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Abstract. Highly repetitive strings are increasingly being amassed by
genome sequencing experiments, and by versioned archives of source code
and webpages. We describe practical data structures that support count-
ing and locating all the exact occurrences of a pattern in a repetitive
text, by combining the run-length encoded Burrows-Wheeler transform
(RLBWT) with the boundaries of Lempel-Ziv 77 factors. One such vari-
ant uses an amount of space comparable to LZ77 indexes, but it answers
count queries between two and four orders of magnitude faster than
all LZ77 and hybrid index implementations, at the cost of slower lo-
cate queries. Combining the RLBWT with the compact directed acyclic
word graph answers locate queries for short patterns between four and
ten times faster than a version of the run-length compressed suffix ar-
ray (RLCSA) that uses comparable memory, and with very short pat-
terns our index achieves speedups even greater than ten with respect to
RLCSA.

1 Introduction

Locating and counting all the exact occurrences of a pattern in a massive,
highly repetitive collection of similar texts is a fundamental primitive in the
post-genome era, in which genomes from multiple related species, from multiple
strains of the same species, or from multiple individuals, are being sequenced
at an increasing pace. Most data structures designed for such repetitive collec-
tions take space proportional to a specific measure of repetition, for example
the number z of factors in a Lempel-Ziv parsing [1, 15], or the number r of runs
in a Burrows-Wheeler transform [17]. In previous work we achieved competitive
theoretical tradeoffs between space and time in locate queries, by combining
data structures that depend on multiple measures of repetition that all grow
sublinearly in the length of a repetitive string [3]. Specifically, we described
a data structure that takes approximately O(z + r) words of space, and that
reports all the occurrences of a pattern of length m in a text of length n in
O(m(log log n + log z) + pocc · logε z + socc · log log n) time, where pocc and
socc are the number of primary and of secondary occurrences, respectively (de-
fined in Section 2). This compares favorably to the reporting time of Lempel-Ziv



77 (LZ77) indexes [15], and to the space of solutions based on the run-length
encoded Burrows-Wheeler transform (RLBWT) and on suffix array samples [17].
We also introduced a data structure whose size depends on the number of right-
extensions of maximal repeats, and that reports all the occ occurrences of a
pattern in O(m log log n+ occ) time. The main component of our constructions
is the RLBWT, which we use for counting the number of occurrences of a pat-
tern, and which we combine with the compact directed acyclic word graph, and
with data structures from LZ indexes, rather than with suffix array samples, for
answering locate queries. In this paper we describe and implement a range of
practical variants of such theoretical approaches, and we compare their space-
time tradeoffs to a representative set of state-of-the-art indexes for repetitive
collections.

2 Preliminaries

Let Σ = [1..σ] be an integer alphabet, let # = 0 /∈ Σ be a separator, and let
T ∈ [1..σ]n−1 be a string. We denote by T the reverse of T , and by PT#(W ) the
set of all starting positions of a string W ∈ [0..σ]+ in the circular version of T#.
We set Σr

T#(W ) = {a ∈ [0..σ] : |PT#(Wa)| > 0} and Σ`
T#(W ) = {a ∈ [0..σ] :

|PT#(aW )| > 0}. A repeat W ∈ Σ+ is a string with |PT#(W )| > 1. A repeat
W is right-maximal (respectively, left-maximal) iff |Σr

T#(W )| > 1 (respectively,

iff |Σ`
T#(W )| > 1). A maximal repeat is a repeat that is both left- and right-

maximal. We say that a maximal repeat W is rightmost (respectively, leftmost)
if no string WV with V ∈ [0..σ]+ is left-maximal (respectively, if no string VW
with V ∈ [0..σ]+ is right-maximal).

For reasons of space we assume the reader to be familiar with the notion of
suffix tree STT# = (V,E) of T#, i.e. the compact trie of all suffixes of T# (see
e.g. [12] for an introduction). We denote by `(γ), or equivalently by `(u, v), the
label of edge γ = (u, v) ∈ E, and we denote by `(v) the concatenation of all
edge labels in the path from the root to node v ∈ V . It is well known that a
string W is right-maximal (respectively, left-maximal) in T# iff W = `(v) for
some internal node v of STT# (respectively, iff W = `(v) for some internal node
v of STT#). Since left-maximality is closed under prefix operation, there is a
bijection between the set of all maximal repeats of T# and the set of all nodes
of the suffix tree of T# that lie on paths that start from the root and that end at
nodes labelled by rightmost maximal repeats (a symmetrical observation holds
for the suffix tree of T#).

The compact directed acyclic word graph of T# (denoted by CDAWGT# in
what follows) is the minimal compact automaton that recognizes the set of suf-
fixes of T# [4, 7]. It can be seen as a minimization of STT# in which all leaves
are merged to the same node (the sink) that represents T# itself, and in which
all nodes except the sink are in one-to-one correspondence with the maximal
repeats of T# [20] (the source corresponds to the empty string). As in the suffix
tree, transitions are labelled by substrings of T#, and the subgraph of STT#

induced by maximal repeats is isomorphic to a spanning tree of CDAWGT#.



For reasons of space we assume the reader to be familiar with the notion
and uses of the Burrows-Wheeler transform (BWT) of T and of the FM index,
including the C array, LF mapping, and backward search (see e.g. [9]). In this
paper we use BWTT# to denote the BWT of T#, and we use range(W ) =
[sp(W )..ep(W )] to denote the lexicographic interval of a string W in a BWT that
is implicit from the context. We say that BWTT#[i..j] is a run iff BWTT#[k] =
c ∈ [0..σ] for all k ∈ [i..j], and moreover if every substring BWTT#[i′..j′] such
that i′ ≤ i, j′ ≥ j, and either i′ 6= i or j′ 6= j, contains at least two distinct
characters. We denote by rT# the number of runs in BWTT#, and we call run-
length encoded BWT (denoted by RLBWTT#) any representation of BWTT#

that takes O(rT#) words of space, and that supports rank and select operations
(see e.g. [16, 17, 21]). Since the difference between rT# and rT# is negligible in
practice, we denote both of them by r when T is implicit from the context.

Repetition-aware string indexes. The run-length compressed suffix ar-
ray of T#, denoted by RLCSAT# in what follows, consists of a run-length com-
pressed rank data structure for BWTT#, and of a sampled suffix array, denoted
by SSAT# [17]. The average time for locating an occurrence is inversely propor-
tional to the size of SSAT#, and fast locating needs a large SSA regardless of the
compressibility of the dataset. Mäkinen et al. suggested ways to reduce the size
of the SSA [17], but they did not perform well enough in real repetitive datasets
for the authors to include them in the software they released.

The Lempel-Ziv 77 factorization of T [24], abbreviated with LZ77 in what fol-
lows, is the greedy decomposition of T into phrases or factors T1T2 · · ·Tz defined
as follows. Assume that T is virtually preceded by the set of distinct characters
in its alphabet, and assume that T1T2 · · ·Ti has already been computed for some
prefix of length k of T : then, Ti+1 is the longest prefix of T [k + 1..n] such that
there is a j ≤ k that satisfies T [j..j + |Ti+1| − 1] = Ti+1. For reasons of space
we assume the reader to be familiar with LZ77 indexes: see e.g. [10, 13]. Here we
just recall that a primary occurrence of a pattern P in T is one that crosses or
ends at a phrase boundary in the LZ77 factorization T1T2 · · ·Tz of T . All other
occurrences are called secondary. Once we have computed primary occurrences,
locating all socc secondary occurrences reduces to two-sided range reporting,
and it takes O(socc · log log n) time with a data structure of O(z) words of space
[13]. To locate primary occurrences, we use a data structure for four-sided range
reporting on a z × z grid, with a marker at (x, y) if the x-th LZ factor in lex-
icographic order is preceded in the text by the lexicographically y-th reversed
prefix ending at a phrase boundary. This data structure takes O(z) words of
space, and it returns all the phrase boundaries that are immediately followed by
a factor in the specified range, and immediately preceded by a reversed prefix in
the specified range, in O((1 + k) logε z) time, where k is the number of phrase
boundaries reported [5]. Kärkkäinen and Ukkonen used two PATRICIA trees
[18], one for the factors and the other for the reversed prefixes ending at phrase
boundaries [13]. Their approach takes O(m2) total time if T is not compressed.
Replacing the uncompressed text by an augmented compressed representation,
we can store T in O(z log n) space such that later, given P , we can find all occ



occurrences of P in O(m logm+ occ · log log n) time [10].

Alternatively, if all queried patterns are of length at most M , we could store
in a FM index the substrings of T that consist of characters within distance M
from the closest phrase boundary, and use that to find primary occurrences (see
e.g. [22] and references therein). This approach is known as hybrid indexing.

Composite repetition-aware string indexes. Combining RLBWTT# with
the set of all starting positions p1, p2, . . . , pz of the LZ factors of T , yields a
data structure that takes O(z + r) words of space, and that reports all the
pocc primary occurrences of a pattern P ∈ [1..σ]m in O(m(log log n + log z) +
pocc · logε z) time [3]. Since such data structure is at the core of this paper, we
summarize it in what follows. The same primary occurrence of P in T can cover
up to m factor boundaries. Thus, we consider every possible way of placing,
inside P , the rightmost boundary between two factors, i.e. every possible split
of P in two parts P [1..k − 1] and P [k..m] for k ∈ [2..m], such that P [k..m] is
either a factor or a proper prefix of a factor. For every such k, we use four-sided
range reporting queries to list all the occurrences of P in T that conform to
the split, as described before. We encode the sequence p1, p2, . . . , pz implicitly,
as follows: we use a bitvector last[1..n] such that last[i] = 1 iff SAT#[i] =
n− pj + 2 for some j ∈ [1..z], i.e. iff SAT#[i] is the last position of a factor. We
represent such bitvector as a predecessor data structure with partial ranks, using
O(z) words of space [23]. Let STT# = (V,E) be the suffix tree of T#, and let
V ′ = {v1, v2, . . . , vz} ⊆ V be the set of loci in STT# of all the LZ factors of T .
Consider the list of node labels L = `(v1), `(v2), . . . , `(vz), sorted in lexicographic
order. It is easy to build a data structure that takes O(z) words of space, and
that implements in O(log z) time function I(W,V ′), which returns the (possibly
empty) interval of W in L (see e.g. [3]). Together with last, RLBWTT# and
RLBWTT#, this data structure is the output of our construction.

Given P , we first perform a backward search in RLBWTT# to determine
the number of occurrences of P in T#: if this number is zero, we stop. Dur-
ing backward search, we store in a table the interval [ik..jk] of P [k..m] in
BWTT# for every k ∈ [2..m]. Then, we compute the interval [i′k−1..j

′
k−1] of

P [1..k − 1] in BWTT# for every k ∈ [2..m], using backward search in RLBWTT#:
if rank1(last, j′k−1)− rank1(last, i′k−1 − 1) = 0, then P [1..k− 1] never ends at
the last position of a factor, and we can discard this value of k. Otherwise, we
convert [i′k−1..j

′
k−1] to the interval [rank1(last, i′k−1−1)+1..rank1(last, j′k−1)]

of all the reversed prefixes of T that end at the last position of a factor. Rank
operations on last can be implemented in O(log log n) time using predecessor
queries. We get the lexicographic interval of P [k..m] in the list of all distinct fac-
tors of T , in O(log z) time, using operation I(P [k..m], V ′). We use such intervals
to query the four-sided range reporting data structure.

It is also possible to combine RLBWTT# with CDAWGT#, building a data
structure that takes O(eT#) words of space, and that reports all the occ oc-
currences of P in O(m log log n+ occ) time, where eT# is the number of right-
extensions of maximal repeats of T# [3]. Specifically, for every node v in the
CDAWG, we store |`(v)| in a variable v.length. Recall that an arc (v, w) in



the CDAWG means that maximal repeat `(w) can be obtained by extending
maximal repeat `(v) to the right and to the left. Thus, for every arc γ = (v, w)
of the CDAWG, we store the first character of `(γ) in a variable γ.char, and
we store the length of the right extension implied by γ in a variable γ.right.
The length γ.left of the left extension implied by γ can be computed by
w.length − v.length − γ.right. For every arc of the CDAWG that connects
a maximal repeat W to the sink, we store just γ.char and the starting position
γ.pos of string W ·γ.char in T . The total space used by the CDAWG is O(eT#)
words, and the number of runs in BWTT# can be shown to be O(eT#) as well
[3] (an alternative construction could use CDAWGT# and RLBWTT#).

Once again, we use the RLBWT to count the number of occurrences of P in
T in O(m log log n) time: if this number is not zero, we use the CDAWG to report
all the occ occurrences of P in O(occ) time, using a technique already sketched
in [6]. Specifically, since we know that P occurs in T , we perform a blind search
for P in the CDAWG, as is typically done with PATRICIA trees. We keep a
variable i, initialized to zero, that stores the length of the prefix of P that we
have matched so far, and we keep a variable j, initialized to one, that stores
the starting position of P inside the last maximal repeat encountered during
the search. For every node v in the CDAWG, we choose the arc γ such that
γ.char = P [i + 1] in constant time using hashing, we increment i by γ.right,
and we increment j by γ.left. If the search leads to the sink by an arc γ, we
report γ.pos+j and we stop. If the search ends at a node v that is associated with
a maximal repeat W , we determine all the occurrences of W in T by performing
a depth-first traversal of all nodes reachable from v in the CDAWG , updating
variables i and j as described before, and reporting γ.pos + j for every arc γ
that leads to the sink. The total number of nodes and arcs reachable from v is
O(occ).

3 Combining RLBWT and LZ factors in practice

In this paper we implement6 a range of practical variants of the combination of
RLBWT and LZ factorization described in Section 2. Specifically, in addition to
the version described in Section 2 (which we call full in what follows), we design
a variant in which we drop RLBWTT#, simulating it with a bidirectional index,
in order to save space (we call this bidirectional in what follows); a variant in
which we drop RLBWTT#, the four-sided range reporting data structure, and
the subset of suffix tree nodes, in order to save even more space (we call this
variant light in what follows); and another variant in which, to reduce space even
further, we use a sparse version of the LZ parsing, i.e. we skip a fixed number
of characters after each factor (we call this index sparse in what follows). In
addition, we design a number of optimizations to speed up locate queries in
practice: we will describe them in the full version of the paper.

Our representation of the RLBWT is based on the one described in [21], which

6 Our source code is available at https://github.com/nicolaprezza/lz-rlbwt and
https://github.com/nicolaprezza/slz-rlbwt and it is based on SDSL [11].
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FM Light, bidirectional, full CDAWG

Escherichia coli Saccharomyces cerevisiae Pseudo-real Haemophilus inluenzae Saccharomyces paradoxus

RLCSA LZ77-index Hybrid Sparse

Fig. 1: Locate queries: space-time tradeoffs of our indexes (color) and of the state of the
art (black). Top row: patterns of length 16. Bottom row: patterns of length 512. The
full, bidirectional, and light indexes are shown with (red dots) and without (red circles)
speed optimizations. The CDAWG is shown in succinct (blue dots) and non-succinct
(blue circles) version.

we summarize here for completeness, but is more space-efficient. The authors of
[21] store one character per run in a string H ∈ Σr, they mark with a one the
beginning of each run in a bitvector Vall[0..n−1], and for every c ∈ Σ they store
the lengths of all runs of character c consecutively in a bit-vector Vc: specifically,
every c-run of length k is represented in Vc as 10k−1. This representation allows
one to map rank and access queries on BWTT# to rank, select and access queries
on H, Vall, and Vc. By gap-encoding the bitvectors, this representation takes
r(2 log(n/r) + log σ)(1 + o(1)) bits of space. We reduce the multiplicative factor
of the term log(n/r) by storing in Vall just one out of 1/ε ones, where 0 < ε ≤ 1
is a given constant (we set ε = 1/8 in all our experiments). Note that we are still
able to answer all queries on the RLBWT, by using the Vc vectors to reconstruct
the positions of the missing ones in Vall. However, query time gets multiplied by
1/ε. We represent H as a Huffman-encoded string (wt huff<> in SDSL), and we
gap-encode bitvectors with Elias-Fano (sd vector<> in SDSL).

Full index. Our first variant is an engineered version of the data structure
described in Section 2. We store both RLBWTT# and RLBWTT#. A gap-encoded
bitvector end[0..n−1] of z log(n/z)(1 + o(1)) bits marks the rank, among all the



suffixes of T#, of every suffix T [i..n−1]# such that n− i−2 is the last position
of an LZ factor of T . Symmetrically, a gap-encoded bitvector begin[0..n− 1] of
z log(n/z)(1 + o(1)) bits marks the rank, among all the suffixes of T#, of every
suffix T [i..n− 1]# such that i is the first position of an LZ factor of T .

Geometric range data structures are implemented with wavelet trees (wt int

in SDSL). We manage to fit the 4-sided data structure in 2z log z(1 + o(1)) bits,
and the 2-sided data structure in z(2 log n + 1)(1 + o(1)) bits: we will detail
such implementations in the full version of the paper. Finally, we need a way to
compute the lexicographic range of a string among all the LZ factors of T . We
implement a simpler and more space-efficient strategy than the one proposed
in [3], which we will describe in the full version of the paper. In summary, the
full index takes

(
6z log n+ 2(1 + ε)r log(n/r) + 2r log σ

)
· (1 + o(1)) bits of space,

and it supports count queries in O(m ·(log(n/r)+log σ)) time and locate queries
in O((m+ occ) · log n) time.

Bidirectional index. To save space we can drop RLBWTT# and simulate
it using just RLBWTT#, by applying the synchronization step performed in
bidirectional BWT indexes (see e.g. [2] and references therein). This strategy
penalizes the time complexity of locate queries, which becomes quadratic in
the length of the pattern. Moreover, since in our implementation we store run-
lengths separately for each character, a synchronization step requires σ rank
queries to find the number of characters smaller than a given character inside a
BWT interval. This operation could be performed in O(log σ) time if the string
were represented as a wavelet tree. In summary, the bidirectional variant of the
index takes

(
6z log n + (1 + ε)r log(n/r) + r log σ

)
· (1 + o(1)) bits of space, it

supports count queries in O(m · (log(n/r) + log σ)) time, and it supports locate
queries in O(m2σ log(n/r) + (m+ occ) · log n) time.

Light index. Once we have computed the interval of the pattern in BWTT#,
we can locate all its primary occurrences by just forward-extracting at most m
characters for each occurrence inside the range: this is because every primary
occurrence of the pattern overlaps with the last position of an LZ factor. We
implement forward extraction by using select queries on RLBWTT#. This ap-
proach requires just RLBWTT#, the 2-sided range data structure, a gap-encoded
bitvector endT that marks the last position of every LZ factor in the text, a
gap-encoded bitvector endBWT that marks the last position of every LZ factor
in BWTT#, and z integers of log z bits each, connecting corresponding ones in
endBWT and in endT : this array plays the role of the sparse suffix array sampling
in RLCSA.

Sparse index. We can reduce the size of the index even further by sparsifying
the LZ factorization. Intuitively, the factorization of a highly-repetitive collection
of strings T = T1T2 · · ·Tk, where T2, . . . , Tk are similar to T1, is much denser
inside T1 than it is inside T2 · · ·Tk. Thus, excluding long enough contiguous
regions from the factorization (i.e. not outputting factors inside such regions)
could reduce the number of factors in dense regions. Formally, let d > 0, and
consider the following generalization of LZ77, denoted here by LZ77-d: we factor
T as X1Y1X2Y2 · · ·XzdYzd , where zd is the size of the factorization, Yi ∈ Σd
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Fig. 2: Locate time per occurrence (top) and count time per pattern (bottom), as a
function of pattern length, for the sparse index with skip rate 2i, i ∈ [5..10], the LZ77
index, and the hybrid index. Count plots show also the FM index and RLCSA.

for all i ∈ [1..zd], and Xi is the longest prefix of XiYi · · ·XzdYzd that starts
at least once inside the range of positions [1..|X1Y1 · · ·Xi−1Yi−1|]. To make the
light index work with LZ77-d, we need to sample the suffix array of T# at the
lexicographic ranks that correspond to the last position of every Xi, and we need
to redefine primary occurrences as those that are not fully contained inside an X
factor. To answer a locate query, we also need to extract d additional characters
before each occurrence of the pattern, in order to detect primary occurrences
that start inside a Y factor. Finally, the 2-sided range data structure needs to
be built on the sources of the X factors. The sparse index takes

(
zd(3 log n +

log(n/zd)) + (1 + ε)r log(n/r)
)
· (1 + o(1)) bits of space, it answers locate queries

in O((occ+1) · (m+d) · log n) time, and count queries in O(m(log(n/r)+log σ))
time. Setting d large enough makes zd up to three times smaller than the number
of LZ factors in realistic highly-repetitive collections.

4 Combining RLBWT and CDAWG in practice

In this paper we also engineer7 the combination of RLBWT and CDAWG de-
scribed in Section 2, and in particular we study the effects of two representations

7 Our source code is available at https://github.com/mathieuraffinot/locate-cdawg
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Fig. 3: Space-time traeoffs of the CDAWG (blue) compared to RLCSA (triangles) with
sampling rate 2i, i ∈ [3..5]. Patterns of length 8, 6, 4, 2 (from left to right). The
CDAWG is shown in succinct (blue dots) and non-succinct (blue circles) version.

of the CDAWG. In the first one, the graph is encoded as a sequence of variable-
length integers: every integer is represented as a sequence of bytes, in which the
seven least significant bits of every byte are used to encode the integer, and the
most significant bit flags the last byte of the integer. Nodes are stored in the
sequence according to their topological order in the graph obtained from the
CDAWG by inverting the direction of all arcs: to encode a pointer from a node
v to its successor w in the CDAWG, we store the difference between the first
byte of v and the first byte of w in the sequence. If w is the sink, such difference
is replaced by a shorter code. We choose to store the length of the maximal
repeat that corresponds to each node, rather than the offset of `(v) inside `(w)
for every arc (v, w), since such lengths are short and their number is smaller
than the number of arcs in practice.

In the second encoding we exploit the fact that the subgraph of the suffix tree
of T# induced by maximal repeats is a spanning tree of CDAWGT#. Specifically,
we encode such spanning tree with the balanced parenthesis scheme described
in [19], and we resolve the arcs of the CDAWG that belong to the tree using
corresponding tree operations. Such operations work on node identifiers, thus
we need to convert a node identifier to the corresponding first byte in the byte
sequence of the CDAWG, and vice versa. We implement such translation by
encoding the monotone sequence of the first byte of every node with the quasi-
succinct representation by Elias and Fano, which uses at most 2 + log(N/n) bits
per starting position, where N is the number of bytes in the byte sequence and
n is the number of nodes [8].

5 Experimental results

We test our implementations on five DNA datasets from the Pizza&Chili repet-
itive corpus8, which include the whole genomes of approximately 36 strains of
the same eukaryotic species, a collection of 23 and approximately 78 thousand
substrings of the genome of the same bacterium, and an artificially repetitive

8 http://pizzachili.dcc.uchile.cl/repcorpus.html
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Fig. 4: (Top) Disk size of the sparse index with skip rate 2i, i ∈ [10..15], compared to the
hybrid index with maximum pattern length 2i, i ∈ [3..10], the LZ77 index, and RLCSA
with sampling rate 2i, i ∈ [10..15]. (Bottom) Disk size of the CDAWG compared to
RLCSA with sampling rate 2i, i ∈ [2..5]. The CDAWG is shown in succinct (blue dots)
and non-succinct (blue circles) version.

string obtained by concatenating 100 mutated copies of the same substring of
the human genome. We compare our results to the FM index implementation in
SDSL [11] with sampling rate 2i for i ∈ [5..10], to an implementation of RLCSA9

with the same sampling rates, to the five variants in the implementation of the
LZ77 index described in [14], and to a recent implementation of the compressed
hybrid index [22]. The FM index uses RRR bitvectors in its wavelet tree. For
brevity, we call LZ1 the implementation of the LZ77 index that uses the suffix
trie and the reverse trie. For each process, and for each pattern length 2i for
i ∈ [3..10], we measure the maximum resident set size and the number of CPU
seconds that the process spends in user mode10, both for locate and for count
queries, discarding the time for loading the indexes and averaging our measure-
ments over one thousand patterns11. We experiment with skipping 2i characters

9 We compile the sequential version of https://github.com/adamnovak/rlcsa with
PSI FLAGS and SA FLAGS turned off (in other words, we use a gap-encoded bitvector
rather than a succinct bitvector to mark sampled positions in the suffix array). The
block size of psi vectors (RLCSA BLOCK SIZE) is 32 bytes.

10 We perform all experiments on a single core of a 6-core, 2.50 GHz, Intel Xeon E5-
2640 processor, with access to 128GiB of RAM and running CentOS 6.3. We measure
resources with GNU Time 1.7, and we compile with GCC 5.3.0.

11 We use as patterns random substrings of each dataset, containing just DNA bases,
generated with the genpatterns tool from the Pizza&Chili repetitive corpus.



before opening a new phrase in the sparse index, where i ∈ [5..10].

The first key result of our experiments is that, in highly-repetitive strings,
the sparse index takes an amount of space that is comparable to LZ indexes, and
thus typically smaller than the space taken by RLCSA and by the FM index,
while supporting count operations that are approximately as fast as RLCSA and
as the FM index, and thus typically faster than LZ indexes. This new tradeoff
comes at the cost of slower locate queries.

Specifically, the gap between sparse index and LZ variants in the running
time of count queries is large for short patterns: the sparse index is between
two and four orders of magnitude faster than all variants of the LZ index, with
the largest difference achieved by patterns of length 8 (Figure 2, bottom). The
difference between the sparse index and variant LZ1 shrinks as pattern length
increases. Locate queries are between one and three orders of magnitude slower in
the sparse index than in LZ indexes, and comparable to RLCSA with sampling
rates equal to or greater than 2048 (Figure 1, top). However, for patterns of
length approximately 64 or larger, the sparse index becomes between one and
two orders of magnitude faster than all variants of the LZ index, except LZ1.
As a function of pattern length, the running time per occurrence of the sparse
index grows more slowly than the running time of LZ1, suggesting that the
sparse index might even approach LZ1 for patterns of length between 1024 and
2048 (Figure 2, top). Compared to the hybrid index, the sparse index is again
orders of magnitude faster in count queries, especially for short patterns (Figure
2, bottom). As with LZ1, the difference shrinks as pattern length increases,
but since the size of the hybrid index depends on maximum pattern length, the
hybrid index becomes larger than the sparse index for patterns of length between
64 and 128, and possibly even shorter (Figure 4, top). As with LZ indexes, faster
count queries come at the expense of locate queries, which are approximately 1.5
orders of magnitude slower in the sparse index than in the hybrid index (Figure
2, top).

The second key result of our experiments is that the CDAWG is efficient at
locating very short patterns, and in this regime it achieves the smallest query
time among all indexes. Specifically, the running time per occurrence of the
CDAWG is between 4 and 10 times smaller than the running time per occurrence
of a version of RLCSA that uses comparable memory, and with patterns of
length two the CDAWG achieves speedups even greater than 10 (Figure 3).
Note that short exact patterns are a frequent use case when searching large
repetitive collections of versioned source code. The CDAWG does not achieve
any new useful tradeoff with long patterns. Using the succinct representation of
the CDAWG saves between 20% and 30% of the disk size and resident set size
of the non-succinct representation, but using the non-succinct representation
saves between 20% and 80% of the query time of the succinct representation,
depending on dataset and pattern length. Finally, our full, bidirectional and
light index implementations exhibit the same performance as the sparse index
for count queries, but it turns out that they take too much space in practice to
achieve any new useful tradeoff (Figure 1).
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5. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: Proc. SoCG. pp. 1–10 (2011).

6. Crochemore, M., Hancart, C.: Automata for matching patterns. In: Handbook of
formal languages, pp. 399–462. Springer (1997).
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