Aalst,
and G. Neumann. Detection and prediction of errors in EPCs of the SAP
reference model. Data & Knowledge Engineering, 64(1):312–329, Jan-
uary 2008. ISSN 0169-023X. (Cited on pages 11, 36, 105, 107, and 123.)

[134] Z. Michalewicz. Genetic algorithms and data structures - evolution pro-

grams (3. ed.). Springer, 1996. ISBN 978-3-540-60676-5. (Cited on
page 197.)

[135] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer, 1980. ISBN 3-540-10235-3. (Cited
on pages 46 and 48.)

[136] D.L. Moody. The “physics” of notations: Toward a scientific basis for
constructing visual notations in software engineering. IEEE Transactions

on Software Engineering, 35(6), 2009. (Cited on page 275.)

[137] F. Mosteller and J.W. Tukey. Data analysis, including statistics. In Hand-

book of Social Psychology, Vol. 2. 1968. (Cited on page 119.)

[138] J. Munoz-Gama and J. Carmona. Enhancing precision in process con-
formance: Stability, confidence and severity. In N. Chawla, I. King, and
A. Sperduti, editors, CIDM, pages 184–191. IEEE, Paris, France, April
2011. ISBN 978-1-4244-9925-0. (Cited on pages 114, 123, and 301.)

[139] T. Murata. Petri nets: Properties, analysis and applications. Proceedings

of the IEEE, 77(4):541–580, 1989. (Cited on pages 28 and 49.)

[140] T. Nguyen, A.W. Colman, and J. Han. Modeling and managing variabil-
ity in process-based service compositions. In G. Kappel, Z. Maamar, and
H.R.M. Nezhad, editors, ICSOC, volume 7084 of Lecture Notes in Com-

puter Science, pages 404–420. Springer, 2011. ISBN 978-3-642-25534-2.
(Cited on page 226.)

[141] Y. Oirschot. Using Trace Clustering for Configurable Process Discovery Ex-

plained by Event Log Data. Master’s thesis, Eindhoven University of Tech-
nology, August 2014. (Cited on pages 81 and 301.)

328 BIBLIOGRAPHY

[142] OMG. BPMN 2.0 by example. ❤tt♣✿✴✴✇✇✇✳♦♠❣✳♦r❣✴s♣❡❝✴❇P▼◆✴✷✳✵✴

❡①❛♠♣❧❡s✴P❉❋✴✶✵✲✵✻✲✵✷✳♣❞❢, 6 2010. (Cited on page 31.)

[143] OMG. Business Process Model and Notation (bpmn) version 2.0.
Object Management Group, http://www.omg.org/spec/BPMN/2.0/,
formal/2011-01-03, 2011. (Cited on pages 12, 31, 36, and 49.)

[144] C. Ouyang, W.M.P. van der Aalst, M. Dumas, A.H. ter Hofstede, and M.L.
Rosa. Service-oriented processes : an introduction to BPEL. In J. Car-
doso, editor, Semantic Web services : theory, tools, and applications, pages
155–188. Information Science Reference (IGI Global), Hershey, PA, 2007.
For more information about this book please refer to the publisher’s web-
site (see link) or contact the author. (Cited on page 51.)

[145] C. Ouyang, M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede, and
J. Mendling. From business process models to process-oriented software
systems. ACM Transactions on Software Engineering and Methodology,
19(1):2:1–2:37, August 2009. ISSN 1049-331X. (Cited on page 68.)

[146] V. Pareto. Cours D’Economie Politique, volume I and II. F. Rouge, Lau-
sanne, 1896. (Cited on page 90.)

[147] M. Pawlik and N. Augsten. RTED: A robust algorithm for the tree edit
distance. CoRR, abs/1201.0230, 2012. (Cited on pages 206 and 207.)

[148] A. Polyvyanyy, L. García-Bañuelos, and M. Dumas. Structuring acyclic
process models. Information Systems, 37(6):518 – 538, 2012. ISSN 0306-
4379. BPM 2010. (Cited on page 68.)

[149] A. Polyvyanyy, L. García-Bañuelos, D. Fahland, and M. Weske. Maximal
structuring of acyclic process models. Arxiv preprint arXiv:1108.2384,
2011. (Cited on page 68.)

[150] H.A. Reijers. Design and Control of Workflow Processes: Business Pro-

cess Management for the Service Industry, volume 2617 of Lecture Notes

in Computer Science. Springer, 2003. ISBN 3-540-01186-2. (Cited on
page 85.)

[151] H.A. Reijers, T. Freytag, J. Mendling, and A. Eckleder. Syntax highlight-
ing in business process models. Decision Support Systems, 51(3):339–
349, 2011. (Cited on page 275.)

http://www.omg.org/spec/BPMN/2.0/examples/PDF/10-06-02.pdf
http://www.omg.org/spec/BPMN/2.0/examples/PDF/10-06-02.pdf

BIBLIOGRAPHY 329

[152] H.A. Reijers and J. Mendling. A study into the factors that influence
the understandability of business process models. IEEE Transactions on

Systems, Man, and Cybernetics, Part A, 41(3):449–462, 2011. (Cited on
page 105.)

[153] A. Rolstadås. Performance Management: A Business Process Benchmarking

Approach. Chapman & Hall, 1995. (Cited on page 274.)

[154] M. Rosemann and W.M.P. van der Aalst. A configurable reference mod-
eling language. Information Systems, 32(1):1–23, 2007. (Cited on
pages 80, 223, 224, and 225.)

[155] A. Rozinat. Process Mining: Conformance and Extension. Ph.D. the-
sis, Eindhoven University of Technology, November 2010. (Cited on
pages 88, 98, 111, 112, 122, and 123.)

[156] A. Rozinat and W.M.P. van der Aalst. Decision mining in ProM. In
S. Dustdar, J. Fiadeiro, and A. Sheth, editors, Business Process Manage-

ment, volume 4102, pages 420–425. 2006. ISBN 3-540-38901-6. (Cited
on page 83.)

[157] A. Rozinat and W.M.P. van der Aalst. Conformance checking of processes
based on monitoring real behavior. Information Systems, 33(1):64–95,
2008. (Cited on pages 98, 112, 115, 119, 122, and 123.)

[158] A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering
simulation models. Information Systems, 34(3):305–327, 2009. (Cited
on page 84.)

[159] A.W. Scheer. Business Process Engineering, Reference Models for Indus-

trial Enterprises. Springer-Verlag, Berlin, 1994. (Cited on pages 12, 43,
and 49.)

[160] A. Schnieders and F. Puhlmann. Variability mechanisms in e-business
process families. In W. Abramowicz and H.C. Mayr, editors, BIS, vol-
ume 85 of LNI, pages 583–601. GI, 2006. ISBN 3-88579-179-X. (Cited
on page 226.)

[161] D.M.M. Schunselaar, H.M.W. Verbeek, W.M.P. van der Aalst, and H.A.
Reijers. Creating sound and reversible configurable process models us-
ing CoSeNets. In W. Abramowicz, D. Kriksciuniene, and V. Sakalauskas,

330 BIBLIOGRAPHY

editors, BIS, volume 117 of Lecture Notes in Business Information Process-

ing, pages 24–35. Springer, 2012. ISBN 978-3-642-30358-6. (Cited on
pages xviii, 56, 72, 232, and 257.)

[162] D.M.M. Schunselaar, H.M.W. Verbeek, H.A. Reijers, and W.M.P. van der
Aalst. YAWL in the cloud: Supporting process sharing and variability. In
BPMC 2014 Workshop. 2014. (Cited on page 305.)

[163] N.I. Seneratna. Genetic algorithms: The crossover-mutation debate
(bachelor literature survey), 2005. (Cited on pages 137 and 138.)

[164] M. Solé and J. Carmona. Process mining from a basis of state regions.
In J. Lilius and W. Penczek, editors, Petri Nets, volume 6128, pages 226–
245. 2010. ISBN 978-3-642-13674-0. (Cited on page 157.)

[165] M. Song and W.M.P. van der Aalst. Supporting process mining by show-
ing events at a glance. In K. Chari and A. Kumar, editors, Proceedings

of 17th Annual Workshop on Information Technologies and Systems (WITS

2007), pages 139–145. Montreal, Canada, December 2007. (Cited on
pages 17 and 268.)

[166] M. Song and W.M.P. van der Aalst. Towards comprehensive support for
organizational mining. Decision Support Systems, 46(1):300–317, 2008.
(Cited on pages 17 and 268.)

[167] W.M. Spears and V. Anand. A study of crossover operators in genetic pro-
gramming. In Z. Ras and M. Zemankova, editors, ISMIS, volume 542 of
Lecture Notes in Computer Science, pages 409–418. Springer Berlin Hei-
delberg, 1991. ISBN 978-3-540-54563-7. (Cited on page 138.)

[168] F. Teuteberg, M. Kluth, F. Ahlemann, and S. Smolnik. Semantic process
benchmarking to improve process performance. Benchmarking: An Inter-

national Journal, 20(4), 2013. (Cited on page 274.)

[169] S. Thatte. Xlang: Web services for business process design. Microsoft

Corporation, 2001, 2001. (Cited on page 51.)

[170] J. Vanhatalo, H. Völzer, and J. Koehler. The refined process structure tree.
Data and Knowledge Engineering, 68(9):793 – 818, 2009. ISSN 0169-
023X. Sixth International Conference on Business Process Management
(BPM 2008) Five selected and extended papers. (Cited on page 68.)

BIBLIOGRAPHY 331

[171] D.A. van Veldhuizen and G.B. Lamont. Evolutionary computation and
convergence to a pareto front. In Late Breaking Papers at the Genetic Pro-

gramming 1998 Conference, pages 221–228. 1998. (Cited on page 90.)

[172] H.M.W. Verbeek, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Ver-
ifying workflows with cancellation regions and OR-joins: An approach
based on relaxed soundness and invariants. The Computer Journal,
50(3):294–314, 2007. (Cited on page 36.)

[173] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing work-
flow processes using Woflan. The Computer Journal, 44(4):246–279,
2001. (Cited on pages 36 and 37.)

[174] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der
Aalst. ProM 6: The process mining toolkit. In Proc. of BPM Demonstration

Track 2010, volume 615, pages 34–39. CEUR-WS.org, 2010. (Cited on
pages 277 and 350.)

[175] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der
Aalst. XES tools, 2010. (Cited on page 350.)

[176] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der
Aalst. XES, XESame, and ProM 6. In P. Soffer and E. Proper, editors,
CAiSE Forum, volume 72 of Lecture Notes in Business Information Process-

ing, pages 60–75. Springer, 2010. ISBN 978-3-642-17721-7. (Cited on
pages 34, 277, 285, 290, 293, and 350.)

[177] J. de Weerdt, M. de Backer, J. Vanthienen, and B. Baesens. A robust
f-measure for evaluating discovered process models. In CIDM, pages
148–155. IEEE, 2011. ISBN 978-1-4244-9925-0. (Cited on pages 112
and 122.)

[178] M. Weidlich, R.M. Dijkman, and J. Mendling. The ICoP framework: Iden-
tification of Correspondences between Process models. In B. Pernici,
editor, CAiSE, volume 6051 of Lecture Notes in Computer Science, pages
483–498. Springer, Springer, 2010. ISBN 978-3-642-13093-9. (Cited on
page 275.)

[179] M. Weidlich, A. Polyvyanyy, N. Desai, and J. Mendling. Process compli-
ance measurement based on behavioural profiles. In B. Pernici, editor,
CAiSE, volume 6051 of Lecture Notes in Computer Science, pages 499–514.
Springer, Springer, 2010. ISBN 978-3-642-13093-9. (Cited on page 99.)

332 BIBLIOGRAPHY

[180] A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K.A. de Medeiros. Pro-
cess mining with the heuristics miner-algorithm. Technische Universiteit

Eindhoven, Tech. Rep. WP, 166, 2006. (Cited on pages xix, 12, 40, 45,
103, 149, and 150.)

[181] A.J.M.M. Weijters and J.T.S. Ribeiro. Flexible heuristics miner (FHM). In
CIDM, pages 310–317. IEEE, 2011. ISBN 978-1-4244-9925-0. (Cited on
pages 12, 45, and 49.)

[182] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Sere-
brenik. Process discovery using integer linear programming. Fundamenta

Informaticae, 94:387–412, 2010. (Cited on pages xix and 151.)

[183] D. Wodtke and G. Weikum. A formal foundation for distributed work-
flow execution based on state charts. In F. Afrati and P. Kolaitis, editors,
ICDT, volume 1186 of Lecture Notes in Computer Science, pages 230–246.
Springer Berlin Heidelberg, 1997. ISBN 978-3-540-62222-2. (Cited on
page 39.)

[184] R. Wolffensperger. Static and dynamic visualization of quality and perfor-

mance dimensions on Process Trees. Master’s thesis, Eindhoven University
of Technology, 2014. (Cited on page 302.)

[185] M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofst-
ede. Achieving a general, formal and decidable approach to the OR-join
in workflow using reset nets. In G. Ciardo and P. Darondeau, editors,
ICATPN, volume 3536 of Lecture Notes in Computer Science, pages 423–
443. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-26301-2. (Cited
on pages 38, 39, and 50.)

[186] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
M. Pietkiewicz-Koutny. On the models for asynchronous circuit behaviour
with OR causality. Formal Methods in System Design, 9(3):189–233,
1996. ISSN 0925-9856. (Cited on pages 38 and 50.)

[187] H. Zha, J. Wang, L. Wen, C. Wang, and J. Sun. A workflow net similarity
measure based on transition adjacency relations. Computers in Industry,
61(5):463–471, 2010. (Cited on page 205.)

[188] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength
pareto evolutionary algorithm for multiobjective optimization. In K. Gi-
annakoglou, D. Tsahalis, J. Periaux, K. Papaliliou, and T. Fogarty, editors,

BIBLIOGRAPHY 333

Evolutionary Methods for Design, Optimisation and Control with Applica-

tion to Industrial Problems. Proceedings of the EUROGEN2001 Conference,

Athens, Greece, September 19-21, 2001, pages 95–100. International Cen-
ter for Numerical Methods in Engineering (CIMNE), Barcelona, Spain,
2002. (Cited on page 93.)

[189] M. Zur Muehlen and J. Recker. How much language is enough? Theo-
retical and practical use of the business process modeling notation. In
Z. Bellahsène and M. Léonard, editors, Advanced Information Systems En-

gineering, volume 5074 of Lecture Notes in Computer Science, pages 465–
479. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-69533-2. (Cited
on page 32.)

Index

τ, 27
α-algorithm, 147
∧-operator, 51

language, 53
	-operator, 51

language, 53
∨-operator, 51

language, 53
→-operator, 51

language, 53
←-operator, 51

language, 53
×-operator, 51

language, 53

Activity, 27
Activity universe, 27
Alignment, 108
Alignment matrix, 259, 265

visualization, 265
Anytime behavior, 86

Bags, see Multi-sets
Bloat, 87
Block-structured process models, 50

BPMN, 31
gateways, 31

Business Process Modeling and Nota-
tion, see BPMN

C-EPC, 224
C-net, see Causal net
C-YAWL, 224
Calculus of Communicating Systems, see

CCS
Candidate evaluation, 77, 89
Candidate selection, 91, 138

fitness proportional selection, 92
ranking selection, 92
roulette wheel selection, 92
sigma scaling selection, 92
stochastic universal sampling, 92
tournament selection, 92

Case, 2
Causal net, 43
CCS, 46, 48
Change operators, 77
Comparison framework, 259, 261

event log metric, 261, 263
comparison metric, 261, 263

336 INDEX

process model metric, 261, 263
Comparison table, 260, see Compari-

son framework
Completeness, 103
Concept drift, 81

gradual drift, 82
incremental drift, 82
recurring drift, 82
sudden drift, 81

Configurable EPC, see C-EPC
Configurable process model, 16, 224
Configurable Services for Local Govern-

ments, see CoSeLoG
Configurable YAWL, see C-YAWL
CoSeLoG, 19
CoSeNet, 56, 257
Crossover, 77, 94, 137

Edit operation, 205
Elite, 77
EPC, 43
Escaping edges, 114
ETM framework

basic flow, 76
CLI, 285
extension, 288
GUI, 278
implementation, 277
plug-ins, 278
requirements, 85

ETMc algorithm, 80, 232
mutation, 233
quality, 233

ETMcontext algorithm, 81
ETMd algorithm, 78, 125, 163
ETMdec algorithm, 83
ETMdrift algorithm, 82
ETMr algorithm, 79, 203
Event, 2

Event log, 32, 34
completeness, see Completeness
definition, 34

Event-Driven Process Chains, see EPC
Evolutionary Tree Miner, see ETM frame-

work
Exceptional behavior, 103
Exploitation, 86, 140
Exploration, 86, 140
eXtensible Event Stream, see XES

Finite-state automaton, 28
Finite-state machine, 28
Frequency of use, 117
FSM, see Finite-State-Machine
Function, 26
Fuzzy miner, 46
Fuzzy model, 46

Generalization, 5, 98, 103, 104, 116
frequency of use, see Frequency of

use
Genetic miner, 148

Heuristics miner, 45, 149
Heuristics net, 45
Hidden Markov Model, 40
HMM, see Hidden Markov Model

ILP miner, 151
Inductive Miner, 130, 152
Initial population, 76, 125

advanced trace-model creation, 127
creation, 125
random tree creation, 127

Intron, 87
IS-SaaS, 20

Labeled directed graph, 27
Labeled Petri net, see Petri net

INDEX 337

Labeled transition system, see Transi-
tion system

Language-based region theory, 153
Local optimum, 86
Long-term dependency operator, see LTD-

operator
LTD-operator, 303

Move on log only, 109
Move on model only, 109
Multi-phase miner, 156
Multi-sets, 26
Mutation, 77, 94

guided, 134
add behavior, 135
change behavior, 136
remove behavior, 134

random, 131
change, 133
node addition, 132
node removal, 132
normalization, 133
remove useless nodes, 133
shuffle, 133
tree replacement, 133

MXML, 34

Noise, see Exceptional behavior, 103
Non-exclusive choice, 38

Occam‘s Razor, 105
OR, see Non-exclusive choice

Pareto front, 90, 145
Petri net, 28

completed trace, 30
definition, 29
labeled, 30
language, 30

marking, 28, 29
final, 29
initial, 29
reachable, 30

place, 28
token, 28
transition, 28

enabled, 30
fire, 30

Precision, 5, 98, 102, 103, 113
advanced behavioral appropriate-

ness, 115
escaping edges, see Escaping edges

Premature convergence, 86
Process algebra, 46
Process instance, 32
Process mining, 2

conformance, 2
discovery, 2
extension, 2
quality, 5

Process model, 27
block-structured, 50
error free, see Soundness
expressiveness, 37

concurrency, 38
duplicate activities, 38
non-exclusive choice, see Non-

exclusive choice
non-free choice, 38
silent actions, 38

quality, 98
repair, 204
visualization, 11

Process Tree, 51
definition, 51
example, 51
language, 53
leaf node, 51

338 INDEX

operator node, 51
root, 51
translation, 57

to BMPN, 62
to CCS, 66
to CoSeNet, 66
to EPC, 64
to Petri Net, 57
to YAWL, 60

PROcess Variants by OPtions approach,
see PROVOP

Projection, 26
ProM, 5
PROVOP, 226

Relaxed soundness, 37
Replay fitness, 5, 98, 102, 103, 108

alignment, see Alignment
artificial negative events, 112
streams, 113
token-based, 112

Representational bias, 11
Robust Tree Edit Distance algorithm,

see RTED algorithm
RTED algorithm, 207
Running examples, 5

exceptional behavior, 6
four variants, 7
non-exceptional behavior, 6

SaaS, see Software as a Service
Sequence, 26

concatenation, 26
Set, 25

difference, 26
empty, 25
intersection, 26
non-empty, 25
union, 25

Similarity, 205
behavioral, 205
structural, 205

Simplicity, 5, 98, 103, 105
activity occurrence, 107
ratio of useless nodes, 105
size, 107

Simulation, 84
Software as a Service, 20
Soundness, 11, 36

no dead transitions, 36
option to complete, 36
proper completion, 36

State-based region theory, 157
Stream mining, 83
Synchronous move, 109

Termination, 77, 94, 139
elapsed time, 95
number of generation threshold,

95
quality stagnation, 95
quality threshold, 94
user cancelation, 95

Trace, 32, 34
Transition system, 27

definition, 27
final states, 27
initial states, 27
state, 27
transition, 27

Useless node, 106

XES, 34

YAWL, 41
Yet Another Workflow Language, see YAWL

Summary

Flexible Evolutionary Algorithms for Mining
Structured Process Models

The goal of process mining is to automatically produce process models that
accurately describe processes by considering only an organization’s records of
its operational processes. Such records are typically captured in the form of
event logs, consisting of cases and events related to these cases. Using these
event logs process models can be discovered. Over the last decade, many such
process discovery techniques have been developed, producing process models
in various forms, such as Petri nets, BPMN-models, EPCs, YAWL-models etc.
Furthermore, many authors have compared these techniques by focusing on the
properties of the models produced, while at the same time the applicability of
various techniques have been compared in case-studies. In this thesis we present
a new process discovery algorithm: the Evolutionary Tree Miner, or ETM for
short. The Evolutionary Tree Miner however has some unique characteristics
and features, that are not found in existing process discovery algorithms.

The main property of the Evolutionary Tree Miner is that it always produces
a sound (i.e., syntactically correct) process model. Although this is a prerequi-
site for the process model to be used for further analysis, very few of the existing
process discovery algorithms can guarantee this.

Another main feature of the Evolutionary Tree Miner is that it is a flexible
algorithm. The four well known quality dimensions in process discovery (replay
fitness, precision, generalization and simplicity) are explicitly incorporated in
the Evolutionary Tree Miner. Additional quality metrics can be easily added to
the Evolutionary Tree Miner. The Evolutionary Tree Miner is able to balance the
different provided quality metrics and is able to produce process models that
have a specific balance of these quality dimensions, as specified by the user.

340 Summary

The third main feature of the Evolutionary Tree Miner is that it is easily
extensible. In this thesis we discuss several scenarios where the Evolutionary
Tree Miner can be applied. We discuss the following extensions and applications
in more detail in this thesis:

1. The discovery of a collection of process models, each having a unique and
superior set of characteristics for the provided quality dimensions (more
concretely: the process models are Pareto optimal).

2. Discovery of a process model given a (collection of) normative process
models. This allows for the repair of a process model, using the observed
behavior.

3. Discovery of a configurable process model that describes multiple event
logs, for instance from different organizations, using only one process
model and a configuration of the model for each event log.

4. A comparison framework is discussed that allows for the comparison of
executions of similar processes. This framework is able to replay the be-
havior of one organization on the (configurable) process model of another,
to provide insights into differences and commonalities between the pro-
cess execution of the different organizations.

The Evolutionary Tree Miner is implemented as a plug-in for the process
mining toolkit ProM. Furthermore, the usage of the different plug-ins created
in this thesis is discussed. Additionally, it is shown how the Evolutionary Tree
Miner can be extended to include custom quality dimensions.

The Evolutionary Tree Miner, and all of its extensions, are evaluated using
both artificial and real-life data sets.

Samenvatting

Flexible Evolutionary Algorithms for Mining
Structured Process Models

Het doel van process mining is het automatisch ontdekken van procesmo-
dellen die accuraat processen beschrijven door alleen gebruik te maken van de
data van de al uitgevoerde processen. Deze data worden meestal opgeslagen
in gebeurtenissenlogboeken, die zaken en gebeurtenissen gerelateerd aan deze
zaken opslaan. Op basis van deze gebeurtenissenlogboeken kunnen procesmo-
dellen worden ontdekt. In het laatste decennium zijn veel van deze technie-
ken ontwikkeld die procesmodellen in verschillende vormen produceren zoals
Petri nets, BPMN-modellen, EPCs, YAWL-modellen. Veel auteurs hebben deze
technieken bovendien vergeleken door te focussen op de eigenschappen van de
geproduceerde modellen, terwijl tegelijk de toepasbaarheid van deze technie-
ken is vergeleken in verschillende case studies. In dit proefschrift presenteren
we een nieuw algoritme: de Evolutionary Tree Miner (Evolutionaire Boom Ont-
dekker), of ETM in het kort. Het ETM heeft enkele unieke karakteristieken en
mogelijkheden die niet voorkomen in bestaande proces ontdek technieken.

De belangrijkste eigenschap van het ETM is dat het altijd (syntactisch) cor-
recte procesmodellen ontdekt. Ondanks dat dit een vereiste is om het pro-
cesmodel te kunnen gebruiken voor verdere analyse, garanderen zeer weinig
technieken dit.

Een andere belangrijke eigenschap van het ETM is dat het een flexibel al-
goritme is. De vier bekende kwaliteitsdimensies in het ontdekken van proces-
modellen (naspeelbaarheid, precisie, generalizatie en eenvoud) zijn expliciet
ingebouwd in het ETM. Aanvullende kwaliteitsdimensies kunnen gemakkelijk
worden toegevoegd aan het ETM. Het ETM kan de verschillende kwaliteitsdi-
mensies balanceren en kan procesmodellen produceren die de kwaliteitsdimen-

342 Samenvatting

sies op een specifieke manier balanceren, zoals gespecificeerd door de gebruiker.
De derde belangrijke eigenschap van het ETM is dat het gemakkelijk uit-

breidbaar is. In dit proefschrift bespreken we verschillende scenarios waar het
ETM toegepast kan worden. De volgende uitbreidingen en toepassingen worden
in dit proefschrift in meer detail besproken:

1. Het ontdekken van een collectie van procesmodellen, die elk een unieke
en superieure set van karakteristieken voor elke kwaliteitsdimensie heb-
ben (concreter: de procesmodellen zijn Pareto optimaal).

2. Het ontdekken van een procesmodel op basis van één of meerdere norma-
tieve procesmodellen. Dit maakt het mogelijk om de gegeven modellen te
repareren gebruikmakend van het geobserveerde gedrag.

3. Het ontdekken van een configureerbaar procesmodel dat meerdere ge-
beurtenissenlogboeken beschrijft, bijvoorbeeld van verschillende organi-
saties, in een enkel procesmodel met een configuratie voor elk gebeurte-
nissenlogboek.

4. Een vergelijkingsraamwerk dat het vergelijken van de uitvoer van ver-
schillende vergelijkbare processen toestaat. Het raamwerk kan het geob-
serveerde gedrag van een organisatie naspelen op het (configureerbare)
procesmodel van een andere organisatie. Hierdoor worden inzichten in
de verschillen en overeenkomsten tussen de uitvoer van de processen van
de verschillende organisaties verkregen.

Het ETM is geïmplementeerd in de process minig toolkit ProM. Ook is het
gebruik besproken van de verschillende plug-ins die zijn gemaakt in het kader
van dit proefschrift. Daarnaast is getoond hoe het ETM uitgebreid kan worden
met aangepaste kwaliteitsdimensies.

Het ETM en alle uitbreidingen zijn geëvalueerd op basis van zowel kunst-
matige als echte data sets.

Acknowledgments

This thesis marks the end of a four year journey. And although the journey was
not always easy, or fun, I have never regretted that I started it. It is also a journey
that I would have never undertaken if it were not for my promotor, professor
Wil van der Aalst, who asked me to consider doing a Ph.D. Wil, thank you for
taking me on this journey and for your guidance, it has been a true pleasure and
I hope that we can continue our collaboration. Someone that was also with me
throughout this voyage is my co-promotor, Boudewijn van Dongen. Boudewijn,
thank you for correcting me, re-aligning me and challenging me, but most of
all for being more than a colleague to me. In the past four years Hajo Reijers
played the role of mentor, whom I could consult for more general questions.
Hajo, thank you for always making time for me and for our broad and open
discussions, and for our travels together.

During my Ph.D. I had the opportunity to visit the group of Arthur ter Hof-
stede at Queensland University of Technology in Brisbane, Australia, for six
weeks. Arthur, thank you for having me in your group, taking me out for lunch
and diner and for the random talks we had. In my first year as a Ph.D. student
Marlon Dumas, now from the university of Tartu, came to visit Eindhoven and I
had the pleasure of sharing an office with him for a few days. Marlon, I appre-
ciate your vision and work and I’m looking forward to the challenges you will
present me during my defense. I would also like to thank Barbara Hammer from
Bielefeld University for her willingness to join my Ph.D. committee. I am really
looking forward to your questions at my defense, which I hope will be from a
new perspective. Finally I would like to thank Jack van Wijk for reviewing my
thesis and especially my visualizations, I appreciate your time and openness to
discussion.

All people mentioned so far are part of my Ph.D. committee and as such
have read this thesis thoroughly in order to evaluate its contents. I would like

344 Acknowledgments

to thank all of them for the detailed feedback they provided that shows that
they really read and understood my work, even though some still don’t agree
with everything I have written.

My office mates Dennis Schunselaar and Elham Ramezani Taghiabadi joined
my journey up close. Dennis, thank you for our collaboration within the CoSeLoG
project, for your critical feedback and for our many (ir)relevant discussions. El-
ham, thank you for adding a different cultural view to the office, for your social
engagement and for your debating skills (even when you were outnumbered
two to one you stood your ground). Both of you have become my best friends
and I hope we will occupy the ‘cool’ office together for quite some time to come.

This journey was made much more practical by collaborating with the part-
ners in the CoSeLoG project. Without them this thesis would have had no real-
life data, no real-life challenges, no real-life solutions and no real-life case stud-
ies.

Next I would like to thank all colleagues from both sides of the informa-
tion systems group. Some of my colleagues, present and past, deserve a special
mention. Special thanks go to both Ine van der Ligt and Riet van Buul for their
many life-saving actions and for being the center of the group. Arya Adrian-
syah, thank you for our nice collaborations and talks about life and research,
we must stay in touch! I would also like to thank Eric Verbeek for his technical
support and red M&Ms, Xixi Lu for the company in the evenings and weekends,
and Sander Leemans and Ronny Mans for looking at steam trains together. And
of course a big thank you to all other current colleagues: Alfredo, Bas, Dirk,
Eduardo, Felix, George, Julia Kiseleva, Maikel, Massimiliano, Murat, Mykola,
Natalia, Natasha, Paul, Rafal, Richard, Shengnan, and Shiva for all the lunch
talks and game evenings. I will not forget my former colleagues either: Ar-
jan Mooi, Carmen Bratosin, Christian Stahl, Delia Arsinte, Fabrizio Maggi, Han
van der Aa, Helen Schonenberg, Jan Vogelaar, Jan Martijn van der Werf, JC
Bose, Joyce Nakatumba, Maja Pes̆ić, and Michael Westergaard. And then there
were of course memorable visitors that we spent time with: Anna Kalenkova,
Artem Polyvyanyy, Christian Gierds, Cristina Iovino, Jorge Muñoz-Gamma, and
Raffaele Conforti. Additionally, I would like to thank Marcello La Rosa, Artem
Polyvyanyy, Raffaele Conforti, and Suriadi Suriadi and all other QUT group
members for making my visit to Brisbane a memorable experience. Finally, I
would also like to thank the master students that I got to supervise: Danny
van Heumen, Guido Swinkels, Tatiana Mamaliga, Maikel van Eck, and Yoran
van Oirschot. Thank you for the discussions, new perspectives, young enthusi-
asm, inspiration and work off the main thesis road. And of course to all others
that I have met in Eindhoven or abroad, but that I forgot to mention: you all

345

contributed, big or small, to this work.
Special thanks go to Thijs Nugteren and Eva Ploum for being my master

study buddies. You made me go where I did not believe I could during my mas-
ter study. I hope we keep having semi-regular meetings to share our knowledge,
experience and life stories.

However, my family joined and supported my journey the most. Mom, dad,
thank you for unconditionally supporting me throughout my studies. I would
also like to thank my brothers, Tijn and Dirk, for being who you are, for your
willingness to help and for growing up with me. Special thanks go to Dirk for
his thorough spelling and grammar check of this full thesis. I would also like to
thank my parents-in-law, Marléne and George, and my brother-in-law Melvin,
for joining me on this journey, and for adding other journeys in the weekends.
But most of all I would like to thank my wife and daughter, who joined me when
things were good and bad, day in, day out. Debbie, my dear wife, thank you
for taking me on many journeys in the past years, for your understanding of
the side-effects of chasing a Ph.D., and for your perseverance during the tough
times. I would also like to thank Mila, our daughter, for showing me evolution
up close and for all the journeys, big and very small, that we made and will
make.

Joos Buijs
Eindhoven, August 2014

Curriculum Vitae

Joseph Cornelis Antonius Maria (Joos) Buijs was born on June 29, 1984 in
Breda, The Netherlands. He grew up in the town of Prinsenbeek with his par-
ents and two younger brothers. He attended secondary school at the Prisma-
Graaf Engelbrecht college in Breda. After finishing secondary school in 2002,
he started his physics studies at Eindhoven University of Technology but soon
switched to computer science. In 2004 he started the short programme for in-
formatics studies at Avans university of applied sciences, which he finished suc-
cessfully in 2007. Next he followed the master Business Information Systems
at Eindhoven University of Technology. During his master, he was a student
assistant at the Laboratory of Quality Software (LaQuSo), where he conducted
several projects related to process mining. In 2010 he graduated on the disser-
tation “Mapping Data Sources to XES in a Generic Way”.

Joos became a PhD candidate in May 2010 when he started on the CoSeLoG
project. The overall goal of the CoSeLoG project is to investigate how processes
differ between municipalities by analyzing how they are executed, and how
these processes can be supported by a shared business process management
system. The work of Joos resulted in a number of publications at international
conferences and in an international journal. He defended his doctoral thesis, en-
titled “Flexible Evolutionary Algorithms for Mining Structured Process Models”
and supervised by prof.dr.ir. W.M.P. van der Aalst and dr.ir. B.F. van Dongen, on
October 28, 2014.

Since June 2014 Joos is working as a postdoctoral researcher, where he
assists prof.dr.ir. W.M.P. van der Aalst, scientific head of the Data Science Center
Eindhoven (DSC/e), in research, teaching, and industry collaborations. Joos
can be reached at ❥✳❝✳❛✳♠✳❜✉✐❥s❅t✉❡✳♥❧.

j.c.a.m.buijs@tue.nl

List of Publications

Joos Buijs has the following publications:

Journals

• J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Quality di-
mensions in process discovery: The importance of fitness, precision, gen-
eralization and simplicity. International Journal of Cooperative Information

Systems, 2014

Proceedings and Congres Contributions

• J.C.A.M. Buijs and H.A. Reijers. Comparing business process variants us-
ing models and event logs. In I. Bider, K. Gaaloul, J. Krogstie, S. Nurcan,
H.A. Proper, R. Schmidt, and P. Soffer, editors, BMMDS/EMMSAD, volume
175 of Lecture Notes in Business Information Processing, pages 154–168.
Springer, 2014. ISBN 978-3-662-43744-5

• J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Discovering
and navigating a collection of process models using multiple quality di-
mensions. In N. Lohmann, M. Song, and P. Wohed, editors, Business Pro-

cess Management Workshops, volume 171 of Lecture Notes in Business Infor-

mation Processing, pages 3–14. Springer, 2013. ISBN 978-3-319-06256-3

• A. Adriansyah and J.C.A.M. Buijs. Mining process performance from event
logs. In M.L. Rosa and P. Soffer, editors, Business Process Management

Workshops, volume 132 of Lecture Notes in Business Information Process-

ing, pages 217–218. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-
36284-2

• J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. On the role
of fitness, precision, generalization and simplicity in process discovery. In
R. Meersman, H. Panetto, T.S. Dillon, S. Rinderle-Ma, P. Dadam, X. Zhou,
S. Pearson, A. Ferscha, S. Bergamaschi, and I.F. Cruz, editors, OTM Confer-

ences (1), volume 7565 of Lecture Notes in Computer Science, pages 305–
322. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-33605-8

• J.C.A.M. Buijs, M. La Rosa, H.A. Reijers, B.F. van Dongen, and W.M.P.
van der Aalst. Improving business process models using observed behav-
ior. In P. Cudre-Mauroux, P. Ceravolo, and D. Gašević, editors, SIMPDA,

volume 162 of Lecture Notes in Business Information Processing, pages 44–
59. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-40918-9

• J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Mining config-
urable process models from collections of event logs. In F. Daniel, J. Wang,
and B. Weber, editors, BPM, volume 8094 of Lecture Notes in Computer

Science, pages 33–48. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-
40175-6

• W.M.P. van der Aalst, J.C.A.M. Buijs, and B.F. van Dongen. Towards im-
proving the representational bias of process mining. In K. Aberer, E. Dami-
ani, and T. Dillon, editors, SIMPDA, volume 116 of Lecture Notes in Busi-

ness Information Processing, pages 39–54. Springer Berlin Heidelberg, 2011.
ISBN 978-3-642-34043-7

• W.M.P. van der Aalst, A. Adriansyah, A.K.A. de Medeiros, F. Arcieri, T. Baier,
T. Blickle, R.P.J.C. Bose, P. van den Brand, R. Brandtjen, J.C.A.M. Buijs,
A. Burattin, J. Carmona, M. Castellanos, J. Claes, J. Cook, N. Costantini,
F. Curbera, E. Damiani, M. de Leoni, P. Delias, B.F. van Dongen, M. Dumas,
S. Dustdar, D. Fahland, D.R. Ferreira, W. Gaaloul, F. van Geffen, S. Goel,
C.W. Günther, A. Guzzo, P. Harmon, A.H.M. ter Hofstede, J. Hoogland,
J.E. Ingvaldsen, K. Kato, R. Kuhn, A. Kumar, M. La Rosa, F.M. Maggi,
D. Malerba, R.S. Mans, A. Manuel, M. McCreesh, P. Mello, J. Mendling,
M. Montali, H.R.M. Nezhad, M. zur Muehlen, J. Munoz-Gama, L. Pon-
tieri, J. Ribeiro, A. Rozinat, H.S. Pérez, R.S. Pérez, M. Sepúlveda, J. Sinur,
P. Soffer, M. Song, A. Sperduti, G. Stilo, C. Stoel, K.D. Swenson, M. Ta-
lamo, W. Tan, C. Turner, J. Vanthienen, G. Varvaressos, H.M.W. Verbeek,
M. Verdonk, R. Vigo, J. Wang, B. Weber, M. Weidlich, T. Weijters, L. Wen,
M. Westergaard, and M.T. Wynn. Process mining manifesto. In F. Daniel,
K. Barkaoui, and S. Dustdar, editors, Business Process Management Work-

shops (1), volume 99 of Lecture Notes in Business Information Process-

ing, pages 169–194. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-
28107-5

• J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. A genetic
algorithm for discovering process trees. In IEEE Congress on Evolutionary

Computation, pages 1–8. IEEE, 2012. ISBN 978-1-4673-1510-4

• J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Towards cross-
organizational process mining in collections of process models and their
executions. In F. Daniel, K. Barkaoui, S. Dustdar, W.M.P. van der Aalst,

J. Mylopoulos, M. Rosemann, M. Shaw, and C. Szyperski, editors, Busi-

ness Process Management Workshops (2), volume 100 of Lecture Notes in

Business Information Processing, pages 2–13. Springer Berlin Heidelberg,
2011. ISBN 978-3-642-28115-0

• H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der
Aalst. XES, XESame, and ProM 6. In P. Soffer and E. Proper, editors,
CAiSE Forum, volume 72 of Lecture Notes in Business Information Process-

ing, pages 60–75. Springer, 2010. ISBN 978-3-642-17721-7

• H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der
Aalst. ProM 6: The process mining toolkit. In Proc. of BPM Demonstration

Track 2010, volume 615, pages 34–39. CEUR-WS.org, 2010

• H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der
Aalst. XES tools, 2010

Master Thesis

• J.C.A.M. Buijs. Mapping Data Sources to XES in a Generic Way. Master’s
thesis, Eindhoven University of Technology, 2010

Technical Reports (Non-Refereed)

• A. Adriansyah and J.C.A.M. Buijs. Mining process performance from event
logs: the BPI Challenge 2012 case study. Technical report, BPM Center
Report, No. BPM-12-15, 2012

• M. de Leoni, J.C.A.M. Buijs, W.M.P. van der Aalst, and A.H.M. ter Hof-
stede. Facilitating process analysis through visualising process history:
Experiences with a dutch municipality

SIKS dissertations

2009

2009-01 Rasa Jurgelenaite (RUN), Symmetric Causal Independence Models.

2009-02 Willem Robert van Hage (VU), Evaluating Ontology-Alignment Tech-

niques.

2009-03 Hans Stol (UvT), A Framework for Evidence-based Policy Making Using

IT.

2009-04 Josephine Nabukenya (RUN), Improving the Quality of Organisational

Policy Making using Collaboration Engineering.

2009-05 Sietse Overbeek (RUN), Bridging Supply and Demand for Knowledge

Intensive Tasks - Based on Knowledge, Cognition, and Quality.

2009-06 Muhammad Subianto (UU), Understanding Classification.

2009-07 Ronald Poppe (UT), Discriminative Vision-Based Recovery and Recogni-

tion of Human Motion.

2009-08 Volker Nannen (VU), Evolutionary Agent-Based Policy Analysis in Dy-

namic Environments.

2009-09 Benjamin Kanagwa (RUN), Design, Discovery and Construction of Service-

oriented Systems.

2009-10 Jan Wielemaker (UVA), Logic programming for knowledge-intensive in-

teractive applications.

2009-11 Alexander Boer (UVA), Legal Theory, Sources of Law & the Semantic

Web.

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin), Operating

Guidelines for Services.

2009-13 Steven de Jong (UM), Fairness in Multi-Agent Systems.

2009-14 Maksym Korotkiy (VU), From ontology-enabled services to service-enabled

ontologies (making ontologies work in e-science with ONTO-SOA).

2009-15 Rinke Hoekstra (UVA), Ontology Representation - Design Patterns and

Ontologies that Make Sense.

2009-16 Fritz Reul (UvT), New Architectures in Computer Chess.

2009-17 Laurens van der Maaten (UvT), Feature Extraction from Visual Data.

2009-18 Fabian Groffen (CWI), Armada, An Evolving Database System.

2009-19 Valentin Robu (CWI), Modeling Preferences, Strategic Reasoning and

Collaboration in Agent-Mediated Electronic Markets.

2009-20 Bob van der Vecht (UU), Adjustable Autonomy: Controling Influences

on Decision Making.

2009-21 Stijn Vanderlooy (UM), Ranking and Reliable Classification.

2009-22 Pavel Serdyukov (UT), Search For Expertise: Going beyond direct evi-

dence.

2009-23 Peter Hofgesang (VU), Modelling Web Usage in a Changing Environ-

ment.

2009-24 Annerieke Heuvelink (VUA), Cognitive Models for Training Simula-

tions.

2009-25 Alex van Ballegooij (CWI), "RAM: Array Database Management through

Relational Mapping".

2009-26 Fernando Koch (UU), An Agent-Based Model for the Development of In-

telligent Mobile Services.

2009-27 Christian Glahn (OU), Contextual Support of social Engagement and

Reflection on the Web.

2009-28 Sander Evers (UT), Sensor Data Management with Probabilistic Mod-

els.

2009-29 Stanislav Pokraev (UT), Model-Driven Semantic Integration of Service-

Oriented Applications.

2009-30 Marcin Zukowski (CWI), Balancing vectorized query execution with

bandwidth-optimized storage.

2009-31 Sofiya Katrenko (UVA), A Closer Look at Learning Relations from Text.

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU), Architectural Knowl-

edge Management: Supporting Architects and Auditors.

2009-33 Khiet Truong (UT), How Does Real Affect Affect Affect Recognition In

Speech?.

2009-34 Inge van de Weerd (UU), Advancing in Software Product Management:

An Incremental Method Engineering Approach.

2009-35 Wouter Koelewijn (UL), Privacy en Politiegegevens; Over geautoma-

tiseerde normatieve informatie-uitwisseling.

2009-36 Marco Kalz (OUN), Placement Support for Learners in Learning Net-

works.

2009-37 Hendrik Drachsler (OUN), Navigation Support for Learners in Informal

Learning Networks.

2009-38 Riina Vuorikari (OU), Tags and self-organisation: a metadata ecology

for learning resources in a multilingual context.

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin), Service Sub-

stitution – A Behavioral Approach Based on Petri Nets.

2009-40 Stephan Raaijmakers (UvT), Multinomial Language Learning: Investi-

gations into the Geometry of Language.

2009-41 Igor Berezhnyy (UvT), Digital Analysis of Paintings.

2009-42 Toine Bogers (UvT), Recommender Systems for Social Bookmarking.

2009-43 Virginia Nunes Leal Franqueira (UT), Finding Multi-step Attacks in

Computer Networks using Heuristic Search and Mobile Ambients.

2009-44 Roberto Santana Tapia (UT), Assessing Business-IT Alignment in Net-

worked Organizations.

2009-45 Jilles Vreeken (UU), Making Pattern Mining Useful.

2009-46 Loredana Afanasiev (UvA), Querying XML: Benchmarks and Recursion.

2010

2010-01 Matthijs van Leeuwen (UU), Patterns that Matter.

2010-02 Ingo Wassink (UT), Work flows in Life Science.

2010-03 Joost Geurts (CWI), A Document Engineering Model and Processing

Framework for Multimedia documents.

2010-04 Olga Kulyk (UT), Do You Know What I Know? Situational Awareness

of Co-located Teams in Multidisplay Environments.

2010-05 Claudia Hauff (UT), Predicting the Effectiveness of Queries and Retrieval

Systems.

2010-06 Sander Bakkes (UvT), Rapid Adaptation of Video Game AI.

2010-07 Wim Fikkert (UT), Gesture interaction at a Distance.

2010-08 Krzysztof Siewicz (UL), Towards an Improved Regulatory Framework of

Free Software. Protecting user freedoms in a world of software communities and

eGovernments.

2010-09 Hugo Kielman (UL), A Politiele gegevensverwerking en Privacy, Naar

een effectieve waarborging.

2010-10 Rebecca Ong (UL), Mobile Communication and Protection of Children.

2010-11 Adriaan Ter Mors (TUD), The world according to MARP: Multi-Agent

Route Planning.

2010-12 Susan van den Braak (UU), Sensemaking software for crime analysis.

2010-13 Gianluigi Folino (RUN), High Performance Data Mining using Bio-inspired

techniques.

2010-14 Sander van Splunter (VU), Automated Web Service Reconfiguration.

2010-15 Lianne Bodenstaff (UT), Managing Dependency Relations in Inter-Organizational

Models.

2010-16 Sicco Verwer (TUD), Efficient Identification of Timed Automata, theory

and practice.

2010-17 Spyros Kotoulas (VU), Scalable Discovery of Networked Resources: Al-

gorithms, Infrastructure, Applications.

2010-18 Charlotte Gerritsen (VU), Caught in the Act: Investigating Crime by

Agent-Based Simulation.

2010-19 Henriette Cramer (UvA), People’s Responses to Autonomous and Adap-

tive Systems.

2010-20 Ivo Swartjes (UT), Whose Story Is It Anyway? How Improv Informs

Agency and Authorship of Emergent Narrative.

2010-21 Harold van Heerde (UT), Privacy-aware data management by means of

data degradation.

2010-22 Michiel Hildebrand (CWI), End-user Support for Access to

Heterogeneous Linked Data.

2010-23 Bas Steunebrink (UU), The Logical Structure of Emotions.

2010-24 Dmytro Tykhonov, Designing Generic and Efficient Negotiation Strate-

gies.

2010-25 Zulfiqar Ali Memon (VU), Modelling Human-Awareness for Ambient

Agents: A Human Mindreading Perspective.

2010-26 Ying Zhang (CWI), XRPC: Efficient Distributed Query Processing on Het-

erogeneous XQuery Engines.

2010-27 Marten Voulon (UL), Automatisch contracteren.

2010-28 Arne Koopman (UU), Characteristic Relational Patterns.

2010-29 Stratos Idreos(CWI), Database Cracking: Towards Auto-tuning Database

Kernels.

2010-30 Marieke van Erp (UvT), Accessing Natural History - Discoveries in data

cleaning, structuring, and retrieval.

2010-31 Victor de Boer (UVA), Ontology Enrichment from Heterogeneous Sources

on the Web.

2010-32 Marcel Hiel (UvT), An Adaptive Service Oriented Architecture: Auto-

matically solving Interoperability Problems.

2010-33 Robin Aly (UT), Modeling Representation Uncertainty in Concept-Based

Multimedia Retrieval.

2010-34 Teduh Dirgahayu (UT), Interaction Design in Service Compositions.

2010-35 Dolf Trieschnigg (UT), Proof of Concept: Concept-based Biomedical In-

formation Retrieval.

2010-36 Jose Janssen (OU), Paving the Way for Lifelong Learning; Facilitating

competence development through a learning path specification.

2010-37 Niels Lohmann (TUE), Correctness of services and their composition.

2010-38 Dirk Fahland (TUE), From Scenarios to components.

2010-39 Ghazanfar Farooq Siddiqui (VU), Integrative modeling of emotions in

virtual agents.

2010-40 Mark van Assem (VU), Converting and Integrating Vocabularies for the

Semantic Web.

2010-41 Guillaume Chaslot (UM), Monte-Carlo Tree Search.

2010-42 Sybren de Kinderen (VU), Needs-driven service bundling in a multi-

supplier setting - the computational e3-service approach.

2010-43 Peter van Kranenburg (UU), A Computational Approach to Content-

Based Retrieval of Folk Song Melodies.

2010-44 Pieter Bellekens (TUE), An Approach towards Context-sensitive and

User-adapted Access to Heterogeneous Data Sources, Illustrated in the Television

Domain.

2010-45 Vasilios Andrikopoulos (UvT), A theory and model for the evolution of

software services.

2010-46 Vincent Pijpers (VU), e3alignment: Exploring Inter-Organizational Business-

ICT Alignment.

2010-47 Chen Li (UT), Mining Process Model Variants: Challenges, Techniques,

Examples.

2010-48 Withdrawn, .

2010-49 Jahn-Takeshi Saito (UM), Solving difficult game positions.

2010-50 Bouke Huurnink (UVA), Search in Audiovisual Broadcast Archives.

2010-51 Alia Khairia Amin (CWI), Understanding and supporting information

seeking tasks in multiple sources.

2010-52 Peter-Paul van Maanen (VU), Adaptive Support for Human-Computer

Teams: Exploring the Use of Cognitive Models of Trust and Attention.

2010-53 Edgar Meij (UVA), Combining Concepts and Language Models for Infor-

mation Access.

2011

2011-01 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in

Latent Gaussian Models.

2011-02 Nick Tinnemeier(UU), Organizing Agent Organizations. Syntax and

Operational Semantics of an Organization-Oriented Programming Language.

2011-03 Jan Martijn van der Werf (TUE), Compositional Design and Verification

of Component-Based Information Systems.

2011-04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal

analysis and empirical evaluation of temporal-difference.

2011-05 Base van der Raadt (VU), Enterprise Architecture Coming of Age - In-

creasing the Performance of an Emerging Discipline..

2011-06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in Cul-

tural Heritage.

2011-07 Yujia Cao (UT), Multimodal Information Presentation for High Load

Human Computer Interaction.

2011-08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented

Dialogues.

2011-09 Tim de Jong (OU), Contextualised Mobile Media for Learning.

2011-10 Bart Bogaert (UvT), Cloud Content Contention.

2011-11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI

Perspective.

2011-12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process Min-

ing.

2011-13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for

Airport Ground Handling.

2011-14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Mar-

kets.

2011-15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evi-

dence for Information Retrieval.

2011-16 Maarten Schadd (UM), Selective Search in Games of Different Complex-

ity.

2011-17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity and Re-

latedness.

2011-18 Mark Ponsen (UM), Strategic Decision-Making in complex games.

2011-19 Ellen Rusman (OU), The Mind ’ s Eye on Personal Profiles.

2011-20 Qing Gu (VU), Guiding service-oriented software engineering - A view-

based approach.

2011-21 Linda Terlouw (TUD), Modularization and Specification of Service-Oriented

Systems.

2011-22 Junte Zhang (UVA), System Evaluation of Archival Description and Ac-

cess.

2011-23 Wouter Weerkamp (UVA), Finding People and their Utterances in Social

Media.

2011-24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Co-

ordination with Virtual Humans On Specifying, Scheduling and Realizing Multi-

modal Virtual Human Behavior.

2011-25 Syed Waqar ul Qounain Jaffry (VU)), Analysis and Validation of Models

for Trust Dynamics.

2011-26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication

- Emotion Regulation and Involvement-Distance Trade-Offs in Embodied Conversa-

tional Agents and Robots.

2011-27 Aniel Bhulai (VU), Dynamic website optimization through autonomous

management of design patterns.

2011-28 Rianne Kaptein(UVA), Effective Focused Retrieval by Exploiting Query

Context and Document Structure.

2011-29 Faisal Kamiran (TUE), Discrimination-aware Classification.

2011-30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unravel-

ing the mystery of emotions.

2011-31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches

for Modeling Bounded Rationality.

2011-32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Map-

ping of Science.

2011-33 Tom van der Weide (UU), Arguing to Motivate Decisions.

2011-34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and

Game-theoretical Investigations.

2011-35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training.

2011-36 Erik van der Spek (UU), Experiments in serious game design: a cogni-

tive approach.

2011-37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applica-

tions for Preference Learning and Supervised Network Inference.

2011-38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization.

2011-39 Joost Westra (UU), Organizing Adaptation using Agents in Serious Games.

2011-40 Viktor Clerc (VU), Architectural Knowledge Management in Global Soft-

ware Development.

2011-41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access

Control.

2011-42 Michal Sindlar (UU), Explaining Behavior through Mental State Attri-

bution.

2011-43 Henk van der Schuur (UU), Process Improvement through Software Op-

eration Knowledge.

2011-44 Boris Reuderink (UT), Robust Brain-Computer Interfaces.

2011-45 Herman Stehouwer (UvT), Statistical Language Models for Alternative

Sequence Selection.

2011-46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-

based Architecture for the Domain of Mobile Police Work.

2011-47 Azizi Bin Ab Aziz(VU), Exploring Computational Models for Intelligent

Support of Persons with Depression.

2011-48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive

Artificial Listening Agent.

2011-49 Andreea Niculescu (UT), Conversational interfaces for task-oriented spo-

ken dialogues: design aspects influencing interaction quality.

2012

2012-01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda.

2012-02 Muhammad Umair(VU), Adaptivity, emotion, and Rationality in Hu-

man and Ambient Agent Models.

2012-03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Soft-

ware Repositories.

2012-04 Jurriaan Souer (UU), Development of Content Management System-

based Web Applications.

2012-05 Marijn Plomp (UU), Maturing Interorganisational Information Systems.

2012-06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers

in Research Networks.

2012-07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring

Agent-based Models of Human Performance under Demanding Conditions.

2012-08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories.

2012-09 Ricardo Neisse (UT), Trust and Privacy Management Support for Context-

Aware Service Platforms.

2012-10 David Smits (TUE), Towards a Generic Distributed Adaptive Hyperme-

dia Environment.

2012-11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large: Pre-

processing, Discovery, and Diagnostics.

2012-12 Kees van der Sluijs (TUE), Model Driven Design and Data Integration

in Semantic Web Information Systems.

2012-13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions

of emotion during playful interactions.

2012-14 Evgeny Knutov(TUE), Generic Adaptation Framework for Unifying Adap-

tive Web-based Systems.

2012-15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of In-

tegrated Internal and Social Dynamics of Cognitive and Affective Processes..

2012-16 Fiemke Both (VU), Helping people by understanding them - Ambient

Agents supporting task execution and depression treatment.

2012-17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Busi-

ness Process Compliance.

2012-18 Eltjo Poort (VU), Improving Solution Architecting Practices.

2012-19 Helen Schonenberg (TUE), What’s Next? Operational Support for Busi-

ness Process Execution.

2012-20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust

Paradigm for Brain-Computer Interfacing.

2012-21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information

Retrieval.

2012-22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare

grootheden?.

2012-23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Ex-

ploring the Neurophysiology of Affect during Human Media Interaction.

2012-24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken

Document Retrieval.

2012-25 Silja Eckartz (UT), Managing the Business Case Development in Inter-

Organizational IT Projects: A Methodology and its Application.

2012-26 Emile de Maat (UVA), Making Sense of Legal Text.

2012-27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation &

Brain-Computer Interface Games.

2012-28 Nancy Pascall (UvT), Engendering Technology Empowering Women.

2012-29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval.

2012-30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Re-

flective Decision Making.

2012-31 Emily Bagarukayo (RUN), A Learning by Construction Approach for

Higher Order Cognitive Skills Improvement, Building Capacity and Infrastructure.

2012-32 Wietske Visser (TUD), Qualitative multi-criteria preference representa-

tion and reasoning.

2012-33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON).

2012-34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and appli-

cations.

2012-35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution of

Controllers in Swarm- and Modular Robotics.

2012-36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative

Modeling Processes.

2012-37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Archi-

tecture Creation.

2012-38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolu-

tionary Algorithms.

2012-39 Hassan Fatemi (UT), Risk-aware design of value and coordination net-

works.

2012-40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia.

2012-41 Sebastian Kelle (OU), Game Design Patterns for Learning.

2012-42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated Learn-

ing.

2012-43 Withdrawn, .

2012-44 Anna Tordai (VU), On Combining Alignment Techniques.

2012-45 Benedikt Kratz (UvT), A Model and Language for Business-aware Trans-

actions.

2012-46 Simon Carter (UVA), Exploration and Exploitation of Multilingual Data

for Statistical Machine Translation.

2012-47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content and

Predicting Behavior.

2012-48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-series

Data.

2012-49 Michael Kaisers (UM), Learning against Learning - Evolutionary dy-

namics of reinforcement learning algorithms in strategic interactions.

2012-50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information

Systems Engineering.

2012-51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical

framework with a case study in elevator dispatching.

2013

2013-01 Viorel Milea (EUR), News Analytics for Financial Decision Support.

2013-02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store

Database Technology for Efficient and Scalable Stream Processing.

2013-03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics.

2013-04 Chetan Yadati(TUD), Coordinating autonomous planning and schedul-

ing.

2013-05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns.

2013-06 Romulo Goncalves(CWI), The Data Cyclotron: Juggling Data and Queries

for a Data Warehouse Audience.

2013-07 Giel van Lankveld (UvT), Quantifying Individual Player Differences.

2013-08 Robbert-Jan Merk(VU), Making enemies: cognitive modeling for oppo-

nent agents in fighter pilot simulators.

2013-09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Meth-

ods and Applications.

2013-10 Jeewanie Jayasinghe Arachchige(UvT), A Unified Modeling Framework

for Service Design..

2013-11 Evangelos Pournaras(TUD), Multi-level Reconfigurable Self-organization

in Overlay Services.

2013-12 Marian Razavian(VU), Knowledge-driven Migration to Services.

2013-13 Mohammad Safiri(UT), Service Tailoring: User-centric creation of inte-

grated IT-based homecare services to support independent living of elderly.

2013-14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised Learning

Learning.

2013-15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Ap-

plications.

2013-16 Eric Kok (UU), Exploring the practical benefits of argumentation in

multi-agent deliberation.

2013-17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart

Electricity Grid.

2013-18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification.

2013-19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and Schedul-

ing.

2013-20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for

Information Retrieval.

2013-21 Sander Wubben (UvT), Text-to-text generation by monolingual machine

translation.

2013-22 Tom Claassen (RUN), Causal Discovery and Logic.

2013-23 Patricio de Alencar Silva(UvT), Value Activity Monitoring.

2013-24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learn-

ing.

2013-25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision

Support. A new way of representing and implementing clinical guidelines in a De-

cision Support System.

2013-26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare

Service Provisioning.

2013-27 Mohammad Huq (UT), Inference-based Framework Managing Data Prove-

nance.

2013-28 Frans van der Sluis (UT), When Complexity becomes Interesting: An

Inquiry into the Information eXperience.

2013-29 Iwan de Kok (UT), Listening Heads.

2013-30 Joyce Nakatumba (TUE), Resource-Aware Business Process Management:

Analysis and Support.

2013-31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineer-

ing Cloud Applications.

2013-32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Net-

working in a Lifelong Learner’s Professional Development.

2013-33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging

Sphere.

2013-34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search.

2013-35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction.

2013-36 Than Lam Hoang (TUe), Pattern Mining in Data Streams.

2013-37 Dirk Börner (OUN), Ambient Learning Displays.

2013-38 Eelco den Heijer (VU), Autonomous Evolutionary Art.

2013-39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of

Enterprise Information Systems.

2013-40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games.

2013-41 Jochem Liem (UVA), Supporting the Conceptual Modelling of Dynamic

Systems: A Knowledge Engineering Perspective on Qualitative Reasoning.

2013-42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning.

2013-43 Marc Bron (UVA), Exploration and Contextualization through Interac-

tion and Concepts.

2014

2014-01 Nicola Barile (UU), Studies in Learning Monotone Models from Data.

2014-02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain

Modeling Method.

2014-03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children:

Search Behavior and Solutions.

2014-04 Hanna Jochmann-Mannak (UT), Websites for children: search strate-

gies and interface design - Three studies on children’s search performance and eval-

uation.

2014-05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dy-

namic Capability.

2014-06 Damian Tamburri (VU), Supporting Networked Software Development.

2014-07 Arya Adriansyah (TUE), Aligning Observed and Modeled Behavior.

2014-08 Samur Araujo (TUD), Data Integration over Distributed and Heteroge-

neous Data Endpoints.

2014-09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence: Rep-

resentation and Computation of Meaning in Natural Language.

2014-10 Ivan Salvador Razo Zapata (VU), Service Value Networks.

2014-11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social

Support.

2014-12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Autonomous

Vehicle Control.

2014-13 Arlette van Wissen (VU), Agent-Based Support for Behavior Change:

Models and Applications in Health and Safety Domains.

2014-14 Yangyang Shi (TUD), Language Models With Meta-information.

2014-15 Natalya Mogles (VU), Agent-Based Analysis and Support of Human

Functioning in Complex Socio-Technical Systems: Applications in Safety and Health-

care.

2014-16 Krystyna Milian (VU), Supporting trial recruitment and design by auto-

matically interpreting eligibility criteria.

2014-17 Kathrin Dentler (VU), Computing healthcare quality indicators auto-

matically: Secondary Use of Patient Data and Semantic Interoperability.

2014-18 Mattijs Ghijsen (VU), Methods and Models for the Design and Study of

Dynamic Agent Organizations.

2014-19 Vincius Ramos (TUE), Adaptive Hypermedia Courses: Qualitative and

Quantitative Evaluation and Tool Support.

2014-20 Mena Habib (UT), Named Entity Extraction and Disambiguation for In-

formal Text: The Missing Link.

2014-21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environ-

ments.

2014-22 Marieke Peeters (UT), Personalized Educational Games - Developing

agent-supported scenario-based training.

2014-23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big

Data Era.

2014-24 Davide Ceolin (VU), Trusting Semi-structured Web Data.

2014-25 Martijn Lappenschaar (RUN), New network models for the analysis of

disease interaction.

2014-26 Tim Baarslag (TUD), What to Bid and When to Stop.

2014-27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy

and Probabilistic Representations of Uncertainty.

2014-28 Anna Chmielowiec (VU), Decentralized k-Clique Matching.

2014-29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software.

2014-30 Peter de Kock Berenschot (UvT), Anticipating Criminal Behaviour.

2014-31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Man-

ufacturing and Product Support.

2014-32 Naser Ayat (UVA), On Entity Resolution in Probabilistic Data.

2014-33 Tesfa Tegegne Asfaw (RUN), Service Discovery in eHealth.

2014-34 Christina Manteli (VU), The Effect of Governance in Global Software

Development: Analyzing Transactive Memory Systems.

2014-35 Joost van Oijen (UU), Cognitive Agents in Virtual Worlds: A Middle-

ware Design Approach.

2014-36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining Struc-

tured Process Models.

	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Process Mining
	1.2 Introduction of Running Examples
	1.2.1 System with two Event Logs
	1.2.2 Four Similar Processes

	1.3 Challenges in Process Mining
	1.3.1 Results of Existing Process Discovery Techniques
	1.3.2 Challenge 1: Produce Correct Process Models
	1.3.3 Challenge 2: Separation of Visualization and Representational Bias
	1.3.4 Challenge 3: Balance the Quality of Discovered Process Models
	1.3.5 Challenge 4: Improve Understandability for Non-Experts
	1.3.6 Challenge 5: Use Existing Knowledge in Process Discovery
	1.3.7 Challenge 6: Describe a Family of Processes
	1.3.8 Challenge 7: Compare Similar Observed Behavior
	1.3.9 An Algorithm that Addresses all Challenges

	1.4 The CoSeLoG Project
	1.5 Contributions and Structure of this Thesis

	2 Preliminaries
	2.1 Notations
	2.2 Process Models
	2.2.1 Labeled Transition Systems
	2.2.2 Petri Nets
	2.2.3 Business Process Model and Notation (BPMN)

	2.3 Event Logs

	3 Process Trees
	3.1 Requirements
	3.1.1 Soundness and Relaxed Soundness
	3.1.2 Expressiveness
	3.1.3 Understandability
	3.1.4 Formal Semantics
	3.1.5 Suitable for the Process Discovery Algorithm

	3.2 Common Process Modeling Notations
	3.2.1 Hidden Markov Models
	3.2.2 Yet Another Workflow Language (YAWL)
	3.2.3 Event-Driven Process Chains (EPCs)
	3.2.4 Causal Nets
	3.2.5 Heuristics Net
	3.2.6 Fuzzy Models
	3.2.7 Process Algebras

	3.3 Notations v.s. Requirements
	3.4 The Process Tree Notation
	3.5 Translations
	3.5.1 From Process Trees to Other Notations
	3.5.2 From other Notations to Process Trees

	3.6 Conclusion

	4 A Framework for Evolutionary Process Mining
	4.1 The ETM Framework
	4.2 Applications of the Evolutionary Framework
	4.2.1 Process Discovery
	4.2.2 Process Model Repair
	4.2.3 Process Discovery of a Configurable Model
	4.2.4 Configuration Discovery using Context
	4.2.5 Concept Drift
	4.2.6 Decision Mining
	4.2.7 Other Perspectives
	4.2.8 Combinations of Scenarios

	4.3 General Requirements for Evolutionary Algorithms
	4.3.1 Population Diversity
	4.3.2 Ability to Visit the Whole Search Space
	4.3.3 Prevention of Bloat
	4.3.4 Requirements for the Evaluation of Candidates

	4.4 Common Implementations of the Phases of an Evolutionary Algorithm
	4.4.1 Candidate Evaluation
	4.4.2 Selection
	4.4.3 Change Operations
	4.4.4 Termination

	4.5 Conclusion

	5 Process Model Quality Dimensions
	5.1 The Four Process Discovery Quality Dimensions
	5.2 Theoretical View
	5.2.1 Relating the Behavior of the Event Log, the Process Model and the System
	5.2.2 Dealing with an Unknown System

	5.3 Simplicity
	5.3.1 Simplicity by Ratio of Useless Nodes
	5.3.2 Other Simplicity Metrics

	5.4 Replay Fitness
	5.4.1 Alignment-based Replay Fitness
	5.4.2 Other Replay Fitness Metrics

	5.5 Precision
	5.5.1 Escaping Edges
	5.5.2 Other Precision Metrics

	5.6 Generalization
	5.6.1 Frequency of Use
	5.6.2 Other Generalization Metrics

	5.7 The Importance of Considering all Four Quality Dimensions
	5.8 Quality Metric Considerations
	5.9 Additional Quality Dimensions
	5.10 Related Work
	5.11 Conclusion

	6 Discovery of Process Trees
	6.1 Initial Population Creation
	6.1.1 Random Tree Creation
	6.1.2 Using Advanced Trace-Model Creation
	6.1.3 Using Other Process Discovery Algorithms

	6.2 Random Mutation
	6.3 Guided Mutation
	6.3.1 Removing Behavior
	6.3.2 Adding Behavior
	6.3.3 Changing Behavior

	6.4 Crossover
	6.5 Candidate Selection
	6.6 Termination Conditions
	6.7 Balancing Search Space Exploration and Exploitation
	6.8 Application Using a Running Example
	6.8.1 Searching for the Best Process Tree
	6.8.2 Discovery of a Pareto Front

	6.9 Results of Existing Process Discovery Algorithms
	6.9.1 The -Algorithm
	6.9.2 Genetic Miner
	6.9.3 Heuristic Miner
	6.9.4 The ILP Miner
	6.9.5 Inductive Miner
	6.9.6 Language-based Region Theory
	6.9.7 Multi-phase Miner
	6.9.8 State-based Region Theory
	6.9.9 Why Existing Algorithms Fail

	6.10 Conclusion

	7 Application of Process Tree Discovery
	7.1 Performance in the Limit
	7.1.1 Running Example without Exceptional Behavior
	7.1.2 Running Example with Exceptional Behavior
	7.1.3 Pareto Front Evolution on Running Example with Exceptional Behavior

	7.2 Random versus Guided Change
	7.3 Building Permits Process - Receipt Phase
	7.4 Building Permits Process - Objections and Complaints
	7.5 Performance of the ETMd algorithm
	7.6 Conclusion

	8 Balancing Observed and Modeled Behavior
	8.1 Application Scenarios
	8.2 Similarity as the 5th Quality Dimension
	8.3 Application to Running Example
	8.4 Case Study
	8.5 Related Work
	8.6 Conclusion

	9 Discovering Configurable Process Models
	9.1 Configurable Process Models
	9.2 Configurable Process Trees
	9.3 Four Different Approaches
	9.4 The ETMc algorithm
	9.4.1 Configuration Mutation
	9.4.2 Configuration Quality

	9.5 Application on Running Example
	9.5.1 Experimental Setup
	9.5.2 Approach 1: Merge Individually Discovered Process Models
	9.5.3 Approach 2: Merge Similar Discovered Process Models
	9.5.4 Approach 3: First Discover a Single Process Model and Then Discover Configurations
	9.5.5 Approach 4: Discover Process Model and Configurations at the Same Time
	9.5.6 Discovering a Pareto Front for Approach 4
	9.5.7 Comparison of the Four Approaches

	9.6 Case Study
	9.7 Related Work
	9.8 Conclusion

	10 Inter-Organizational Process Comparison
	10.1 Running Example
	10.2 Cross-Organizational Comparison Framework
	10.2.1 Process Model Metrics
	10.2.2 Event Log Metrics
	10.2.3 Comparison Metrics
	10.2.4 Application on the Running Example

	10.3 Visualizing Alignments: the Alignment Matrix
	10.4 Case Study
	10.4.1 Setup
	10.4.2 Execution
	10.4.3 Results

	10.5 Related Work
	10.6 Conclusion

	11 Implementation
	11.1 Walk through of the ETMd Algorithm
	11.1.1 Usage via the GUI
	11.1.2 Usage via code
	11.1.3 Usage via Command Line Interface

	11.2 Extending the ETMd Algorithm
	11.2.1 Adding Quality Metrics
	11.2.2 Change Operations and Process Tree Creation
	11.2.3 Pareto Front Visualizers

	11.3 Implementation of the Comparison Framework
	11.3.1 Metric Settings
	11.3.2 Alignment Matrix Settings
	11.3.3 Extending the Comparison Framework

	11.4 Conclusion

	12 Conclusion
	12.1 Contributions of this Thesis
	12.2 Current Challenges and Open Issues
	12.2.1 Limitations
	12.2.2 Improvements
	12.2.3 Opportunities

	12.3 Outlook on Process Mining
	12.3.1 Closer Collaboration between Academia, Tool Vendors, Consultants and Clients
	12.3.2 Address Hindering Side Issues
	12.3.3 Improve the Applicability of Solutions on Real Data
	12.3.4 Improve the Usability of Techniques
	12.3.5 Create Incentives for Researchers to Publish and Document their Solutions

	Bibliography
	Index
	Summary
	Samenvatting
	Acknowledgments
	Curriculum Vitae
	SIKS dissertations

