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�e development of applications as well as the services for mobile systems faces a varied range of devices with very heterogeneous
capabilities whose response times are di	cult to predict. �e research described in this work aims to respond to this issue by
developing a computational model that formalizes the problem and that de
nes adjusting computing methods. �e described
proposal combines imprecise computing strategies with cloud computing paradigms in order to provide �exible implementation
frameworks for embedded or mobile devices. As a result, the imprecise computation scheduling method on the workload of the
embedded system is the solution to move computing to the cloud according to the priority and response time of the tasks to be
executed and hereby be able to meet productivity and quality of desired services. A technique to estimate network delays and
to schedule more accurately tasks is illustrated in this paper. An application example in which this technique is experimented in
running contexts with heterogeneous work loading for checking the validity of the proposed model is described.

1. Introduction

Many of the advances that are experimenting contemporary
societies are based on the development of systems that act
as sensors environment (Smart Cities, Ambient Intelligence,
eHome, Smart Drive, etc.). �ese systems usually consist of
embedded devices, provide insight, and provide intelligence
to the interactions that occur with the environment. One of
its common functions is signal processing from sensors that
incorporate themselves. �is processing occurs with the exe-
cution of other tasks of the application that are incorporated.

�ere exist a variety of examples of embedded systems
whose functioning is adapted to this pattern: surveillance
cameras with motion detection, RFID packet tracking sys-
tems, driver assistance systems, smart thermostats, and so
forth. Usually, in most of the above applications, embedded
systems are connected to a communications network to
coordinate their behaviour with other systems and provide
a better customer service. One of the most common types of
embedded systems lies inmobile terminals, whose expansion
in society has been spectacular in recent years.

�is context has promoted the proliferation of business
strategies for embedded systems in general and especially on
mobile devices that aim to leverage its high penetration in
society to reach awider audience aswell as open newmarkets.
In this situation there are initiatives such as applications of
mobile payment, tracking and tracing, resource monitoring,
and so forth.

However, in this situation of technology adoption and
deployment of new applications, the fundamental challenge
of providing su	cient bene
ts for the execution of pro-
cesses in terminals without penalizing user satisfaction is
interposed. �e performance required for the execution
of processes can over�ow the resources of most devices,
delaying response times and heavily penalizing the expansion
of such technologies. Moreover, the limitations on processing
capabilities may also come from further additional aspects of
the device capabilities. Environmental conditions, the power
consumption requirements, or con
guration issues, may also
impact on the services that is able to o�er. Due to the above,
we observe the eventual existence of di	culties in meeting
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with the requirements of productivity and response times that
some applications require.

Moreover, one of the most innovative paradigms regard-
ing the adoption of Information and Communications Tech-
nology (ICT) by society is Cloud Computing.�e advantages
of this model of ICT management approach the improving
e	ciency and reducing costs, while providing resources and
services accessible to the whole society. Any progress that
occurs in this area has a multiplier e�ect that will a�ect
many companies and users of these technologies. �ere-
fore, the design of computational models that combine the
development of embedded and mobile systems with Cloud
Computing paradigms may provide new ways of processing
that allow avoid the di	culties related to real time execution
of applications in these systems.

�e main objective of this research is to study how real-
time can be performed in Cloud Computing paradigms.
More precisely, how embedded and mobile systems can take
advantage of the remote computing resources to meet with
real time constraints.

In this way, this work proposes a computational model of
processing integrated management for embedded or mobile
systems in order to answer the following questions: Is it
possible to derive some running processes to the cloud and
thus meet response times, productivity, and quality of service
desired? Can we predict the behaviour of remote computing
resources to develop strategies for dynamic management
according to the Cloud Computing paradigm?

We start as a working hypothesis the fact that the
conception and development of �exibly processing models
based on schemes of Cloud Computing can overcome some
drawbacks on this issue. �ese include the supply of process-
ing capacity in running applications when they are executed
on embedded devices with limited performance; and the
auxiliary use on demand of cloud computing infrastructure
will provide �exibility in order to execute the necessary tasks
and mechanisms to support the service quality maintenance,
even with process low-capacity devices.

�is paper is organized as follows: in Section 2, we
review the related work about this issue; in Section 3, some
important issues on real time in embedded and mobile
systems are highlighted and the contributions of this work
about them are exposed; in Section 4, the formal framework
of the computational model is introduced; in Section 5, it is
exposed how to predict the network delay; next, Section 6
describes an application example in which the model is
simulated. �e paper is 
nally concluded in Section 7 and
some approaches for future work are also pointed.

2. Related Work

�e research areas related to the topics covered in this paper
are experiencing an intense research activity, as evidenced
by the number of recent works found. �e following brie�y
describes the current state of knowledge on the di�erent
aspects that encompass this research. �e conclusions of this
related work study are also indicated.

�e increasing development of embedded systems and
mobile computing systems in recent times has allowed its

extension into new business areas. Advanced e-commerce
applications, positioning, monitoring and surveillance,
health, wellness and leisure, among others [1–3], represent
opportunities to exploit the high degree of penetration of
these devices among the population and its new features.
However, to properly continue the development in these
areas, it is necessary to make a qualitative leap in design,
taking into account the requirements of performance and
response time that these applications require.

�e quality of service (QoS) is essential to ensure the
proper operation of many applications and, for embedded
systems, it becomes a critical aspect due to the inherent
processing limitations normally shown by devices.

In these applications, embedded systems must provide
predictability both in response time and quality of the results.
�is feature raises them to the status of real-time systems [4].
In such systems, the validity of the results is given not only
for their correction but also because they are on time.�at is,
there are some restrictions that limit the time of its operation.
�erefore, the layout and design of these systems should
propose architectures that address the aspects of correctness,
adaptability, predictability, security, and fault tolerance.

�ere are many works that provide solutions to these
issues. �e technological evolution of devices currently pro-
vides su	cient performance to implement complex plan-
ning strategies on them. �ese strategies delegate to a real-
time operating system embedded in devices, the execution
planning, and management of tasks to meet the constraints
imposed by the applications [5–7]. In environments involving
multiple devices, it is possible to establish planning methods
that take into account multiprocessing scenarios in one [8, 9]
or more embedded elements with heterogeneous character-
istics [10, 11]. Another step further in this strategy is the
embedded distributed systems interacting through a commu-
nications network. For these cases, proposals also have been
made to ensure the quality of service of the results [12, 13].

Although such solutions provide signi
cant levels of
satisfaction of restrictions, some applications may be tem-
porarily overwhelmed by the characteristics of its execution
and may require extra performance that exceed its capacity.
In these cases, previous systems should decline to execute the
tasks that are beyond excessive response times to ensure com-
pliance with real-time scheduling. However, such decisions
may cause service interruptions, una�ordable in some critical
applications. For example, e-health systems that monitor and
control biometric variables of several individuals simultane-
ously, may experience increased computing needs due to the
increase of the number of individuals to supervise or, for
example, a tra	c management system in a Smart City in
which each vehicle collects and transmits status information
to other vehicles, can be equally saturated in dense scenarios
with multiple vehicles.

One end in the con
guration of distributed systems is
systems composed essentially of sensors/actuators that lack
processing power to make decisions on their own. �ese
elements, which basically operate as transceivers, transmit
the information in order to be treated remotely by a host
with su	cient capacity [14, 15]. However, this approach may
underutilize the possibilities of devices themselves, decrease
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fast response, and require additional infrastructure to main-
tain permanent communication for proper processing. In
those sensor networks scenarios where sensors have abso-
lutely no chance for the execution of these tasks [16, 17],
they incorporate only the minimum functions to protect sent
or received data by using simple techniques, and generally,
periodic audit and control strategies are released to check if
any device has been compromised [18–20].

A computer model to address cases in which the com-
puting needs go beyond the capabilities of the device is
Mobile Cloud Computing (MCC) [21–23]. In this paradigm,
the workload is divided between distributed devices and
a central element located in the cloud. �us, devices can
move processing needs to the cloud (computation o�oading)
where they will run as services on Cloud Computing servers

[24, 25]. �e most common uses of this paradigm are pri-
marily targeted to extend the battery life of mobile elements
[26–28], without considering the versatility that the remote
computer can provide to facilitate the provision of adequate
QoS. Proposals are arranged under two di�erent approaches

[29, 30]: on one hand, systems that try to adapt existing
applications by identifying portions of o�oadable code [31–
33], and on the other hand, new applications having into
account this idea in conception and preparing the process
code accordingly [34, 35]. In all those proposals, the in�uence
of environmental conditions in process planning is also
twofold: 
rst, works that consider a static scenario in which
it is possible to plan the optimal execution strategy [36, 37]
and, secondly, dynamic environments where communication
conditions can be varied [38, 39]. In these methods, although
they o�er valid solutions for some contexts and applications,
themaintenance of quality of service in the results for realistic
application scenarios remains as an open problem.

In Mobile Cloud Computing strategies, the communi-
cations management and its role in maintaining response
times in systems where it is applied are especially important.
By extension, maintaining quality of service in the 
eld
of communications is one of the areas of major research
intensity. In this 
eld, there have been contributions related
to the intelligent adaptive analysis of service times [40] and
architectures oriented to meet the QoS requirements have
been proposed [41, 42]. �ese works not only take into
consideration parameters of energy e	ciency but they also
suggest strategies for compliance with real-time speci
ca-
tions [43] by routing and classi
cation of net tra	c.

�e joint use of distributed computing infrastructures to
ensure QoS is an option that is also being widely discussed
recently [44, 45]. �e services that combine the resources
of distributed infrastructures of di�erent types (clusters,
grids, cloud, etc.) are a mechanism that reinforces QoS
commitments for these systems as they can use other com-
puter elements from their immediate environment. Other
approaches provide greater communication capacity (band-
width) to connected devices when required in order to reduce
response times in the cloud access [46]. �erefore, these
strategies facilitate speci
cation of RT restrictions on remote
computing elements.

Concern for maintaining response times of cloud com-
puting models is present in many works, where QoS solu-
tions for cloud computing systems have been analyzed
and proposed [47–49]. Although its focus is speci
cally
targeted towards multimedia applications (online games,
theater videostreaming) its 
ndings can be transferred to
other sectors (business, telemedicine, automotive, etc.) for
the provision of remote services [50]. However, the results
of these works are especially dependent mostly on execution
context and communication conditions.

Regarding strategies providing �exibility in computing
processes, the application of imprecise computing techniques
[51, 52] to the tasks execution of application involved can
o�er satisfactory solutions.With this technique, processes are
broken down into two types of tasks,mandatory and optional,
for parameterizing restrictions and establishing checkpoints
to explicitly manage response times. However, the sacri
ce
of processing time for a task is at the expense of making
a bounded mistake and therefore providing an inaccurate
response. Most systems using this model assume that tasks
to plan are monotonous and that the error is a function
of the amount of work discarded. �ese algorithms seek
a balance between output quality and runtime, based on
minimizing objective functions such as average error, total
error, maximum error, number of optional tasks eliminated,
and average response time.�e original imprecise computing
model assumes that the input values are precise for each
task and the mandatory and optional time can be known
a priori [53]. Other contributions deal with imprecise com-
puting systems in cooperative tasks in which the results of
operations are dependent on each other. When the result of
a producer task is partially wrong, the consumer task must
somehow compensate for this error.�is results in increasing
processing time for subsequent tasks and changes at preset
times for each individual task [54]. �e conception of this
technique is essentially oriented to process planning in real-
time systems and compliancewith timing constraints [55, 56],
but also in maintaining the quality of the results [57–59].

3. Real Time in Embedded Systems Issue

From the study carried out in the previous section, we
will highlight some of the major problems obtained in the
development of real-time embedded systems as well as major
contributions of this research in the resolution of themselves.

3.1. Problem Statements. �e problems emphasized are as
follows:

(a) �e embedded and mobile systems with real-time
functioning need to properly respond to their design consid-
erations in most cases. Improvements in computer technol-
ogy as multicore and multiprocessor systems contribute to
this e�ort when they have conveniently handled with appro-
priate planning methods. However, these new capabilities do
not providemechanisms to eventually increase the processing
load beyond a speci
ed level and this limits its application to
the established functioning situations.

New applications of cyber-physical systems operating in
the real world lack the �exibility to deal with situations
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of processing demand when interactions excess with the
environment are required. Havingmore powerful systems for
these cases which can be unfeasible for many environments
due to higher power requirements would require.

(b) �e use of remote resources of cloud computing
from mobile devices according to the scheme Mobile Cloud
Computing can be a strategy to ease devices processing
loading based on the needs of each moment. �is approach
is not su	ciently developed for all cases and their wider
use is oriented towards saving consumption in the running
applications rather as a strategy with �exible planning of
the workload. �e lack of adjustment mechanisms in the
processing needs produces rigid planning strategies and it can
lead to poor judgment onwhat parts of the application should
run on locally and which ones remotely.

(c) In regard to the use of Cloud Computing systems
by themselves, there are just a few real-time applications
which rely on its performance due to the di	culties to fully
predict their response times. In addition, mobile systems
which experiment a wide variety of contexts and di�erent
situations in bandwidth and cover are themost a�ected, since
the delays caused by the network can be variable depending
on a lot of factors. In these cases, it is di	cult that the
planning strategies take into account the cloud resources and
host remote processing in order to meet the requirements for
applications with certain satisfying features.

3.2. Contributions and Signi�cance of 	is Work. Power
consumption and processing delay cost are very important
aspects to be taken into account in embedded/mobile systems
operation (particularly when they are powered by batteries).
�ese two aspects are related because the settings on energy
cost have e�ect on completion time of the tasks. However,
we think that the processing delay is a more general aspect
than energy cost for the embedded system operation because
powermode is a global characteristic of the embedded system
and it is no feasible to establish di�erent consumption limits
to each individual task; and there are some variables of MCC
paradigm that could not be consideredwithin the localmodel
because they occurs outside of the embedded system (e.g.,
data transmission over the net and task execution on cloud
server). So, this research focuses on the response time as a
key aspect to provide �exibility to the application processing.

�erefore, the contributions of this paper to solve the
problems described in previous subsection are as follows:

(a) �e con
guration of systems with su	cient com-
puting elements to adequately address the most common
situations is o�en the most popular solution to 
nd a
balance between installed capacity and consumption needs.
In this paper, we aim to leverage the same con
guration
and support it with remote computing elements hosted into
the cloud in order to increase the computing capabilities.
Although this idea is not new, the novel approach is geared
especially for applications with real-time requirements. �e
contribution to achieve this objective focuses on developing
a computational model which ensures the formal framework
to provide expressive capacity needed and to address speci
c
problems with real-time requirements using the Mobile
Cloud Computing paradigm.

Several previous works exist proposing MCC operation
schemes, but they lack the necessary �exibility to take into
account both priority and response time instead focus on
other goals such as power e	ciency, faster response of the
device or routing, and classi
cation of tra	c in the network
level.

In the following section the details of the speci
cationwill
be presented:

(b) Given the lack of �exibility in the running appli-
cations, in this paper the use of imprecise computation
techniques is proposed to decide the tasks to be performed on
the embedded device.�e application of imprecise computa-
tion to Cloud Computing paradigm is a novel approach to
address the compliance with time constraints. �e imprecise
computing provides mechanisms for processes scheduling
with maintenance response times criteria. Combining these
methods with processing schemes Mobile Cloud Computing
can provide strategies to accomplishwith adequateQoSwhen
the features functioning so require. Besides the above, we
propose to use strategies implementation based on stored
logic to provide higher prediction to the running operations.
�is method is based partly on our previous results and work
in the design area of arithmetic operators and specialized
processors [60, 61].

(c) As discussed in the related work, the techniques of
maintaining QoS for open networks are producing some
advances that may allow their application to Cloud comput-
ing strategies for speci
c functioning scenarios. However, it
cannot be extended to systemswith real-time constraints.�e
contribution to this issue that it is carried out in this paper is
to implement a hybrid method of monitoring and predicting
the performance of communication which will go periodi-
cally determining what are the delays introduced by network
during the access towards remote processing resources. �e
novelty of this method lies in the combination of online delay
measure with o�ine historical data depending of aspects
such as working environment and running application. �e
integration of this procedure in the above computationmodel
will allow taking into account the costs associated at any time
and take better criteria in making planning decisions.

4. Flexible Computational Model

In this section, the formal framework of this issue is described
in order to state the problem formulation and to de
ne the
�exible computing proposals.

4.1. General Framework. �e computational model proposed
in this section speci
es the aspects involved in scheduling
the tasks of an application in a multiplatform execution
environment with heterogeneous characteristics. For such
scenarios, the set of available computing platforms would be
de
ned by

∧ = {�1, �1, . . . , ��} . (1)

�e set of tasks will be de
ned by the application workload.
�e variety and type of tasks for each workload depend
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Table 1: Function de
nitions.

Name De
nition

Start Start: Γ → ∧
Delay Delay: Γ × ∧ → R

+

Data Data: Γ → R
2+

Net Net: ∧2 ×R2+ → R

on the scope of each system. Let Γ be the workload of an
application environment:

Γ = {�1, �2, . . . , ��} , (2)

where each �� is a task of the application environment. In a
real-time system, each of the tasks will be associated with a
deadline fromwhich the result is invalid (hard) or loses value
(so�). �erefore, for each task (��), constraint(��) informs the
maximum duration of execution as de
ned by the following
function:

constraint: Γ 	→ R
+. (3)

In this kind of system, to undertake the scheduling, the delay
cost associated with the execution of the tasks of workload on
each platform will be known. �e delays are de
ned by the
following functions: start, delay, data, and net. Its de
nition
is detailed in Table 1.

�e start function indicates the native platform of a task,
that is, the platformonwhich the task is created for execution.
Generally this platform will be the interface system with the
user’s environment or the embedded system itself.

�e delay function obtains the execution time, in time
units, when running the task on a given platform, without
taking account of its currentworkload, that is, if all processing
resources of the platform were dedicated to running that
task. In this way, delay�(��) gets the delay of executing

the task 
 on platform �. In an embedded system, the
results of this function may vary due to di�erent operation
scenarios or con
guration of the system. For example, at low
power consumption settings, the processing resources can
be reduced (e.g., lowering the clock frequency or disabling
cores) and produce higher delays. Other maximum perfor-
mance scenarios could improve standard delays.

In addition to the computational requirements, in dis-
tributed processing scenarios it is necessary to know the
amount of data required to run the task. �us, the data
function obtains this size of data required for processing a
task and the size of the results produced. It is independent of
the platform on which it runs.

Finally, the net function obtains temporary costs
associated with data communication between platforms
through the communication network. �at is, the function
net��,��(data(��)) returns both delays caused by the
transmissions of data required to run �� from the platform
�� to �� and caused to return the results from �� to ��. It is
assumed that there is no delay to move information on the
same platform; namely, net�,�(data(��)) = 0.

As de
ned by the above functions, the execution cost of
a task (��) on a platform (�) will be de
ned by the following
expression:

TimeCost� (��) = netstart(	�),� (data (��)) + delay� (��) . (4)

Nevertheless, considering each platform is running a set
of tasks, the response time of the taskmust consider the delay
cost on the platform of pending tasks when this new task (��)
arrives. In this way, let��	(��) be the aggregate delay cost of
the list of tasks assigned to the � platform at time �, with a
deadline less than DeadLine(��). �is cost is dependent on
the platform and on its internal con
guration of processing
elements. For example, a platform can be composed of many
processing elements capable of parallel computing.

According to this aggregate cost, the expression (4) on the
delay cost of executing a task (��) on a platform (�) at time �
is set as follows:

TimeCost�
	 (��) = netstart(	�),� (data (��)) + delay� (��)

+��	 (��) .
(5)

�e execution of the tasks in thismodel does not consider
accessing to shared resources other than the processor, so
that no unnecessary delays occur by blocking resources. �is
assumption is consistent with many applications composed
of many autonomous and noncollaborative tasks.

From the above processing cost expression (5), a schedul-
ing method based on Shortest Job First (SJF), or Shortest
Remaining Processing Time First (SRPT) in preemptive case,
can be implemented to minimize the average delay time
of application workload. It is proven that these scheduling
algorithms (SJF and SRPT) are the optimal online methods
to minimize the average delay time for a single processing
platform [62, 63]. In addition, recent studies about this issue
demonstrate that they can be also very competitive even in
multiprocessing platforms [63].

However, although simple, these methods do not take
into account compliance with the time constraints present in
the tasks of real-time systems.

4.2. Real Time Embedded-Cloud Scheduling. �e real-time
constraints in the execution of tasks imply a temporal
restriction or deadline for each task related to the time at
which the results must be ready. A�er that time, the results
have a lower or null value.

�e following function obtains the remaining time of
each task in which the results must be ready:

DeadLine: Γ 	→ R
+. (6)

As time passes, the value of DeadLine approaches zero for
each task.

It is not the purpose of this work to propose a method of
planning as complex as described in the previous scenarios.
�is problem has been studied in other researches [64, 65]
and is, in its most general version, of category NP problem.
�is scheduling can only be resolved by heuristic or search
algorithms which consume a considerable part of processing
resources [66].
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Cloud processing platform 

Cloud scheduling queue 

ti,j , tk,m , . . .

· · ·
ES1 ES2 ESn

Start (t1,1 , t1,2 , . . .) Start (t2,1 , t2,2 , . . .) Start (tn,1 , tn,2 , . . .)

Figure 1: Infrastructure as a service.

Instead, in this section we will focus on a subset of this
general problem in which there are only two heterogeneous
platforms. �is scenario is quite common in many contexts,
for example, in aworkstationwhich has central processor unit
(CPU) and a graphics accelerator (GPU) installed on it [67].
Under this principle, we consider therefore that applications
will be launched at an application platform (which corre-
sponds to the embedded system) and there is another addi-
tional computing platform (cloud infrastructure) on which
move part of the processing work. Processing platforms may
have di�erent performance and characteristics. �erefore, in
this study, expression (1) shall be de
ned by the following set
of available computer platforms:

∧ = {�ES, �Cloud} , (7)

where �ES will correspond to the computing platform of
embedded system and �Cloud to the processing platform
available in the Cloud. Furthermore, we assume that tasks
will be created in embedded system as part of the running
application. �erefore, start(��) = �ES.

�e Cloud platform may have a nonexclusive use of the
application and it can serve many devices corresponding to
the same or several di�erent applications, so this approach
can be extended to scenarios in which various embedded or
mobile systems share the cloud infrastructure to complement
its performance. �is case corresponds to infrastructure as a
service model, where the Cloud platform can execute many
tasks when required. Figure 1 illustrates this scenario.

�e scheduling method proposed for this case aims
maximize compliance with the time constraints reducing the
time spent on scheduler management. We do not intend in
this work provide the optimal solution in the execution of
the tasks of the workload, but to provide a feasible solution
for the management of real-time embedded systems valid for
manynowadays applications.According to this goal, heuristic
used is to schedule tasks on platforms that meet their timing
constraints. In each platform, tasks are placed in a dispatcher
queue ordered by shorter DeadLine (EFD—Earliest-Deadline

Start

arrives

Yes

Yes

Yes

Yes

No

No

No

No

End

on ES

on ES queue 

on cloud

on cloud

New task (ti)

Execute (ti)

Execute (ti)

Execute (tj)

Insert (ti)

Reject (tj)

Reject (ti)

Loop ∀tj :

Next tj

TCES
t(ti) < DL(ti)

TCC
t(tj) < DL(tj)

Prior(tj) > Prior(ti)

TCES
t(ti) < DL(ti)

TCC
t(ti) < DL(ti)

Figure 2: Imprecise Computation Scheduling.

First). �is method has been proven e�ective even in multi-
platform systems under certain conditions [68, 69].

4.3. Imprecise Computation Scheduling. �e main idea of
this method to adjust the amount of tasks that are executed
depending on the time available and the computational
power of the system lies in considering the relative priority
of each task to decide the execution order of workload.
�e priority of each task is given by its importance in the
application or in the security of the system.�is priority may
be related with DeadLine of the task or have a di�erent value
in line with how critical is the task in the overall application.

According to the imprecise computation technique, lower
priority tasks may be discarded when the time constraints
require a partial execution of the application. In such cases,
only the critical tasks will be executed in the time available,
obtaining a partial functionality. For this purpose, the system
will have a function called Prioritywill determine the priority
of each task:

Priority: Γ 	→ R
+. (8)

�e scheduler method is described in Figure 2. As in the
previous subsection, 
rst, when the task is created in the
embedded system, it is determinedwhat platform can run the
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task within the available time: (a) if both can, decision about
which platform to choose can be established according to
system con
guration: you can derive all possible processing
to the cloud if compliance with the restrictions or select local
processing by default; (b) if no platform can deliver on time,
the task can be rejected with a warning of out of time.

Once decided the platform in which the task will be
executed, the management of tasks in scheduling queue is
driven by Priority value of the tasks. When a new task
arrives to the platform, it will be inserted in the position
corresponding to their priority. In this case, the system must
ensure that all tasks with lower priority than it can meet
their time constraint. Otherwise, the task can be scheduled
on the cloud platform if possible, and if not, reject the task
execution. During the time in the platform scheduler queue,
the conditions of remote execution can change and therefore
some tasks can be driven to the cloud.

�is method is not geared to meet with the deadlines of
all tasks but to execute them according to their importance.
�erefore, it is only applicable in applications for which it
is assumable this type of operation. In this case, a partial
execution of the application will be made when the system is
not able to perform all tasks on time and an overload exists.
In this case, when the most important tasks are processed
in 
rst place, the imprecise result is feasible for the user.
�is behavior is consistent with the assumptions made in the
introduction where the possibility of addressing workloads
that exceed the theoretical computing capabilities of the
devices was proclaimed.

An application example in which implements this
method is described in Section 6 of this paper.

5. Net Performance Prediction Methodology

�e proposed framework requires measurement and predic-
tion of the network performance between platforms. First of
all, network performance concept must be properly speci
ed
according to application requirements. For example, in some
real-time applications a maximum delay must be guaranteed;
however, in other applications, a stable minimum bandwidth
is enough for producing valuable results.

Several tools have been developed and are available to
�exibly measure di�erent network performance parameters
[70–73]. However, periodically probing the performance
between each pair of platforms is a resource intensive task and
poorly scalable [74]. For this problem, a number of solutions
have been proposed, most of them in the context of hetero-
geneous computing [75]. Again, the nature of the application
to be implemented will determine the best strategy to take.
In addition, most of the networks linking mobile platforms
use sharedmedium among a number of users.�is condition
o�en makes network performance very di	cult to predict.

In this section, a method for measuring and predicting
network performance is experimented. For this purpose, a
standard wireless network is used as a test environment and
two processes are run.�ese processes implement task �1 and
task �2 shown in Figure 3. Just for the purpose of this test,
the 
rst process captures input from a camera device; then,
it performs frame selection and sends the relevant frames to

t1 t2

FrameworkFramework

Platform 1 Platform 2

(a) O�oaded: framework monitoring application
performance

t1 t2

Framework Framework

Platform 1 Platform 2

(b) Local: framework estimating network perfor-
mance

Figure 3: Test environment with two processes and two platforms
linked by a network.

the second process; the second process performs some
common operations typically involved in signal processing
tasks, such as Fast Fourier Transform (FFT). �e number of
relevant frames exchanged between processes will depend on
the data captured (variable workload).

In this scenario, two factors must be taken into account
when predicting network performance. First, the transfer rate
received by the processes when running on di�erent plat-
forms (Figure 3(a)); this will depend on the applicationwork-
load, which in turnswill change over time (in our experiment,
random frame selection at di�erent rates has been imple-
mented). Second, the available network bandwidth when the
processes are run on the same platform (Figure 3(b)); this
will also change over time depending on the network usage
by other users or applications. In other words, if the two
processes are run on the same network node (platform),
the network link performance between that node and other
candidate platforms must be estimated for possible o�oad;
otherwise, the network suitability can be deduced from the
transfer rate shown by the communicating processes.

In order to evaluate the network performance, a number
of multiplatform tools are available. One simple solution is
the Iperf (http://iperf.fr) tool. It allows to set target nodes
(servers, in Iperf terminology), by running an Iperf process in
server mode on each platform. With a period of 20 seconds,
an Iperf process is launched in client mode, in order to
measure the bandwidth by sending random data during one
second over a TCP connection.�e best period and test dura-
tion are highly dependent on the application and network
characteristics, and therefore it will require further setting.
In addition, other network performance parameters could be
considered if required by the application; for example, the
Iperf tool can alsomeasure average delay (although this could
be also achieved by a standard ping) and packet loss.

For testing purposes a framework script has been devel-
oped. It is in charge of running the network performance
tests. In addition, it acts as a proxy between processes and the
network devices, so it can monitor the e�ective transfer rate
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between o�oaded processes over time. Moreover, it logs the
measures taken for further prediction.

In summary, the proposedmethod consists of three parts:
(1) periodic measure of relevant performance parameters
provided by the network, (2) communicating tasks monitor-
ing, for current shown performance, and (3) analysis of past
performance data for reasonable prediction.

For part (1), the aforementioned tools for network perfor-
mance measuring has been used. By using those tools, each
platform constructs a history database that can be used later
in order to help to 
nd stability periods from the network
performance point of view.

In part (2), the provided framework is in charge of
checking that processes are running under a�ordable net-
work conditions. Otherwise, tasks must be rescheduled for
execution on the same platform (if it is possible, according to
current system workload, priorities, etc.), avoiding network
communication.

�e result of the analysis performed in part (3) can
be used in conjunction with current provided performance
values, in order to support the decision about the platform
on which the task should be run. �e past performance
data can be dynamically con
gured depending on aspects
such as working environment and running application. To
adequately compose this function it is necessary de
ne the
former operation details of the embedded system.

Figure 4 shows di�erent aspects of the transfer rate
evolution in the experiment.�e grey line shows the required
transfer rate between the running processes, in order to 
t
real-time requirements. �is changes over time, because it
depends on application workload. In the conducted experi-
ments, the processes exchange selected frames, and therefore
the required transfer rate will vary depending on captured
data.

When the processes are run on the same platform (sec-
tions of the chart labelled as local in Figure 4), the framework
is measuring the network conditions. In the experiment,

Figure 5: Vehicle-to-vehicle environment.

this is the maximum transfer rate that could be achieved
if the process were o�oaded. It is also changing over time,
because of the e�ect of di�erent factors as mobility or other
applications sharing data through the network. �e result of
these measures is drawn with a dashed line. As shown in the
chart, a sequence of three consecutive periods of increasing
available bandwidth is considered a stability condition, so it
is decided to switch to o�oaded mode. In other words, the
processes are run on di�erent platforms when the network
conditions history is good enough to reasonably guarantee
required transfer rate. In a real scenario, this decision would
depend on a number of factors, as the application nature and
the scheduling policy.

When the processes are run on di�erent platforms (sec-
tions of the chart labelled as o�oaded in Figure 4), the frame-
work is checking if the transfer rate is enough to 
t process
requirements. �e result of these measures is drawn with a
solid line. When a risk condition is detected (point marked
with a red circle in the chart), the system is switched back to
local mode. Again, the particular de
nition of risk condition
would depend on the application nature in a real scenario.

6. Application Example

In this section, an application example is exposed in order
to test the operation of the system in a today’s context
with a realistic workload. �e proposed scenario is a Smart-
Drive application for autonomous decision-making aimed at
providing increased security and convenience to the user.
�is application is part of the SmartCity concept and the
construction of vehicular networks in which several vehicles
intercommunicate with each other and with city infrastruc-
ture to exchange information [76].

In this application, the vehicle is equipped with a variety
of sensors that capture the state of the environment to inform
the driver and adapt driving to tra	c and context circum-
stances (see Figure 6). �ese features entail the execution
of signal processing tasks from the data collected by these
sensors. Typically these tasks have real-time constraints, since
the processing results have to be on time to make decisions
on the �y. Figure 5 illustrates a real scenario in which several
vehicles interact.

To provide processing capabilities that this sensing
requires several con
gurations exists: (a) each sensor sub-
system can have its own embedded system; (b) the system
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ed Automotive Sensors.

has a central processor built-in-vehicle running all tasks;
(c) the processing device may be provided by the user and
integrate with the vehicle sensors to collect data. �is last
option provides greater �exibility to the user and allows the
installation of applications (apps) on mobile devices carried
by the user (phones, tablets, etc.).�is scenario is increasingly
common in many applications that can be downloaded to
mobile user devices to interact with sensors and actuators
of our home, work or transport vehicles. In this case, the
capabilities that can be o�ered by the application depend on
the performance of the device used.

�ere are many signal processing elements in the Smart-
Drive application with real-time constraints that can be
addressed with the proposed model; however, to illustrate a
glaring example of how it works, in the example analyzed, it
is considering only 3 kinds of tasks which analyze di�erent
types of signals collected by sensors.

Task 1. It is responsible for analyzing the signal from
the radar sensors to obtain the following information
from other vehicles: distance, relative speed, and risk
of collision.

Task 2. Analyzes the signal from a set of sensors that
measure the physical environment of the vehicle to
obtain the following information: type of pavement,
asphalt status, static friction, moisture, rain, and so
forth.

Task 3.Analyzes the tra	c signs and posters fromdig-
ital images captured by the car’s cameras to identify
the type of each signal and interpret the texts they
contain.

For example, Figure 6 shows a schematic of the vehicle with
various sensors and what tasks supply the signal collection
[77].

Results obtained by Task 1 enable vehicles to know where
the vehicles in its vicinity are and what they are doing and
to perform actions such as the following: forward collision
warning, automatic braking if there is a risk of collision,
intersection movement assist, not passing warning, and so
forth. Results from task 2 will allow calibrate the operation
of dampers, distance to the ground, brake pedal feel, traction
control, ABS, and so forth. Results obtained by task 3
inform the driver of road signals, speed limits warning, road
departure warning, and so forth.

Tasks are started in the vehicle as a result of events pro-
duced by the sensors when capturing information (Start(��) =

car). �us, when sensors located another vehicle the task 1 is
started, when a tra	c signal or a sign is identi
ed starts a task
3. Task 2 runs periodically to check the physical condition of
the environment.

According to the proposed computational model, each
task type (��) requires a processing time known through
Delay

SE
(��) function, needs a data size measured by Data(��),

and its results must be ready before DeadLine(��) to be useful
for SmartDrive application.

With this simple example described, the system per-
formance can present problems in certain situations when
the processor cannot provide su	cient computational power
and/or when the frequency of arrival of the tasks over�ows
its processing capacity. �ese situations could occur if the
user does not have a su	ciently powerful device to perform
all tasks or if the vehicle is in intensive scenarios with many
circulating elements and tra	c signs (e.g., city centers).

In realistic implementation of this idea, requirements on
computational capabilities of such devices must be set by
the manufacturer according to criteria that guarantee the
safety of the driver. for example, devices able to run real-
time type-1 tasks (to avoid collisions) in dense tra	c contexts.
Speci
cally, it means

∀
 over time,Delay
SE
(task 1�) < DeadLine (task 1�) . (9)

From this minimum restriction, all other features of
“SmartDrive” system can be provided by themanufacturer, as
value-added services, depending on the power of the mobile
device and/or under the possibilities for communicationwith
the cloud.

In situations in which the user’s system cannot meet the
time constraints in the execution of all tasks, the integration
with Mobile Cloud Computing paradigm can provide the
necessary performance o�oading some of the processing
work to the cloud. Furthermore, this solution o�ers to the
application signal processing capacity for an extensive �eet of
vehicles and sharing computing infrastructure in the cloud
for it. With this con
guration a multitude of embedded
systems (vehicles) can share the same cloud platform to
collaborate with the necessary processing work as shown in
the 
gure scheme (Figure 7).

�e �exible framework proposed in this paper o�ers an
approach to the problem of tasks scheduling and decisions
about upload execution to the cloud to achieve the best
quality of service. To do this, the application must be
composed by a set of task and a priority associated with each
type of taskmust be provided in order to be used as a criterion
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Table 2: Simulating workload.

Task type Context 1 Context 2

Task 1 12 4

Task 2 6 6

Task 3 5 2

for planning. In our example, the order of priority of tasks is
as follows (high to low priority): 1, 2, and 3. �at is to say,
identify closest vehicles to avoid collisions has priority over
environmental analysis and tra	c signals interpretation.

Figure 8 depicts a scheduling example simulating a work-
load for this application with two operating contexts and
di�erent task arrivals. Table 2 shows the workload of this
example.

�eMCC paradigm is implemented between automotive
embedded system provided by the mobile device of the user

Table 3: Scheduling results of tasks.

Context 1 Context 2

A-method B-method A-method B-method

Avg. turnaround
time (tu)

Task 1 1.3 1 1.25 1.25

Task 2 1.9 1.75 1.3 1.3

Task 3 2.5 2.7 2.5 2.5

Avg. wait time
(tu)

Task 1 0.3 0 0.25 0.25

Task 2 0.91 0.75 0.33 0.33

Task 3 0.9 1.1 0.5 0.5

Task lost

Task 1 3 0 0 0

Task 2 0 2 0 0

Task 3 0 0 0 0

and the cloud. �e 
gure shows two scheduling methods:
A-method driven only by deadline and B-method based on
previous priority level described.

�e task operation conditions are the following: task 1:
deadline = startTime + 1; task 2: deadline = startTime + 1;
task 3: deadline = startTime + 2; delay

Cloud
= 1/2delay

Car
for

all tasks. When the embedded device cannot meet time con-
straints, the tasks are sent to the cloud infrastructure if they
can be processed on time according its TimeCost function.

�e simulation results show that none of the methods
can schedule all tasks of the application on time when cost
exceeds the capabilities of embedded device. Nevertheless,
the imprecise computation (B-method) allows less important
tasks are the remaining unexecuted in that case.�e example
shows that withA-method three tasks of type 1 have been lost,
while the B-method only lost two tasks of type 2 and none
of type 1. Obviously, the results depend on the simulations
made and the cadence of work that comes; however, the same
behavior has been observed in all cases.

Table 3 shows the scheduling results of task by type.
Statistical data in Table 3 clearly shows that B-scheduling

method does not produce loss of completion time ofmost pri-
ority tasks and improves turnaround and wait time for them.

With this priority criterion, the system ensures that in
case of not having enough processing power, the lower
priority tasks will run last. Analysis of the internet coverage
and bandwidth of the device can move their execution to
the cloud to be processed in parallel with the work that runs
on the device and o�er their additional service. In addition,
some kind of tasks (e.g., task 3 of image analysis) may have
faster execution in the cloud where it can take advantage of
powerful computing resources and where will not be subject
to restrictions of power consumption or silicon size.

�e simulation results about throughput and utilization
of computing resources are shown in Table 4. Although the
utilization of the embedded system in the car is the same
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Table 4: �roughput and utilization of computing resources.

Context 1 Context 2

A-method B-method A-method B-method

�roughputCar

9 task 1 12 task 1 4 task 1 4 task 1

5 task 2 2 task 2 6 task 2 6 task 2

1 task 3 1 task 3 2 task 2 2 task 2

�roughputCloud

0 task 1 0 task 1

1 task 2 2 task 2 not used∗

4 task 3 4 task 3

%UtilizationCar 88.8% 88.8% 87.5% 87.5%

%UtilizationCloud 25% 27.7% 0% 0%
∗�is vehicle does not use the Cloud Computing resources in this simulation
context. However, Cloud server can be used at this time by other vehicles in
the system.

in both scheduling algorithms, with the same environmental
conditions the B-method uses more resources of the cloud.

7. Conclusions and Future Work

�e future is coming.�e number and variety of applications
for embedded systems and mobile devices are growing. It is
getting more necessary to provide methods and higher per-
formance to execute applications with real-time constraints
on these devices.Many of these applications are characterized
by need of signal processing-intensive as a result of processes
of sensing the environment in which they run to provide
services to the user.

Mobile Cloud Computing is the key paradigm that
provides the necessary processing power. It is referred to as
the infrastructure where both the data storage and the data
processing happen outside of the embedded system ormobile
device. �erefore, cloud-based mobile apps can scale beyond
the capabilities of any embedded or smartphone system.

One of the biggest challenges of this paradigm is the
integration between the two infrastructures. �at is to say,
scheduling processes for execution considering the many
aspects involved, especially when tasks are real-time con-
straint and cloud resources are accessible through the public
communication infrastructure.

In this paper, we have presented a solution to this chal-
lenge that uses computational techniques to determine the
most appropriate scheduling design between the local device
and the cloud. To do this, a computational model based on
imprecise computation method is proposed that provides
�exibility for running applications over embedded systems.
A method to know the delay induced by the network has
been designed.�is method is used to predict the bandwidth
and the delay costs associated with communication and
remote processing in the cloud. �us, this type of apps
has the power of a server-based computing infrastructure
accessible through an embedded or mobile device, in which
is taken into account, for the proper scheduling process, the
extra delays associated with the remote access. With this
model, speci
cation and processing applications as a series
of tasks with timing constraints are allowed. It is possible to

prioritize their execution based on priority parameters, so
that in the event of being unable to meet the computational
requirements to processing all tasks, themost important ones
have been satis
ed and user satisfaction has beenmaximized.

A simple application example has been developed to show
a real scenario that meets the points raised in this research. It
is also made a simulation which shows the simplicity of the
proposed model and its ease to design scheduling tasks. As a
result, it is found that model gives preference to compliance
with the time constraints of critical tasks in 
rst place.

Based on the current outcomes, our future work will be
unfolded along two directions: one is extend the proposed
model to consider more complex application scenarios: for
example, composed by a collection of tasks with timing
constraints that maintain precedence relationships and share
the use of other system resources.�e other direction is going
further into the net delay prediction issue, because this is the
key aspect in scheduling decisions that take into account the
remote resources in an MCC context.
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[19] L. Gómez and C. Ulmer, “Secure sensor networks for critical
infrastructure protection,” in Proceedings of the 4th Inter-
national Conference on Sensor Technologies and Applications
(SENSORCOMM ’10), pp. 144–150, Venice, Italy, July 2010.

[20] X. Zhao, “�e security problem in wireless sensor networks,” in
Proceedings of the 2nd IEEE International Conference on Cloud
Computing and Intelligence Systems (CCIS’ 12), vol. 3, pp. 1079–
1082, November 2012.

[21] L. Guan, X. Ke, M. Song, and J. Song, “A survey of research on
mobile cloud computing,” in Proceedings of the 10th IEEE/ACIS
International Conference on Computer and Information Science
(ICIS ’11), pp. 387–392, IEEE, Sanya, China, May 2011.

[22] M. Satyanarayanan, “Mobile computing: the next decade,” in
ACMWorkshop on Mobile Cloud Computing, 2010.

[23] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud
computing: a survey,” Future Generation Computer Systems, vol.
29, no. 1, pp. 84–106, 2013.

[24] A. Aijaz, H. Aghvami, andM. Amani, “A survey on mobile data
o�oading: technical and business perspectives,” IEEE Wireless
Communications, vol. 20, no. 2, pp. 104–112, 2013.

[25] X. Zhuo, W. Gao, G. Cao, and S. Hua, “An incentive framework
for cellular tra	c o�oading,” IEEE Transactions on Mobile
Computing, vol. 13, no. 3, pp. 541–555, 2014.

[26] A. Saarinen, M. Siekkinen, Y. Xiao, J. K. Nurminen, M. Kemp-
painen, and P. Hui, “SmartDiet: o�oading popular apps to save
energy,” ACM Sigcomm Computer Communication Review, vol.
42, no. 4, pp. 297–298, 2012.

[27] A. Khairy, H. H. Ammar, and R. Bahgat, “Smartphone ener-
gizer: extending smartphone’s battery life with smart o�oad-
ing,” in Proceedings of the 9th International Wireless Commu-
nications and Mobile Computing Conference (IWCMC ’13), pp.
329–336, July 2013.

[28] L. Corral, A. B. Georgiev, A. Sillitti, G. Succi, and T. Vachkov,
“Analysis of o�oading as an approach for energy-aware appli-
cations on android OS: a case study on image processing,” in
Mobile Web Information Systems, vol. 8640 of Lecture Notes
in Computer Science, pp. 29–40, Springer, Cham, Switzerland,
2014.

[29] F. Liu, P. Shu, H. Jin et al., “Gearing resource-poor mobile
devices with powerful clouds: architectures, challenges, and
applications,” IEEE Wireless Communications, vol. 20, no. 3, pp.
14–22, 2013.

[30] D. Kovachev, Y. Cao, andR. Klamma, “Mobile cloud computing:
a comparison of application models,” Computing Research
Repository (CoRR), http://arxiv.org/abs/1107.4940.

[31] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: elastic execution between mobile device and
cloud,” in Proceedings of the 6th ACM EuroSys Conference on
Computer Systems (EuroSys ’11), pp. 301–314, April 2011.

[32] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,
“�inkair: dynamic resource allocation and parallel execution
in the cloud for mobile code o�oading,” in Proceedings of the
IEEE INFOCOM, pp. 945–953, March 2012.

[33] H. Flores and S. N. Srirama, “Adaptive code o�oading for
mobile cloud applications: exploiting fuzzy sets and evidence-
based learning,” in Proceedings of the 4th ACM Workshop on
Mobile Cloud Computing and Services (MCS ’13), pp. 9–16, June
2013.

[34] V. March, Y. Gu, E. Leonardi, G. Goh, M. Kirchberg, and
B. S. Lee, “�Cloud: towards a new paradigm of rich mobile
applications,” Procedia Computer Science, vol. 5, pp. 618–624,
2011, Proceedings of the International Conference on Ambient
Systems, Networks and Technologies.

[35] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards
an elastic application model for augmenting the computing
capabilities of mobile devices with cloud computing,” Mobile
Networks and Applications, vol. 16, no. 3, pp. 270–284, 2011.

[36] C.Wang and Z. Li, “A computation o�oading scheme on hand-
held devices,” Journal of Parallel andDistributed Computing, vol.
64, no. 6, pp. 740–746, 2004.

[37] K. Kumar andY.-H. Lu, “Cloud computing formobile users: can
o�oading computation save energy?” Computer, vol. 43, no. 4,
Article ID 5445167, pp. 51–56, 2010.

[38] S. Ou, K. Yang, A. Liotta, and L. Hu, “Performance analysis
of o�oading systems in mobile wireless environments,” in



Mobile Information Systems 13

Proceedings of the IEEE International Conference on Communi-
cations (ICC’ 07), pp. 1821–1826, June 2007.

[39] P.Angin andB. Bhargava, “AnAgent-based optimization frame-
work for mobile-cloud computing,” Journal of Wireless Mobile
Networks, Ubiquitous Computing, and Dependable Applications,
vol. 4, no. 2, 2013.

[40] E. Gelenbe, R. Lent, and A. Nunez, “Self-aware networks and
QoS,” Proceedings of the IEEE, vol. 92, no. 9, pp. 1478–1489, 2004.

[41] B. Jennings, S. van der Meer, S. Bala-Subramaniam, D. Botvich,
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M. Garćıa-Chamizo, “Partial product reduction by using look-
up tables for �X� multiplier,” Integration, the VLSI Journal,
vol. 41, no. 4, pp. 557–571, 2008.

[62] A. S. Tanenbaum, Modern Operating Systems, Pearson Educa-
tion, Upper Saddle River, NJ, USA, 3rd edition, 2008.

[63] W.-T. Chan, T.-W. Lam, K.-S. Liu, and P. W. Wong, “New
resource augmentation analysis of the total stretch of SRPT
and SJF in multiprocessor scheduling,” 	eoretical Computer
Science, vol. 359, no. 1–3, pp. 430–439, 2006.

[64] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-time
tasks on heterogeneous multiprocessors with two unrelated
types of processors,” in Proceedings of the 31st IEEE Real-Time
Systems Symposium (RTSS ’10), pp. 239–248, December 2010.

[65] S. Baruah, “Feasibility analysis of preemptive real-time systems
upon heterogeneous multiprocessor platforms,” in Proceedings
of the 25th IEEE International Real-Time Systems Symposium,
pp. 37–46, December 2004.

[66] Y.-S. Chen, H. C. Liao, and T.-H. Tsai, “Online real-time
task scheduling in heterogeneous multicore system-on-a-chip,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24,
no. 1, pp. 118–130, 2013.

[67] G. A. Elliott, B. C. Ward, and J. H. Anderson, “GPUSync: a
framework for real-time GPU management,” in Proceedings of
the IEEE 34th Real-Time Systems Symposium (RTSS ’13), pp. 33–
44, December 2013.

[68] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo,
Deadline Scheduling for Real-Time Systems: EDF and Related
Algorithms, vol. 460 of	e Springer International Series in Engi-
neering and Computer Science, Kluwer Academic Publishers,
1998.

[69] X. Li and X. He, “�e improved EDF scheduling algorithm for
embedded real-time system in the uncertain environment,” in
Proceedings of the 3rd International Conference on Advanced
Computer 	eory and Engineering (ICACTE ’10), pp. V4563–
V4566, IEEE, Chengdu, China, August 2010.



14 Mobile Information Systems

[70] B. Lee, H. Son, S. Yoon, and Y. Lee, “End-to-end �ow moni-
toring with IPFIX,” inManaging Next Generation Networks and
Services, vol. 4773 of LectureNotes in Computer Science, pp. 225–
234, Springer, Berlin, Germany, 2007.

[71] A. Shriram, M. Murray, Y. Hyun et al., “Comparison of public
end-to-end bandwidth estimation tools on high-speed links,” in
Proceedings of the 6th International Conference on Passive and
Active Network Measurement (PAM ’05), vol. 3431, pp. 306–320,
ACM, April 2005.

[72] S. Srivastava, S. Anmulwar, A. M. Sapkal, T. Batra, A. K. Gupta,
and V. Kumar, “Comparative study of various tra	c generator
tools,” in Proceedings of the Recent Advances in Engineering and
Computational Sciences (RAECS ’14), pp. 1–6, March 2014.

[73] E. Yildirim, I. H. Suslu, and T. Kosar, “Which network mea-
surement tool is right for you? Amultidimensional comparison
study,” in Proceedings of the 9th IEEE/ACM International Con-
ference on Grid Computing (GRID ’08), pp. 266–275, October
2008.

[74] Y. Liao, W. Du, P. Geurts, and G. Leduc, “Decentralized
prediction of end-to-end network performance classes,” in Pro-
ceedings of the 7th ACM International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT ’11), ACM,
December 2011.

[75] D. Katramatos and S. J. Chapin, “A scalable method for
predicting network performance in heterogeneous clusters,”
in Proceedings of the 8th International Symposium on Parallel
Architectures, Algorithms andNetworks, pp. 288–295, December
2005.

[76] G. Karagiannis, O. Altintas, E. Ekici et al., “Vehicular net-
working: a survey and tutorial on requirements, architectures,
challenges, standards and solutions,” IEEE Communications
Surveys & Tutorials, vol. 13, no. 4, pp. 584–616, 2011.

[77] W. J. Fleming, “New automotive sensors—a review,” IEEE
Sensors Journal, vol. 8, no. 11, pp. 1900–1921, 2008.



Submit your manuscripts at

http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


