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Flexible IGZO TFT SPICE model and design of

active strain-compensation circuits for bendable

active matrix arrays
Wan Muhammad Hilmi bin Wan Zaidi, Júlio Costa, Student Member, IEEE, Arash Pouryazdan, Wan Fazlida

Hanim Abdullah, and Niko Münzenrieder, Member, IEEE

Abstract—The detailed measurement and characterization of
strain induced performance variations in flexible InGaZnO thin-
film transistors (TFTs) resulted in a Spice TFT model able to
simulate tensile and compressive bending. This model was used
to evaluate a new concept, namely the active compensation of
strain induced performance variations in pixel driving circuits
for bendable active matrix arrays. The designed circuits can
compensate the mobility and threshold voltage shifts in IGZO
TFTs induced by bending. In a single TFT, a drain current
of 1 mA varies by 83 µA per percent of mechanical strain.
The most effective compensation circuit design, comprising one
additional TFT and two resistors, reduces the driving current
variation to 1.1 µA per percent of strain. The compensation
circuit requires no additional control signals, and increases the
power consumption by only 235 µW (corresponds to 4.7 %).
Finally, switching operation is possible for frequencies up to
200 kHz. This opens a way towards the fabrication of flexible
displays with constant brightness even when bent.

Index Terms—Thin-film transistors, Flexible electronics,
IGZO, Strain, Spice-simulation.

I. INTRODUCTION

BENDABLE electronics are a major next step for con-

sumer electronics [1]. In this respect, new semiconduc-

tors, including Indium-Gallium-Zinc-Oxide (IGZO) attracted

attention [2], [3], and have been used to demonstrate applica-

tions such as flexible sensor arrays or displays [4], [5], [6].

It is known that IGZO TFTs suffer from instabilities caused

by aging, water absorption or bias stress [7]. These instabilities

cause drain current variations. At the same time, flexible

transistors are affected by mechanical strain [8], [9]. This issue

was addressed by measures such as the relative alignment

of TFTs within circuits [10], [11], or attempts to optimize

the yield of circuits made from flexible TFTs suffering from

parameter variations and degradation effects [12]. Here, we

propose an alternative approach, and present circuits with

active strain compensation. To evaluate this concept, different

pixel driving circuits are simulated. These circuits enable new

applications, in particular driving of pixels in sensing arrays
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Fig. 1. a) Schematic cross-section and layer thicknesses of the characterized
and simulated flexible IGZO TFTs. b) Flexible TFTs used for bending tests.

such as flexible Hall sensors [13], or LEDs in deformable

active matrix displays [14].

Numerous published circuits compensate for parameter

shifts caused by long term aging or bias stress [15], [16],

[17], [18]. Additionally, the influence of bending on the gate

bias stability of amorphous Si TFTs and a corresponding

pixel driving circuit able to compensate the resulting threshold

voltage shift were presented [19]. At the same time, no circuit

to compensate the parameter variations caused by mechanical

strain has been developed. Here, the presented simulated

circuits can counteract strain by adjusting the transistor bias

voltage. This was achieved by enabling a level 61 IGZO

TFT HSpice simulation model, to simulate the performance

parameter variation caused by bending of the flexible substrate.

II. STRAIN ENABLED TFT SIMULATION

A HSpice model to simulate flexible IGZO based circuits

under strain was developed by characterizing bent TFTs.

A. Bendable thin-film transistors

The structure of the passivated, bottom-gate TFTs is shown

in Fig. 1a. The TFTs were fabricated on a 50 µm thick poly-

imide using UV lithography. Thin-film depositions were done

using e-beam evaporation (metallic contacts), RF sputtering

(IGZO), and atomic layer deposition (Al2O3). The maxi-

mum fabrication temperature was 150 ◦C. The manufacturing

process and materials are optimized for high bendability. A

detailed description of the fabrication process can be found

elsewhere [20]. The TFT contact pads are located ≈1 cm away

from the TFT channel to ensure the mechanical properties

of the TFTs are not influenced by connected characterization

equipment. A photograph of the devices (Fig. 1b) illustrates

their geometry. Figure 2a shows a typical transfer charac-

teristic of the fabricated TFTs measured using a Keysight
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Fig. 2. a) Transfer characteristic of a flexible IGZO TFT. b) Automated
bending tester used to characterize the TFT under strain. c) Influence of
strain on the TFT transfer characteristic. d) Variation of the threshold voltage
(bottom) and effective mobility (top) under tensile and compressive strain.

B1500A parameter analyzer. We used the standard Shichman-

Hodges model [21] to extract the TFT performance parame-

ters. In average, our TFTs exhibit a field effect mobility of

14 cm2V−1s−1, a threshold voltage of 0.7 V, a subthreshold

swing of 140 mV/dec, and an On/Off current ratio of > 109.

To fabricate resistors, we used the 35 nm thick Cr gate

layer with a resistance of 1.16 × 10−6 Ωm [22]. Using meander

structures and a conservative minimum feature size of 5 µm a

1 kΩ resistor consumes an area of ≈1300 µm2.

To evaluate the influence of bending, an automated bending

tester shown in Fig. 2b was used. This setup enables the mea-

surement of flexible TFTs under tensile and compressive strain

without parasitic effects related to unintentional re-flattening,

or changing contact resistances [20]. The TFT characteristics

were measured under ambient conditions without illumination,

while the device was bent to tensile and compressive radii

≥8 mm [20]. Strain was applied parallel to the channel since

such strain has a larger influence than perpendicular strain

[11]. To minimize the influence of the contact resistance which

becomes significant for TFTs shorter than 2 µm [23], 115 µm

long TFTs were used. The measured variation of the TFT char-

acteristics is shown in Fig. 2c. The maximum strain these TFTs

can withstand, varies between 0.7 % and 1.55 % [24], [25]. The

measurements show that bending influences IGZO TFTs in

multiple ways. Tensile strain increases the subthreshold swing

by 3.5 %/%, the gate capacitance by 1 %/%, and the transit

frequency by ≈4 %/% (compressive strain has the opposite

effect), while the On/Off current ratio is not significantly

influenced [20], [23]. However, the most important effect is

that tensile strain increases the drain current by ≈8.5 %/%.

This current variation is mainly caused by a change of the

threshold voltage VTH , and the mobility µ. Fig. 2d shows the

strain dependency of these two parameters. Linear fits can be

used to quantify the influence of strain on µ and VTH , the

resulting equations are [20]:

µ(ǫ) = µ0 × (1.005 + 0.062× ǫ) (1)
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Fig. 3. a) Measured and simulated (using the developed level 61 HSpice
simulation model) TFT output characteristics b) Comparison of the measured
and simulated influence of strain on the TFT drain current.

VTH(ǫ) = VTH,0 − 57mV × ǫ (2)

Where, ǫ is the strain, and µ0 and VTH,0 are the mobility

and the threshold voltage of the unstrained TFT. These shifts

result in an effective gauge factor of -8.2. These variations are

reversible, and in-line with other published reports. They are

caused by modifications of the IGZO band structure and are

described elsewhere [3], [20]. TFTs shorter than 2 µm would

require modified equations since the larger relative impact of

the contact resistance changes the bending behavior [23].

B. Spice model

A customized HSpice level 61 model was used to simu-

late the electrical performance of the presented IGZO TFTs

[10], [26]. Fig. 3a shows the simulated and measured TFT

characteristics and verifies the model. The influence of tensile

and compressive bending was considered by implementing

equations 1 and 2 into the VTO (Zero-bias threshold voltage),

and MUBAND (Conduction band mobility) parameters of the

Spice model [27]. These equations are not derivations from

basic physics formulas, instead they parametrize the bending

behavior of fabricated and characterized TFTs. A comparison

of the simulated and measured drain current variation caused

by tensile strain (Fig. 3b) validates this approach. In average,

the simulated drain currents vary by <0.2 % when compared

to the measurement. This enables the simulation of flexible

circuits bent to arbitrary radii. The circuit simulations also

consider the gauge factor of the Cr resistors (equal to +1.3)

[28], [29]. However, strain cannot simply be compensated by

connecting Cr resistors in series with IGZO TFTs, as they

would limit the current. Also, the gauge factor of IGZO TFTs

is significantly larger than the Cr gauge factor.

III. RESULTS AND DISCUSSION

Initially, the performance of a single driver TFT connected

to a transducer consuming 1 mA was simulated as a reference

(Fig. 4a). As an example, a diode transducer simulating a

light emitting element was chosen, but the same circuit can

be used to power sensors [13]. The supply and high control

voltages were 5 V, the low control voltage was 0 V. These

voltages are compatible with mobile applications and IGZO

TFTs. The current was tuned by adjusting the W/L ratio of the

driver TFT M1 (240 µm / 10 µm). The variation of the output

current caused by mechanical strain is shown in Fig. 5a. Strain

causes the current to vary by 83 µA%−1, this in turn causes



IEEE ELECTRON DEVICE LETTERS 3

undesirable brightness fluctuations of the LED. The simplest

approach to compensate for such current variations is to adjust

the gate-source voltage (VGS) of the driver TFT accordingly.

For tensile/compressive strain VGS has to be reduced/increased

to counteract the transconductance variations. The following

paragraphs present two active compensation circuits designed

and simulated using the developed simulation model.

The first approach to implement a compensation circuit is

shown in Fig. 4b. Here, a voltage divider employing a resistor

(R1) and an IGZO TFT (M2), acting as strain sensor and

switch, are used to adjust the gate voltage of M1. Since the

voltage divider is an inverting structure, a second inverter is

needed to ensure the circuit can be turned on using a high

control signal. The second inverter is made from a driver TFT

(M3), and an active load TFT in diode configuration (M4).

Since strain changes the transconductance of M3 and M4

by the same factor the output voltage of the second inverter

(similar to a voltage divider) is not influenced by strain, hence

M3/M4 do not counteract the effect of R1/M2. This was also

verified experimentally [11]. The resistances and W/L ratios of

the components are as follows: R1: 1 kΩ, M2: 400 µm / 10 µm,

M3: 400 µm / 10 µm, and M4: 100 µm / 10 µm, here the W/L

ratio of M1 was adjusted to maintain an output current of

1 mA. The resulting strain induced output current variation is

shown in Fig. 5a. This inverter based circuit reduces the cur-

rent variation to 12 µA%−1. This is a significant improvement

but the circuit complexity is comparably high and the result

is still not optimal. For this reason, we developed a second

approach. Fig. 4c shows how active strain compensation can

be achieved using only one additional strain sensitive TFT.

This push-pull design employs M2 as a variable attenuator, and

two resistors as bias elements. If tensile strain is applied, the

TFT transconductances of M1 and M2 increase by the same

relative amount. Hence the voltage drop across M2 reduces

and its drain voltage is pulled down. This reduces the gate

voltage of M1 and counteracts the strain induced drain current

increase. Simultaneously, compressive strain has the opposite

effect. The resistances and W/L ratios of the components are as

follows: R1: 10 kΩ, R2: 30 kΩ, M1: 900 µm / 10 µm, and M2:

100 µm / 100 µm. This configuration has multiple advantages.

First, the effects of strain are counteracted efficiently (Fig. 5a),

as the output current variation is only 1.1 µA%−1. Second,

due to the low transconductance of M2 the active strain

compensation consumes only 47 µA, which corresponds to

a power consumption increase of <235 µW. Furthermore,

independent of the strain, the active compensation circuits

never exhibit an output current larger than the value of the

flat circuit. This can be considered a security feature which

avoids damage or fast aging of the transducers.

Since the push-pull compensator is the most suitable ap-

proach, we show a possible circuit layout employing a mini-

mum feature size of 5 µm in Fig. 4c. The circuit consumes an

area of ≈0.092 mm2. The area consumption of the additional

components, in particular the resistors, has to be considered,

however it is possible to reduce the circuit area using materials

with higher specific resistance than Cr [30].

Fig. 5b shows the strain dependent transient response of the

single TFT and the push-pull compensator while the control
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Fig. 4. Driving circuits: a) Single reference TFT, b) Inverter compensation, c)
Push-pull compensation (with circuit layout optimized for 5 µm technology),
and using the same color scheme as Fig. 1a.
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signal switches from low (0 V) to high (5 V) and back to

low. In case of the push-pull circuit, the simulation shows the

strain independency of the output current. At the same time,

the rise time of the output current is increased to 5 µs (while

the fall time is virtually unchanged). This is because the gate

is controlled using high impedance elements. The resulting

maximum operation frequency is 200 kHz. Consequently this

circuit can be used to realize sensor arrays with high temporal

resolution, or to drive an LED display, controlled by switching

the control and power lines [14].

Finally, positive gate bias stress was simulated using mea-

sured data from single TFTs. A stress field of 2 × 108 V/m, ap-

plied for 600 s causes a VTH shift of +42 µV, this decreases the

drain current by 1.9 %. The push-pull compensation reduces

this drain current reduction to 1.5 %. This shift is smaller than

the value obtained from the bias stress compensation circuit

presented in [19]. However this is mainly due to the beneficial

stability of our IGZO TFTs [3].

IV. CONCLUSION

We presented the quantitative characterization of the influ-

ence of bending on flexible IGZO TFTs, and a corresponding

HSpice level 61 TFT model able to simulate the influence

of mechanical strain. This model was used to design circuits

able to actively compensate strain induced transconductance

variations. This is important for rollable sensor arrays requir-

ing a constant bias current [31], and shows new approaches

of designing flexible display driving circuits. These circuits

are optimized for the presented IGZO TFTs, however, the

described methods and principles can be applied to any other

flexible TFT technology.
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G. Tröster, “Igzo tft-based all-enhancement operational amplifier bent
to a radius of 5 mm,” IEEE Electron Device Letters, vol. 34, no. 11,
pp. 1394–1396, 2013. http://dx.doi.org/10.1109/LED.2013.2280024

[11] N. Münzenrieder, C. Zysset, T. Kinkeldei, and G. Tröster, “Design
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D. Karnaushenko, S. Baunack, F. Bahr, C. Yan, M. Kaltenbrunner,
and O. G. Schmidt, “Wearable magnetic field sensors for flexible
electronics,” Advanced Materials, vol. 27, no. 7, pp. 1274–1280, 2015.
https://doi.org/10.1002/adma.201405027

[14] C. Zysset, N. Munzenrieder, T. Kinkeldei, K. Cherenack, and
G. Troster, “Woven active-matrix display,” IEEE Transactions

on Electron Devices, vol. 59, no. 3, pp. 721–728, 2012.
http://dx.doi.org/10.1109/TED.2011.2180724

[15] M. Yang, N. P. Papadopoulos, W. S. Wong, and M. Sachdev,
“A novel voltage-programmed pixel circuit utilizing vt-dependent
charge-transfer to improve stability of amoled display,” Journal

of Display Technology, vol. 9, no. 12, pp. 957–964, 2013.
https://doi.org/10.1109/JDT.2013.2275172

[16] Y. Kim, J. Kanicki, and H. Lee, “An a-ingazno tft pixel circuit
compensating threshold voltage and mobility variations in amoleds,”
Journal of Display Technology, vol. 10, no. 5, pp. 402–406, 2014.
http://dx.doi.org/10.1109/JDT.2014.2304615

[17] C.-L. Lin, P.-S. Chen, M.-H. Cheng, Y.-T. Liu, and F.-H. Chen, “A three-
transistor pixel circuit to compensate for threshold voltage variations of
ltps tfts for amoled displays,” Journal of Display Technology, vol. 11,
no. 2, pp. 146–148, 2015. http://dx.doi.org/10.1109/JDT.2014.2383434

[18] W.-S. Shin, H.-A. Ahn, J.-S. Na, S.-K. Hong, O.-K. Kwon, J.-H. Lee,
J.-G. Um, J. Jang, S.-H. Kim, and J.-S. Lee, “A driving method of
pixel circuit using a-igzo tft for suppression of threshold voltage shift
in amled displays,” IEEE Electron Device Letters, vol. 38, no. 6, pp.
760–762, 2017. http://dx.doi.org/10.1109/LED.2017.2699669

[19] C.-H. Lee, N. P. Papadopoulos, M. Sachdev, and W. S. Wong, “Effect
of mechanical strain on hydrogenated amorphous silicon thin-film
transistors and compensation circuits on flexible substrates,” IEEE

Transactions on Electron Devices, vol. 64, no. 5, pp. 2016–2021, 2017.
https://doi.org/10.1109/TED.2017.2682881

[20] N. Münzenrieder, K. Cherenack, and G. Tröster, “The effects of
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