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Abstract

With the advent of multi-processor systems on a chip, the
interest for message passing libraries has revived. Message
passing helps in mastering the design complexity of paral-
lel systems. However, to satisfy the stringent energy-budget
of embedded applications, the message passing overhead
should be limited. Recently, several hardware extensions
have been proposed for reducing the transfer cost on a
distributed memory architecture. Unfortunately, they ignore
the synchronization cost between sender/receiver and/or re-
quire many dedicated hardware blocks. To overcome the
above limitations, we present in this paper light-weight
support for message passing. Moreover, we have made
our library as flexible as possible such that we can opti-
mally match the application with the target architecture. We
demonstrate the benefits of our approach by means of rep-
resentative benchmarks from the multimedia domain..

1. Introduction

Many designers turn towards parallel systems to re-
duce energy cost. They master design complexity with high
level programming models such as message passing (e.g.,
openMP and MPI). After specifying the program with mes-
sage passing, efficient mapping on the target architecture is
required. This entails reducing both the amount of commu-
nication and the transmission cost itself.

Our goal is reducing the cost for communicating mes-
sages between tasks located on different processors. In
the simplest case, message passing is implemented on top
of a shared memory architecture (e.g., [13][5]). The pro-
ducer generates a message in the shared memory. When
ready, it notifies the consumer that it can start reading it.
At least two locks are necessary for synchronizing the pro-
ducer/consumer. A first lock (set by the producer) prevents
the consumer from reading a not finalized message. A sec-
ond lock (set by the consumer) prevents the producer from

overwriting messages still unread by the consumer. In this
naive implementation, the shared memory is frequently ac-
cessed, and easily becomes a performance bottleneck.

This bottleneck can be removed by directly transmit-
ting messages between scratchpad memories attached to the
processors, but this requires architectural changes. For in-
stance, a scratchpad memory is usually only accessible from
the core to which it is attached. Now, any other core of the
system may have access to it. Recently, [6] and [8] have pre-
sented such hardware extensions. However, these are mostly
ad-hoc solutions, which are not flexible enough for match-
ing the application with the target architecture. E.g., they
only provide DMAs to transfer data between processors.
For short messages the overhead to set up the DMA is too
long. Direct write/read transfers by the processor are more
efficient, but in this case they are not supported.

Moreover, in view of the limited size of the scratch-
pad memories (particularly on a power-efficient embedded
systems), only small messages can be transmitted. Conse-
quently, the processors need to communicate and synchro-
nize more frequently compared to a shared memory im-
plementation. So far, limited research exists on reducing
the synchronization cost; synchronization is mostly imple-
mented with semaphores stored on a shared memory. There-
fore, it often remains a performance bottleneck (see our ex-
perimental results).

In this paper, we propose a hardware/software approach
for message passing on a distributed memory architecture.
We provide several communication modes (from single
word access to burst accesses to the remote memory nodes)
and support multi-threading as an alternative technique to
reduce the communication latency. Finally, we have inte-
grated our approach on a cycle-accurate exploration envi-
ronment [11].

This paper is organized as follows. After describing the
prior-art in section 2, we discuss the hardware extensions
necessary for our approach (section 3) and explain how we
support them in software (section 4). With this high-level
API, we can tune the application to the target architecture
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as demonstrated with a small example in section 5. Finally,
we quantify our approach with realistic examples (section
6).

2. Related work

A large body of related work exist on message passing
as a programming model (e.g., OpenMP or MPI); mapping
a message passing program on a multi-processor architec-
ture for reducing communication [2][7] and finally, build-
ing hardware/software support for reducing the execution
time/energy of transmitting a message in both software or
hardware [4][3].

We focus on reducing the message passing overhead,
which can be decomposed in two parts: overhead for setting
up and controlling the communication and the data trans-
fer overhead itself.

Message passing has first been applied in the high perfor-
mance community, where many techniques have been de-
veloped for reducing either costs. E.g., several authors sim-
plify OS-layers from the message passing interface to re-
duce the setup cost (e.g., [1]). Others move message pass-
ing primitives in hardware, ranging from dedicated instruc-
tions (e.g., [10]) to complex co-processors for accelerating
message passing (e.g., [12]). Dedicated instructions cou-
pled to a low latency communication network support fine
granularity messages, enabling massive amounts of paral-
lelism. However, this approach requires tedious code ma-
nipulation that reduces the portability of the code and thus
jeopardizes the ROI. Solutions based on co-processors, on
the other hand, focus on flexibility and performance, but
their area and energy overhead makes them not suitable for
embedded systems.

With the advent of multi-processor systems on chip,
message passing has also entered the world of embedded
systems. Message passing is here usually implemented on
top of a shared memory architecture (e.g. TI OMAP, Philips
Eclipse [13], [5], Philips Nexperia). The shared memory is a
performance/energy bottleneck, even when DMAs are used
to increase the transfer efficiency. On most architectures,
the atomic memory operations necessary for semaphores re-
quire locked transactions over the communication architec-
ture. This not only further degrades the performance, but
limits the scalability of the above implementations for more
advanced communication architectures.

Therefore, several authors have recently proposed sup-
port for message-passing on a distributed memory architec-
ture. An interesting case-study is presented in [6] where
a turbo-coder is mapped on a message-passing architec-
ture. On each processing tile an IO-device is responsible for
transmitting/receiving messages from the communication
architecture. Buffer underflow/overflow of the IO-device
has to be avoided in software. In [8], is provided more

generic support for message passing. An extra co-processor,
called a memory server access point, is added to each pro-
cessor. The access point links the processor to its own local
memory, but also to the remote memories. The synchroniza-
tion is left to the message passing protocol.

Above approaches lack support for synchronization and
flexibility in matching the application to the communica-
tion architecture. E.g., in [8] remote memories are always
accessed with a DMA-like engine even though this is not
the most efficient strategy for small message sizes.

In the remainder of this paper, we present a more scal-
able and flexible message passing implementation.

3. Hardware support for message passing
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Figure 1. Message passing on shared mem-
ory (left) vs. on distributed memory (right)

On most embedded multi-processors, message passing
is implemented on top of shared memory (Fig. 1-left). The
producer and consumer tasks communicate over a FIFO
queue stored in the shared memory. The FIFO contains
space for a fixed set of messages. If the producer wants to
send a message to the consumer, it first looks for free space
in the queue by checking the queue’s control structure. Af-
ter finding free space, it writes the message in the queue,
from which the consumer can then read it.

To prevent the queue from over(under)flowing, the con-
sumer and producer are synchronized. Synchronization is
implemented with semaphores and thus with atomic mem-
ory accesses. Atomic memory accesses are implemented by
locking the bus. As long as a master locks the bus, the ar-
biter does not grant it to any other master. Consequently,
the granted master can perform atomic memory operations.
Despite locked transfers being supported by most bus-based
architectures, they do not match well with scalable commu-
nication architectures where the arbiter is distributed (e.g.,
cross-bars or NoCs). On the latter architectures, semaphores
are mostly supported with dedicated load/store instructions



to the shared memory (i.e., test-and-set [9]). In the above ap-
proach, shared memory is frequently used. Even if shared
memory can be implemented on-chip, it remains a perfor-
mance bottleneck. To guarantee data coherency, shared data
cannot be cached and this results in long access latencies.1

We remove the need for shared memory by providing
message passing support on a distributed memory architec-
ture (Fig. 1-right). To send a message on our architecture,
the producer now writes in the message queue stored on
its local memory. After the message is ready, the consumer
can transfer it to its own scratchpad or to a private mem-
ory space.2 Data can be transferred either by the proces-
sor itself or by a direct memory access controller, when the
hardware supports this. This transfer is only possible when
the consumer can read from the scratchpad memory of an-
other processor. The scratchpad memories should therefore
also be connected as a slave port to the communication ar-
chitecture and their memory space should be visible by the
other processors.

Obviously, the producer/consumer should still have to
be synchronized. We use two integer semaphores for this
purpose. E.g., when a producer generates a message, it lo-
cally checks an integer semaphore which contains the num-
ber of free messages in the queue. If a space is available, it
decrements the semaphore and starts writing the message.
When the message is ready, it signals this to the consumer
by incrementing the consumer pointer. Instead of storing
the semaphores in the shared memory, we distribute them
among the processing elements. This has two advantages:
the read/write traffic to the semaphores is distributed and the
producer(consumer) can locally poll whether space (a mes-
sage) is available, thereby reducing the traffic on the com-
munication architecture.

The semaphore is itself a memory device on which
atomic test-and-set operations can be performed. Fur-
thermore, our semaphore may interrupt the local pro-
cessor when released, providing an alternative mech-
anism to semaphore polling. When a task fails to ac-
quire a semaphore, it usually starts spinning around the
semaphore until it is released. This however prevents the
processor from executing more useful instructions, par-
ticularly if it takes a long time for the semaphore to be
released. If the semaphore is not available, the task regis-
ters itself on a list of tasks waiting for that semaphore and
suspends itself. Other tasks on the processor can then ex-
ecute. As soon as the semaphore is released, it generates
an interrupt and the corresponding interrupt routine reacti-
vates all tasks on the wait list. This helps us to efficiently

1 Unless cache coherency is guaranteed in hardware which easily im-
pacts the design complexity and scalability.

2 We use the private memory for the consumer if insufficient space is
available on the consumer’s scratchpad memory. The private memory
is still faster than the shared memory since it is cacheable.

return type function arguments

SQ_PRODUCER* sq_init_producer int core_number
void* consumer
int message_size
int total_messages
bool use_suspension

SQ_CONSUMER* sq_init_consumer void* producer
char* buffer_space
bool use_suspension

void sq_write(_dma) SQ_PRODUCER *queue_p
char *source

char* sq_getToken_write SQ_PRODUCER *queue_p
void sq_putToken_write SQ_PRODUCER *queue_p

char* sq_read(_dma) SQ_CONSUMER *queue_c

Table 1. Our message passing library API

support multi-threading to reduce the communication la-
tency, as we will explain below.

We thus only require a limited amount of extra hard-
ware. Since both DMAs and scratchpad memories are read-
ily available on most cores, only the interface to the com-
munication architecture has to be slightly modified and the
semaphore needs to be added. We have integrated a cycle-
accurate model of the scratchpad, DMA, semaphores and
scratchpad memory in the MPARM exploration environ-
ment [11]. In the next section, we describe the software sup-
port for hardware programming.

4. Software support

We have built a high-level API to support message pass-
ing. Our library simplifies the programming of message
passing but is sufficiently flexible for exploring the design
space. The most important functions are listed in Tab. 1.

To instantiate a queue, both the producer and consumer
must run an initialization routine. To initialize the producer,
we call sq_init_producer. It takes as arguments the address
of the consumer’s semaphore, the message size, the num-
ber of messages in the queue and a binary value. The last
argument specifies whether the producer should poll the
producer’s semaphore or suspend itself until an interrupt
is generated by the semaphore. The consumer is initial-
ized with sq_init_consumer. It requires the address of the
queue’s control structure on the producer side to access
the producer’s semaphore, the queue buffer itself and the
poll/suspend flag. Furthermore, it needs the address where it
can store the message transferred from the producer’s mes-
sage queue. This address can be located either on the local
memory or on the scratchpad memory.

The producer sends a message with the sq_write(_dma)
function. This function copies the data from *source to a
free message block inside of the queue buffer. This trans-
fer can either be done by the core or with a dma (x_dma).
Instead of copying the data from *source into a message



Figure 2. Read cost analysis

block, the producer has the option of directly generating
data in a free message block. The sq_getToken_write returns
a free block in the queue’s buffer on which the producer can
operate. When data is ready, the producer should mark its
availability to the consumer with sq_putToken_write. The
consumer transfers a message from the producer’s queue to
a private message buffer with void sq_read(_dma). Again,
the transfer can be performed either by a local DMA or the
core itself.

Our approach thus supports: (1) either processor or
DMA-initiated data transfers to remote memories, (2) ei-
ther polling-based or interrupt-based synchronization,
and (3) flexible allocation of the consumer’s message
buffer, i.e. on scratchpad or in an external private mem-
ory. Thanks to the high-level API this flexibility can be
effectively used to optimize message passing based appli-
cations.

5. Flexible communication primitives

5.1. Cost analysis

We are interested in the time required for a consumer to
obtain a message available on the producer’s queue (Fig.
2). Here, we do not quantify the synchronization overhead
since it is highly application dependent.3 We measure the
execution time for different message sizes using either the
processors or DMAs for transfers. The first curve is gen-
erated by storing the message buffer in the shared mem-
ory and using the processor for transferring the data. We
can improve on this result by storing the message buffer in
the scratchpad. The longer the message, the more the appli-
cation’s execution time is dominated by memory transfers.
Hence, performance gains become larger when using a fast
scratchpad memory instead of slow shared memory. The
fixed setup cost for programming DMA can clearly be seen
for zero-sized messages. As soon as the message size ex-
ceeds 25 words, the increased transfer efficiency compared
to explicit copying outweighs the setup cost.

Finally, we store the message read by the consumer in
its local scratchpad memory. This further reduces the exe-
cution time since less data has to be fetched from the con-

3 We refer to Section 6 for experimental results on real applications.

solution queue position transfer mode arrival notification
(1) shared processor polling
(2) shared processor interrupt
(3) scratchpad processor polling
(4) scratchpad processor interrupt
(5) scratchpad dma polling

Table 2. Different message passing imple-
mentations

Figure 3. Comparison of message passing
implementations from Tab. 2

sumer’s private memory across the communication archi-
tecture. Again, the larger the message size, the larger the
performance gains become. When many large message are
transmitted the communication, architecture becomes con-
gested. As a result, removing traffic from the fabric has a
direct impact on the performance.

5.2. The advantage of flexibility

In this subsection we use a simple example to show that
flexibility improves the results. Our example consists of a
pipeline of eight matrix multiplication tasks. Each stage of
this pipeline takes a matrix as input, multiplies it with a lo-
cal matrix and passes the result to the next stage. We iterate
the pipeline twenty times. We run the benchmark respec-
tively on an architecture with eight and four processors, in
the first case only one task is executed on each processor,
while in the second we added concurrency on each core by
schedule of two tasks.

First, we compare five different implementations of mes-
sage passing (Tab. 2). Furthermore, we execute the pipeline
on eight processors for respectively a matrix of 8x8 and
32x32 elements. In the latter case, longer messages are
transmitted. The results (Fig. 3) clearly show that message
passing on a distributed memory architecture improves the
throughput and reduce the energy. Not only the application
performs faster, but also the energy per scratchpad access
is lower than that for shared memory. Analyzing the re-
sults in detail we can observe that A DMA is not always
beneficial in terms of throughput. For small messages the



Figure 4. Task scheduling impact on synchro-
nization

overhead for setting up the DMA is not justified. The con-
sumer’s processor can better directly copy the data to its
local scratchpad memory. In case of larger message sizes,
the DMA outperforms the processor. Instead, employing A
DMA always leads to an energy reduction, even if the dura-
tion of the benchmark is longer, due to a more efficient data
transfer.

Furthermore the way a consumer is notified of the arrival
of a message plays an important role. The consumer has to
wait until the producer releases the consumer’s semaphore.
With a single task per processor, the overhead related to the
interrupt routine slows down the system, and polling is more
efficient. When we add interrupt support to the distributed
approach, the throughput we obtain does not get worse, as
in the case of shared memory. This is mainly due to a more
efficient hardware/software support we can provide in case
of distributed approach. In any case, the energy consump-
tion increases significantly due to the instruction cache cost
we pay in order to manage the suspension of a task.

Secondly, we investigate the impact of scheduling on
synchronization (Fig. 3). We adopt an architecture with four
processors and we execute two tasks on each processor, for
a matrix of 8x8 elements. In this case the interrupt-based ap-
proach performs better for multiple tasks on a single proces-
sor. Multi-threading effectively hides the communication la-
tency of the message both for shared and scratchpad. The
scratchpad solution has always better throughput compared
to the shared approach. Instead, if we compare the results
of shared memory with interrupt to the scratch with active
polling, we notice that they have the same throughput but
the second one consume a significantly larger amount of en-
ergy. In this case, it is more convenient to suspend the task
because probably the other task scheduled on the proces-
sor is in a "ready" status. This is the cost we pay for active
polling, which stalls the processor instead of scheduling an-
other task.

From this example, we thus conclude that in order to op-
timize the energy and the throughput, the implementation
of message passing should be matched with application’s
load. This is only possible with a flexible message passing
library.

Figure 5. Execution time of QSDPCM

6. Experiments

6.1. Video encoding (QSDPCM)

QSDPCM is an advanced inter-frame compression tech-
nique for video streams. The algorithm first applies mo-
tion estimation and then compresses the motion compen-
sated frame-to-frame difference signal. The motion estima-
tion of each 16x16 pixel block can be independently pro-
cessed. Therefore, the original frame can be divided in n
clusters on which we apply motion estimation in parallel.
Each motion estimation task sends its output to a collec-
tor task that generates the compressed bit stream.

We have executed four different versions of this bench-
mark (see Fig. 5). In the simplest case, we leverage message
passing on shared memory. The input image also resides
in the non-cacheable shared memory, hampering the per-
formance (1). Secondly, we copy the block on which each
task operates in the external cacheable memory, which elim-
inates most accesses to the shared memory (2). Thirdly, we
implement message passing on a distributed memory with
our approach (3). The performance only slightly improves
compared to (2) since in this application relatively few mes-
sages are transmitted. Finally, we use DMA for transferring
the data. DMA is more efficient for transferring data from
the shared memory into the local scratchpad. It can trans-
fer the data in bursts, whereas the processor has to copy el-
ement by element and is bad in generating the addresses.

6.2. DES encryption - ECB mode

DES encrypts and decrypts data using a 64-bit key. It
splits input data into 64-bit chunks and outputs a stream of
64-bit ciphered blocks. Since each input element is indepen-
dently encrypted from all others, the algorithm can be eas-
ily parallelized. An initiator task dispatches 64-bit blocks
together with a 64-bit key to n calculator tasks for encryp-
tion. A collector task exists, which rebuilds an output stream
by concatenating the ciphered blocks of text from the cal-
culator tasks.

We have simulated different system architectures, focus-
ing on two main performance issues: first, the scalability



Figure 6. Performance scalability of the DES
benchmark

with varying numbers of cores executing in parallel on a
shared bus(Fig. 6-left); second, the ability of different com-
munication approaches to exploit the availability of more
parallel interconnects (Fig. 6-right).

Fig. 6-left illustrates the scaling of four different com-
munication techniques with varying amounts of system pro-
cessors running on a shared bus interconnect. The approach
based on shared memory queuing exhibits the worst exe-
cution times and additionally has the worst scalability, due
to its intrinsic performance bottleneck. Both the two tech-
niques exploiting scratchpad and shared memory quickly
saturate the interconnect and are unable to scale effectively.
In particular, the scratchpad solution saturates the bus with
more than 4 processor, while the shared memory approach
continues to scale until 8 processors, but never reaches the
performance of the distributed approach.

That’s why we decided to introduce a more scalable in-
terconnect which allows us to see whether the scalability
limitations is originated by the nature of the benchmark or
by an hardware limitation. Fig. 6-right illustrates the im-
pact of a full crossbar interconnect fabric in place of the
shared bus used for the previous set of benchmarks. All fig-
ures express the improvement against the shared bus base-
line. As expected, the crossbar performs better in every in-
stance, and even more so with increasing numbers of cores.
However, when using the shared approach, performance re-
sults are not scaling, because, despite the extreme conges-
tion it imposes on the fabric, traffic is mostly bound by con-
tention for a single slave. While, on the other hand, perfor-
mance of the distributed approach still scales of a by 15%
when varing from 8 to 12 cores. This demonstrates the rel-
evance of the distribute memory access for its better scala-
bility results.

7. Conclusion

We have presented a complete HW-SW solution for mes-
sage passing implemented on an MPSoC with a distributed
shared memory architecture. By distributing semaphores

across the processing nodes and connecting the scratch-
pad memories to the communication network with slave
ports, we can efficiently and flexibly implement mes-
sage passing. The flexibility arises from different transfer
(DMA/processor-initiated) and synchronization modes. We
exploit it to optimally match the application to the target ar-
chitecture. Small messages, e.g., are better transmitted by a
processor than by a DMA. The distributed semaphores en-
able efficient multi-threading, which allows effective hiding
of the communication latency. Experimental results on sev-
eral realistic examples motivate the need for this flexible
approach.
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