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   Contextual influences 

•  Perceptual illusions 

   

  



Record 
From neuron 

   What about neurons? 

•  Cortical neural processing 

   

  



•  Computer science / Engineering: 

   visual receptive field or filter   

   What about neurons? 



Contextual influences 

?? 

•  Cortical visual neurons (V1) 

   

  



 

•  Spatial context plays critical role in object grouping 

  and recognition, and in segmentation. It is key to  
  everyday behavior; deficits have been implicated in  

  neurological and developmental disorders and aging

•  Range of existing experimental data on spatial    

  context (neural; perceptual). Lacking principled  

  explanation 

 

•  Poor understanding for how we (and our cortical   

  neurons) process complex, natural images

Motivation 



 

•  Experimental data on cortical responses to natural   

  images  

•  Computational neural model that captures contextual 

   regularities in natural images 

 

•  Interplay of modeling with biological neural and 

  psychology data (focus on natural images data) 

 

 

 

Outline 



Cortical Neurons 

•  Spatial context and natural scenes 
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Data: Adam Kohn lab 

(Coen-Cagli, Kohn,  
Schwartz, 2015; in press) 



Cortical Neurons 

•  Spatial context and natural scenes 
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Data: Adam Kohn lab (Coen-Cagli, Kohn, Schwartz, 2015; in press) 



Cortical Neurons 

Can we capture data with 
canonical divisive normalization? 
(descriptive model) 

•  Spatial context and natural scenes 

   
  



Divisive normalization 

•  Descriptive model  

•  Canonical computation (Carandini, Heeger, Nature Reviews Neuro, 2012) 

•  Has been applied to visual cortex, as well as other systems and 

  modalities, multimodal processing, value encoding, etc 

 

 

Standard normalizationa
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Cortical Neurons 

V1 Data: Kohn lab 
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•  We fit the standard normalization model to neural data 

•  Poor prediction quality 

 
Data: Adam Kohn lab 

Coen-Cagli, Kohn, Schwartz, 2015 (in press) 
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•  Can we explain as strategy to encode natural images  

  optimally based on expected contextual regularities?  

 
Data: Adam Kohn lab 

Coen-Cagli, Kohn, Schwartz, 2015 (in press) 



 

•  Experimental data on cortical responses to natural   

  images (standard descriptive model can’t explain) 

•  Computational neural model that captures contextual 

  regularities in natural images 

 

•  A Interplay of modeling with biological neural and 

  psychology data (focus on natural images data) 

 

 

 

 

Outline 



•  Sensory processing as inference of properties 
  of the input (can be formalized via probabilistic 

  Bayesian inference) 

 

  

 

 
 

 

  

Two overarching computational principles 

•   Sensory systems aim to form an efficient code 
   by reducing redundancies of the input (Barlow;  

   also Attneave); influenced by information theory 

   in the 1950s 



Contextual dependencies across space 
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Contextual dependencies across space 

 Schwartz, Simoncelli, Nature Neuroscience 2001 



Generative model framework 

0

0

x1

x2

•  Hypothesize that cortical neurons aim to reduce statistical     
  dependencies (so as to highlight what is salient)  

   Schwartz, Simoncelli 2001 (for salience: Zhaoping Li, 2002) 

 

•  Formally, we build a generative model of the dependencies and 

  invert the model (Bayesian inference) – richer representation! 
   Andrews, Mallows, 1974; Wainwright, Simoncelli, 2000; Schwartz, Sejnowski, Dayan 2006 

  
•  Generating the dependencies is a multiplicative process and 

  to undo the dependencies we divide 



Modeling Statistical dependencies: 
Gaussian Scale Mixture (GSM) 

Andrews	
  &	
  Mallows,	
  1974;	
  Wainwright	
  &	
  Simoncelli,	
  2000	
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Modeling Statistical dependencies: 
Gaussian Scale Mixture (GSM) 



Filter activations 
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Modeling Statistical dependencies: 
Gaussian Scale Mixture (GSM) 

Model neuron activity E(g1 | x1,x2) =
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EFFICIENT CODING 

Modeling Statistical dependencies: 
Gaussian Scale Mixture (GSM) 
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DIVISIVE 
NORMALIZATION 

Computed via Bayes rule 

Modeling Statistical dependencies: 
Gaussian Scale Mixture (GSM) 



Divisive Normalization Canonical Model 

Divisive normalization descriptive models have been 
applied in many neural systems. Here we provide a 
principled explanation. We will next show that it also 

leads to a richer model based on image statistics 
and makes predictions    



homogenous image patches 

Center and surround 
dependent 

Non-homogeneity of images 
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Schwartz, Sejnowski, Dayan, 2009; Coen-Cagli, Dayan, Schwartz, PLoS Comp Biology 2012 
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-  3x3 spatial positions, 6px separation 
-  4 orientations in the center 

-  4 orientations in the surround 

-  2 phases (quadrature) 

-  model parameters (prior probability for             

  and also linear covariance matrices) optimized to  
  maximize the likelihood of a database of natural images 

  using Expectation Maximization 

 

Model: Optimizing Image Ensemble 
vs

gc gs

xc xs

vc
gc gs

xc xs

vc

xc

xs

Coen-Cagli, Dayan, Schwartz, PLoS Comp Biology 2012; 

Schwartz, Sejnowski, Dayan, 2006 

 



 

•  Experimental data on cortical responses to natural   

  images 

•  Computational neural model that captures contextual 

   regularities in natural images 

 

•   Interplay of modeling with biological neural and 

   psychology data (focus on natural images data) 
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Cortical predictions for natural images 

(Coen-Cagli, Kohn, Schwartz, 2015, in press) 

•  In the past, we have tested modeling with simple stimuli 
    (e.g., Coen-Cagli, Dayan, Schwartz, 2012; Schwartz, Sejnowski, Dayan, 2009) 

 

•  Here, we make predictions for natural images 



Flexible Divisive Normalization 



Model predictions for natural images 

Coen-Cagli, Kohn, Schwartz, 2015; in press 

•  Homogeneous and heterogeneous determined by model!  

•  Expect more suppression in neurons for homogeneous 

•  Related to salience (eg, Zhaoping) 



Model summary 
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Model Predictions for Natural Scenes 

homogeneous versus heterogeneous determined by the 
model 



Cortical V1 data:

Model Predictions for Natural Scenes 

Coen-Cagli, Kohn, Schwartz, 2015, in press 
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Cortical V1 data:

Model Predictions for Natural Scenes 

Coen-Cagli, Kohn, Schwartz, 2015, in press 
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Not explained by: 
•  firing rate with  
  small frames  

•  surround energy 
 



Coen-Cagli, Kohn, Schwartz, 2015; in press 

Model predictions for natural images 
•  Per image, across neurons 

homogeneous 

heterogeneous 



Coen-Cagli, Kohn, Schwartz, 2015; in press 

•  Testing predictions with cortical data 

Model predictions for natural images 
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Natural scenes data 
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Natural scenes data 

Coen-Cagli, Kohn, Schwartz, 2015, in press 
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Standard divisive normalization 

Flexible divisive normalization: 

Determined by the model (not fit!) 
1 if 

0 otherwise  

Model predictions for natural images 
•  Comparing model performance for cortical data 

Ri = α
Ec,φ pref

ε + βEc + γE s

⎛ 

⎝ 
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n

Ri = α
Ec,φ pref

ε + βEc + q(c,s)γE s
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⎞ 

⎠ 
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n

p(ξ1 | c,s) ≥ 0.5

(similar results if non binary) 



Natural scenes data 

Coen-Cagli, Kohn, Schwartz, 2015, in press 

•  Cross-validated prediction quality 

•  There are many standard model versions… 

Prediction quality: 
•  1 = “oracle” (observed mean for each image) 

•  0 = “null” (mean response across all images)  



Divisive normalization: 

 

•   Feedback inhibition 

•   Distal dendrite inhibition 

•   Depressing synapses 

•   Internal biochemical adjustments 

•   Non-Poisson spike generation 

 

 

 

 

 

 

Model Mechanisms 



Pyr SOM VIP 

Surround  
suppression Gating 

Input 

Output 

Normalization 
Pool 

Flexible Normalization Mechanism? 
 

•  Adjusting gain by circuit or postsynaptic mechanisms? 

 
•  Distinct classes of inhibitory interneurons? (eg, Adesnik, 

   Scanziani et al. 2012; Pfeffer, Scanziani et al. 2013; Pi, Kepecs et al. 2013; 

   Lee, Rudy et al. 2013)  



 
•  New approach to understanding cortical processing of natural  

  images. Rather than fitting more complicated models, use 

  insights from scene statistics  

 

•   Connects to neural computations that are ubiquitous, but   
   enriches the “standard” model 

 

•  Our results suggest flexibility of contextual influences in natural 

  vision, depending on whether center and surround are deemed  

  statistically homogeneous 
 

•  Next/currently: hierarchical representations; adaptation 

 

Key take-home points  
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