

Flexible heuristics miner (FHM)

Citation for published version (APA):
Weijters, A. J. M. M., & Ribeiro, J. T. S. (2011). Flexible heuristics miner (FHM). (BETA publicatie : working
papers; Vol. 334). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2022

https://research.tue.nl/en/publications/9794403f-6f2f-49a7-9880-57a4d6ae5ece

Flexible Heuristics Miner (FHM)

A.J.M.M. Weijters, J.T.S. Ribeiro

Beta Working Paper series 334

BETA publicatie WP 334 (working
paper)

ISBN 978-90-386-2428-0
ISSN
NUR

982

Eindhoven December 2010

Flexible Heuristics Miner (FHM)

A.J.M.M. Weijters and J.T.S. Ribeiro

School of Industrial Engineering,
Eindhoven University of Technology

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.
{a.j.m.m.weijters, j.t.s.ribeiro}@tue.nl

Abstract. One of the aims of process mining is to retrieve a process
model from a given event log. However, current techniques have prob-
lems when mining processes that contain non-trivial constructs, processes
that are low structured and/or dealing with the presence of noise in the
event logs. To overcome these problems, a new process representation lan-
guage (i.e. augmented Causal nets) is presented in combination with an
accompanying process mining algorithm. The most significant property of
the new representation language is in the way the semantics of splits and
joins are represented; by using so-called split/join frequency tables. This
result in easy to understand process models even in the case of non-trivial
constructs, low structured domains and the presence of noise. The new
process representation language and mining technique can also be used
for conformance checking; to indicate if all the behavior in the event log is
also represented in the process model and if there is extra behavior in the
process model not in the event log. This paper explains the new process
representation language and how the mining algorithm works. The algo-
rithm is implemented as a plug-in in the ProM framework. An illustrative
example with noise and a real life log of a complex and low structured
process are used to explicate the presented approach.

Keywords: process mining, work-flow mining, low structured processes, noise

1 Introduction

Modern enterprises are increasingly becoming dependent on the quality of their
business processes. This explains why, within organizations, there has been a shift
from data orientation to process orientation. By process we mean the way an or-
ganization arranges its work and resources, for instance the order in which tasks
are performed and which group of people are allowed to perform specific tasks. A
necessary first step to improve business processes is the correct understanding of
these processes. Process mining [1] aims at the extraction of non-trivial informa-
tion from running business process data sets (i.e., event logs or transition logs)
and can contribute to this understanding. Each entry of an event log represents
the sequence of performed tasks – and their details – under a specific business
context.

Sometimes, organizations have very explicit process descriptions of the way the
work is organized and this description is supported by a process aware information
system (PAIS) like, for instance, a work-flow management system (WFM). In

this situation the logs of the PAIS can be used to collect information about the
processes as they take place. Analyzing these logs can help to understand the
real way of working, because the practical way of working can differ considerably
from the prescribed one and even from the intended implementation in the WFM
system.

In other situations, there is no, or only a very immature, process description
available. However, also in these situations it is often possible to gather infor-
mation about the processes as they take place. For instance, in many hospitals,
information about the different treatments of a patient is registered for reasons
like financial administration (date, time, treatment, medical staff). This kind of
information, in combination with some process mining techniques, can also be
used to get more insight in the health care process [6, 5].

As indicated, event logs are the starting point for process mining techniques.
Control-flow mining, conformance checking or performance analysis are possible
applications of these techniques. The main focus of the research presented in this
paper is on control-flow mining, i.e., the induction of non-trivial process infor-
mation from running business processes expressed in a process model. However,
we will also indicate how the new process representation language and mining
technique can also be used for conformance checking.

This paper presents the details of a heuristics-driven control-flow mining algo-
rithm; the so-called “FlexibleHeuristicsMiner” (FHM). It is an updated version
of the HeuristicsMiner (HM) [10] as implemeted in ProM framework [3]. From
practical experiences with the HM during different process mining projects, we
learned that not all advantages of the process representation language as used
in the HM and the genetic mining approach [7] are completely exploited. In this
new version, the FHM, we try to take all the advantages of the underlying basic
ideas. The result is an adapted process representation language (i.e., Causal nets
(C-nets) and augmented Causal nets (augmented-C-nets)) and an accompanying
mining algorithm (FHM). The FHM is implemented in a new version of ProM
(version 6.0).

A lot of work in this sub-domain is already done. See [1, 9] for an overview. Most
of early solutions try to model all the recorded behavior in the event log by using a
formal process modeling language (e.g., the Petri net formalism). However these
kinds of approach run in problems in low-structured domains such as the ones
that can be found in health care applications. The resulting models may easily
become unreadable if the model contains a high number of tasks and complex
relationships. As an illustration Fig. 1 shows a typical control-flow mining result on
an event log of a low-structured domain. The event log contains 2259 cases, 34187
events, and 255 different event classes. The average number of different event
classes per case is 14, but some of the cases contain 67 different classes. The term
spaghetti model used for this kind of results does not need any explanation. On
the other hand, simple models like EPC are too vague to provide enough insight
in important details of processes. Depending of the mining goals, the challenge is
to find good balance between overall structures and details.

Strongly related model representation languages are proposed in [8, 2] as a
universal and robust language which allows accommondating different model se-
mantics, replay semantics, and fitness semantics. However, in their work they
assume that, given an event log, it is possible to obtain an C-net by discovering
them directly from an event log, or by converting existing process models. This
discovering (or converting) is beyond the scope of their papers and is exactly
the goal of the FHM as presented in this paper. Combining both approaches in
one robust mining and conformance checking method, seems very attractive. The
most significant difference between the process representations of [8, 2] and the
representation as used in this paper is the use of spit/join frequency information
in the so-called augmented-C-net. Other relevant work in this domain is done by
Günther in his thesis “Process Mining in Flexible Environments” [4]. However, as
mentioned by the author himself, “one of the shortcomings of the presented ap-
proach is that it often generates results for which the user cannot understand how
they came to be” [page 334]. An important motivation for the approach presented
in this paper is the development of a flexible control-flow mining algorithm that
performs well in practical situations and with results that are easy to understand.

The remainder of this paper is organized as follows. In Section 2 we first present
a process model in the well-known Petri net formalism, that will be used as a
running example. In Section 3 we define the new process representation languages
(i.e., C-nets). As an illustration the running example is translated into the updated
process representation language, the C-net. In Section 4 the details of the different
mining steps of FHM are presented: (i) the building of the Dependency Graph
(DG), (ii) the extension of the DG up to an augmented-C-net, and (iii) the possible
extension of the process model with long-distance dependencies. In Section 5
we illustrate the behavior of the FHM in the situation with noise (5.1), in low
structured domains (5.2), and finally we have a closer look at the use of this
approach for simple conformance checking (5.3). In the final section (Section 6)
we present our conclusion and future work.

Fig. 1. A typical control-flow mining result on an event log of a low-structured domain.

2 Running Example

The process model as depicted in Fig. 2 is used as running example to illustrate
the mining process of the FHM. This model is also used for generating an artificial
event log. However, during the generation of the event log, the hidden tasks D1,
D2, and D3 are not registered. Hidden tasks are a standard solution within the
Petri net formalism to deal with more complex and flexible split/join constructs.

The process model is used for generating an event log with 1000 random traces.
This log is employed to illustrate the different mining steps of the FHM. After-
wards, this event log is adopted to generate others with 5%, 10% and 20% noise.
To incorporate noise in the event logs we define five different types of noise gen-
erating operations: (i) delete the head of a trace, (ii) delete the tail of a trace,
(iii) delete a part of the body, (iv) remove one event, and finally (v) interchange
two random chosen events. During the deletion-operations at least one event, and
no more than one third of the trace, is deleted. To incorporate noise, the traces
of the original noise-free event log are randomly selected and then one of the five
above described noise generating operations is applied (each noise generation op-
eration with an equal probability of 1/5). The resulting noisy event logs are used
in Subsection 5.1 to illustrate the mining behavior of the FHM in combination
with noise. The combination of parallelism (after task A two parallel processes
are started), loops (length-one, length-two and longer loops), hidden tasks, low-
frequent behavior, and noise, make this event log difficult to mine.

As indicated before, process models in the FHM approach are not Petri nets
but so-called “Causal nets” (C-nets). Next, we will first define the concept of a
C-net and illustrate the concept by the translation of the Petri net in Fig. 2 into
a C-net.

Fig. 2. The Petri net process model used as reference for generating event logs (with and
without noise). The hidden tasks D1, D2, and D3 are not registered in the event-logs.

3 Internal Representation

Definition 1 (Causal net (C-net)). A Causal net is a tuple (T, I,O), where

- T is a finite set of tasks,
- I : T → P(P(T)) is the input pattern function,1

- O : T → P(P(T)) is the output pattern function.

If e ∈ T then �e =
⋃
I(e) denotes the input tasks e and e� =

⋃
O(e) the

output tasks of e.2

Definition 2 (Dependency Graph (DG)). If C-net = (T, I,O) is a Causal
net then the corresponding Dependency Graph (DG) is a relation on T (DG ⊆
T × T), with

- DG = {(a, b)|(a ∈ T ∧ b ∈ a�) ∨ (b ∈ T ∧ a ∈ �b)}

As an example, we show how the Petri net in Fig. 2 can be represented as
a C-net (see Table 1). The Petri net in Fig. 2 has 11 tasks (A,B, ...,K), so the
corresponding task set T = {A,B, ...,K}.

I ACTIVITY O

{} A {{B,C}}
{{A}} B {{E}, {D}}

{{A}, {L}} C {{I}}
{{B}, {F}, {G}} D {{F}, {K}}
{{B}, {F}, {G}} E {{G}}

{{D}} F {{D}, {E}, {H}}
{{E}} G {{D}, {E}, {H}}

{{F}, {G}} H {{K}}
{{C}, {I}} I {{I}, {J}}
{{I}} J {{K}, {L}}

{{J,H}, {J,D}} K {}
{{J}} L {{C}}

Table 1. The translation of the Petri net (Fig. 2) into a C-net.

For each task the table shows an input (I) and an output (O) set expression.
The set of subsets in the I-column describes which subsets of tasks should occur
to enable the occurrence of the given task at the middle column. Tasks in the
same subset are in the logical and -relation. The subsets themselves are in an or -
relation. For instance, consider task H in Fig. 2. This task can occur whenever
task F or G occurs. So, I(H) = {{F}, {G}}. Similarly, the set expressions in the

1 P(X) denotes the powerset of some set X.
2 ⋃

I(e) is the union of the subsets in I(e). For instance if I(K) = {{J,H}, {J,D}}
then �K = {J,H,D}.

O-column shows which tasks may be executed after the execution of a given task.
For instance, consider task A in Fig 2. Since both tasks B and C are executed
after the execution of A, O(A) = {{B,C}}. Remark that the set expressions can
be straightforwardly translated into logical expressions. The input set expression
{{J,H}, {J,D}} of task K can thus be seen as the same as the logical expression
(J ∧H) ∨ (J ∧D).

4 The FlexibleHeuristicsMiner(FHM) algorithm

To construct a process model on the basis of an event log, the log should be
analyzed for causal dependencies, e.g., if a task is always followed by another task
it is likely that there is a dependency relation between both tasks. To analyze
these relations we first introduce some basic relations over the tasks in the event
log. The basic relations are used to define dependency measures between tasks.

Definition 3 (Basic Relations). Let T be a set of tasks. δ ∈ T ∗ is a process
trace, W : T ∗ → N is a event log3, and a, b ∈ T :

1. a >W b iff there is a trace δ = t1t2t3 . . . tn and i ∈ {1, . . . , n − 1} such that
δ ∈W and ti = a and ti+1 = b (direct successor),

2. a >>W b iff there is a trace δ = t1t2t3 . . . tn and i ∈ {1, . . . , n− 2} such that
δ ∈W and ti = ti+2 = a and ti+1 = b and a 6= b (length-two loops),

3. a >>>W b iff there is a trace δ = t1t2t3 . . . tn and i < j and i, j ∈ {1, . . . , n}
such that δ ∈W and ti = a and tj = b (direct or indirect successor).

4.1 Step 1: Mining of the dependency graph (DG)

The starting point of the HeuristicsMiner is the construction of a so-called de-
pendency graph (DG). A frequency-based metric is used to indicate how certain
we are that there is a truly dependency relation between two events A and B
(notation A ⇒W B). The calculated ⇒W values between the events of an event
log are used in a heuristic search for the correct dependency relations.

Definition 4 (Dependency measures). Let W be an event log over T , a, b ∈
T , |a >W b| the number of times a >W b occurs in W , and |a >>W b| is the
number of times a >>W b occurs in W .4

a⇒W b =
(
|a >W b| − |b >W a|
|a >W b|+ |b >W a|+ 1

)
if (a 6= b) (1)

3 T ∗ is the set of all sequences (i.e., traces) that are composed of zero or more tasks of
T . W : T ∗ → N is a function from the elements of T ∗ to N (i.e., the number of times
an element of T ∗ appears in the process log). In other words, W is a bag of traces.

4 Because the event log W is a bag, the same trace can appears more than once in
the log and patterns can appears more times in a trace. If, for instance, the pattern
ab appears twice in a trace (e.g., cabefgcabefh), and this trace appears three times
in W (i.e., W(cabefgcabefh)=3) then these appearances count as 6 in the |a >W b|
measurement.

a⇒W a =
(
|a >W a|
|a >W a|+ 1

)
(2)

a⇒2
W b =

(
|a >>W b|+ |b >>W a|
|a >>W b|+ |b >>W a|+ 1

)
(3)

First, remark that the value of a⇒W b is always between -1 and 1. Some simple
examples demonstrate the rationale behind this definition. If we use this definition
in the situation that, in 5 traces, task A is directly followed by task B but the other
way around never occurs, the value of A⇒W B = 5/6 = 0.833 indicates that we
are not completely sure of the dependency relation (only 5 observations possibly
caused by noise). However, if there are 50 traces in which A is directly followed by
B but the other way around never occurs, the value of A⇒W B = 50/51 = 0.980
indicates that we are pretty sure of the dependency relation. If there are 50 traces
in which task A is directly followed by B and noise caused B to follow A once,
the value of A⇒W B is 49/52 = 0.94 indicating that we are still pretty sure of a
dependency relation.

A high A ⇒W B value strongly suggests that there is a dependency relation
between tasks A and B. We can use the dependency measures of Definition 4
in two different ways: (i) directly (i.e., without the all-tasks-connected heuristic),
and (ii) in combination with the all-tasks-connected heuristic.

Without the use of the all-tasks-connected heuristic three threshold parameters
are available in the FHM to indicate that we will accept a dependency relation: (i)
the Dependency threshold, (ii) the Length-one loops threshold and (iii) the Length-
two loops threshold. Usually the three parameters (i.e., the Dependency thresholds)
have the same value (default 0.9). However, by using different parameters it is, for
instance, possible to build a model without length-one loops (choose the Length-
one loops threshold = 1.0). With these thresholds we can indicate that we accept
dependency relations between tasks that have a dependency measure above the
value of the dependency thresholds resulting in a control-flow model with only the
most frequent tasks and behavior. By changing the parameters we can influence
how complete the control-flow model becomes.

The advantage of using the all-tasks-connected heuristic is that many depen-
dency relations are tracked without any influence of any parameter setting. The
result is a relative complete and understandable control-flow model even if there is
some noise in the log. The underlying intuition in the all-tasks-connected heuristic
is that each non-initial task must have at least one other task that is its cause,
and each non-final task must have at least one dependent task. Using this in-
formation we can first build a work flow model taking the best candidates (i.e.,
with the highest A⇒W B scores). One extra parameter is available in combina-
tion with the all-tasks-connected heuristic the so-called relative to best threshold.
With this threshold we can indicate that we will also accept dependency relations
between tasks that have (i) a dependency measure above the value of the depen-
dency threshold, and (ii) have a dependency measure “close” to the first already
accepted dependency value (i.e., for which the difference with the “best” depen-
dency measure is lower than the value of relative-to-best threshold). However, if
we use this heuristic in the context of a low-structured process the result is a very

complex model with all tasks and a high number of connections (as indicated in
Fig 1).

In the next Sections the details of the all-tasks-connected heuristic are given.
The all-tasks-connected heuristic is implemented in the algorithm items 4 through
9. In the items 9, 10 and 11 the minimal connected process model is extended
with other reliable connections.

For practical reasons, we start adding two artificial tasks to identify univocally
the beginning and the end of the process. This is especially practical if there is
not a clear unique start and end task (e.g., if there is noise in the event log).

Definition 5 (Start/end extension). Let W be an event log over T . Then W+

is the (artificial) start/end-extension over T+ with

1. T+ = T ∪ {start, end}
2. W+ = {start δ end | δ ∈W}

Definition 6 (Dependency Graph (DG)-algorithm). Let W be an event log
over T , W+ an event log over T+ (i.e., the start/end-extension of W), σa the
(absolute) Dependency Threshold (default 0.9), σL1L the Length-one Threshold
(default 0.9), σL2L the Length-two Threshold (default 0.9), and σr the Relative-
to-best Threshold (default 0.05). DG(W+) (i.e., the dependency graph for W+)
is defined as follows.

1. A = {t | ∃σ∈W+ [t ∈ σ]} (the set of tasks appearing in the log),
2. C1 = {(a, a) ∈ A×A | a⇒W a ≥ σL1L} (length-one loops),
3. C2 = {(a, b) ∈ A×A | (a, a) /∈ C1∧(b, b) /∈ C1∧a⇒2 W b ≥ σL2L} (length-two

loops),
4. Cout = {(a, b) ∈ A×A | b 6= end ∧ a 6= b ∧ ∀y∈A[a⇒W b ≥ a⇒W y]}

(for each task, the strongest follower),
5. Cin = {(a, b) ∈ A×A | a 6= start ∧ a 6= b ∧ ∀x∈A[a⇒W b ≥ x⇒W b]}

(for each task, the strongest cause),
6. C ′out = {(a, x)|(a, x) ∈ Cout∧∃(b, y) ∈ Cout[(a, b) ∈ C2∧ b⇒W y > a⇒W x]}

(only one following task is necessary for a length-two loop, these are the “non
necessary” dependencies),

7. Cout = Cout − C ′out,
8. C ′in = {(x, a)|(x, a) ∈ Cout ∧ ∃(y, b) ∈ Cin[(a, b) ∈ C2 ∧ y ⇒W b > x ⇒W a]}

(only one cause task is necessary for a length-two loop),
9. Cin = Cin − C ′in,

10. C ′out = {(a, b) ∈ A×A | a⇒W b ≥ a⇒W y ∧ (a, y) ∈ C ∧ a⇒W b ≥ σa},
11. C ′′in = {(a, b) ∈ A×A | a⇒W b ≥ x⇒W b ∧ (x, b) ∈ C ∧ a⇒W b ≥ σa},
12. DG = C1 ∪ C2 ∪ C ′out ∪ C ′′in.

To illustrate the algorithm as given above we apply the DG-algorithm on the
event log generated with the process model as given in Fig. 2. As noticed before,
the hidden tasks D1, D2 and D3 are not registered. The basic information we will
use is in Table 2 (the counting of the direct successors (i.e., a >w b)), Table 3 (the
counting of the length-two loops (i.e., a >>w b)), and Table 4 (the dependency
measures).

Start A B C D E F G H I J K L End

Start 0 1000 0 0 0 0 0 0 0 0 0 0 0 0
A 0 0 520 480 0 0 0 0 0 0 0 0 0 0
B 0 0 0 360 182 198 0 0 0 233 27 0 0 0
C 0 0 338 0 125 128 40 48 8 349 0 0 0 0
D 0 0 0 63 0 0 586 0 0 193 68 5 6 0
E 0 0 0 73 0 0 0 619 0 236 67 0 3 0
F 0 0 0 16 124 134 0 0 327 212 88 0 7 0
G 0 0 0 16 143 145 0 0 359 220 105 0 10 0
H 0 0 0 11 0 0 0 0 0 252 105 614 5 0
I 0 0 119 0 209 236 179 210 166 315 576 0 0 0
J 0 0 23 0 135 155 102 117 118 0 0 381 5 0
K 0 0 0 0 0 0 0 0 0 0 0 0 0 1000
L 0 0 0 17 3 2 1 4 9 0 0 0 0 0

End 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1000 1000 1000 1036 921 998 908 998 987 2010 1036 1000 36 1000

Table 2. Direct successor (a >w b-counting) and frequency (last line) counting.

Start A B C D E F G H I J K L End

Start 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 89 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 104 0 0 0 0 0 0
F 0 0 0 0 110 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 133 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 19 0 40 63 59 57 97 116 0 0 0 0
J 0 0 0 0 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0

End 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3. Length-two loops counting (a >>w b-counting). The value 89 in position
D,F indicates that there are 89 DFD patterns in the event log. Remark the high value
between L1L-task I and many other tasks (i.e., B, D, E F , G and H). This is caused
by the looping behavior of I in combination with the parallel behavior of the other
mentioned tasks.

Start A B C D E F G H I J K L End

Start 0 .999 0 0 0 0 0 0 0 0 0 0 0 0
A 0 0 .998 .998 0 0 0 0 0 0 0 0 0 0
B 0 0 0 .031 .995 .995 0 0 0 .323 .084 0 0 0
C 0 0 0 0 .328 .272 .421 .492 0 .997 0 0 0 0
D 0 0 0 0 0 0 .650 0 0 0 0 .833 .300 0
E 0 0 0 0 0 0 0 .620 0 0 0 0 .167 0
F 0 0 0 0 0 .993 0 0 .997 .0842 0 0 .667 0
G 0 0 0 0 .993 0 0 0 .997 .0232 0 0 .400 0
H 0 0 0 .15 0 0 0 0 0 .205 0 .998 0 0
I 0 0 0 0 .040 0 0 0 0 0 .998 0 0 0
J 0 0 0 0 .328 .395 .073 .054 .058 0 0 .997 .833 0
K 0 0 0 0 0 0 0 0 0 0 0 0 0 .999
L 0 0 0 .944 0 0 0 0 .267 0 0 0 0 0

End 0 0 0 0 0 0 0 0 0 0 0 -.999 0 0

Table 4. All positive a ⇒W b-values. See the example for a clarification of the bold
face, Italic and underlined values.

1. The first step of the algorithm is the construction of the set A (the set of all
tasks appearing in the log).

2. Looking at the diagonal of Table 2 there is only one candidate for C1: task I
is 315 times followed by itself. The value of I ⇒W I = 315/(315 + 1) ≥ σL1L,
resulting in C1 = {I}.

3. For this step of the algorithm we make use of Table 3. The table indicates that
pattern DFD appears 89 in the log and pattern FDF 110 times. Therefore
D ⇒2 W F = (89+110)/(89+110+1) = 0.995. Because F /∈ C1 and D /∈ C1

and 0.995 ≥ σL2L both (F,D) ∈ C2 and (D,F) ∈ C2. The same argumenta-
tion counts for the pattern EG resulting in C2 = {(F,D), (D,F), (E,G), (G,E)}.

4. Based on Table 4 check each non End -row for the highest value (the strongest
follower). For example, for the C task the highest value (in boldface) is 0.997;
therefore (C, I) is in the set Cout.

5. Based on Table 4 check each non Start-column for the highest value (the
strongest cause). For example, for the K task the highest value (in boldface)
is 0.998; therefore (H,K) is in the set Cin.

6,7. As an illustration we take the tasks D and E. They are in a direct loop (i.e.,
(D,E) ∈ C2). The strongest output connection ofD beside E isK (0.833), and
from E is H (0.997). For this reason (D,E) ∈ C ′out (is not strictly necessary)
and will be removed from Cout (step 7 of the algorithm). In Table 4 the
removed connections are marked with underlining.

8,9. Analogue to step 6 and 7, but now for the incoming connections.
10,11 Depending on the values of the parameter settings, extra connections are

accepted if both the absolute dependency threshold σa (default 0.9) and the
relative-to-best threshold σr (default 0.05) are fulfilled. Remark that for the
default parameter setting the dependency relation between D and K is not
accepted because D ⇒W K = 0.333 < 0.9 (Table 4). However, the connection

from J to L is accepted, because the all tasks connected heuristic is active. In
the matrix of Table 4 the extra accepted dependency values are displayed in
Italics.

12. Finally we can combine the information in the different matrices to perform
the last step of the algorithm.

�X ACTIVITY X�

{} A {B,C}
{A} B {D,E}
{A,L} C {I}
{B,F,G} D {F}
{B,F,G} E {G}
{D} F {D,E,H}
{E} G {D,E,H}
{F,G} H {K}
{C, I} I {I, J}
{I} J {K,L}
{J,H} K {}
{J} L {C}

Table 5. The resulting DG in table layout.

If we compare Table 5 with the result of applying Definition 2 on the C-net
as given in Table 1 the only difference is the missing low frequent connection
from D to K. A graphical representation (ProM 6.0) of the same result is given
in Fig. 3. This graph is augmented with extra information. The numbers in the
task boxes indicate the frequency of the task; the numbers on the arcs indicate
the reliability of the dependency relation. Other views are also possible within
ProM. As indicated, the low frequent connection from D to K is missing in the
DG. However, If we use the parameter settings σa = 0.80 and σr = 0.20 the
low frequent connection from D to K is also accepted (the frequency of this
connection is only 13). The resulting (complete) graph, but now in combination
with frequency information for the arcs, is given in Fig. 4. Remark that if we use
the all-tasks-connected heuristic, all tasks (also low frequent tasks like tasks L)
will be part of the mined model. If we do not like to have low frequent tasks in
our model it is possible to use the FHM without the all-tasks-connected heuristic
or to use one of the ProM filters to remove low frequent tasks out of the event
log.

The DG gives information about the dependency between tasks, but the types
of splits/joins are not yet mined. This mining is the subject of the next subsection.

4.2 Step 2: mining of the splits/joins

The next step of the FlexibleHeuristicsMiner is the characterization of split and
join points of the DG. Thus, for each task in the DG, the different split and join

Fig. 3. The resulting dependency graph (DG) with dependency information if we use
the default parameters setting. The low frequent connection between taks D and K is
not in the model.

Fig. 4. The resulting dependency graph (DG) with frequency information if we use the
parameter settings σa = 0.80 and σr = 0.20. The low frequent connection (i.e., 13 cases)
from D to K is also accepted.

patterns are mined. Let we first explain the basic idea. Starting with task A of
the DG of Table 5 the output set is {B,C}. However, we want to know whether
task A is always followed by both B and C (i.e., an AND-split), only by B or C
(i.e., a XOR-split), or most of time by B or C and sometimes by both (i.e., an
OR-split). We will use a simple extension of the C-net formalism (Definition 1)
to characterize the behavior of the splits and joins. The mining of the splits/joins
mainly relies on two data structures: (i) the DG and (ii) the event log that contains
information about the ordering of the tasks. The result is an augmented-C-net.
The augmented-C-net is an C-net but with bags instead of sets so that it becomes
possible to indicate the number of times specific split and join patterns appear
in the event log. This information is the basis for statistical computing of valid
splits/joins.

Definition 7 (augmented Causal net (augmented-C-net)). An augmented
Causal net is a tuple (T, I,O), where

- T is a finite set of tasks,
- I : T → P(P(T)→ N) is the input frequency function,
- O : T → P(P(T)→ N) is the output frequency function.

Based on the information in the event log it appears that task A (frequency
1000) is always followed by both B and C. In the augmented-FHM (Table 6) this
is indicated by the output-bag of task A (i.e., O(A) = {{B,C}1000}). The output
bag of task B (i.e., O(B) = {{D}533, {E}467} is an example of a XOR-split.

I TASK O

[] A [{B,C}1000]

[{A}1000] B [{D}467, {E}533]

[{A}1000, {L}36] C [{I}1036]

[{B}467, {F}222, {G}232] D [{F}908, ∅13]

[{B}533, {F}215, {G}250] E [{G}998]

[{D}908] F [{D}222, {E}215, {H}471]

[{E}998] G [{D}232, {E}250{H}516]

[{F}471, {G}516] H [{K}987]

[{C}1036, {I}974] I [{I}974, {J}1036]

[{I}1036] J [{K}1000, {L}36]

[{J,H}987, {J}13] K []

[{J}36] L [{C}36]

Table 6. The augmented-C-net for the DG of Table 5 in combination with the event
log with 1000 traces.

In the ProM implementation of FHM another visualization of augmented-C-
net is used. By clicking a task (e.g., task F) in the DG graph (Fig. 3) the split
and join information of that task is displayed (Fig. 5).

Fig. 5. The split and join information after clicking tasks F in the DG of Fig. 3. Each
line corresponds to a pattern in which the activated outputs are identified by the ’X’
symbol.

The basic idea behind the building of the augmented-C-net is relatively simple.
We take task A, the DG of Table 5, and the trace ABDCIFIJEGHK as example.
We first look at the split information for A. Because A� = {B,C}, �B = {A} and
�C = {A,L} (see the DG in Table 5) we know that there are two candidates that
can be activated by A. Because both tasks B and C appear in the trace and A

is the nearest candidate appearing before the B and C, we take the position that
both B and C are activated by the current A and the split frequency information
of A is updated with the pattern {B,C} (i.e., O(A) = O(A)

⊎
[{A,B}]).

However, more complex situations are possible. For instance look at the split
of tasks B. B� = {D,E} and �D = �E = {B,F,G}. That means that there
are three candidate tasks for the activation of D and E. If we look at the trace
ABDCIFIJEGHK the only available candidate for D is B (i.e., B is the only
candidate that appears before D). For E there are two candidates B and F both
appearing before E. Because the distance between F and E is closer than the
distance between B and E we take the position that F is the activator of E.5

Therefore the split frequency information of B is updated with the pattern {D}
(i.e., O(B) = O(B)

⊎
[{D}]).

Finally we look at the split I in combination with the first appearance of
I in the trace ABDCIFIJEGHK. I� = {I, J}, �I = {CI} and �J = I. In
other words task I can activate I and J . The only candidate for the second I
in the trace is the first I. Based on the nearest candidate strategy we take the
position that task J is caused by the second appearance of I. In other words the
split information for the first appearance of I results in updating of the output
frequency with {I} (i.e., O(I) = O(I)

⊎
[{I}]).

For the mining of the frequency information of the joins of the DG we follow
the same strategy but now we go backwards through the traces. Table 6 shows
the resulting augmented-C-net.

Remark that an augmented-C-net contains both work-flow information and
specific frequency information as emerging in the event log. In Subsection 5.3 we
will illustrate how this combined information can be used for understandable con-
formance checking. Remark also that an augmented-C-net can easily be translated
into the corresponding C-net or in a simplified C-net (i.e., by only representing
the high-frequent patterns into the C-net).

4.3 Step 3: mining long-distance dependencies

The final step of the FlexibleHeuristicsMiner is the identification of dependencies
that are not represented yet in the DG. Called long-distance dependencies (or non-
free choice), these relations indicate cases in which a task X depends indirectly on
another task Y to be executed. That means that, in a split or join point, the choice
may depend on choices made in other parts of the process model. Fig. 6 depicts a
Petri Net with two distinct long-distance dependencies (i.e., the relations B ⇒ E
and C ⇒ F). Note that, in this example, there are only two possible sequences:
ABDEG and ACDFG. However, without mining the long-distance dependencies,
the DG does not ensure that task E is only executed if D follows B. The same
happens for F . Thus, non-valid sequences such as ABDFG or ACDEG might
fit in the process model. Fig. 7 shows the DG without mining the long-distance
dependencies.

5 We only take tasks appearing before E as possible candidates. The choice of the
nearest candidate is only one of the possible selection strategies.

Fig. 6. A process model (in the Petri net formalism) with a long-distance dependency
construct.

Fig. 7. The Fig. 6’s corresponding DG without long-distance dependency relations.

In order to handle the long-distance dependency issue, a new frequency-based
metric is defined. Basically, this metric takes into account the indirect relation
between tasks (i.e., the direct or indirect successor counter of Definition 3). The
main idea is to find pairs of tasks with similar frequencies in which the first
task is directly or indirectly followed by the second one. These circumstances are
measured through the a ⇒l

W b measure (Definition 8). All the pairs with high
⇒l
W -values (i.e., close to 1) are designated as long-dependency relations.

Definition 8 (Long distance dependency measure). Let W be an event log
over T , a, b ∈ T , |a >>>W b| the number of times a >>>W b occurs in W 6, and
|a| is the number of times a occurs in W .

a⇒l
W b =

(
2 (|a >>>W b|)
|a|+ |b|+ 1

)
−
(

2 Abs(|a| − |b|)
|a|+ |b|+ 1

)
(4)

A value close to 1 of the first part of the expression indicates that task a is
always followed by task b. A value close to 0 of the second part indicates that
the frequency of tasks a and b is about equal. That means that an overall value
close to 1 indicates both: task a is always followed by task b and the frequencies
of tasks a and b are about equal7. Remark that some long-dependency cases are
6 In the pattern cdeafgbhibjkaladefbgh only the underlined appearances of the pattern

a...b contribute to the value |a >>>W b| (i.e., only a...b patterns without other a’s
or b’s between them).

7 The requirement that the frequency of both tasks B and E are roughly equal is a
restriction that brings about that not all possible long-distance dependency relations
are mined.

already indirectly represented in the DG. A good example is the relation A⇒ D
in Fig. 6, which its long-distance dependency value is close to 1.0 but no extra
dependency relation is necessary. This happens because A is always indirectly
followed by D, turning redundant the extra direct connection from A to D. With
this remark, it is finally defined that a long-dependency relation X ⇒ Y (with
X,Y ∈ T) needs a new dependency relation in the DG whenever X ⇒l

W Y ≥ σl
(σl is a long-distance threshold; by default σl = 0.90) and it is possible to go
from X to the end task without visiting Y . Note that every time a new (long-
distance) dependency relation is added into the DG the relation tasks’ inputs
and outputs change as well as the split/join points. So, at the end of this stage
(mining long-distance dependencies), it is necessary to recompute the split/join
information.

Up to here, the details of the process representation formalism and the mining
algorithm are presented. In the next section we illustrate the mining results in
case of noise and in case of a low-structured domain.

Fig. 8. The Fig. 6’s corresponding DG with long-distance dependency relations.

5 Noise, Low Structured Domains, and Conformance
Checking

5.1 Noise

In a first experiment we illustrate the usage of the FHM on event logs with noise
(i.e., the event logs with 5%, 10% and 20% noise as described in the Section 2).
Both the effects during the mining of the DG (step 1 of the mining algorithm)
and during the mining of augmented-C-net (step 2) are discussed.

First, the mining results at the DG level. We compare the mining results of the
event log with noise with the mining results of the noise free event log (Fig. 3). Us-
ing the default parameter settings in combination with all-tasks-connected heuris-
tic on the event logs with different noise levels, the same 19 dependency relations
were successfully mined. The only difference is related with the dependency mea-
sures; the noise will cause a decrease in the dependency measures. Table 7 shows
the differences in the average dependency measures (i.e., 19 relations) for the
different noise levels.

0% 5% 10% 20%

Average Dependency 0.9849 0.9829 0.9821 0.9814

Table 7. Evolution of average dependency measures in the DG for different noise levels.

In Subsection 4.1 we illustrated that it is possible to rediscover the complete
dependency graph (inclusive the low frequent connection from tasks D to K)
if we use the parameter settings σa = 0.80 and σr = 0.20 (Fig. 4). However,
mining low frequent behavior in the situation were the event log contains noise is
more problematic. By using low thresholds to accept also low frequent behavior,
there is always the risk that we will also accept noise in the mined model. For
instance, if we use the FHM with the same parameter settings as given above
(σa = 0.80 and σr = 0.20) we will end up with the DG as given in Fig. 9. If we
compare this graph with the DG’s of Fig. 3 and Fig. 4 we can see that beside
the low frequent connection between tasks D and K also two extra connections
are introduced (i.e. from A to I and from F to K). These extra connections are
based on behavior in the event log caused by noise. We can conclude that for
the main behavior in the event log the impact of noise during the mining of the
DG is almost negligible. However, the combination of an event log with noise and
mining of detailed behavior appears obviously difficult.

Fig. 9. The resulting dependency graph (DG) with dependency information if we use
the event log with 10% noise in combination with the parameter settings σa = 0.80 and
σr = 0.20. The low frequent connection from D to K but also the “wrong”-connections
from A to I and from F to K are in the model.

The result of the first mining step is a DG. The result of applying mining step
2 on this DG in combination with an event log will result in an augmented-C-
net. Unlike the mining of the DG, the mining of the augmented-C-net does not
rely directly on any threshold. So, all the noisy information is represented in the
augmented-C-net. The augmented-C-net can be transformed into a C-net. During
this transformation we can take the decision to represented all or only the main

behavior into the C-net. In this experiment we will use a threshold of 5%. Below
the results of the augmented-C-net mining for the event logs with 5%, 10% and
20% noise are presented. Fig. 10 shows the augmented-C-net information of task
F in the case of 20% noise. Comparing these results with the results in Fig. 5,
it is possible to see that there is a clear distinction between the original patterns
(the patterns with a high frequency) and the patterns caused by the noise (the
patterns with a low frequency). Even for the experiment with the highest noise
level (i.e., 20%), it is clear that the patterns caused by noise have frequency below
a 5% threshold.

Fig. 10. The augmented-C-net information for task F in the case of 20% noise as pre-
sented in the ProM tool.

Table 8 shows the frequency of the patterns caused by noise for the different
noise levels. For instance, the information about task F and 20% noise is based
on the corresponding split and join tables (Fig. 10). Thus, the final values are
joins = 1.35% ≈ 1.4% and splits = 1.35%+0.11%+0.11% ≈ 1.6%. Therefore, it
can be concluded that in this experimental setting, it is possible to recognize low
frequent behavior in the split and join information, caused by noise.

5.2 Low Structured Domains

The second part of this evaluation study is based on an event log from a low-
structured domain. Using the event log introduced in Section 1, it is intended to
show how the FHM can provide insight about very flexible applications. Having
the example depicted by Fig. 1 as reference, we pretend to analyze the behavior
of the process model’s most relevant task (identified at the right-hand side of the
picture, with several incoming and outgoing connections). This analysis is done for
two kinds of process models: (i) a complete model in which even the low-reliable
dependency relations are considered, and (ii) a simplified model in which only the
high-reliable dependency relations are taken into account. Note that, by space
issues, this analysis is only done for the split patterns.

TASK
JOINS SPLITS

5% 10% 20% 5% 10% 20%

A 0.9% 1.6% 3.0%

B 0.2% 0.6% 0.7% 0.1% 0.5% 1.9%

C 0.2% 0.5% 0.7% 0.2% 0.6% 1.2%

D 0.4% 0.9% 1.3% 0.3% 1.0% 1.5%

E 0.4% 0.6% 1.4% 0.1% 0.5% 0.7%

F 0.2% 0.6% 1.4% 0.4% 1.0% 1.6%

G 0.3% 0.9% 1.3% 0% 0.2% 0.4%

H 0.4% 1.2% 1.6% 0.1% 0.1% 0.1%

I 0.4% 0.7% 1.2% 0.2% 0.4% 0.7%

J 0.2% 0.7% 1.2% 0.1% 0.5% 1.0%

K 0.3% 0.7% 1.4%

L 0% 0% 0% 0% 0% 0%

Table 8. Quantity of low frequent patterns caused by noise with regard to the frequency
of the task.

The FHM result for the complete model is depicted by Fig. 1. This model is
characterized by a dense DG, which turns the model analysis in a difficult task.
Nonetheless, there is a lot of information in the model that can be intuitively
analyzed. A good example is the splits and joins characterization provided by the
FHM. Table 9 shows how a given task behaves in this complex model. Note that
each pattern presented in Table 9 has corresponding bag expression. For instance,
the first and the last patterns can be expressed by {O8}1151 and {O7, O8}69.
Additionally, the empty pattern that appears in the list (second one) is the result
of two possible events: (i) the given task may be an end task, or (ii) the traces
that originated those empty patterns are very specific cases (probably considered
as noise) that do not fit in the DG.

OUTPUTS
FREQUENCY

O1 O2 O3 O4 O5 O6 O7 O8

X 1151

469

X 150

X 99

X 92

X 71

X X 69

46 others 219

Table 9. The split patterns of the B Perifeer infuus task in the complete model.

The FHM result for the simplified model is depicted by Fig. 11. Contrarily the
complete one, this model is characterized by a sparser DG. This means that the
information provided by the DG is easier to understand by the analyst. However,

since this sparse DG was obtained through abstraction processes, some of the
information may be just omitted in the DG. Nevertheless, it is possible to identify
these cases with the FHM using the splits and joins information of the augmented-
C-net. Table 10 presents the splits and joins information for a given task of the
simplified model.

Fig. 11. The simplified control-flow mining result on an event log from a low-structured
domain. This DG contains only relations with dependency value greater than 0.85. Table
10 contains the augmented-C-net split information of the upper node.

OUTPUTS
FREQUENCY

O2 O5 O6 O8

X 1235

550

X 151

X 116

X 97

11 others 171

Table 10. The split patterns of the B Perifeer infuus task in the simplified model.

As expected, the patterns depicted in Table 10 are in line with the ones gen-
erated in the complete model. Although in the simplified model only four out
of eight outputs are taken into account, it is possible to characterize the main
behavior of the given task. The reason why the very same pattern {O8} (the most
frequent one) has a higher frequency in the simplified case is related with pattern

combination. For instance, the complete case’s patterns {O8}1151 and {O7, O8}69
(and some other low frequent ones) are merged into the simplified case’s pattern
{O8}1235.

5.3 Conformance checking

In this subsection we have a closer look at the use of the augmented-C-net for
conformance checking. During conformance checking we are interested in the con-
formance between a process model and an event log. The evaluation of the con-
formance between a model and a event log can take place in different dimensions:
fitness, precision, and generalization. The fitness indicates how much of the ob-
served behavior in the event log is captured by the process model. The precision
indicates how much of not observed behavior in the event log can be recog-
nized by using the process model. Generalization indicates wether the process
model permit extra “allowed” behavior. Remark that the two first dimensions
(i.e., fitness and precision) are a relation between a process model and an event
log. In this subsection our focus is on these two dimensions. Note also the rela-
tion between a C-net and an augmented-C-net. The C-net is a process model, the
augmented-C-net contains detailed information about the behavior as observed
in an event log. For this reason it seems possible to use a comparison between the
C-net (i.e., a process model) and the corresponding augmented-C-net (i.e, with
event log information) to say something about fitness and precision. For instance
if we translate an augmented-C-net into a simplified C-net by only representing
high-frequent patterns in the C-net we know beforehand that not all observed
behavior will fit in model. Below some other less trivial examples of the use of the
augmented-C-net for conformance checking are given.

As a first example we have a closer look at the previous situation where we
used the default parameters to mine the noise-free log. As indicated the resulting
DG (Fig. 3) and the related augmented-C-net (Table 6) are both missing the
connection between task D and K. That means that most of the traces of the
event log fit exactly in the process model, only the traces that make use of the
low frequent (i.e., 13 cases) dependency relation between tasks D and K will not
fit in the mined model (i.e., it is observed behavior that does not fit in the process
model). The resulting augmented-C-net (Table 6) can be used to indicate places
where the event log does not fit in the model. If we look at the output pattern of
task D a deficiency is registered; there are 13 cases with an empty set as output
pattern. In the input patterns of K the deficiency is indicated in the same table
by 13 cases were only tasks J causes tasks K, and not both J and H. This means
that we can use augmented-C-net to recognize missing or divergent behavior.

In the next example we will indicate how we can recognize “strange/not al-
lowed” task sequences. To check if we can recognize extra behavior our starting
point is an exact correct C-net model for the example event log without noise. Our
goal is to indicate the extra behavior in the event log with 10% noise. To check
this we first apply Def. 2 to get the associated DG. This is exactly the complete
DG of Fig. 4. In the next step we use the event log with 10% noise in combination
with step 2 of the FHM algorithm to build a new augmented-C-net. If we now

compare the original C-net with the new augmented-C-net we can recognize the
places in the C-net where there is extra/new behavior caused by the noise. This
information is displayed in Table 11.

TASK
JOINS SPLITS

5% 10% 20% 5% 10% 20%

A 9 16 29

B 2 6 7 1 5 10

C 2 5 7 2 6 12

D 4 8 12 0 4 9

E 4 6 14 1 5 7

F 2 5 12 4 9 14

G 3 9 13 0 2 4

H 4 12 15 1 1 1

I 8 14 23 3 7 13

J 2 7 12 1 5 10

K 9 24 37

L 0 0 0 0 0 0

Totals 40 96 152 22 60 109

Table 11. Quantity of extra patterns in the augmented-C-net caused by the noise.

From Table 11 is clear that we can use the augmented-C-net to detect ex-
tra behavior. However, we can ask ourselves how much of the extra behavior is
detected. Most of the noise operations will result in task patterns that are not
allowed and are not in the original event log. The noise is based on five different
types of noise generating operations: (i) delete the head of a trace, (ii) delete the
tail of a trace, (iii) delete a part of the body, (iv) remove one event, and finally (v)
interchange two random chosen events. In the case of 10% noise over 1000 traces
we would expect 20 traces of each type. Type (i) and (ii) will possible generate
one new pattern in the frequency table. Type (iii) and (iv) two new patterns,
and finally type (v) four new patterns. Therefore the maximal number of possible
new patterns is 40 + 80 + 80 = 200. If we compare this with the totals for 10%
noise situation in Table 11 the total number of observed “strange” behavior is 96
+ 60 = 156. A possible explanation for this lower value is that not each noise
operation will always result in a “not allowed” trace. For instance, interchanging
two parallel tasks will not result in a “not allowed” trace.

In conclusion, the presented examples show that we can use augmented-C-
net both for recognizing extra behavior and for recognizing missing behavior.
Moreover, the augmented-C-net indicates in a very understandable way, where in
the process model, these deviations are located.

6 Conclusions and Future Work

In this paper the basic ideas behind the flexible heuristic miner are presented: the
development of a robust and flexible control-flow mining algorithm that performs
well in practical situations and with results that are easy to understand. To achieve
this goal two new process modeling formalism are introduced ((i.e., Causal nets
and augmented Causal nets). Also the three steps of the heuristics driven control-
flow mining algorithm are defined (i.e., the Flexible Heuristics Miner (FHM)).
A working example is used to illustrate the modeling formalism and the mining
algorithm. Finally, the behavior of the FHM in situations with event logs with
noise, event logs from low-structured domains, and the use of the augmented-
C-net for conformance checking are illustrated. For the illustrative examples it
appears possible to mine the main behavior in the event log and the approach
seems robust for noise. However, there are still challenges to be handled.

To get a better understanding of the mining qualities of the FHM we have
to perform more mining experiments with all kind of event logs (noise, complex
and low structured domains, etc.). Also our claim that the resulting models of the
FHM approach are easy to understand by the process owners needs an experimen-
tal founding. The implementation of the long-distance mining is still incomplete;
only simple long-distance dependencies can be mined. Also the use of the pre-
sented approach for understandable conformance checking needs supplementary
experiments and research. Keeping the basic ideas, improvements of the mining
algorithm seem possible.

Acknowledgments This work is being carried out as part of the project
“Merging of Incoherent Field Feedback Data into Prioritized Design Information
(DataFusion)”, sponsored by the Dutch Ministry of Economic Affairs under the
IOP IPCR program.

References

1. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

2. A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Towards robust con-
formance checking. In Business Process Management (BPM 2010), volume xx of
Lecture Notes in Computer Science, page xx. Springer-Verlag, Berlin, 2010.

3. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining Tool
Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of Petri
Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 444–454.
Springer-Verlag, Berlin, 2005.

4. C.W. Gunther. Process Mining in Flexible Environments. PhD thesis, Eindhoven
University of Technology, Eindhoven, 2009.

5. R.S. Mans, M.H. Schonenberg, M.S. Song, W.M.P. van der Aalst, and P.J.M. Bakker.
Application of process mining in healthcare: a case study in a Dutch hospital. Com-
munications in Computer and Information Science, 25:425–438, 2009.

6. L. Maruster, W.M.P. van der Aalst, A.J.M.M. Weijters, A. van den Bosch, and
W. Daelemans. Automated Discovery of Workflow Models from Hospital Data. In
C. Dousson, F. Höppner, and R. Quiniou, editors, Proceedings of the ECAI Workshop
on Knowledge Discovery and Spatial Data, pages 32–36, 2002.

7. A.K. Alves De Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic
process mining : a basic approach and its challenges. Data Mining and Knowledge
Discovery, 14(2):245–304, 2007.

8. A. Rozinat. Process Mining: Conformance and Extension. PhD thesis, Eindhoven
University of Technology, Eindhoven, 2010.

9. A. Tiwari, C.J. Turner, and B. Majeed. A review of business process mining: state-
of-the-art and future trends. Business Process Management Journal, 14(1):5–22,
2008.

10. A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K. Alves de Medeiros. Process
Mining with the HeuristicsMiner-algorithm. BETA Working Paper Series, WP 166,
Eindhoven University of Technology, Eindhoven, 2006.

Working Papers Beta 2009 - 2010

nr. Year Title Author(s)

338

335

334

333

332

331

330

329

328

327

326

325

324

2010

2010

2010

2010

2010

2010

2010

2010

2010

2010

2010

2010

2010

Analysis of the dial-a-ride problem of Hunsaker
and Savelsbergh

Attaining stability in multi-skill workforce
scheduling

Flexible Heuristics Miner (FHM)

An exact approach for relating recovering
surgical patient workload to the master surgical
schedule

Efficiency evaluation for pooling resources in
health care

The Effect of Workload Constraints in
Mathematical Programming Models for
Production Planning

Using pipeline information in a multi-echelon
spare parts inventory system

Reducing costs of repairable spare parts supply
systems via dynamic scheduling

Identification of Employment Concentration and
Specialization Areas: Theory and Application

A combinatorial approach to multi-skill workforce
scheduling

Stability in multi-skill workforce scheduling

Maintenance spare parts planning and control: A
framework for control and agenda for future
research

Near-optimal heuristics to set base stock levels
in a two-echelon distribution network

Murat Firat, Gerhard J. Woeginger

Murat Firat, Cor Hurkens

A.J.M.M. Weijters, J.T.S. Ribeiro

P.T. Vanberkel, R.J. Boucherie, E.W.
Hans, J.L. Hurink, W.A.M. van Lent, W.H.
van Harten

Peter T. Vanberkel, Richard J. Boucherie,
Erwin W. Hans, Johann L. Hurink, Nelly
Litvak

M.M. Jansen, A.G. de Kok, I.J.B.F. Adan

Christian Howard, Ingrid Reijnen, Johan
Marklund, Tarkan Tan

H.G.H. Tiemessen, G.J. van Houtum

F.P. van den Heuvel, P.W. de Langen,
K.H. van Donselaar, J.C. Fransoo

Murat Firat, Cor Hurkens

Murat Firat, Cor Hurkens, Alexandre
Laugier

M.A. Driessen, J.J. Arts, G.J. v. Houtum,
W.D. Rustenburg, B. Huisman

R.J.I. Basten, G.J. van Houtum

323

322

321

320

319

318

317

316

315

314

313

2010

2010

2010

2010

2010

2010

2010

2010

2010

2010

2010

2010

Inventory reduction in spare part networks by
selective throughput time reduction

The selective use of emergency shipments for
service-contract differentiation

Heuristics for Multi-Item Two-Echelon Spare
Parts Inventory Control Problem with Batch
Ordering in the Central Warehouse

Preventing or escaping the suppression
mechanism: intervention conditions

Hospital admission planning to optimize major
resources utilization under uncertainty

Minimal Protocol Adaptors for Interacting
Services

Teaching Retail Operations in Business and

Engineering Schools

Design for Availability: Creating Value for
Manufacturers and Customers

Transforming Process Models: executable
rewrite rules versus a formalized Java program

Getting trapped in the suppression of
exploration: A simulation model

A Dynamic Programming Approach to Multi-
Objective Time-Dependent Capacitated Single
Vehicle Routing Problems with Time Windows

M.C. van der Heijden, E.M. Alvarez,
J.M.J. Schutten

E.M. Alvarez, M.C. van der Heijden, W.H.
Zijm

B. Walrave, K. v. Oorschot, A.G.L.
Romme

Nico Dellaert, Jully Jeunet.

R. Seguel, R. Eshuis, P. Grefen.

Tom Van Woensel, Marshall L. Fisher,

Jan C. Fransoo.

Lydie P.M. Smets, Geert-Jan van
Houtum, Fred Langerak.

Pieter van Gorp, Rik Eshuis.

Bob Walrave, Kim E. van Oorschot, A.
Georges L. Romme

S. Dabia, T. van Woensel, A.G. de Kok

312 2010
Tales of a So(u)rcerer: Optimal Sourcing
Decisions Under Alternative Capacitated
Suppliers and General Cost Structures

Osman Alp, Tarkan Tan

311 2010
In-store replenishment procedures for perishable
inventory in a retail environment with handling
costs and storage constraints

R.A.C.M. Broekmeulen, C.H.M. Bakx

310 2010
The state of the art of innovation-driven business
models in the financial services industry

E. Lüftenegger, S. Angelov, E. van der
Linden, P. Grefen

309 2010
Design of Complex Architectures Using a Three
Dimension Approach: the CrossWork Case

R. Seguel, P. Grefen, R. Eshuis

308 2010
Effect of carbon emission regulations on
transport mode selection in supply chains

K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J.
van Houtum

307 2010
Interaction between intelligent agent strategies
for real-time transportation planning

Martijn Mes, Matthieu van der Heijden,
Peter Schuur

306 2010 Internal Slackening Scoring Methods Marco Slikker, Peter Borm, René van den

Brink

305 2010
Vehicle Routing with Traffic Congestion and
Drivers' Driving and Working Rules

A.L. Kok, E.W. Hans, J.M.J. Schutten,
W.H.M. Zijm

304 2010
Practical extensions to the level of repair
analysis

R.J.I. Basten, M.C. van der Heijden,
J.M.J. Schutten

303 2010
Ocean Container Transport: An Underestimated
and Critical Link in Global Supply Chain
Performance

Jan C. Fransoo, Chung-Yee Lee

302 2010
Capacity reservation and utilization for a
manufacturer with uncertain capacity and
demand

Y. Boulaksil; J.C. Fransoo; T. Tan

300 2009 Spare parts inventory pooling games

F.J.P. Karsten; M. Slikker; G.J. van
Houtum

299 2009
Capacity flexibility allocation in an outsourced
supply chain with reservation

Y. Boulaksil, M. Grunow, J.C. Fransoo

298

2010

An optimal approach for the joint problem of level
of repair analysis and spare parts stocking

R.J.I. Basten, M.C. van der Heijden,
J.M.J. Schutten

297 2009
Responding to the Lehman Wave: Sales
Forecasting and Supply Management during the
Credit Crisis

Robert Peels, Maximiliano Udenio, Jan C.
Fransoo, Marcel Wolfs, Tom Hendrikx

296 2009
An exact approach for relating recovering
surgical patient workload to the master surgical
schedule

Peter T. Vanberkel, Richard J. Boucherie,
Erwin W. Hans, Johann L. Hurink,
Wineke A.M. van Lent, Wim H. van
Harten

295

2009

An iterative method for the simultaneous
optimization of repair decisions and spare parts
stocks

R.J.I. Basten, M.C. van der Heijden,
J.M.J. Schutten

294 2009 Fujaba hits the Wall(-e)

Pieter van Gorp, Ruben Jubeh, Bernhard
Grusie, Anne Keller

293 2009
Implementation of a Healthcare Process in Four
Different Workflow Systems

R.S. Mans, W.M.P. van der Aalst, N.C.
Russell, P.J.M. Bakker

292 2009
Business Process Model Repositories -
Framework and Survey

Zhiqiang Yan, Remco Dijkman, Paul
Grefen

291 2009
Efficient Optimization of the Dual-Index Policy
Using Markov Chains

Joachim Arts, Marcel van Vuuren,
Gudrun Kiesmuller

290 2009
Hierarchical Knowledge-Gradient for Sequential
Sampling

Martijn R.K. Mes; Warren B. Powell;
Peter I. Frazier

289 2009
Analyzing combined vehicle routing and break
scheduling from a distributed decision making
perspective

C.M. Meyer; A.L. Kok; H. Kopfer; J.M.J.
Schutten

288 2009
Anticipation of lead time performance in Supply
Chain Operations Planning

Michiel Jansen; Ton G. de Kok; Jan C.
Fransoo

287 2009
Inventory Models with Lateral Transshipments: A
Review

Colin Paterson; Gudrun Kiesmuller; Ruud
Teunter; Kevin Glazebrook

286 2009
Efficiency evaluation for pooling resources in
health care

P.T. Vanberkel; R.J. Boucherie; E.W.
Hans; J.L. Hurink; N. Litvak

285 2009
A Survey of Health Care Models that Encompass
Multiple Departments

P.T. Vanberkel; R.J. Boucherie; E.W.
Hans; J.L. Hurink; N. Litvak

284 2009
Supporting Process Control in Business
Collaborations

S. Angelov; K. Vidyasankar; J. Vonk; P.
Grefen

283 2009 Inventory Control with Partial Batch Ordering O. Alp; W.T. Huh; T. Tan

282 2009
Translating Safe Petri Nets to Statecharts in a
Structure-Preserving Way

R. Eshuis

281 2009
The link between product data model and
process model

J.J.C.L. Vogelaar; H.A. Reijers

280 2009
Inventory planning for spare parts networks with
delivery time requirements

I.C. Reijnen; T. Tan; G.J. van Houtum

279 2009
Co-Evolution of Demand and Supply under
Competition

B. Vermeulen; A.G. de Kok

278

277

2010

2009

Toward Meso-level Product-Market Network
Indices for Strategic Product Selection and
(Re)Design Guidelines over the Product Life-
Cycle

An Efficient Method to Construct Minimal
Protocol Adaptors

B. Vermeulen, A.G. de Kok

R. Seguel, R. Eshuis, P. Grefen

276 2009
Coordinating Supply Chains: a Bilevel
Programming Approach

Ton G. de Kok, Gabriella Muratore

275 2009
Inventory redistribution for fashion products
under demand parameter update

G.P. Kiesmuller, S. Minner

274 2009
Comparing Markov chains: Combining
aggregation and precedence relations applied to
sets of states

A. Busic, I.M.H. Vliegen, A. Scheller-Wolf

273 2009
Separate tools or tool kits: an exploratory study
of engineers' preferences

I.M.H. Vliegen, P.A.M. Kleingeld, G.J. van
Houtum

272

2009

An Exact Solution Procedure for Multi-Item Two-
Echelon Spare Parts Inventory Control Problem
with Batch Ordering

Engin Topan, Z. Pelin Bayindir, Tarkan
Tan

271 2009
Distributed Decision Making in Combined
Vehicle Routing and Break Scheduling

C.M. Meyer, H. Kopfer, A.L. Kok, M.
Schutten

270 2009
Dynamic Programming Algorithm for the Vehicle
Routing Problem with Time Windows and EC
Social Legislation

A.L. Kok, C.M. Meyer, H. Kopfer, J.M.J.
Schutten

269 2009
Similarity of Business Process Models: Metics
and Evaluation

Remco Dijkman, Marlon Dumas,
Boudewijn van Dongen, Reina Kaarik,
Jan Mendling

267 2009
Vehicle routing under time-dependent travel
times: the impact of congestion avoidance

A.L. Kok, E.W. Hans, J.M.J. Schutten

266 2009
Restricted dynamic programming: a flexible
framework for solving realistic VRPs

J. Gromicho; J.J. van Hoorn; A.L. Kok;
J.M.J. Schutten;

Working Papers published before 2009 see: http://beta.ieis.tue.nl

	Voorblad WP 334
	Beta_wp334
	Working Papers Beta

