
275

Flexible IDL compilation for complex

communication patterns 1

Eric Eide ∗, James L. Simister, Tim Stack and
Jay Lepreau

University of Utah Department of Computer Science,

50 South Central Campus Drive, Room 3190, Salt

Lake City, UT 84112-9205, USA

Tel.: +1 801 585 3271; Fax: +1 801 585 3743;

E-mail: {eeide,simister,stack,lepreau}@cs.utah.edu;

URL: http://www.cs.utah.edu/flux/

Distributed applications are complex by nature, so it is essen-

tial that there be effective software development tools to aid

in the construction of these programs. Commonplace “mid-

dleware” tools, however, often impose a tradeoff between

programmer productivity and application performance. For

instance, many CORBA IDL compilers generate code that is

too slow for high-performance systems. More importantly,

these compilers provide inadequate support for sophisticated

patterns of communication. We believe that these problems

can be overcome, thus making IDL compilers and similar

middleware tools useful for a broader range of systems.

To this end we have implemented Flick, a flexible and op-

timizing IDL compiler, and are using it to produce special-

ized high-performance code for complex distributed applica-

tions. Flick can produce specially “decomposed” stubs that

encapsulate different aspects of communication in separate

functions, thus providing application programmers with fine-

grain control over all messages. The design of our decom-

posed stubs was inspired by the requirements of a particu-

lar distributed application called Khazana, and in this paper

we describe our experience to date in refitting Khazana with

Flick-generated stubs. We believe that the special IDL com-

pilation techniques developed for Khazana will be useful in

other applications with similar communication requirements.

Keywords: Flick, IDL compiler, interface definition lan-

guage, compilation, optimization, communication patterns,

middleware, CORBA

1This research was supported in part by the Defense Advanced

Research Projects Agency, monitored by the Department of the

Army under contract number DABT63–94–C–0058, and the Air

Force Research Laboratory, Rome Research Site, USAF, under

agreement number F30602–96–2–0269. The U.S. Government is au-

thorized to reproduce and distribute reprints for Governmental pur-

poses notwithstanding any copyright annotation hereon.
*Corresponding author.

1. Introduction

Distributed applications have inherently complex

behaviors and requirements, and therefore, it is es-

sential that there be software development tools – so-

called middleware – to simplify the construction of

distributed systems. Because there are many different

kinds of middleware, an application designer must be

careful to choose the most appropriate middleware for
the development of each particular system. The ideal

middleware for a particular programming task would

be a tool (or set of tools) that simultaneously satisfies

three criteria. First, the tool would minimize the human

effort required to design, implement, and maintain the

distributed application. Second, the tool would result

in efficient and fast application code. Third, the tool
would strongly support the application’s overall design

and programming model.

Unfortunately, for many high-performance applica-

tions, typical middleware systems do not meet all of

these requirements simultaneously. For instance, typ-

ical interface definition language (IDL) compilers are
often unsuitable for use in complex, high-performance

distributed applications because they generate code

that is unacceptably slow [18,20,23] and because they

provide inadequate support for sophisticated program-

ming models and fast communication infrastructures.

We believe, however, that this need not be the case.

We believe that the development of distributed appli-
cations can be improved through the use of high-level

tools such as IDL compilers and that such middleware

can be made to satisfy the demanding requirements

of high-performance distributed applications, not only

in terms of performance, but also in terms of support

for complex programming models and communication

patterns. To explore the design and use of such mid-
dleware, we have implemented Flick, the Flexible IDL

Compiler Kit [9].

Flick provides a unique framework for experiment-

ing with new IDL compilation techniques, and we are

using Flick to develop new strategies for producing

IDL-based stubs that meet the needs of sophisticated

Scientific Programming 7 (1999) 275–287

ISSN 1058-9244 / $8.00 1999, IOS Press. All rights reserved

276 E. Eide et al. / Flexible IDL compilation for complex communication patterns

distributed applications. As an initial experiment in

this area, we chose to generate specialized CORBA [24]

stubs according to the requirements of a particular ap-

plication called Khazana [5]. Khazana is an existing,

complex, distributed application – a distributed mem-

ory system – that requires fine-grain control over the

processing and handling of messages. We analyzed the

communication patterns and implementation of Khaz-

ana and then created new Flick compiler components

to generate specially “decomposed” stubs for use in

this application. These stubs are “decomposed” be-

cause they separate the different aspects of commu-

nication into separate functions that encode, decode,

transmit, and receive messages. (Normally, a single

stub would encapsulate all of these functions.) We are

currently modifying Khazana in order to replace the

previous hand-coded stubs with the special stubs now

being generated by Flick, and this paper details our ex-

perience to date in the development and application of

our decomposed stubs.

We believe that Flick’s ability to produce decom-

posed stubs will be useful not only for Khazana, but

also for a wide range of distributed applications that

require fine control over communication and asyn-

chronous processing of messages by both clients and

servers – applications that are poorly served by tra-

ditional IDL compilers. Flick’s ability to produce op-

timized code for these applications demonstrates that

high-level middleware can be successfully used in the

development of complex applications.

2. IDL compilers

An interface definition language (IDL) compiler is

a tool that generates code to implement communica-

tion between separate software components. Given a

high-level description of a software component, an IDL

compiler produces special functions called stubs: func-

tions that carry out communication between a client

that invokes an operation and a server that implements

the operation. Often, the client and server are located

in separate processes, which may be running on sepa-

rate machines. A stub encapsulates the details of com-

munication and allows the client and server to interact

through a procedural interface. Traditional IDL-based

stubs encapsulate all aspects of communication – the

encoding and decoding of data, the transmission and

receipt of messages, and the handling of errors – and

therefore, the stubs have the outward appearance of

ordinary procedure calls. When this is the case, we

say that the stubs implement remote procedure call

(RPC) [3] semantics, or in an object-oriented language,

that they implement remote method invocation (RMI)

semantics.
IDL specifications are generally small and simple,

and therefore, the use of IDL compilers can greatly re-

duce the human effort required to produce the commu-

nication code for a distributed application. This means
that IDL compilers generally meet the first criterion for

successful middleware. Unfortunately, for many high-

performance applications, they often fail to meet the

second and third.

Many common IDL compilers such as rpcgen [30]
fail to meet the second criterion because they gener-

ate inefficient code – code containing excessive func-

tion calls and redundant runtime tests [23]. Gokhale

and Schmidt [18] and others have quantified this and
similar types of overhead within several CORBA imple-

mentations. If a distributed application makes frequent

RPC calls and communicates across a sufficiently fast

network, then the overhead within IDL-generated code
can be a serious barrier to performance [20]. For this

reason, the designers of high-performance distributed

and parallel applications have been unwilling to make

use of high-level tools such as IDL compilers that ease
the creation of communication code.

The architects of complex distributed applications

are further dissuaded from using IDL-based tools be-

cause typically, these tools fail to meet the third crite-
rion for successful middleware: strong support for the

desired application programming models. Many IDL

compilers support only a single communication model

– synchronous RPC – and this model is simply inap-

propriate for many distributed applications. Some IDL-
based middleware systems support additional commu-

nication models through the use of runtime “services”:

libraries of objects that act as communication proxies

and which implement new application-level commu-
nication models atop compiler-generated synchronous

RPC stubs. The CORBA Event Service [25] is an exam-

ple of this approach, as is CORBA’s support for “de-

ferred synchronous” communication through the Dy-
namic Invocation Interface [24]. 2 These services, how-

2Using the “deferred synchronous” communication model, a

CORBA client sends a request message and later must poll for the cor-

responding reply. The server still handles the request synchronously.

In CORBA, deferred synchronous communication is available only

through the Dynamic Invocation Interface, which generally imposes

significant communication overhead [19] and requires application

programmers to write a significant amount of messaging code, thus

significantly reducing the principal benefits that come from using an

IDL-based middleware system.

E. Eide et al. / Flexible IDL compilation for complex communication patterns 277

ever, do not necessarily provide sufficiently strong sup-

port to high-performance applications. The communi-

cation proxies introduce new overheads [19] and ap-

plications must be specially written to communicate

through these proxy interfaces. To avoid these prob-

lems, a middleware system like CORBA must support

a variety of communication models not as run-time

services, but as compile-time code generation options.

The importance of compiler support has recently been

highlighted by the adoption of the CORBA Messaging

Specification [26], which defines a new standard for

creating asynchronous stubs from CORBA IDL instead

of the usual synchronous stubs.3 This new specifica-

tion is a significant step in broadening the usefulness

of CORBA middleware, but it still falls short for many

high-performance applications. Most notably, the Mes-

saging Specification provides asynchronous stubs only

for clients; servers must still process requests as if they

were synchronous procedure calls.

3. Flick

Common IDL compilers are designed specifically

to support a single IDL, a small, hardwired set of

target language bindings (e.g., the standard mapping

from CORBA IDL to C), and generally, one or at

most a few message formats and transport facilities. In

other words, these compilers are “rigid” and not eas-

ily adapted or enhanced. Flick, on the other hand, was

designed from the start to be an extremely flexible and

extensible IDL compilation framework.

Flick, the Flexible IDL Compiler Kit, is a set of

compiler components that may be specialized to gen-

erate code for particular IDLs, stub styles, and trans-

port systems. The overall structure of Flick is shown in

Fig. 1. Flick incorporates design principles from tradi-

tional language compilers and, like most modern com-

pilers, divides compilation into three separate stages:

front end parsing, intermediate code generation, and

back end code optimization. Each stage has several

implementations: for example, there are three sepa-

rate front ends that parse the CORBA, ONC RPC (a.k.a.

Sun RPC) [29], and MIG [27] IDLs. The different com-

piler stages communicate through intermediary files.

The clean separation between stages makes it easier

for compiler authors to implement new Flick compo-

nents, for instance, in order to generate new kinds of

3The CORBA Messaging Specification is not yet widely imple-

mented.

stubs or to support new transport systems. Flick fur-

ther eases the implementation of new compiler compo-

nents by providing a large base library for each stage

of compilation. For instance, because Flick’s back end

library implements many common stub optimization

strategies, all of Flick’s specific back ends automati-

cally inherit these optimizations.

A front end reads an IDL specification and produces

an Abstract Object Interface (AOI) file containing the

parsed interface description (i.e., a parse tree). As just

described, Flick has three separate front ends for pars-

ing the CORBA, ONC RPC, and MIG IDLs. Each of these

front ends is a component, built upon a large library of

code that implements common functions – for exam-

ple, functions to manipulate AOI parse trees and other

intermediate data structures. Most IDL compilers, in-

cluding those based on the SunSoft CORBA IDL com-

piler front end [31], are designed to produce code di-

rectly from an IDL parse tree. These compilers there-

fore provide little infrastructure for compiler writers to

reuse when designing new stub styles (i.e., language

bindings) or when implementing new code optimiza-

tions. Flick, on the other hand, provides reusable in-

frastructure for both of these compilation steps.

An intermediate code generator – called a presen-

tation generator – reads an AOI file and then deter-

mines the application programmer’s interface to the

stubs: i.e., everything that an application programmer

must know in order to use the stubs that will ultimately

be produced by Flick. The programmer’s view of the

stubs – called a presentation – includes not only the

names of the generated stubs and the types of their ar-

guments, but also such things as the purpose of each

stub, the stubs’ calling conventions, the stubs’ memory

allocation conventions, and so on. Obviously, there is

more than one way to map an IDL specification onto

functions and other constructs in a programming lan-

guage such as C; for example, an IDL compiler might

produce synchronous or asynchronous stubs (or both).

Because there are multiple ways in which one might

present a single IDL interface, Flick provides multiple

presentation generators for creating different kinds of

stubs. As shown in Fig. 1, Flick includes presentation

generators for CORBA-, rpcgen-, Fluke- [14], and

MIG-style C language stubs. Moreover, Flick provides

the infrastructure for producing altogether new kinds

of stubs, either through the creation of new presenta-

tion generators or through extensions to Flick’s base

presentation generator library. The output of a presen-

tation generator is another intermediate file, called a

Presentation in C (PRES_C) file.

278 E. Eide et al. / Flexible IDL compilation for complex communication patterns

Fig. 1. Overview of the Flick IDL compiler. Flick divides IDL compilation into three stages that communicate through intermediate files. As

represented by the shaded boxes, each compilation stage is implemented primarily by a library of code that provides common functions and

abstractions. Each particular front end, presentation generator, and back end is created by linking a relatively small amount of specialized code

with the appropriate base library. The MIG front end and presentation generator are conjoined due to the nature of the MIG IDL [9].

A back end reads the stub descriptions contained in

a PRES_C file and produces the optimized (C language)

source code for the stubs. Because a PRES_C file de-

scribes only the programmer-visible appearance and

behavior of the stubs, different back ends may be used

to implement the PRES_C-described stubs atop differ-

ent underlying transport systems and message formats.

A single PRES_C description can be implemented us-

ing any suitable transport, and Flick currently provides

back ends that implement client/server communica-

tion using CORBA IIOP, ONC/TCP, Mach [1] messages,

Trapeze [2] messages, and Fluke kernel IPC. Each back

end is specialized for a particular transport facility and

message format, but they all incorporate the numerous

optimization techniques provided by Flick’s back end

library. For instance, the library allows each back end

to analyze the overall storage requirements of every

message in order to produce efficient message buffer

management code that is free from superfluous run-

time checks and other typical run-time overheads. The

library also analyzes the representations of message

data in order to produce efficient marshaling and un-
marshaling code. For example, a Flick-generated stub
may use memcpy to copy an object if Flick is able
to determine that no byte-swapping or other presen-
tation layer data transformations are required. Previ-
ously reported experiments [9] demonstrate that Flick-
generated stubs can marshal data between 2 and 17
times as fast as equivalent stubs generated by other IDL

compilers. The reduction in presentation layer over-
head results in significant end-to-end throughput im-
provements for communicating applications.

Because Flick is both flexible and optimizing, it pro-
vides an excellent basis for experimenting with new
IDL compilation techniques: new IDLs, new presen-
tations (stub styles), and new transport facilities. We
are now leveraging Flick’s infrastructure to develop
new IDL compilation techniques to support applica-
tions with complex communication requirements, and
as an initial experiment in this domain, we have ex-
tended Flick to create specialized stubs according to
the needs of a particular distributed application called
Khazana.

E. Eide et al. / Flexible IDL compilation for complex communication patterns 279

4. Khazana

Khazana is a distributed “global memory service”

in development by Carter et al. at the University of

Utah [5]. The Khazana system provides a single, glob-

ally shared, persistent storage space for distributed

applications. The primary goals of Khazana are to

provide robust, scalable, and efficient storage while

also providing flexibility through “hooks” that allow

higher-level services and applications to tailor Khaz-

ana’s behavior to their needs. For instance, an appli-

cation can specify the degree of replication required

for its data and can specify how its distributed data

should be kept consistent. The Khazana system pro-

vides only the base operations for managing distributed

storage, leaving higher-level semantics to other mid-

dleware layers or to the applications themselves.

Khazana is implemented as a collection of peer pro-

cesses that collectively maintain a single, flat, global

memory space. The processes exchange messages in

order to implement the Khazana protocol, which pro-

vides operations to:

• reserve and unreserve a contiguous region

of the global address space;

• allocate and free physical storage for a

previously reserved region of the global address

space;

• lock and unlock parts of a region in various

modes (e.g., read-write or read-only);

• read and write parts of a region; and

• get and set the attributes of a region, which

specify such properties as the required consis-

tency model and level of replication.

Although there are conceptual request and reply

messages in a Khazana system, there are no spe-

cially designated “server” or “client” nodes. Rather,

the Khazana protocols require every process to act as

both client and server – i.e., every node must be able to

transmit and receive both requests and replies as neces-

sary. Further, the Khazana protocol requires that each

process be able to participate in several operations at

the same time. A node that transmits a request must

be able to handle incoming messages before the reply

to the original request is received. In processing a re-

quest, a Khazana node may discover that it must for-

ward the request to another node (e.g., the home node

of some requested memory page). Alternately, a node

may discover that it can only partially service a request

because some needed resource (e.g., a memory page)

is not currently available. In that case, the request must

be “pushed back” onto the queue of incoming requests

along with the partial results that have so far been com-

puted. Not all Khazana messages can be described in

terms of isolated request/reply pairs. For instance, a

single allocate request may result in multiple reply

messages, each satisfying a portion of the original re-

quest. Similarly, a client write request will cause the

server to issue requests back to the client for segments
of the data. Only after all the data has been collected

does the server reply to the original write request.

Khazana was originally implemented using hand-

coded functions to process the system’s protocols via

TCP. Every node maintained a work queue; every el-

ement in the queue contained both a message and the

contextual data representing the state of the message’s

processing (i.e., the protocol state of the Khazana oper-

ation that involves the message contained in the work
queue node). Because a single structure was used to

contain both stub-level message data and high-level ap-

plication data, the protocol processing functions were

written to handle both levels of detail. This lack of ab-

straction between layers complicated the overall Khaz-

ana code, and ultimately, the use of low-level abstrac-

tions led to code that was burdensome to create, debug,

and maintain.
The Khazana implementors expect that as develop-

ment continues, the problems associated with hand-

coded messaging stubs will only become more severe.

More message types will be added to Khazana, and

Khazana will be ported to new computer and network

architectures. Each of these developments will increase

the burden of maintaining all the messaging code by

hand. Therefore, the Khazana system designers are in-

terested in using Flick to generate Khazana’s commu-
nication stubs, both to ease future development and to

simplify the existing Khazana implementation.

5. Decomposed IDL-based communication

Using Flick, we have designed and implemented a
new compilation style for CORBA IDL specifications

that breaks apart traditional RPC stubs in order to sup-

port applications like Khazana that require:

• the asynchronous handling of messages by both

clients and servers;

• efficient message encoding and decoding, includ-

ing the ability to cache frequently used messages;

• message forwarding;

• the handling of multiple replies to a single re-

quest; and

280 E. Eide et al. / Flexible IDL compilation for complex communication patterns

• the ability to suspend and resume the processing

of a message.

Whereas a traditional RPC stub encapsulates many

different aspects of communication – encoding and

sending the request, then receiving and decoding the

reply – Flick generates code for Khazana in a style that

encapsulates each aspect of communication within its

own stub. This new “presentation style” for IDL-based

interfaces is illustrated in Fig. 2 and consists of:

• marshaling stubs, to encode request and reply

messages;

• unmarshaling stubs, to decode request and reply

messages;

• send stubs, to transmit marshaled messages to

other nodes;

• server work functions, to handle received re-

quests;

• client work functions, to handle received replies;

and

• continuation stubs, to postpone the processing of

messages.

The stub and function prototypes generated by Flick

for this new “decomposed” presentation style are sum-

marized in Table 1.

5.1. Marshaling and unmarshaling stubs

Each operation in the IDL specification results in

three marshaling stubs: one to marshal operation re-

quests, a second to marshal ordinary operation replies,

and a third to marshal exceptional (error-signaling)

replies. A marshaling stub takes as parameters the data

to be encoded, followed by a standard CORBA environ-

ment parameter used to communicate exceptions back

to the caller (i.e., errors that occur as the message is

being encoded). The marshaled message is returned by

the stub so that the application can send the message

at a later time; that is, the encoding and transmission

events are decoupled. Note that the type of the mar-

shaled message is specific to a single interface (ob-

ject type); this helps prevent programming errors in

which a request or reply is sent to an object of an in-

appropriate type. Also note that the marshaled mes-

sage is opaque. This allows each of Flick’s back ends

to choose a message format, data encoding, and im-

plementation that is best suited to the application’s re-

quirements and the underlying transport facility (e.g.,

CORBA IIOP messages, or some more specialized sys-

tem).

Each IDL-defined operation also results in two un-

marshaling stubs: one to unmarshal requests and one

to unmarshal replies (ordinary or exceptional). An

unmarshaling stub takes a message, parameters into

which the message data will be decoded, and a CORBA

environment parameter that allows the unmarshaling

stub to report errors to the application.

Marshaling and unmarshaling stubs provide appli-

cations with greater control over the handling of mes-

sages and enable certain application-specific optimiza-

tions that are not possible within a traditional RPC

model. For example, a message can be encoded once

and then sent to multiple targets; also, common replies

can be premarshaled and cached, thus reducing re-

sponse times. An especially useful optimization for

Khazana is that a message can be redirected to an-

other node without the overhead of decoding and re-

encoding the message (assuming that the message data

is not needed in order to make the forwarding deci-

sion).

5.2. Send stubs

Once a request or reply message has been mar-

shaled, an application transmits the message by invok-

ing the appropriate send stub. Two send stubs are de-

fined for each CORBA interface (object type): one for

requests and another for replies. Unlike a traditional

RPC stub, a send stub returns immediately after the

message has been sent; it does not wait for a reply.

Also unlike a traditional RPC stub, the send stubs

produced by Flick take two special parameters as

shown in Table 1: an invocation identifier and a client

reference. These parameters are unique to Flick’s “de-

composed” stub presentation style and are not stan-

dard CORBA stub parameters. An invocation identi-

fier (Invocation_id) corresponds to a single mes-

sage transmission event and is used to connect a re-

ply with its associated request. The application is re-

sponsible for providing invocation identifiers to the

send stubs; this allows for application-specific opti-

mizations in the generation and management of the

identifiers. A client reference (Client) is a CORBA

pseudo-object [24], managed by the communications

runtime layer, that provides additional contextual in-

formation for handling requests and replies. A client

reference serves two primary functions. First, it locates

the entity that will receive the reply for a given request.

Keeping explicit client references makes it possible,

for instance, for one node to forward a request message

to another node and direct the eventual reply back to

E. Eide et al. / Flexible IDL compilation for complex communication patterns 281

Table 1

Summary of the stubs and functions that are part of Flick’s “decomposed” CORBA presentation style. The

italicized elements (e.g., Interface) are replaced with the appropriate names and elements from the input

IDL file

Marshaling

Stubs

Interface_Request Interface_ operation_encode_request(

in and inout parameters,

CORBA_Environment *env);

Interface_Reply Interface_ operation_encode_reply(

return and inout and out parameters,

CORBA_Environment *env);

Interface_Reply Interface_ operation_encode_exception(

CORBA_Environment *reply_env,

CORBA_Environment *env);

Unmarshaling

Stubs

void Interface_ operation_decode_request(

Interface_Request msg,

in and inout parameters,

CORBA_Environment *env);

void Interface_ operation_decode_reply(

Interface_Reply msg,

return and inout and out parameters,

CORBA_Environment *env);

Send

Stubs

void Interface_send_request(

Interface target, Interface_Request msg,

Invocation_id inv_id, Client client,

CORBA_Environment *env);

void Interface_send_reply(

Client client, Interface_Reply msg,

Invocation_id inv_id, Interface target,

CORBA_Environment *env);

Work

Functions

void Interface_ operation_do_request(

Interface target, Interface_Request msg,

Invocation_id inv_id, Client client);

void Interface_ operation_do_reply(

Client client, Interface_Reply msg,

Invocation_id inv_id, Interface target);

Continuation

Stubs

typedef void Interface_Request_Continuer(...);

typedef void Interface_Reply_Continuer(...);

void Interface_ operation_continue_request(

Interface target, Interface_Request msg,

Invocation_id inv_id, Client client,

Interface_Request_Continuer func, void *data);

void Interface_ operation_continue_reply(

Client client, Interface_Reply msg,

Invocation_id inv_id, Interface target,

Interface_Reply_Continuer func, void *data);

282 E. Eide et al. / Flexible IDL compilation for complex communication patterns

Fig. 2. Overview of client/server communication through “decomposed” stubs. Unlike the standard (synchronous RPC) stubs produced by a

normal CORBA IDL compiler, Flick’s decomposed stubs allow for asynchronous requests and replies, efficient message forwarding, reuse of

marshaled messages, and saving intermediate results.

the original requester. Second, the client reference al-
lows the application to save state from the time a re-
quest is sent until the corresponding reply is received.

(This extra application data is not transmitted as part
of a request or reply; it is simply stored by our CORBA

runtime as a convenience to the application.) A process
can allocate as many client references as it needs and
associate them with request transmission events as it
sees fit. Then, whenever a reply message is received,
the runtime locates the client reference that was pro-
vided with the original request, and gives that reference
to the function that will process the newly received re-

ply.
The Invocation_id and Client parameters

in Flick’s decomposed presentation style are similar
in purpose to the ReplyHandler objects defined
by the recently adopted CORBA Messaging Specifica-
tion [26]. Both a Client and a ReplyHandler can
be used to hold application state. The primary differ-
ence between a Client and a ReplyHandler is
in the set of operations that they support. Within the

CORBA Messaging presentation, a reply to an asyn-
chronous request is treated as a request on a Reply-

Handler object; among other things, this means that

the reply data will be unmarshaled before the Reply-

Handler is invoked. Flick’s decomposed presenta-

tion style, however, separates the receipt and decoding

phases of reply processing, thus enabling additional

flexibility. For example, a work function can forward

a reply message from one Client to another without

any intervening unmarshaling.

5.3. Work functions

The server and client work functions are the func-

tions that ultimately receive and service request and

reply messages, respectively. Traditional RPC presen-

tations contain server work functions only; traditional

clients process requests and replies synchronously. In

contrast, Flick’s decomposed stub presentation allows

replies to be handled asynchronously, and therefore,

clients must contain explicit functions to receive and

handle incoming replies. A server work function re-

ceives the marshaled representation of the request that

it is to service. This makes it straightforward and effi-

E. Eide et al. / Flexible IDL compilation for complex communication patterns 283

cient for a Khazana node to forward the request to an-

other node, or to delay local processing. If the request

is to be handled immediately, the server work function

will invoke the unmarshaling stub to extract the request

data. Similarly, a client work function receives a mar-

shaled reply message so that it may choose to handle

the reply immediately, forward the reply (to another

client), or delay processing by invoking a continuation

stub.

5.4. Continuation stubs and functions

While handling a request or reply, a client or server

work function may need to postpone processing – for

instance, a server handling a request may find that it

needs data from another server before it can continue.

To allow applications to handle these situations grace-

fully, Flick produces two “continuation” stubs for each

operation: one for the request and another for the reply.

These are essentially normal send stubs, except that

they direct the message back into the node’s own mes-

sage queue. Each continuation stub accepts a message,

a pointer to the function that will be invoked to ser-

vice the continued message (i.e., a special work func-

tion), and an opaque pointer that allows the application

to pass arbitrary state information along to the function

that will resume processing. A separate runtime library

function is provided to allow applications to “wake up”

a continued message, thus allowing the message to be

dispatched to the continuation work function.

6. Evaluation

In this section we describe our experience to date

in refitting Khazana with Flick-generated, decom-

posed communication stubs. Although our extensions

to Flick are complete, our modifications to Khazana

are currently in progress.

6.1. Implementation issues

Khazana’s original communication substrate was

entirely hand-coded and very specific to the Khazana

application. The original routines used a single data

structure to store both low-level and high-level infor-

mation such as encoded message data (both input and

output), message queue links, operation context data

(e.g., locks), and application state (e.g., a jmp_buf

so that Khazana could suspend message processing by

executing a longjmp back to its message dispatch

loop). This design was chosen for its initial ease of im-

plementation, and these message structures were rou-

tinely passed from function to function during message

processing. Both high-level and low-level processing

occurred at many points in the code.

The use of decomposed stubs, however, mandated a

much stricter application design. In keeping with the

CORBA spirit, Flick-generated stubs require that nodes

(represented as CORBA objects), client references, and

messages all be opaque data structures, disallowing

access from the application into low-level data such

as socket file descriptors and node IP addresses. To

reverse-engineer the CORBA IDL description of the

Khazana protocols, we had to dissect the Khazana code

and separate the different levels of information con-

tained in Khazana’s original message data structures.

Data that was previously passed implicitly as part of

a message (e.g., operation state and context) was now

required to be handled explicitly in the IDL. Other state

information, not properly part of the protocol mes-

sages, was moved into separate structures and man-

aged through Client references (as described in Sec-

tion 5.2) or continuation function data (Section 5.4).

The introduction of explicit layers into Khazana’s code

has helped to clarify the application code and to docu-

ment the Khazana communication protocols, which are

now described in CORBA IDL. As a result of our appli-

cation restructuring, we found it necessary to replace

Khazana’s original IPC code with our own CORBA ORB

runtime. Although we had planned to leverage as much

of Khazana’s original IPC code as possible, this ap-

proach ultimately proved to be impractical, and we

are now implementing a completely new CORBA run-

time with support for both decomposed and traditional

CORBA stubs. This new runtime will be used not only

by Khazana but also by other applications that are writ-

ten or modified to use Flick-generated stubs.

6.2. Communication patterns

Although we have greatly modified Khazana in or-

der to introduce structure, we have not had to mod-

ify Khazana’s overall programming model. Our experi-

ence in applying Flick’s decomposed stubs to Khazana

has been positive, and we have been able to reimple-

ment most of Khazana’s communication patterns us-

ing our specially generated stubs. One particularly in-

teresting pattern, previously described in Section 4, oc-

curs as part of the allocate operation.

The allocate operation allows one node to ask

another to reserve physical storage. If the receiver of

284 E. Eide et al. / Flexible IDL compilation for complex communication patterns

the allocate message cannot satisfy the entire re-

quest, it will satisfy what it can, send a reply back to the

requesting node describing the partial allocation, and

then issue a new request message to another node on

behalf of the original requester, asking this new node

to fulfill the remaining portion of the allocation. This

new node handles the request in a similar fashion, pos-

sibly sending new requests to yet more Khazana nodes.

Thus, from the perspective of the original requester,

there are many (partial) replies, coming from many

different nodes, to its original allocation request. This

communication model is directly supported by Flick’s

decomposed stubs. The requesting client indicates to

the CORBA runtime that it expects to receive multi-

ple replies to a particular request message. (The client

must indicate this explicitly; otherwise, the ORB will

release certain message-related data structures after the

first reply is received and processed.) The decomposed

stubs allow the server to both reply to the client’s re-

quest and to manufacture a new request message on

behalf of the client, using the requester’s Client ref-

erence and message Invocation_id. The client’s

reply work function (Section 5.3) is invoked once for

each partial reply and is responsible for aggregating

the results. Finally, when the client determines that all

replies have been received, it invokes an ORB func-

tion to indicate that no more replies to the original re-

quest are expected. In summary, although the notion of

multiple replies to a single request is not expressed in

CORBA IDL, Flick’s decomposed stubs make it possi-

ble for an application to use this communication pat-

tern (given the necessary support from the ORB run-

time as described).

One Khazana idiom not directly supported by the

decomposed stubs was the piecemeal provision of mes-

sage data to the underlying IPC facility. The original

hand-coded IPC system allowed Khazana to send a

message by providing a callback function: whenever

the IPC layer was ready, it would invoke the callback

to acquire the next block of message data. This feature

allowed Khazana to send large messages without re-

quiring that all of the data be in memory at once. On

the receiving node, special code was used to process

such large messages. Because the IPC system exposed

the underlying socket file descriptor, the Khazana ap-

plication could read and process message data in a sim-

ilarly piecemeal fashion. Our decomposed stubs, how-

ever, do not directly support this kind of incremental

message processing. Instead, all message data must be

provided when a message is marshaled by a send stub

(Section 5.2), and all message data must be received

before the ORB will dispatch a message to the Khazana

application. Fortunately, it is straightforward to emu-

late the old communication idiom with decomposed

stubs, simply by breaking the previous single, large

message into multiple, smaller messages. On the send-

ing node, message transmission can be paced through

the use of special ORB runtime functions that notify the

Khazana application that particular message instances

have been sent.

Finally, the use of decomposed stubs had important

implications for messages sent to local objects – i.e.,

objects that are in the same address space as the client.

Through traditional synchronous RPC stubs, when a

server and client are co-located, communication can

transparently take place without expensive marshaling

and unmarshaling of message data. In Khazana, this is

particularly important for the read and write op-

erations, which normally involve multiple messages

and may pass large amounts of data. Much of this

communication overhead can be avoided during lo-

cal operations, and Khazana’s original implementa-

tion contained special checks for optimizing commu-

nication with local objects. We found that we had to

introduce similar special-purpose code when refitting

Khazana to use our decomposed CORBA stubs. Be-

cause our decomposed stubs separate message encod-

ing from message transmission, a Flick-generated mar-

shal stub (Section 5.1) cannot know that a message will

be dispatched to a local object. Therefore, to optimize

local communication, our new Khazana implementa-

tion contains special checks and avoids using decom-

posed stubs for local objects. In future work we expect

to modify the implementation of Flick’s decomposed

stubs to improve support for local object invocations,

e.g., by delaying actual message marshaling until the

first time a message is sent to a remote object.

6.3. Summary

Flick’s decomposed stubs provide an appropriate

communication abstraction for Khazana. Due to Khaz-

ana’s initial implementation, we were forced to make

significant modifications to the application in order to

introduce our decomposed stubs and CORBA ORB run-

time. However, we were able to make these modifi-

cations without changing Khazana’s overall program-

ming model. Our modifications to Khazana have made

the application portable to new architectures and trans-

port systems. Finally, our experience with decomposed

stubs has highlighted the importance of ORB sup-

port for certain aspects of decomposed communica-

E. Eide et al. / Flexible IDL compilation for complex communication patterns 285

tion including (1) multiple replies to a single request,

(2) notification of message transmission events, for

application-level message pacing, and (3) optimiza-

tions for local objects.

We expect that our new, decomposed presentation

style for CORBA interfaces will be useful not only to

Khazana but also to other, similar distributed appli-

cations. Since this new style is more like traditional

message-passing, we believe that it will be useful as a

migration path for applications that wish to move away

from hand-written communication code and toward the

use of IDL-based middleware tools. This will reduce

the application writers’ burden and eliminate what is

currently an error-prone process, and we expect, with-

out compromising application performance.

7. Related work

The CORBA Messaging Specification [26] is the

Object Management Group’s recently adopted stan-

dard for asynchronous messaging. That document de-

scribes the new standard method for mapping CORBA

IDL onto asynchronous stubs, and the standard dif-

fers from Flick’s decomposed stub presentation in sev-

eral respects. For application writers, the most im-

portant difference is that Flick enables asynchronous

message processing for both clients and servers, while

the Messaging Specification defines asynchronous pro-

cessing for clients only. Additionally, Flick’s decom-

posed stubs allow applications to separate message en-

coding and decoding from message transmission and

receipt. This allows applications to forward or cache

messages for more efficient operation. Beyond the de-

tails of the generated stubs, however, the CORBA Mes-

saging Specification is more broad than the work pre-

sented here. In addition to defining a standard for asyn-

chronous stubs, the Messaging Specification defines a

new Quality of Service (QoS) standard for CORBA-

based applications, supported by a new message rout-

ing infrastructure. These new CORBA facilities are run-

time components, and therefore outside the domain

controlled by an IDL compiler like Flick.

Flick and the CORBA Messaging Specification rep-

resent two different approaches to flexible stub gen-

eration. The Messaging Specification increases flexi-

bility by expanding the set of standard ways in which

IDL may be translated into stubs. Flick, however, in-

creases flexibility by opening the IDL compiler itself to

new components, which may be developed rapidly and

independently to target specific application domains.

In previous work [12,13] we demonstrated the benefits

that come from the ability to create application-specific

stubs. We showed that application-specific stubs, cus-

tomized according to a set of programmer-supplied in-

terface annotations, could provide up to an order of

magnitude speedup in RPC performance.

The CORBA Event Service [25] is another Object

Management Group standard for decoupling requests

and replies between CORBA objects. This specifica-

tion defines an event channel as an object that medi-

ates communication between sets of suppliers and con-

sumers. Because an event channel is a heavyweight

object, it can provide many services – but these ex-

tra services may come at a price. To make use of any

channel services, including asynchronous messaging,

clients and servers must be specially written to com-

municate through event channels. This is in contrast

to Flick’s decomposed stubs which allow a client or

server (or both) to use asynchronous messaging with-

out cooperation or knowledge from the other side.4

Also, because event channels interpose on communica-

tion, they may introduce overheads that are not present

in Flick’s optimized stubs.

The importance of optimizing middleware will only

increase as computers and networks become increas-

ingly fast. Modern operating systems are now sup-

porting efficient, lightweight communication mecha-

nisms such as shared memory-based intra-node com-

munication channels [1], highly optimized kernel IPC

paths [10,21], and new inter-node communication

models such as active messages [33] and sender-based

protocols [4,32]. As Clark and Tennenhouse predicted

in 1990 [7], these improvements in low-level commu-

nication systems have moved the performance bottle-

necks for distributed applications out of the network

and operating system layers and into the applications

themselves.

Recent work by Schmidt et al. [18,28] has quan-

tified the impact of presentation layer overhead for

rpcgen and two commercial CORBA implementa-

tions. On average, due to inefficiencies at the presen-

tation and transport layers, compiler-generated stubs

achieved only 16–80% of the throughput of hand-

coded stubs. To address these and similar performance

issues, several attempts have been made to improve the

code generated by IDL compilers. These are discussed

in our earlier paper on Flick [9]. In summary, these

4Some features of decomposed stubs, such as the ability to send

multiple replies to a single request, require cooperation between

client and server and support from the ORB.

286 E. Eide et al. / Flexible IDL compilation for complex communication patterns

other IDL compilers are either not very flexible (e.g.,

Mach’s MIG compiler [27]) or not able to produce very

fast code.

Asynchronous communication and message for-

warding are not new ideas. Anderson et al. [2] de-

scribe these same mechanisms for a Global Memory

Service [11] built on top of Trapeze. However, their

work focuses on the transport layer rather than the pre-

sentation and application layers. Further, they provide

no support for automatically generating stubs to ex-

ploit asynchronous communication and message for-

warding. Our work focuses on presenting these mech-

anisms to the application and automatically generating

the appropriate stubs. We believe that our work is com-

plementary to that of Anderson et al.; Flick can lever-

age the benefits of an efficient transport system to pro-

duce optimized communication stubs.

For parallel applications, there are a large number of

specialized programming languages such as CC++ [6],

Fortran M [15], and Split-C [8]. In most of these cases

the language handles marshaling and unmarshaling of

parameters. However, it is our belief that the tech-

niques used by Flick, and possibly even its code, could

be incorporated into the compilers for these languages

to substantially reduce presentation layer costs, e.g., by

minimizing data copying. There are also a large num-

ber of parallel runtime systems providing various lev-

els of abstraction and functionality, such as MPI [22],

PVM [17], and Nexus [16]. Typically, these systems re-

quire the programmer to write the marshaling code by

hand, although they do abstract away byte-swapping

in order to accommodate heterogeneous machines. We

believe these provide an attractive target for optimiza-

tions provided by Flick.

8. Conclusion

High-level tools such as IDL compilers can greatly

reduce the effort and time required to implement dis-

tributed and parallel systems. Unfortunately, the limi-

tations of traditional IDL compilers often prevent the

use of such tools in applications that require maximum

performance. Traditional IDL compilers may produce

stubs that have excessive presentation layer overheads;

furthermore, traditional RPC stubs are not a good match

for the needs of many modern systems.

We have outlined Flick, a novel, modular, and flex-

ible IDL compiler that generates optimized code for a

variety of stub styles and transport mechanisms. We

describe how Flick has been extended to meet the

needs of a particular distributed application, Khazana,

and now provides a new style of CORBA-based stubs

appropriate for use in other similar systems. We be-

lieve that the creation and maintenance of complex dis-

tributed applications can be greatly improved through

the use of middleware tools like Flick that minimize

programmer effort, produce optimized code, and pro-

vide support for a flexible set of application program-

ming models.

9. Availability

Complete Flick source code and documentation

are available from http://www.cs.utah.edu/

flux/flick/.

Acknowledgments

We wish to thank the Khazana implementors, es-

pecially John Carter, Sai Susarla, and Anand Ran-

ganathan, for their help in this work. Without their

support, this work would not have been possible. We

also wish to thank the anonymous reviewers who made

many helpful comments on previous drafts of this pa-

per. Finally, we owe special thanks to Patrick Tullmann

for providing extensive proofreading and suggestions

for improvement.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,

A. Tevanian and M. Young, Mach: A new kernel foundation

for UNIX development, in: Proceedings of the Summer 1986

USENIX Conference, June 1986, pp. 93–112.

[2] D.C. Anderson, J.S. Chase, S. Gadde, A.J. Gallatin,

K.G. Yocum and M.J. Feeley, Cheating the I/O bottleneck:

Network storage with Trapeze/Myrinet, in: Proceedings of the

USENIX 1998 Annual Technical Conference, New Orleans,

LA, July 1998, pp. 143–154.

[3] A.D. Birrell and B.J. Nelson, Implementing remote procedure

calls, ACM Trans. Comput. Systems 2(1) (Feb. 1984).

[4] G. Buzzard, D. Jacobson, M. Mackey, S. Marovich and

J. Wilkes, An implementation of the Hamlyn sender-managed

interface architecture, in: Proceedings of the Second Sympo-

sium on Operating Systems Design and Implementation, Seat-

tle, WA, USENIX Association, Oct. 1996, pp. 245–259.

[5] J. Carter, A. Ranganathan and S. Susarla, Khazana: An infras-

tructure for building distributed services, in: Proceedings of the

18th International Conference on Distributed Computing Sys-

tems, May 1998, pp. 562–571.

E. Eide et al. / Flexible IDL compilation for complex communication patterns 287

[6] K.M. Chandy and C. Kesselman, CC++: A declarative concur-

rent object oriented programming notation, Technical Report

CS-TR-92-01, California Institute of Technology, March 1993.

[7] D.D. Clark and D.L. Tennenhouse, Architectural considera-

tions for a new generation of protocols, in: Proceedings of the

SIGCOMM ’90 Symposium, 1990, pp. 200–208.

[8] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy,

S. Lumetta, T. von Eicken and K. Yelick, Parallel programming

in Split-C, in: Proceedings of Supercomputing ’93, Portland,

OR, Nov. 1993, pp. 262–273.

[9] E. Eide, K. Frei, B. Ford, J. Lepreau and G. Lindstrom, Flick: A

flexible, optimizing IDL compiler, in: Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and

Implementation, Las Vegas, NV, June 1997, pp. 44–56.

[10] D.R. Engler, M.F. Kaashoek and J. O’Toole Jr., Exokernel:

An operating system architecture for application-level resource

management, in: Proceedings of the 15th ACM Symposium

on Operating Systems Principles, Copper Mountain, CO, Dec.

1995, pp. 251–266.

[11] M.J. Feeley, W.E. Morgan, F.H. Pighin, A.R. Karlin and

H.M. Levy, Implementing global memory management in a

workstation cluster, in: Proceedings of the 15th ACM Sympo-

sium on Operating Systems Principles, Copper Mountain, CO,

Dec. 1995, pp. 201–212.

[12] B. Ford, M. Hibler and J. Lepreau, Using annotated interface

definitions to optimize RPC, in: Proceedings of the 15th ACM

Symposium on Operating Systems Principles, 1995, p. 232,

poster.

[13] B. Ford, M. Hibler and J. Lepreau, Using annotated interface

definitions to optimize RPC, Technical Report UUCS-95-014,

University of Utah Department of Computer Science, March

1995.

[14] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back and

S. Clawson, Microkernels meet recursive virtual machines, in:

Proceedings of the Second Symposium on Operating Systems

Design and Implementation, Seattle, WA, USENIX Assoc.,

Oct. 1996, pp. 137–151.

[15] I.T. Foster and K.M. Chandy, Fortran M: A language for mod-

ular parallel programming, J. Parallel Distrib. Comput. 25(1)

(Feb. 1995).

[16] I.T. Foster, C. Kesselman and S. Tuecke, The Nexus task-

parallel runtime system, in: Proceedings of First International

Workshop on Parallel Processing, 1994, pp. 457–462.

[17] G. Geist and V. Sunderam, The PVM system: Supercomputer

level concurrent computation on a heterogenous network of

workstations, in: Sixth Annual Distributed-Memory Computer

Conference, 1991, pp. 258–261.

[18] A. Gokhale and D.C. Schmidt, Measuring the performance

of communication middleware on high-speed networks, Com-

puter Communication Review 26(4) (Oct. 1996).

[19] A. Gokhale and D.C. Schmidt, The performance of the

CORBA Dynamic Invocation Interface and Dynamic Skeleton

Interface over high-speed ATM networks, in: Proceedings of

GLOBECOM ’96, London, England, Nov. 1996, pp. 50–56.

[20] A. Gokhale and D.C. Schmidt, Optimizing the performance of

the CORBA Internet Inter-ORB Protocol over ATM, Technical

Report WUCS–97–09, Washington University Department of

Computer Science, St. Louis, MO, 1997.

[21] J. Liedtke, Improving IPC by kernel design, in: Proceedings

of the 14th ACM Symposium on Operating Systems Principles,

Asheville, NC, Dec. 1993.

[22] Message Passing Interface Forum. MPI-2: Extensions to

the Message-Passing Interface, July 1997. http://www.mpi-

forum.org/.

[23] G. Muller, R. Marlet, E.-N. Volanschi, C. Consel, C. Pu

and A. Goel, Fast, optimized Sun RPC using automatic pro-

gram specialization, in: Proceedings of the 18th International

Conference on Distributed Computing Systems, May 1998,

pp. 240–249.

[24] Object Management Group. The Common Object Request Bro-

ker: Architecture and Specification, 2.0 edition, July 1995.

[25] Object Management Group. Event service specification, in:

CORBAservices Specification, chapter 4. Object Management

Group, Dec. 1997.

[26] Object Management Group. CORBA Messaging: Joint Re-

vised Submission with Errata, May 1998. OMG TC Doc-

ument orbos/98–05–06. ftp://ftp.omg.org/pub/docs/orbos/98-

05-06.ps.

[27] Open Software Foundation and Carnegie Mellon University,

Cambridge, MA. Mach 3 Server Writer’s Guide, Jan. 1992.

[28] D.C. Schmidt, T. Harrison and E. Al-Shaer, Object-oriented

components for high-speed network programming, in: Pro-

ceedings of the First Conference on Object-Oriented Technolo-

gies and Systems, Monterey, CA, USENIX Assoc., June 1995.

[29] R. Srinivasan, RPC: Remote procedure call protocol specifica-

tion version 2. Technical Report RFC 1831, Sun Microsystems,

Inc., Aug. 1995.

[30] Sun Microsystems, Inc. ONC+ Developer’s Guide, Nov. 1995.

[31] SunSoft, Inc. SunSoft OMG Interface Definition Lan-

guage Compiler Front End, release 1.3, March 1994. ftp://

ftp.omg.org/pub/contrib/OMG_IDL_CFE_1.3/.

[32] M.R. Swanson and L.B. Stoller, Direct Deposit: A basic user-

level protocol for carpet clusters. Technical Report UUCS-

95-003, University of Utah Department of Computer Science,

March 1995.

[33] T. von Eicken, D.E. Culler, S.C. Goldstein and K.E. Schauser,

Active messages: A mechanism for integrated communication

and computation, in: Proceedings of the 19th International

Symposium on Computer Architecture, May 1992, pp. 256–

266.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

