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I. SUMMARY AND MOTIVATION  

Six flexible force sensors, two on the backrest and four on 
the seat, were embedded in the upholstery of an off-the-shelf 
office chair to enable non-intrusive monitoring of sitting 
postures. Besides the sensors, the monitoring platform 
comprises an Arduino Nano microcontroller with Wi-Fi 
transmitter, embedded on the chair, a Wi-Fi receiver 
communicating with a remote server and a Graphical User 
Interface (GUI) showing real-time readings. Approximately 
26,000 observations corresponding to 9 different postures were 
collected, labelled and classified using supervised machine 
learning. The results show that only a subset of the 6 sensors is 
needed for predicting these 9 sitting postures with high 
accuracy. This opens up the possibility for intelligent, real-time 
monitoring systems that can improve safety and wellbeing of 
today’s office workers.  

II. ADVANCES OVER PREVIOUS WORKS 

Posture detection using sensors can become an effective 
tool in preventing musculoskeletal disorders [1] and 
improving the safety, wellbeing and comfort of modern-day 
office workers. To date the detection of sitting postures has 
primarily pursued two approaches: (a) the sensors were 
embedded in a cushion placed on a seat of the chair [2,3] and 
(b) the sensors were attached to a chair or a user [4,5,6]. The 
embedded approaches tend to use a large number of flexible 
sensors (8x8 in [2] and 42x48 in [3]), while the attachment of 
discrete sensors to the user or the outside of the chair 
permitted wider spectrum of sensors, e.g. accelerometers [4-
6]. Textile-based capacitive pressure sensors fabricated using 
conducting threads have also been reported (16x16 sensors in 
[7] and 240 sensors in [8]).  

Machine learning has been used in [2,3,6-8] for posture 
classification. In [2], Support Vector Machine (SVM) is used 
to classify 9 postures, yielding 93-99% accuracy. Principal 
Component Analysis is used in [3] to classify 14 postures and 
yielding 79-96% accuracy. [6] used Random Forest algorithm 
(RF) to classify 18 postures, yielding 80% accuracy. In [7], a 
Dynamic Time Warping based approach is used to classify 7 
postures, yielding accuracy of 79-92%. In [8], Naïve Bayes is 
used to classify 16 postures with up to 84% accuracy. 
However, all above mentioned approaches reported a small set 
of experiments.  

This paper focuses on a development of the smart chair by 
adding ‘intelligence’ to an off-the-shelf office chair. The chair 

has 6 flexible force sensors embedded in its upholstery and 
can sense the presence of a sitting person and provide real-
time sensor readings and a heat map of the force distribution 
to its user. Our proposed design benefits from simplicity and 
necessity for only a subset of these 6 sensors, enabled by 
robust machine learning classification and rigorous testing on 
~26,000 observations. We assessed the effectiveness of the 
Naïve Bayes, SVM and RF algorithms.  

III. RESULTS AND METHODOLOGY 

A. Smart chair system for office environment  

The creation of the smart chair (Figs. 1(a) and 1(b)) was 
divided into three parts, i.e. sensor placement (Fig. 1(e)) and 

 
 

Fig. 1: The front (a) and back, closed and open, (b) of the smart chair; 

response of the flexible force sensor (c); tested sitting postures (d);  

part of the graphical user interface (e); and system diagram (f). 
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data logging electronics (Figs. 1(b) and 1(f)), graphical user 
interface (GUI) (Fig. 1(e)) and communication with the server, 
and data collection and posture (Fig. 1(d)) classification. The 
chair design uses 6 resistive sensors (FSR402, Interlink 
Electronics), that exhibit a decrease in resistance with 
increasing applied force (Fig. 1(c)). The sensor placement was 
determined using anthropometric sitting measurements and 
thus 4 sensors were embedded in the seat (S1-S4) and 2 in the 
backrest (S5-S6). An Arduino Nano with ATMEGA 328p 
microcontroller was used for signal conditioning, ESP8266 
Wi-Fi module for transmitting the data between micro-
controller and server, and a 5 V rechargeable battery for 
powering the chair electronics, all enclosed within the back 
cover of the chair. The data from the smart chair is managed 
using one Linux server with MYSQL, php and Apache 
databases. The server connects users with optional number of 
smart chairs using wireless pairing through the custom-
designed GUI. The GUI provides the users with full access to 
their real-time and previously stored data using login 
credentials and chair identification number. Three forms of 
real-time data representation can be accessed by the user, i.e. 
numerical and graphical sensor values and a heat map of the 
force distribution, i.e. deviation from the ideal sitting posture.  

B. Posture data collection and classification 

Predefined sitting postures were identified as shown in 
Fig. 1(d). The selected postures are – the recommended 
upright posture (1), leaning forward (2), slouching back (3), 
leaning left with left elbow on desk (4), leaning right with 
right elbow on desk (5), female-style sitting with left (6) or 
right (7) leg crossed, and male-style sitting with left (8) or 
right (9) leg crossed. This is in line with similar studies 
[2,7,8]. 

In the first set of experiments (data set of 64940) each 
of the 9 postures was measured for 1 minute and produced 40 
measured values. This set of experiments was very rigorous to 
avoid any noise in the data. In the second set of experiments 

(data set of 10930) more movement was allowed during 
and in-between postures to capture more realistic conditions. 
Each posture was held for 2 minutes, producing 30 
measurements. Finally, the large number of observations/ 
measurements collected in varied conditions assured that any 
time drift or hysteresis in the sensor response was captured.  

Three classification algorithms including Naïve Bayes, 
SVM and Random Forest were used to determine the most 
suitable method for the sitting posture detection using the 
designed smart chair. Table 1 shows a comparison of the 
accuracy and fitting time of the three techniques employed 
when all ~26,000 observations were used. The accuracy is 
reported using the cross-validation measure. The results are 
shown for generalized learning, when training and testing are 
performed on the entire dataset. 75% of data was used for 
training and the rest for testing. The results identified Random 
Forest as the most suitable technique with 97% accuracy and 
fitting time of 0.35 s, followed by SVM with 77% and 0.37 s 
respectively. Finally, while Naïve Bayes displayed the fastest 
fitting time, the accuracy was the lowest with only 51%.  

The next experiment was carried out using only the second 
dataset and RF algorithm. The training/testing was 70/30 and 

accuracy of 94% was achieved. The slight decrease in 
accuracy is a result of the intentionally induced noise in the 
dataset by relaxing the test conditions. 

TABLE I.  ACCURACY AND FITTING TIME COMPARISON OF THREE 

CLASSFIERS  

Classifiers Accuracy (%) Fitting time (s) 

Naïve Bayes 51 0.0036 

SVM 77 0.37 

Random forest (RF) 97 0.35 

 
The optimal performance of the RF classifier was achieved 

by tuning its parameters. They include the number of 
estimators (trees), maximum depth, and a number of features. 
The performance of the algorithm was the most significantly 
affected by the number of trees that was subsequently used to 
calculate the accuracy and fitting time. The optimal number of 
trees results in the best possible accuracy without severely 
increasing the fitting time. Figure 2 shows the saturation 
behavior of the accuracy (Fig. 2(a)) and the linear dependence 
of the fitting time (Fig. 2(b)) on the number of trees. From the 
plots the optimal number of trees was determined to be 20.  

Finally, an investigation was carried out on the 
significance of individual sensors in the RF decision making 
and the resulting accuracy. The results showed that sensor S2 
(see Fig. 1(e)) had the greatest significance, closely followed 
by S1, then S3, S4, S5, and S6. Three combinations of sensors 
were used to measure the effect of the decreasing number of 
sensors on the accuracy. The results showed an accuracy of 
94.5% when only the seat sensors (S1-S4) were used, 89% 
when S1, S2 and S3 were used, and 65% when only S1 and S2 
were used.  
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Fig. 2: Accuracy (a) and fitting time (b) for random forest algorithm. 
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