
Flexible Hardware Abstraction for
Wireless Sensor Networks

Vlado Handziski∗, Joseph Polastre†, Jan-Hinrich Hauer∗, Cory Sharp†, Adam Wolisz∗ and David Culler†

∗Technische Universität Berlin; Telecommunication Networks Group
Sekr. FT 5, Einsteinufer 25, 10587 Berlin, GERMANY

†University of California, Berkeley; Computer Science Department
Berkeley, CA 94720 US

Abstract— We present a flexible Hardware Abstraction
Architecture (HAA) that balances conflicting requirements
of Wireless Sensor Networks (WSNs) applications and the
desire for increased portability and streamlined develop-
ment of applications. Our three-layer design gradually
adapts the capabilities of the underlying hardware plat-
forms to the selected platform-independent hardware inter-
face between the operating system core and the application
code. At the same time, it allows the applications to utilize
a platform’s full capabilities – exported at the second layer,
when the performance requirements outweigh the need for
cross-platform compatibility. We demonstrate the practical
value of our approach by presenting how it can be applied
to the most important hardware modules that are found
in a typical WSN platform. We support our claims using
concrete examples from existing hardware abstractions in
TinyOS and our implementation of the MSP430 platform
that follows the architecture proposed in this paper.

I. INTRODUCTION

The introduction of hardware abstraction in modern
operating systems has proved valuable for increasing
portability and simplifying application development by
hiding the hardware intricacies from the rest of the
system. Although enabling portability, hardware ab-
stractions come into conflict with the performance and
energy-efficiency requirements of Wireless Sensor Net-
work (WSN) applications.

WSNs, with their application specific nature and
severely constrained resources, push customization,
rather than more general and reusable hardware abstrac-
tion designs. For maximum performance, the unique
capabilities of the hardware should be made available un-
hindered to the application, but this can impede porting
and rapid application development. By directly accessing
the hardware, the application couples the evolution of the
system with the underlying hardware.

Our analysis of several embedded and general-
purpose operating systems (eCos [1], WindowsCE [2],
NetBSD [3] and Linux[4]) that have mature hardware ab-
straction architectures has shown us that existing designs
are poorly suited to the flexible abstraction required by
WSNs. Their interfaces are rigid and expose the capa-
bilities of the hardware at a single level of abstraction,
preventing an application from taking full advantage of
the hardware’s capabilities when needed.

Thus, we need a better Hardware Abstraction Archi-
tecture (HAA) that can strike a balance between the
two conflicting goals that are present in the WSNs
context. The component-based model [5] is one frame-
work that can provide the required tools to resolve this
tension. The separation between the exposed interfaces
and the internal implementation promotes modularity
and reuse [6]. At the same time it allows rich interaction
between building blocks. The main challenge is to select
an appropriate organization of abstraction functionality
in form of components to support reusability while
maintaining energy-efficiency through access to the full
hardware capabilities when it is needed. Based on our
experience in porting TinyOS [7], [8] to new platforms
we believe that an effective organization is possible
when the strengths of the component-based approach are
combined with a flexible, three-tier organization of the
hardware abstraction architecture.

The rest of the paper is structured as follows: In
Section II we introduce the details of the proposed archi-
tecture focusing on the functionality of each of the three
tiers separately and the flexibility that the architecture
provides in total. The following Section III, illustrates
the practical applicability of our approach to the major
hardware modules of a typical WSN platform. After
discussing the related work in Section IV, we outline

mali
In Proceedings of the 2nd European Workshop on WirelessSensor Networks (EWSN 2005) 



Fig. 1. The proposed hardware abstraction architecture

our planned future work (Section V) and conclude the
paper in Section VI. For clarity, at the very end, we
provide a list of the acronyms used in the text and their
definitions.

II. ARCHITECTURE

In our architecture (Fig. 1), the hardware abstraction
functionality is organized in three distinct layers of com-
ponents. Each layer has clearly defined responsibilities
and is dependent on interfaces provided by lower layers.
The capabilities of the underlying hardware are gradually
adapted to the established platform-independent interface
between the operating system and the applications. As
we move from the hardware towards this top interface,
the components become less and less hardware depen-
dent, giving the developer more freedom in the design
and the implementation of reusable applications.

A. Hardware Presentation Layer (HPL)

The components belonging to the HPL are positioned
directly over the HW/SW interface. As the name sug-
gests, their major task is to “present” the capabilities of
the hardware using the native concepts of the operating
system. They access the hardware in the usual way,
either by memory or by port mapped I/O. In the reverse
direction, the hardware can request servicing by signal-
ing an interrupt. Using these communication channels
internally, the HPL hides the hardware intricacies and
exports a more usable interface (simple function calls)
for the rest of the system.

The HPL components should be stateless and expose
an interface that is fully determined by the capabilities
of the hardware module that is abstracted. This tight
coupling with the hardware leaves little freedom in the
design and the implementation of the components. Even
though each HPL component will be as unique as the
underlying hardware, all of them will have a similar
general structure. For optimal integration with the rest
of the architecture, each HPL component should have:

• commands for initialization, starting, and stopping
of the hardware module that are necessary for
effective power management policy

• “get” and “set” commands for the register(s) that
control the operation of the hardware

• separate commands with descriptive names for the
most frequently used flag-setting/testing operations

• commands for enabling and disabling of the inter-
rupts generated by the hardware module

• service routines for the interrupts that are generated
by the hardware module

The interrupt service routines in the HPL components
perform only the most time critical operations (like
copying a single value, clearing some flags, etc.), and
delegate the rest of the processing to the higher level
components that possess extended knowledge about the
state of the system.

Our HPL structure eases manipulation of the hard-
ware. Instead of using cryptic macros and register names
whose definitions are hidden deep in the header files



of compiler libraries, the programmer can now access
hardware through a familiar interface.

This HPL does not provide any substantial abstraction
over the hardware beyond automating frequently used
command sequences. Nonetheless, it hides the most
hardware-dependent code and opens the way for devel-
oping higher-level abstraction components. These higher
abstractions can be used with different HPL hardware-
modules of the same class. For example, many of the
microcontrollers used on the existing WSN platforms
have two USART modules for serial communication.
They have the same functionality but are accessed using
slightly different register names and generate different
interrupt vectors. The HPL components can hide these
small differences behind a consistent interface (Sec-
tion III-E), making the higher-level abstractions resource
independent. The programmer can then switch between
the different USART modules by simple rewiring (not
rewriting) the HPL components, without any changes to
the implementation code.

B. Hardware Adaptation Layer (HAL)

The adaptation layer components represent the core of
the architecture. They use the raw interfaces provided by
the HPL components to build useful abstractions hiding
the complexity naturally associated with the use of
hardware resources. In contrast to the HPL components,
they are allowed to maintain state that can be used for
performing arbitration and resource control.

Due to the efficiency requirements of WSNs, ab-
stractions at the HAL level are tailored to the concrete
device class and platform. Instead of hiding the indi-
vidual features of the hardware class behind generic
models, HAL interfaces expose specific features and
provide the “best” possible abstraction that streamlines
application development while maintaining effective use
of resources.

For example, rather than using a single “file-like”
abstraction for all devices, we propose domain specific
models like Alarm, ADC channel, EEPROM as presented
in Section III. According to our model, HAL components
should provide access to these abstractions via rich,
customized interfaces, and not via standard narrow ones
that hide all the functionality behind few overloaded
commands.

C. Hardware Interface Layer (HIL)

The final tier in our architecture is formed by the HIL
components that take the platform-specific abstractions

provided by the HAL and convert them to hardware-
independent interfaces used by cross-platform applica-
tions. These interfaces provide a platform independent
abstraction over the hardware that simplifies the develop-
ment of the application software by hiding the hardware
differences. To be successful, this API “contract” should
reflect the typical hardware services that are required in
a WSN application.

The complexity of the HIL components mainly de-
pends on how advanced the capabilities of the abstracted
hardware are with respect to the platform-independent
interface. When the capabilities of the hardware exceed
the current API contract, the HIL “downgrades” the
platform-specific abstractions provided by the HAL until
they are leveled-off with the chosen standard interface.
Consequently, when the underlying hardware is inferior,
the HIL might have to resort to software simulation of
the missing hardware capabilities. As newer and more
capable platforms are introduced in the system, the
pressure to break the current API contract will increase.
When the performance requirements outweigh the bene-
fits of the stable interface, a discrete jump will be made
that realigns the API with the abstractions provided in the
newer Hardware Adaptation Layers (HALs). The evolu-
tion of the platform-independent interface will force a
reimplementation of the affected HIL components. For
newer platforms, the HIL will be much simpler because
the API contract and their HAL abstractions are tightly
related. On the other extreme, the cost of boosting up (in
software) the capabilities of the old platforms will rise.

Since we expect HIL interfaces to evolve as new
platforms are designed, we must determine when the
overhead of software emulation of hardware features can
no longer be sustained. At this point, we introduce ver-
sioning of HIL interfaces. By assigning a version number
to each iteration of an HIL interface, we can design ap-
plications using a legacy interface to be compatible with
previously deployed devices. This is important for WSNs
since they execute long-running applications and may be
deployed for years. An HIL may also branch, providing
multiple different HIL interfaces with increasing levels
of functionality.

D. Selecting the level of abstraction

The platform-dependence of the HAL in our architec-
ture leads to the more general question about why we
have opted for a three-layered design. In other words,
why we did not expose the platform-independent hard-
ware interface directly from the HAL components. The
main reason behind our decision is the increased flex-



ibility that arises from separating the platform-specific
abstractions and the adaptation wrappers that upgrade
or downgrade them to the current platform-independent
interface. In this way, for maximum performance, the
platform specific applications can circumvent the HIL
components and directly tap to the HAL interfaces that
provide access to the full capabilities of the hardware
module.

Selecting the “right” level–whether an application
should use the HIL or directly access the HAL–can
sometimes cause one hardware asset to be accessed using
two levels of abstraction from different parts of the
application or the OS libraries. Let us take an application
similar to the standard OscilloscopeRF application in
TinyOS as an example. The application uses the Analog
to Digital Converter (ADC) to sample several values
from a temperature sensor and sends them in the form of
a message over the radio. If the observed phenomenon
does not have a large signal bandwidth and the time
between subsequent conversions is long, for the sake
of cross-platform compatibility, the programmer might
decide to use the standard ADCHILSingle interface.
This interface is exported by the HIL sensor wrapper
(Figure 3) using the services of the platform-specific
HAL component. When enough samples are collected in
the message buffer, the application passes the message
to the networking stack. The Media Access Control
(MAC) protocol used for message exchange over the
radio uses clear channel assessment to determine when
it is safe to send the message. This usually requires
taking several samples of the Receive Signal Strength
Indicator (RSSI) signal provided by the radio hardware.
Since this is a very time critical operation in which
the correlation between the consecutive samples has a
significant influence, the programmer of the MAC might
directly use the MSP430ADC12Multiple interface of the
HAL component as it provides much finer control over
the conversion process.

As a result of this chain of decisions, we end up
with a concurrent use of the ADC hardware module
using two different levels of abstraction. To support this
type of “vertical” flexibility we include more complex
arbitration and resource control functionality in the HAL
components so that a safe shared access to the HPL
exported resources can be guaranteed.

III. APPLICATION TO SPECIFIC HARDWARE MODULES

In this section we support our claims about the
properties of the proposed architecture using real-world
examples from the hardware abstraction functionality in

TinyOS for different platforms. TinyOS does not have
fixed rules or restrictions on how applications inter-
face with the physical hardware. The original hardware
abstraction was developed having specific capabilities
of the Atmel family of microcontrollers in mind and
with little consideration for the applicability to different
hardware platforms. The organization of the existing
hardware components generally follows a two-layered
design that has some similarities with our HAA in
the lowest HPL level, but uses different philosophy in
separating the functionality at the higher abstractions.

The proposed HAA was applied for the first time
during our implementation of the MSP430 platform [9]
that abstracts the capabilities of the TI MSP430 micro-
controller (Fig.2) in TinyOS 1.1.7. The implementation
is currently being used by two hardware platforms (Te-
los and Eyes) and has quite successfully satisfied the
requirements of a large range of applications.

Based on the insight gained through this effort and
our analysis of the hardware abstraction for the existing
platforms in TinyOS (Mica, Mica2), we show how our
HAA can be used for encapsulating the capabilities of the
major hardware modules in a typical WSN platform [10].
For each module we discuss how the variability in
the capabilities of the hardware might force different
design decisions at separate layers and how this is finally
reflected in the exposed interfaces.

A. Processing unit

The microcontroller is the central part of a WSN plat-
form. Microcontrollers have widely varying feature sets.
A microcontroller consists of the MCU core processing
unit, RAM, external interface pins, and a set of hardware
modules. Examples of these modules include data bus
support, analog to digital converters, and timers. Not
only does the core vary, but the features provided by
each module vary from vendor to vendor as discussed
further later in this section.

MCU cores are available in 8-bit, 16-bit, and 32-bit
architectures. For 8-bit and 16-bit cores, RAM sizes vary
from 128 bytes to 16 kilobytes and program flash may be
as little as 2 kilobytes or as big as 256 kilobytes. Usually
32-bit platforms have more RAM and flash storage at
the expense of an order of magnitude higher energy
consumption.

Abstracting the differences between the various MCU
cores is the first step towards a more portable operating
system. In TinyOS most of this variability is hidden from
the OS simply by using a nesC/C based programming
language with a common compiler suite (GCC). For ex-



(a) Functional block diagram of the TI MSP430F149 µC (b) The components of the MSP430 platform abstraction in the
original TinyOS 1.1.7 release

Fig. 2. Hardware abstraction of the TI MSP430 µC in TinyOS

ample, the standard library distributed with the compiler
creates the necessary start-up code for initializing the
global variables, the stack pointer and the interrupt vector
table, shielding the OS from these MCU-specific tasks.

To unify things further, TinyOS provides mechanisms
for declaring reentrant and non-reentrant interrupt ser-
vice routines and critical code-sections. For the MCU’s
external pins, it provides macros that permit setting and
clearing the pin, as well as changing its direction and
function. For example, the TI MSP430’s ADC pins may
be used as either general I/O or as an analog input to
the ADC hardware module. Macros are also provided for
timed spin loops at microsecond resolution, independent
of the microcontroller. These macros are defined in each
platform’s hardware.h descriptor file.

Finally, the HPL components deal with the different
ways of accessing registers (memory-mapped or port-
mapped I/O) using the definitions in the standard library
header files. HPL implementations may also include
code optimizations on a per platform basis for accessing
hardware components–such as only fetching the needed
8-bits of a register on an 8-bit platform versus fetching
the entire 16-bit register on a 16-bit platform.

Our three-layer architecture is not intended to abstract
the features of the different MCU cores. For the currently
supported MCUs, the combination of the compiler suite
support with the thin abstraction in the hardware.h files
is sufficient. Nevertheless, if new cores with radically
different architectures need to be supported by TinyOS
in the future, this part of the hardware abstraction
functionality will have to be explicitly addressed.

B. Power management

Power management is critical for long lived sensor
network applications. Each microcontroller has a differ-
ent power profile. A power profile consists of the low
power modes provided by the microcontroller as well as
the wakeup time (time to transition from sleep to active
mode) and current consumption of each mode. Making
the wakeup time semantically transparent to services
running on the microcontroller is a difficult task. On
Atmel based platforms where the wakeup time may be
up to a few milliseconds, we use an HAL component that
evaluates when the next timer event will occur, and only
puts the Atmel into a sleep state if the next event occurs
at a point in time longer than the wakeup time. On the
TI MSP430, the wakeup time is “instantaneous”–under
6 µs–and therefore whenever the MCU is not processing,
it is put into low power sleep mode.

On both the MSP430 and the Atmel, before entering a
sleep mode, an HAL component checks if any hardware
modules require that the MCU core is active. Addition-
ally, all services including HPL and HAL components
have an initialization, start, and stop function. When a
service is no longer using a hardware module, it may
call the stop function of the HPL or HAL component.
Doing so disables the module for power savings, but
also removes the MCU’s dependence on that hardware
module to enter sleep mode. For example, the ADC
module may be clocked from a high speed oscillator.
When a sample is not in progress, the ADC module may
be shut down and it will no longer use the high speed
oscillator. As a result, when the MCU is idle, it may



enter low power mode.
This rather efficient way of implementing the power

management functionality is made possible by the fact
that most of the hardware modules are on-chip, attached
directly to the MCU system bus, and that there is no
hardware memory protection hindering the access to
their status registers. As TinyOS platforms add more
external devices connected via the peripheral buses,
this task will get increasingly complicated. Ultimately,
keeping some state in the form of device enumeration
or reference counting mechanisms might be needed for
proper power management.

C. Clocks and timers

A real-time crystal clock source can provide stable
timing and interrupts for the microcontroller. These low-
power clock sources enable the microcontroller to be
woken from low-power sleep state by a timed alarm. This
clock enables software timers with “jiffy” resolution –
timing native to the oscillator, such as 30.5 microsecond
resolution for a 32 kHz clock – and are generally also
abstracted to one millisecond resolution. Because these
clock sources remain powered, they do not need to
stabilize after the MCU wakes from low-power mode,
enabling a high-speed wake up into operational mode.
And, because they provide a very stable clock source,
they can be used to calibrate an internal fast-startup high
speed digitally calibrated oscillator (DCO).

High speed clock sources are generated from an
internal DCO (like the MSP430), from internal RC in
the ADC unit, or a high frequency clock output from the
radio (as in Eyes). Among other things, a high frequency
clock can be used to drive a stable UART baud rate, SPI
clock, or a high resolution ADC sampling timer.

The essence of the problem of creating a good soft-
ware architecture is that different microcontrollers may
provide different numbers of timers, different numbers of
capture and compare registers, different counting modes,
different scaling factors, and different resolution. For
instance the MSP430 MCU on the Eyes and Telos
platforms provides two distinct 16-bit timers, one with
three capture/compare registers, the other with eight.
Each timer can be given a distinct clock source and
one of four scaling factors. Each compare register allows
for a distinct interrupts based off the timer counter. The
Atmel ATmega MCU on the MICA2 platform provides
two 8-bit timers each with a 10-bit prescaler and one
compare register, and two 16-bit timers each with a
limited prescalers and three compare registers. These
differences between platforms motivate the multiple-

layer approach to maximally expose the hardware func-
tionality at the lowest level while allowing for lowest
common denominator reusable system services at the
highest level.

The TimerM module in TinyOS provides timed pe-
riodic and one-shot millisecond resolution events, all
multiplexed in essence from a single hardware timer
compare register. The original TimerM in TinyOS was
built for the Atmel ATmega MCU and attempted to
provide a generic timer module based on a hardware
specific abstraction of a clock. Because it was developed
only for the Atmel platform, the lower clock component
did not expose a platform independent design, presuming
and exposing some of the more unique features of the
Atmel timers. As a result, TimerM was not platform
independent.

From our experience with the MSP430 on the Eyes
and Telos platforms, we establish a hardware adaptation
layer below TimerM that is more appropriate for both the
Atmel and TI platforms. We design an Alarm interface
and component that accesses the current time and permits
setting alarms in the future relative to the past. Each
interface describes the resolution of the Alarm that it
provides, such as TMilli, T32khz, and TMicro.

The interface and configuration below show the Alarm
interface as well as how it may be implemented as the
HAL to a platform using resolution-specific interfaces.
Each platform exports a number of interfaces for each
resolution that correspond to the maximum number of
alarms supported by that platform.

interface AlarmTMilli {
async command uint32_t get();
async command bool isSet();
async command void cancel();
async command void set(uint32_t t0, uint32_t dt);
async event void fired();

}

configuration AlarmC {
provides interface AlarmTMilli as AlarmTimerMilli;
provides interface AlarmT32khz as AlarmTimer32khz;

provides interface AlarmT32khz as Alarm32khz1;
provides interface AlarmT32khz as Alarm32khz2;
//...

provides interface AlarmTMicro as AlarmMicro1;
provides interface AlarmTMicro as AlarmMicro2;
provides interface AlarmTMicro as AlarmMicro3;
//...

}

Below these interfaces sits the hardware presentation
layer. Without the presentation layer, hardware adapta-
tion would be tied to very specific MCU registers and
resources. Overflow flags, current hardware time, and
system register settings are accessible from the HPL. The



HAL uses these primitives to build the Alarm interfaces
accessible at the HAL.

At the HIL, we provide platform independent periodic
and single instance timer events that provide a generic
interface to applications. The interface used for the HIL
timer is as follows:

interface Timer {
command result_t setPeriodic(uint32_t dt);
command result_t setOneShot(uint32_t dt);
command result_t stop();
command bool isSet();
command bool isPeriodic();
command bool isOneShot();
command uint32_t getPeriod();
event result_t fired();

}

All of the timers and alarm provided by our interface
are 32-bit width. By choosing a 32 bits, we can support
time synchronization, a local real time clock, and a
variety of platforms with underlying timers of data width
from 8-bits to 32-bits. For hardware timers that are less
than 32-bits, they are emulated as a 32-bit timer by the
HAL in software. The HIL then exposes this as a native
32-bit timer to applications and time synchronization
services.

D. Analog-to-digital converters

Just like with the Timers, the major challenge in
defining a hardware abstraction for the Analog to Digital
Converters (ADCs) is dealing with the variability in the
hardware’s capabilities. The ADC modules can differ in
their resolution, the number of channels to be sampled
and converted or the support for special conversion
modes such as repeated or sequence conversion modes.

For example, the ADC12 module on the TI MSP430
MCU has 12-bit resolution and allows sampling and con-
version of up to 8 external channels. Each channel can
be assigned an individual reference voltage and one out
of four clock sources can be selected to specify sampling
and conversion timing. A sample-and-hold time, which
represents the number of clock cycles in a sampling
period, can be defined for each channel individually.
The ADC12 on the MSP430 supports four different
conversion modes the simplest being a single channel
converted once. It also supports conversion of a sequence
of channels where a sequence can be any combination
of the available channels. There are 16 registers capable
of storing channel number and reference voltage for the
channels to be converted, i.e. the same channel can be
sampled multiple times within a sequence conversion.
Both of these modes are also available as repeat-modes,
thus a single channel or a sequence of channels can

be converted repeatedly. When multiple conversions are
performed the MSP430 allows to define the time interval
between subsequent conversions.

On the other side, the Atmel ATmega MCU on the
Mica2 platform incorporates a 10-bit ADC. It supports
8 external channels and two different reference voltage
levels. The clock source for sampling and converting is
the MCU clock which can be prescaled. The sample-
hold-time is a constant 13 cycles and is thus solely
defined by MCU clock and prescaler. The internal ADC
on the ATmega supports two conversion modes: Single
channel conversion and free-running conversion which
is a single channel being converted repeatedly.

If we compare these two ADC modules, it becomes
obvious that they have some distinctive features that have
to be gradually adapted before one can reach a general
interface that can be used by the platform independent
applications. The old ADCM module in TinyOS provides
commands for triggering a single conversion and a
repeated conversion for one channel. The binding of
a component to the ADCM defines the port (channel)
to be used for all subsequent conversions. Because the
interface was geared towards the Atmel ATmega MCU it
does not provide commands for controlling the sample-
and-hold time or an individual reference voltage for
different channels. Also there is, for example, no support
for sequence conversion modes.

To overcome these limitations, we have developed a
new ADC abstraction that follows our three-tier model.
At the very bottom of the abstraction on each platform
is the hardware presentation component that provides
low-level access to all relevant registers and flags of the
hardware ADC module, closely following the structure
described in Section II-A.

The core of the abstraction is formed by the HAL
component which will be explained for the MSP430 in
the following. The HAL extends the existing concept
of binding to include not only the channel for the
conversion, but all of the per-channel settings supported
by the hardware module as well. This component is also
responsible for arbitration between multiple outstanding
requests and for maintaining a state machine of the
ADC’s operation. By exposing all of the hardware-
specific settings for each channel, the HAL interface
provides unhindered access to the full capabilities of
the MSP430’s ADC12 module on a per-channel basis,
resulting in very efficient sampling operations.

To promote clarity the four supported conversion
modes of the MSP430 are separated into the interfaces
MSP430ADC12Single and MSP430ADC12Multiple for



single and multiple conversions, respectively. Both in-
terfaces provide two commands which allow the con-
version(s) to be performed once or repeatedly. One
characteristic of the MSP430 ADC12 is the ability to
define the time interval between subsequent conversions.
This is reflected by an additional parameter (jiffies) in the
relevant commands of the HAL interfaces.

Our extended binding mechanism requires reconfig-
uration of the hardware for each sampling command.
This process may take a non-negligible amount of time.
Therefore a delay-sensitive application can reserve the
ADC before calling one of the four conversion com-
mands. A successful reservation will guarantee a min-
imum delay between the next invocation of the corre-
sponding conversion command and the actual sampling
of the channel. To cancel a reservation an additional
unreserve command is provided.

The HAL for the MSP430 platform can be accessed
by the following commands and events:

interface MSP430ADC12Single {
command result_t bind(

MSP430ADC12Settings_t settings);
async command msp430ADCresult_t getData();
async command msp430ADCresult_t getDataRepeat(

uint16_t jiffies);
async command result_t reserve();
async command result_t reserveRepeat(

uint16_t jiffies);
async command result_t unreserve();
async event result_t dataReady(uint16_t data);

}

interface MSP430ADC12Multiple {
command result_t bind(

MSP430ADC12Settings_t settings);
async command msp430ADCresult_t getData(

uint16_t *buf, uint16_t length,
uint16_t jiffies);

async command msp430ADCresult_t getDataRepeat(
uint16_t *buf, uint16_t length,
uint16_t jiffies);

async command result_t reserve(uint16_t *buf,
uint16_t length, uint16_t jiffies);

async command result_t reserveRepeat(uint16_t *buf,
uint16_t length, uint16_t jiffies);

async command result_t unreserve();
async event uint16_t* dataReady(uint16_t *buf,

uint16_t length);
}

typedef struct {
unsigned int refVolt2_5: 1;
unsigned int clockSourceSHT: 2
unsigned int clockSourceSAMPCON: 2;
unsigned int clockDivSAMPCON: 2;
unsigned int referenceVoltage: 3;
unsigned int clockDivSHT: 3;
unsigned int inputChannel: 4;
unsigned int sampleHoldTime: 4;

} MSP430ADC12Settings_t;

The application-level OS service for the ADC is
provided by HIL wrapper components that transform

the platform-dependent settings for the HAL’s bind
command into a platform-independent representation
of the individual sensor. The wrappers interact with
the applications via the provided ADCHILSingle and
ADCHILMultiple interface, and translate their requests
to the underlying HAL primitives. An example configu-
ration for a temperature sensor on the MSP430 platform
is shown in Fig. 3.

Fig. 3. The configuration for the temperature sensor HIL wrapper

The platform-independent HIL interfaces represent a
compromise between the capabilities of the currently
supported platforms. They resemble the interfaces pro-
vided by the HAL of MSP430, but do not support
specifying a time interval between subsequent conver-
sions. On the other hand they provide more extensive
error information which is unnecessary for MSP430, but
meaningful, for example, for external ADCs. Most im-
portantly, the HIL interfaces do not include a bind com-
mand, because they cannot handle platform dependent
settings. Instead, the commands in the HIL interfaces
assume the wrapper to have bound to the HAL with
appropriate settings. Despite the fact that the hardware
of some ADCs might not support a multiple conversion
mode (the ATmega’s ADC does not) such a command
is included in the HIL interface, because it can be easily
emulated by software. The platform-independent HIL
interfaces are defined in the following way:

interface ADCHILSingle {
async command adcresult_t getData();
async command adcresult_t getDataContinuous();
async command adcresult_t reserve();
async command adcresult_t reserveContinuous();
async command adcresult_t unreserve();
async event result_t dataReady(

adcresult result,
uint16_t data);

}

interface ADCHILMultiple {
async command adcresult_t getData(

uint16_t *buf, uint16_t length);
async command adcresult_t getDataContinuous(

uint16_t *buf, uint16_t length);
async command adcresult_t reserve(

uint16_t *buf, uint16_t length);
async command adcresult_t reserveContinuous(

uint16_t *buf, uint16_t length);



async command adcresult_t unreserve();
async event uint16_t* dataReady(adcresult result,

uint16_t *buf, uint16_t length);
}

E. Data busses

For any microcontroller to communicate with external
digital hardware, it must do so through one of many
standard data busses. These include SPI/USART, UART,
I2C, and 1-Wire busses. Only a subset of each bus
is provided by various hardware–as a result some of
these busses are implemented in software routines that
use general purpose digital I/O pins. For those busses
implemented with hardware, devices provide differing
functionality. Our abstraction must export typical clock
control including synchronous and asynchronous modes,
clock source, clock prescale factors, and baud rate gener-
ation. To save power, submodules of the data bus module
may be disabled to save energy or map to the external
device’s interface. For example, receive or transmit sub-
modules of a UART may be disabled to meet a particular
radio’s control protocol or to save energy when no data is
being transmitted to the device. Finally, when hardware
supports double buffering, applications must be able to
realize the performance gain from buffering.

The HPL functionality for the data busses includes
two paths–one for data and a second for control. The
control path allows the clock source, prescaler, and baud
rate to be set. Interrupts may be enabled or disabled
and various hardware flags may be read, set, or cleared,
useful for polling or blocking implementations. Through
the control path, the entire module may be started or
stopped for power control. The data interface simply
consists of sending and receiving a byte through the
hardware’s data registers, as well as interrupt based
reporting of received data. Here is an example of the
interfaces used in the MSP430 platform:

interface HPLUSARTControl {
async command void enableUART();
async command void disableUART();
async command void enableUARTTx();
async command void disableUARTTx();
async command void enableUARTRx();
async command void disableUARTRx();
async command void enableSPI();
async command void disableSPI();
async command void setModeSPI();
async command void setModeUART_TX();
async command void setModeUART_RX();
async command void setModeUART();
async command void setClockSource(

uint8_t source);
async command void setClockRate(

uint16_t baudrate, uint8_t mctl);
async command result_t disableRxIntr();
async command result_t disableTxIntr();

async command result_t enableRxIntr();
async command result_t enableTxIntr();
async command result_t isTxIntrPending();
async command result_t isRxIntrPending();
async command result_t isTxEmpty();
async command result_t tx(uint8_t data);
async command uint8_t rx();

}

interface HPLUSARTFeedback {
async event result_t txDone();
async event result_t rxDone(uint8_t data);

}

Sometimes functionality for more than one bus pro-
tocol are supported through a single hardware module.
In these cases, wrappers for each bus provide standard
application interfaces for using the bus. Sharing the bus
amongst different hardware devices or protocols may be
done through a bus arbitration component.

Bus arbitration allows higher level services to attain
exclusive use of the bus, complete its operations, and
then release the bus to the next service:

interface BusArbitration {
async command result_t getBus();
async command result_t releaseBus();
event result_t busFree();

}

F. External storage

Because the on-chip memory on most of the pro-
cessors used in the current WSN platforms is severely
limited, the existence of a secondary memory storage
is very important for supporting a range of applications
like simple data logging, file systems, persistent storage
of program images, etc.

Flash is typically used to store three classes of data:
large objects, such as program images or bulk trans-
fers, small objects, such as metadata or configuration
information, and large sequential objects, such as logs.
The challenge in creating an abstraction for external
storage is interfacing with different flash technologies.
Data flash, such as Atmel’s AT45DB chips, has small
write units–256-byte pages. Conversely, code flash, such
as ST’s M25P chips, has large write and erase units–
64kB to 128kB sectors is the minimum erase unit.

Depending on the targeted applications, this secondary
memory usually comes in the form of either EEPROM
or flash chips that are interfaced with the microcontroller
using some of the previously described data busses. Data
buses may serve as the HPL for external storage devices.

The starting point of the HAL layer component can
be the execution of an “atomic access” to the chip,
i.e. sending a single command, read, write, or erase.
Depending on the write unit and erase unit, the HAL



will provide the primitives for that storage technology.
If single bytes may be written, but whole sectors must
be erased, the HAL will provide the least common
denominator by enabling byte writes (as arbitrary-length
buffers) and sector erase commands.

These device-specific HAL interfaces are exposed to
applications through HIL wrappers. At the HIL level, the
flash is segmented into volumes that may be assigned to
specific system services. The system services can use
the HIL functionality for the three common classes of
flash use–large writes, small writes, and large sequential
writes.

The configuration, block read, log read, and volume
interfaces are as follows:

interface FlashVolume {
command result_t mount(uint8_t uid);
command uint32_t physicalAddr(uint8_t volumeAddr);
command uint8_t physicalAddrToVolume(

uint32_t addr);
}

interface BlockRead {
command result_t read(block_addr_t addr,

uint8_t* buf, block_addr_t len);
event result_t readDone(result_t result);
command result_t verify();
event result_t verifyDone(result_t result);
command result_t computeCrc(block_addr_t addr,

block_addr_t len);
event result_t computeCrcDone(result_t result,

uint16_t crc);
}

interface ConfigStorage {
command result_t read(addr_t addr, void* dest,

addr_t len);
event result_t readDone(storage_result_t result);
command result_t write(addr_t addr, void* source,

addr_t len);
event result_t writeDone(storage_result_t result);
command result_t commit();
event result_t commitDone(storage_result_t result);

}

interface LogRead {
command result_t read(uint8_t* data,

uint32_t numBytes);
event result_t readDone(uint8_t* data,

uint32_t numBytes, result_t success);
command result_t seek(uint32_t cookie);
event result_t seekDone(storage_result_t success);

}

The volume-based system has been proposed to allow
hardware independent access to the flash. The arbitration
between the potential multiple users of a particular
flash volume is performed through the AllocationReq
interface that reserves parts of the memory to each user at
compilation time. Even more powerful is the Matchbox
and Elf systems that could be built above our HIL
abstraction providing a simple filing abstraction over the
flash.

G. Radios

While hardware module functionality such as ADC,
Timer, and data busses has remained fairly consistent, the
radio functionality changes more frequently. Changing
the radio usually results in improvements in performance
or power consumption. Sensor network platforms are
frequently modified to reap the benefits of the newest
generation transceiver.

For a radio, the HPL includes the basic functionality of
that radio abstracted from the particular microcontroller.
Unlike microcontrollers, radios have varying data inter-
faces. Some accept a single bit as input, while others
use a data bus. Sensor network radios have included bit,
byte, and packet level inputs for data transmission. The
radio’s basic data unit is exposed directly to the radio
stack by the HPL.

For control of the radio, a combination of hardware
pins (for transmit/receive mode switching or RSSI data,
for example) and a data bus are frequently used. The
radio may be controlled through registers and RAM
values internal to the radio and set via a data bus. For
register-based radios like the Chipcon CC1000, CC2420
or the Infineon TDA5250, registers and RAM may be
set or read through the HPL implementation similar to
the HPL implementation of a microcontroller hardware
module. Pin values, interrupts, and data transmission
are also exposed through the HPL. The radio’s HPL
is implemented on top of the abstractions provided
for each microcontroller. Physical layer software logic
may then be written once for each radio and run over
various hardware. Our abstraction is used by the CC2420
radio stack and runs on the Telos, MicaZ, iMote2,
and Chipcon CC2420EB platforms. The abstraction for
the Infineon TDA5250 radio also follows the three-
layer model and runs on the eyesIFX and eyesIFXv2
platforms.

IV. RELATED WORK

One of the major roles of operating systems is to
create a unified abstract computing environment for the
application programmer that is independent from the
details of the underlying hardware. In order to obtain OS
portability, it is useful to separate the parts that directly
interact with the hardware from the parts that have
general applicability and can be reused over different
platforms.

Traditionally, OS hardware transparency has been
achieved with two related concepts: an Abstraction



Layer1 that deals with the architectural differences of
the processing units; and a Device Driver Model that
deals with the way the system interacts with the other
hardware devices.

Although widely used, the realization of these con-
cepts varies significantly among the different operating
systems and can lead to different trade-offs between
efficient resource use and portability. In the following
we present several concrete examples.

The NetBSD is claimed to be the most portable of the
modern UNIX-like operating systems and currently runs
on over 50 different hardware platforms. This remarkable
portability in mainly due to the design of the machine-
independent driver framework that is based on clean
separation between the chipset drivers and the bus attach
code. In addition, the access to the bus memory and
register areas is implemented in a machine-independent
way, allowing the same device driver source to be used
on different system architectures and bus types [11].
In a very similar fashion, the new Linux device driver
model [12] structures the hardware abstraction in terms
of buses, classes, devices and drivers.

eCos is a component-based RTOS for embedded ap-
plications that also takes pride in its portability. Like
TinyOS, it uses compile-time reconfiguration to trim
the OS to the specific requirements of each applica-
tion. The hardware abstraction functionality in eCos
is organized in two main parts [13]: an “abstraction
layer” that provides architecture-independent support for
handling interrupts, virtual vectors and exceptions; and
a group of “device drivers” that abstract the capabilities
of the hardware modules. The drivers are implemented
as monolithic components and are accessed by the rest
of the system via the “I/O Sub-System” that defines a
standard interface for communication with the exposed
driver “handlers”.

In contrast, the device drivers in the WindowsCE
embedded operating system from Microsoft can be either
monolithic or structured in two customized layers [14].
The upper layer is formed by the platform-independent
“Model Device Driver (MDD)” that uses the services
of the “Platform-Dependent Driver (PDD)” that forms
the lower layer. Although this resembles our HIL/HAL
stratification, the layering here is mostly done to separate
the regions of responsibility between Microsoft (that
provides the MDD specification and implementation)
and the OEMs that provide the PDD. In particular, direct

1Usually called the Hardware Abstraction Layer (HAL). Not to
be confused with the Hardware Adaptation Layer (HAL) in our
architecture.

access to the lower PDD interface is not allowed and all
communication with the hardware has to be performed
via the standard “Device Driver Interface (DDI)”.

In the above examples, the multiple levels of in-
direction and the forced use of generic abstractions
unavoidably leads to suboptimal utilization of the hard-
ware resources for the platform-specific applications. On
general-purpose systems this may well be acceptable, but
the resource constrained nature of WSNs requires a more
balanced approach.

The problem of decreased efficiency due to unsuitable
hardware abstractions has also been subject of interest
in the general operating systems research field. The
Exokernel architecture [15], for example, proposes a
radical change in the organization of the abstractions.
According to their framework, the kernel exports all
hardware resources through a low-level interface to the
user-space, where the application or a library OS can
build the optimal abstraction. Because of the simple
microcontroller core architecture and the non-existence
of a costly system-space/user-space barrier, many of the
motivating factors for the Exokernel ideas are not present
in our domain. Nevertheless, our intention to expose
the full capabilities of the hardware at the HAL level
and to support flexible selection of the most appropriate
abstraction level, shares the same spirit as their work.

V. FUTURE WORK

Efficient implementation of the ideas presented in this
paper requires support from the underlying programming
language. As the interfaces and abstractions evolve, the
programming language also evolves to better support
these abstractions. TinyOS uses nesC for programming
language support. We anticipate evolving our interfaces
for the new version of nesC (version 1.2 and later) [16]
that introduces generic interfaces and generic compo-
nents.

By using generic interfaces and components, we can
further simplify the interfaces used in our abstraction.
Generic components may take a data type as an ar-
gument, similar to templates in C. To illustrate the
usefulness of generic interfaces and template-like syntax
they provide, we step through the changes to the Timer
abstraction.

The Timer is made up of underlying alarms provided
by the hardware and exported by the HAL. Alarms
provide various resolutions–32kHz, millisecond, and mi-
crosecond. In section III-C, we supported different reso-
lutions by using identical Alarm interfaces with different
names. Instead, in nesC 1.2+, we support this notion



through structs, used with generic interfaces, that define
the resolution. This changes our abstraction as follows:

typedef struct { } TMilli;
typedef struct { } T32khz;
typedef struct { } TMicro;

typedef struct { } TNano;
//as an example of a future extension

interface Alarm<resolution> {
async command uint32_t get();
async command bool isSet();
async command void cancel();
async command void set(uint32_t t0, uint32_t dt);
async event void fired();

}

configuration AlarmC {
provides interface Alarm<TMilli>

as AlarmTimerMilli;
provides interface Alarm<T32khz>

as AlarmTimer32khz;

provides interface Alarm<T32khz> as Alarm32khz1;
provides interface Alarm<T32khz> as Alarm32khz2;
//...

provides interface Alarm<TMicro> as AlarmMicro1;
provides interface Alarm<TMicro> as AlarmMicro2;
provides interface Alarm<TMicro> as AlarmMicro3;
//...

}

Using the idea of generic interfaces and components
that are instantiated with a structure, we can write a
generic component that converts from one time structure
(resolution) to another. Generic components may also be
used to implement hardware-independent alarms, stop-
watches, and synchronization services. Implementations
and examples of these ideas can be found in the TinyOS
Enhancement Proposals available from the TinyOS web
site [17].

Another open area is the method for passing data be-
tween nodes with different microcontroller architectures.
With the emergence of standardized radios like IEEE
802.15.4 for wireless sensor networks, a family of de-
vices have come into existence that are unable to directly
communicate with each other due to incompatibilities
in architectures. A traditional view is to use additional
storage to marshal and unmarshal all data as it passes to
and from the physical layer.

Instead, nesC 1.2 introduces network types [18], which
are structures prefixed with a network keyword such
that they are interpreted by nesC. Whenever an element
of a structure is written or read, it is converted to the
architecture’s native form. This method does not rely
on copying messages at the physical layer and instead
uses stack space when accessing the struct within an
application. We intend to use this method for cross-

platform communication in our architecture.
Finally, the architecture presented in this paper serves

as the framework adopted for TinyOS 2.0. TinyOS 2.0
is a rewrite of the TinyOS operating system components
to support a broader range of platforms. Many of the
interfaces discussed in this paper will be used, and
iterated upon, during the development of TinyOS 2.0.

VI. CONCLUSION

The analysis in Section III shows that the three-
layer design can be successfully used for exposing to
the applications the functionality of the main hardware
modules in different WSN platforms. Our architecture
provides a set of core services that eliminate duplicated
code and provide a coherent view of the system across
different architectures and platforms.

Our architecture supports the concurrent use of
platform-independent and the platform-dependent inter-
faces in the same application. Applications can localize
their platform dependence to only the places where per-
formance matters, while using standard cross-platform
hardware interfaces for the remainder of the application.

It is important to stress that the proposed design has
been successfully tested in practice on the implemen-
tation of TI MSP430 microcontroller port in TinyOS.
The resulting MSP430 platform abstraction is part of the
main TinyOS distribution starting from the 1.1.7 minor
release. More details about the components and their
interfaces can be found in the implementation code [19].

Our architecture provides a powerful, yet efficient
way to build platform independent services applications,
while still permitting direct access to the hardware’s
features for high performance applications. We have
provided a powerful set of abstractions that enable tim-
ing, alarms, communication, sampling, storage, and low
power operation across different hardware platforms.

ACKNOWLEDGMENTS

This work has been partially supported by the EC
under the contract IST-2001-34734 (EYES), the National
Science Foundation, and the DARPA “NEST” contract
F33615-01-C1895.

The authors wish to thank Kevin Klues for his work
on the implementation of the MSP430 and eyesIFX
platforms in TinyOS, the members of the TinyOS 2.0
Working Group for their valuable comments and revi-
sions, and the anonymous reviewers for their helpful
comments.



REFERENCES

[1] The eCos operating system home page. [Online]. Available:
http://sources.redhat.com/ecos

[2] The WindowsCE operating system home page. [Online].
Available: http://msdn.microsoft.com/embedded/windowsce

[3] The NetBSD project home page. [Online]. Available: http:
//www.netbsd.org

[4] The Linux kernel archives. [Online]. Available: http://www.
kernel.org

[5] L. F. Friedrich, J. Stankovic, M. Humphrey, M. Marley, and
J. Haskins, “A survey of configurable, component-based oper-
ating systems for embedded applications,” IEEE Micro, vol. 21,
no. 3, pp. 54–68, 2001.

[6] J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface-based
design,” in Proceedings of the 34th annual conference on
Design automation, 1997, pp. 178–183.

[7] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” in Pro-
ceedings of the ninth international conference on Architectural
support for programming languages and operating systems.
ACM Press, 2000, pp. 93–104.

[8] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler, “The nesc language: A holistic approach to
networked embedded systems,” in Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design
and implementation. ACM Press, 2003, pp. 1–11.

[9] V. Handziski, J. Polastre, J.-H. Hauer, and C. Sharp, “Poster
abstract: Flexible hardware abstraction of the ti msp430 micro-
controller in tinyos,” in Proceedings of the second international
conference on Embedded networked sensor systems (SenSys
2004), 2004.

[10] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy, “The
platforms enabling wireless sensor networks,” Commun. ACM,
vol. 47, no. 6, pp. 41–46, 2004.

[11] J. R. Thorpe, “A machine-independent dma framework for
netbsd,” in Proceedings of USENIX Conference (FREENIX
track). USENIX Association, 1998.

[12] P. Mochel. (2003) The linux kernel device model. Proceedings
of the Linux.Conf.Au conference (LCA 2003). [Online].
Available: http://conf.linux.org.au

[13] A. Massa, Embedded Software Development with eCos. Pren-
tice Hall Professional Technical Reference, 2002.

[14] J. Murray, Inside Microsoft Windows CE. Microsoft Press,
1998.

[15] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel:
an operating system architecture for application-level resource
management,” in Proceedings of the fifteenth ACM symposium
on Operating systems principles. ACM Press, 1995, pp. 251–
266.

[16] D. Gay, P. Levis, D. Culler, and E. Brewer, nesC 1.2 Language
Reference Manual, July 2004.

[17] The TinyOS community forum. [Online]. Available: http:
//www.tinyos.net

[18] K. K. Chang and D. Gay, “Language support for messaging in
heterogeneous networks,” in Intel Research Technical Report,
Berkeley, CA, Nov. 2004.

[19] The MSP430 platform implementation code. [On-
line]. Available: http://cvs.sourceforge.net/viewcvs.py/tinyos/
tinyos-1.x/tos/platform/msp430

ACRONYMS

ADC Analog to Digital Converter
API Application Programming Interface
GCC GNU C Compiler
DCO Digitally Controlled Oscillator
EEPROM

Electrically Erasable Programmable Read Only Memory
HAA Hardware Abstraction Architecture
HAL Hardware Adaptation Layer
HIL Hardware Interface Layer
HPL Hardware Presentation Layer
I/O Input/Output
I2C Inter-IC
ISR Interrupt Service Routine
MAC Media Access Control
MCU Micro Controller Unit
OEM Original Equipment Manufacturer
OS Operating System
RISC Reduced Instruction Set Computer
RSSI Receive Signal Strength Indicator
RTOS Real-Time Operating System
SPI Serial Peripheral Interface
UART Universal Asynchronous Receiver Transmitter
USART

Universal Synchronous Asynchronous
Receiver Transmitter

WSN Wireless Sensor Network


