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ABSTRACT

This paper presents a generalized feature projection scheme which
allows each feature dimension to be classified in a set of 1 to M
classes, where M is the total number of classes. Our method is an

extension of the classical full-space null-space approach where each

dimension can only be classified in eitherM classes or 1 class. We
believe that this more general formulation allows for a better trade-

off of number of parameters versus model complexity, which in turn

should provide better classification. We first tested GLDA on TIMIT

and obtained an improvement up to 1% in phone classification rate
over the best HLDA classifier. Preliminary results on Wall Street

Journal 20K also show an improvement over the best HLDA system

of about 0.2% absolute.

1. INTRODUCTION

A widely accepted hypothesis in pattern classification is that not all

feature dimensions carry enough information to discriminate among

all classes. Feature projection addresses this problem by performing
a linear transformation of the feature-space and by projecting the

feature vectors into a subspace while attempting to preserve the dis-

criminative power. Most projection schemes, including the popular

HLDA, estimate the projection transformation by assuming that p
dimensions can discriminate among allM classes and the remaining
(n − p) have no discriminating power at all. STC ([1]) models the
class covariance matrix as a composition of two parts. The first class-

dependent and the second shared among a group of classes. SPAM
([2]) models the precision matrix space with a basis superposition,

in which the basis matrix ranks can vary freely.

Our method extends these approaches by estimating flexible pro-

jection spaces where the discriminating power of each feature di-

mension is allowed to vary between 1 and M . We derive general
formulae for the Maximum-Likelihood estimation of the transfor-

mation matrix. Also, we derive two maximization procedures for

such a ML solution, one based on gradient-descent and one based

on an extension of the HLDA iterative optimization algorithm [3].
We call the resulting Maximum-Likelihood estimation of the flexi-

ble projection spaces Generalized Heteroscedastic Linear Discrimi-

nant Analysis (GLDA). We believe that GLDA has the potential for

improved modeling accuracy because it provides a better trade-off
between model parameters and model complexity. We also believe

that GLDA provides a strong theoretical framework for the estima-

tion of subspace models [4], used in model compression. In this

paper we present the main theoretical results motivating GLDA and
experimental results on TIMIT and Wall Street Journal.
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Fig. 1. HLDA feature-space clustering tree.
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Fig. 2. HLDA clustering plot for n = 2, p = 1 andM = 3.

2. FLEXIBLE FEATURE PROJECTION SPACES

HLDA is the application of the EM algorithm ([5], [6], [7]) to the

problem of feature projection. Given the observation vector x ∈ �n

belonging toM classes, HLDA assumes that the first p dimensions
(the full-space) can discriminate among the M classes and models

them withM gaussian distributions, while the last (n − p) dimen-
sions (the null-space) are assumed to have no discriminating power

and are modeled by a one shared distribution [8]. In essence HLDA

performs a feature-space tieing over the last (n − p) dimensions
across all classes. We can graphically represented this with the
feature-space clustering tree of figure 1 and, as an illustrative ex-

ample, with the graph of figure 2. HLDA estimates the transforma-

tion matrix that maximizes the likelihood given such a feature-space

tieing structure.

The basic idea of GLDA is to allow for the construction of a

more general feature-space clustering tree which has more than two

levels and with a variable number of classes at the different levels

of the tree [9]. GLDA allows the discriminating power of each di-
mension to vary between 1 and M . Figure 3 shows an example of
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Fig. 3. GLDA feature-space clustering tree.
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Fig. 4. GLDA clustering plot for n = 2, p(1) = 1, p(2) = 1,
M(1) = 3 andM(2) = 2.

such a generalized feature-space clustering tree and figure 4 shows

an example of data distribution which could profit from that.

3. GENERALIZED FEATURE-SPACE CLUSTERING

Notice that the structure of the feature-space clustering tree is re-

flected in the parameters structure. In the case of HLDA, for a class

m the mean vector µ̂m and covariance matrix Σ̂m in the transformed

space are partitioned into two blocks: the first block of p dimensions

depends on the class, and has parameters µ̂[p],m and Σ̂[p],m, while

the second block of (n−p) dimensions does not depend on the class

and is shared among all classes with parameters µ̂[n−p] and Σ̂[n−p]:

µ̂m =

»
µ̂[p],m

µ̂[n−p]

–
Σ̂m =

»
Σ̂[p],m 0

0 Σ̂[n−p]

–

The ML estimate of the transformation matrix A∗ is obtained

by maximizing the Q-function, which expresses the likelihood in the

transformed space:

A
∗ = arg max

A
Q(Σ̂m)

where the Q has the following expression:

Q = log |A| −
1

2

X
m

γ(m)

γ
log |Σ̂m|

where γ(m) is the posterior for classm and γ is the total count.
By exploiting the block-diagonal structure of the covariance matrix,
the determinant of the HLDA covariance can be written as:

|Σ̂m| = |Σ̂[p],m||Σ̂[n−p]|

By using the linear projection rule and by extracting the rows of
the transformation matrix corresponding to each block, the previous

expression becomes:

|Σ̂m| = |A1:pΣmA
′
1:p||Ap+1:nΣA

′
p+1:n|

where Σm and Σ are the covariance matrices referring to the
original non-transformed space. Moreover Σ is the global covari-
ance matrix computed over all the classes. Notice that this factoriza-

tion corresponds to having one term of the Q-function for each node

of the feature-space clustering tree, where the rows of the transfor-
mation matrix are indexed by the level of the tree and the class of

covariance matrix is indexed by the leaves of the sub-tree.

In the case of GLDA this structure is generalized to a covariance

matrix of L blocks and the associated mean vectors:

µ̂m =

2
4 µ̂[p(1)],m1

µ̂[p(2)],m2

µ̂[p(3)],m3

3
5

Σ̂m =

2
4 Σ̂[p(1)],m1

0 0

0 Σ̂[p(2)],m2
0

0 0 Σ̂[p(3)],m3

3
5

We can then compute the determinant of the GLDA covariance
matrix in the transformed space as the product of its block determi-

nants:

|Σ̂m| =
LY

l=1

|Σ̂[p(l)],ml
|

where L is the total number of levels and p(l) is the number of
dimensions associated with level l. Also notice that each covariance
block is computed selectively using rows of A. By applying the same

rules on the generalized feature-space clustering tree, the GLDA Q-

function can be written as:

Q = log |A| − 1
2

PL

l=1

PMl

ml=1{
γ(ml)

γ
log |A[s(l):s(l)+p(l)]−1Σ{m:mεml}A

′
[s(l):s(l)+p(l)−1]|}

whereM(l) is the number of classes associated with level l and
s(l) is the initial dimension for level l, defined by the recursion p(l):
s(l) = s(l − 1) + p(l − 1) with s(1) = 1.

4. MAXIMUM-LIKELIHOOD OPTIMIZATION

Two key issues that need to be addressed to estimate the flexible fea-

ture spaces: the maximization of the Q-function and the construction

of the feature-space clustering tree. As for most other feature trans-
formation methods (with the noticeable exception of MLLU [10])

the maximization of the Q-function does not have any close-form

solution and requires numerical optimization. The first method ex-

plored is based on gradient descent, while the second and most effec-
tive solution is based on a generalized version of the iterative max-

imization originally derived for HLDA. Gradient methods, such as

steepest descend or conjugate gradient, require first derivative of the

objective function. For GLDA the first derivative of the Q-function
is:
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where the Dl is a p(l) × n matrix relative to the level l in the
feature-space clustering tree and its expression is:

Dl =
PMl

ml=1
γ(ml)

γ
{

(A[s(l):s(l)+p(l)−1]Σ{m:mεml}A
′
[s(l):s(l)+p(l)−1])

−1

A[s(l):s(l)+p(l)−1]Σ{m:mεml}

¯

For our experiments we used a standard conjugate gradient op-

timization routine provided by the GSL package.

Regarding the iterative optimization, it was originally proposed

for STC [1] and then adapted for HLDA in [3] and relies on the

assumption of diagonal covariance matrices in the projected space.
The extension of this method for GLDA follows the same iterative

scheme:

1. Initialization: The matrix A is initialized by LDA.

2. Parameter Projection: Using the current estimate of A, the

means µ̂m and the diagonal covariance matrices Σ̂Diag
m are

computed.

3. Projection Re-estimation: Using the current parameters in the

projected space, a new transformationA is estimated in a way
guaranteed to improve the likelihood.

4. Iteration: Steps 2 and 3 are repeated until convergence is

reached (usually requires less than 10 iterations).

Step 2 performs a projection in which the off-diagonal elements
of the covariance matrices are nulled out. Step 3 is in itself an itera-

tive process, which estimates the new transformation matrix row by

row. The i-th row of A is estimated with the following expression:

ai = ciG
−1
i

r
γ

ciG
−1
i c′i

where ci is the i-th row of the cofactors of the matrix A and Gi

is the auxiliary function defined as:

Gi =

8>><
>>:

PM

m=1
γ(m)

σ̂
Diag
m,i

Σm i ≤ p

γ

σ̂
Diag
i

Σ i > p

It can be demonstrated that generalizing the method to GLDA

only requires a new auxiliary function, which can be written as:

Gi =

MlX
ml=1

γ(ml)

σ̂
Diag
ml,i

Σ{m:mεml}

4.1. Feature-Space Clustering Tree Estimation

Our derivation assumes that the structure of the feature-space clus-

tering tree is available before the optimization procedure is started.

However deriving a good structure for the feature clustering tree is
non trivial. We need to address two different issues: the definition

of a good tree structure, i.e. the number of classes and the num-

ber of dimensions for each level, and the definition the super-classes

corresponding to the internal nodes.
For the first issue we used a technique proposed in [8], which

is essentially based on cross-validation: the structure defined by

{L,M(l),p(l)} is explored using a first set of the training data and
is validated with an independent set. The structure which provides
the best results is used for the ML optimization.

Regarding the definition of the super-classes we explored two

different approaches: The first is based on HMM topological infor-

mation, while the second is based on unsupervised clustering.

1. The topological clustering associates each class to a single
mixture component in a state and construct the super-classes

by mapping components to states, and states to phonetic units.

This does not require any optimization as the topology of the

HMM is already available, is sub-optimal.

2. The second method is based on minimum likelihood loss

bottom-up clustering. This is a greedy merging of two classes

based on the likelihood loss computed with full class covari-

ance matrices:

γ1 log
|Σ1,2|

|Σ1|
+ γ2 log

|Σ1,2|

|Σ2|

where Σ1, Σ2, γ1, γ2 are the covariance matrix and the pos-

terior of two classes to be merged, and Σ1,2 is the resulting

merged covariance matrix, all covariances considered in the
original non projected space. This method provides better

performance but is quadratic in the number of classes.

Other unsupervised clustering techniques should be explored,

especially the top-down clustering, which should address the com-

plexity issue of the bottom-up clustering.

5. EXPERIMENTS

Initial validation experiments were conducted on TIMIT. We se-
lected phonemes out of the TIMIT database and used the hand labels

to extract the frames associated to each phone. Feature vectors were

computed using MFCC with first and second derivatives, yielding a

total of 39 dimensions. We then performed phone classification ex-
periments using one gaussian per phone-class and we compared the

performance of the HLDA and the GLDA transformation matrices.

The results provided by HLDA are reported in figure 5. The best

result is obtained with the iterative optimization and p = 11. We
then ran GLDA with a three level tree, in which the number of di-

mensions associated with the first level is near the optimal value of p
obtained with HLDA. We then added two more levels to the feature-

space clustering tree and optimized the feature-space with GLDA.

The results are reported in table 1 and show that GLDA improves
the best HLDA score of up to 1%.

p(1) p(2) M(2) HLDA Baseline GLDA Rate

11 15 3 79.38% 80.29%

13 5 9 78.36% 80.18%

15 5 3 78.93% 79.84%

18 5 3 78.70% 79.04%

Table 1. Phone classification results on TIMIT.

We then tested GLDA on the Wall Street Journal 20K words
dictation task. The baseline system is based on a MFCC front-end
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Fig. 5. HLDA phone classification results on TIMIT data. The three
curves represent respectively the classification rate in the original

space, with HLDA transformation computed with gradient and with

the iterative methods. All curves are of the dimension of the pro-

jected space.

estimated on a window size of 20 milliseconds and with a frame
shift of 10 milliseconds. First and second derivatives are then com-

puted providing a total feature vector size of 39, and cepstral mean

normalization is applied at the sentence level. The acoustic models

are gender-independent word-internal tree-clustered triphones mod-
els with 2245 states and a total of 64000 gaussians. The acoustic

models are trained on the WSJ0 and the WSJ1 training sets which

provide a total of about 60 hours of speech. The recognition sys-

tem is based on a one-pass trigram decoder [11] and gives a baseline
word recognition accuracy of 88.73%. When applying MLLU fea-

ture transformation we obtain a word accuracy of 88.98%. HLDA is

tested with two different values of p, achieving a score of 89.51% for
p = 33 and 89.74% for p = 36. For GLDA we use topological clus-
tering, with each gaussian representing a different class for the tree
leaves and each state representing a super-class in the second level

of the feature-space clustering tree. As for the TIMIT experiment,

GLDA is run with p(1) = p and for some different values for p(2).
Table 2 report the results obtained with HLDA and GLDA:

p(1) p(2) M(2) HLDA baseline GLDA rate

33
3

2245
89.51%

89.60%

5 89.70%

36 2 89.74% 89.76%

Table 2. Recognition results (word accuracy) on the Wall Street
Journal 20K words dictation task.

The results on Wall Street Journal show that GLDA provides an
improvement for a large vocabulary task over the best HLDA base-

line, even if it is somewhat limited. However notice that 64000

classes are probably not enough to generate a over-training for

HLDA and GLDA is likely to have an advantage for larger acous-
tic models or multiple projection schemes.

6. CONCLUSIONS

We proposed a method to estimate flexible feature projection spaces

which extends the current formalism of full-space null-space used in

many feature projection methods. The flexibility of our method pro-
vide increased robustness to over-training by allowing a more flex-

ible trade-off between model parameters and model resolution. Ex-

periments show that our method can always improve the best HLDA

performance, provides better classification rate (on TIMIT, improve-
ment of up to 1%) and improves word accuracy (on Wall Street Jour-

nal 20K, improvement of 0.2%). While showing a good potential,

our investigation is still preliminary, as issues such as the choice of

the feature-space clustering tree and the complexity of the estimation
of flexible feature transformation have only been partially addressed.
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