
Flexible Integration of Multimedia Sub-Queries

with Qualitative Preferences

Ilaria Bartolini∗ and Paolo Ciaccia
({ibartolini,pciaccia}@deis.unibo.it)
DEIS, University of Bologna - IEIIT-BO/CNR, Bologna, Italy

Vincent Oria (oria@cis.njit.edu)
Dept. of Computer Science, NJ Inst. of Technology, Newark, NJ, USA

M. Tamer Özsu (tozsu@uwaterloo.ca)
School of Computer Science, University of Waterloo, Waterloo, ON, Canada

Abstract. Complex multimedia queries, aiming to retrieve from large databases
those objects that best match the query specification, are usually processed by
splitting them into a set of m simpler sub-queries, each dealing with only some
of the query features. To determine which are the overall best-matching objects, a
rule is then needed to integrate the results of such sub-queries, i.e., how to globally
rank the m-dimensional vectors of matching degrees, or partial scores, that objects
obtain on the m sub-queries. It is a fact that state-of-the-art approaches all adopt
as integration rule a scoring function, such as weighted average, that aggregates the
m partial scores into an overall (numerical) similarity score, so that objects can be
linearly ordered and only the highest scored ones returned to the user. This choice
however forces the system to compromise between the different sub-queries and can
easily lead to miss relevant results.

In this paper we explore the potentialities of a more general approach, based on
the use of qualitative preferences, able to define arbitrary partial (rather than only
linear) orders on database objects, so that a larger flexibility is gained in shaping
what the user is looking for. For the purpose of efficient evaluation, we propose
two integration algorithms able to work with any (monotone) partial order (thus
also with scoring functions): MPO, which delivers objects one layer of the partial
order at a time, and iMPO, which can incrementally return one object at a time,
thus also suitable for processing top k queries. Our analysis demonstrates that using
qualitative preferences pays off. In particular, using Skyline and Region-prioritized
Skyline preferences for queries on a real image database, we show that the results
we get have a precision comparable to that obtainable using scoring functions, yet
they are obtained much faster, saving up to about 70% database accesses.

1. Introduction

Specification and evaluation of multimedia (MM) queries are both diffi-
cult problems to be addressed for the development of effective MM tools
and applications. Indeed, the formulation of a query on a MM database
has to take into account both the intrinsic complexity to properly char-

∗ Part of this work was performed while this author was visiting NJIT.

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

MTAP-MPO.tex; 3/06/2005; 12:11; p.1

2

acterize the semantic content of multimedia objects and the difficulty
that a user experiences when trying to exactly formulate her needs.
With a large MM database, in which each object is characterized by
means of a set of relevant, automatically extracted, low-level features
(e.g., color, texture, and shape in the case of still images), the user
provides the system with a “target” (query) object and expects as
result the “most similar” database objects. For this retrieval model to
effectively work, it is well recognized that the similarity function used to
compare objects has to be properly adapted, possibly by means of some
relevance feedback technique [21], to fit the subjective user preferences.

When dealing with complex MM queries involving multiple features,
the scenario is further complicated. Indeed, since it is a common case
that features are separately indexed [19] or even managed by inde-
pendent specialized sub-systems [14], an integration of partial results
is needed. Relevant examples of integration algorithms are A0 [14],
TA [16], and MEDRANK [15]. Their common rationale is to have an
independent, yet synchronized, evaluation of sub-queries, one for each
involved feature. Each object returned by a sub-query has an associated
partial score for the corresponding feature, and such partial scores are
then aggregated by means of some (possibly weighted) scoring function,
like min and avg, into an overall score. Under this view one object is
better than (i.e., preferred to/ranked higher than) another iff its overall
score is higher.

It is well-known that the choice of the scoring function and of the
weights are both critical factors for the determination of the final result,
and that any choice necessarily provides a limited view of the best avail-
able alternatives (namely, only those maximizing the scoring function).
Although relevance feedback mechanisms specifically proposed in the
case of multiple sub-queries [20] can alleviate this problem by allowing
the user to progressively shift her focus towards interesting regions of
the search space, they usually require several iterations before leading
to acceptable results, thus generating a not negligible overhead on the
system [5]. Further, since scoring functions can only represent prefer-
ences that define a linear order on the objects [17], they have indeed a
limited expressive power, which might severely limit their applicability
in modern multimedia systems.

With the aim of going beyond the intrinsic limits of scoring func-
tions, in this paper we propose a novel, more general, approach to sub-
query integration, based on qualitative preferences. Qualitative prefer-
ences, which have been recently found their way, among the others, in
relational databases [11] and Web information systems [2], only require
that, given a pair of objects oi and oj , one has some (binary) preference
relation stating when oi is preferred to oj (oi � oj). This framework

MTAP-MPO.tex; 3/06/2005; 12:11; p.2

3

clearly includes scoring functions as a special case (since for any scoring
function S() one can simply define oi � oj iff S(oi) > S(oj)), yet it can
also rely on more sophisticated and flexible criteria able to explicitly
take into account all the partial scores when comparing objects. As
a first beneficial effect this has the consequence that there is no risk
of choosing “bad parameter values”, as it might happen with scoring
functions. In particular, using Skyline preferences [8], one obtains as
result of a query all Pareto-optimal objects, i.e., all and only those ob-
jects that are maxima of some scoring function. Intuitively, this makes
it possible to get an “overall view” of the potential best objects for a
given query, a fact that highly simplifies the task of focusing on the part
of the search space containing more relevant objects. Our experiments
on a real-world image database indeed confirm that the results obtained
using Skyline preferences cover much better than scoring functions
the space of the relevant objects for a query, and that this effect is
further amplified when using an original variant of the Skyline, called
Region-prioritized Skyline.

The model of queries we consider includes the standard one, where
one is interested in obtaining the top k results, the major difference
being, of course, the criterion according to which objects are ranked. To
this end we rely on the well-defined semantics of the Best operator [22],
β�(C), that returns all the objects o in a collection C such that there
is no object in C better than o according to �.1 Ranking is naturally
obtained by recursively applying the Best operator to the remaining
objects (i.e., those in C − β�(C), and so on). This leads to a layered
view of the search space where all the objects in one layer are equally
ranked. Thus, besides top k queries, we also provide a “first � layers”
query model, which adds further flexibility to the retrieval phase.

Turning to consider evaluation issues, we propose two novel inte-
gration algorithms. Algorithm MPO applies to any preference relation
that defines a strictly monotone partial order on database objects and
works by returning one layer at a time of the partial order. In order to
efficiently support also top k queries and to minimize the time a user
has to wait to get any object in the result, we then introduce the iMPO
incremental algorithm, which can deliver as earliest as possible objects
one at a time.

Our experiments, contrasting Skyline (SL) and Region-prioritized
Skyline (RS) preferences with the min and avg scoring functions, show
that the quality of the results obtainable from both SL and RS, as mea-
sured in terms of classical precision, is comparable to that of averaging

1 Operators with the same semantics of Best have been independently proposed
in [11] and [18].

MTAP-MPO.tex; 3/06/2005; 12:11; p.3

4

partial scores, whereas is (much) better than that of min; however,
when using either SL or RS one needs to perform much less database
accesses than with avg to get the same number of relevant objects.
Further, with qualitative preferences one obtains results that much
better reflect the actual distribution of the relevant objects of a query.

The rest of the paper is organized as follows. In Section 2 we provide
the basic definitions concerning the query scenario and the integration
problem; then we discuss scoring functions and their limits. Section 3 in-
troduces qualitative preferences. In Section 4 we present the MPO and
iMPO algorithms, and in Section 5 we describe experimental results.
Table I lists relevant symbols used in the paper.

Table I. Relevant symbols used in the paper

Symbol Description

C collection of objects

oi the i-th object of C

Q complex query with m sub-queries

Qq q-th sub-query (q = 1, . . . , m)

si,q partial score of oi with respect to Qq (si,q ∈ [0, 1])

A m-dimensional “answer space”, A = [0, 1]m

pi representative point of object oi in the answer space

p the “threshold point”

S scoring function

si overall score of object oi computed by S, si = S(pi)

� preference relation

β� the Best operator

2. The Integration Problem

Consider a collection C of multimedia objects and a complex query,
Q = (Q1, Q2, . . . , Qm), where each Qq is a distinct sub-query. Note
that this simple query model is powerful enough to include as relevant,
cases where each Qq refers to a distinct (subset of) feature(s) used in
the query [21] and cases in which local features are used to characterize
different parts of a same object. The latter cases are well exemplified by
region-based image retrieval systems [4], in which each Qq corresponds
to a distinct region of the query image.

For each sub-query Qq we assume that objects are assigned a par-
tial score, si,q ∈ [0, 1], that tells us “how well” object oi matches
Qq, with higher values being better. Consequently, for the purpose
of determining the results of query Q, object oi can be univocally

MTAP-MPO.tex; 3/06/2005; 12:11; p.4

5

represented by a point pi = (si,1, . . . , si,m) in the m-dimensional answer
space A = [0, 1]m, and the integration problem amounts to efficiently
determine the “overall best” points (i.e., objects) in such space. Pre-
liminary to the discussion of algorithmic issues is therefore a precise
understanding of what “overall best” can actually mean.

2.1. Scoring Functions

According to the standard approach used to define the semantics of
a complex multimedia query, partial scores are aggregated using some
scoring function S : A → [0, 1], that assigns to each point pi in the
answer space A an overall score si = S(pi).

In practice, commonly used scoring functions, like min, max, avg,
etc., as well as their weighted versions, all satisfy the reasonable prop-
erty of being (strictly) monotone, which guarantees that the overall
score is always positively correlated with all the partial scores:

Definition 1 (Monotonicity of scoring functions) A scoring func-
tion S is monotone if sj,q ≤ si,q for all q implies sj = S(sj,1, . . . , sj,m) ≤
si = S(si,1, . . . , si,m), and strictly monotone if sj,q < si,q ∀q implies
sj < si.

Monotonicity and strict monotonicity can be given a simple yet useful
geometric interpretation in the answer space A (see also Figure 1 (a)).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pi

Ripj

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pi

Ripj

1

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s0,1

p1

s0,2

s0,1 + δ

s0,2 - ε

s0,1 - ε

p0

p2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s0,1

p1

s0,2

s0,1 + δ

s0,2 - ε

s0,1 - ε

p0

p2

(b)
Figure 1. (a) The hyper-rectangle of object oi; (b) Why the weighted average cannot
retrieve all potential best matches

For this, consider the “ideal” result point 1 = (1, . . . , 1), which cor-
responds to the best possible evaluation for all the sub-queries, and let
Ri be the “hyper-rectangle of oi” having pi and 1 as opposite vertices.
If S is (strictly) monotone and pj is a point of (respectively, in the

MTAP-MPO.tex; 3/06/2005; 12:11; p.5

6

interior of) Ri, then S(pi) ≤ S(pj) (S(pi) < S(pj)). Consequently, if
there are at least k points of C in the hyper-rectangle of oi, then no
strictly monotone scoring function can make oi one of the k highest
scored objects.

Now, let us say that object oi is a potential k best match iff there
are exactly k − 1 points in its hyper-rectangle, and simply a potential
best match if it is a potential 1 best match (i.e., no points are found
in Ri). Consider now a top k query Q using a scoring function S.
Although it is plain to see, due to the monotonicity of S, that each
object in the result of Q will be a potential j best match, with j ≤ k,
it is also true that Q will likely miss many potential best matches, in
particular those in the parts of the answer space where S does not
attain high values.2 This lack of an “overall view” of the potential best
matches is usually handled by means of relevance feedback techniques,
that iteratively modify the parameters (i.e., weights) of the scoring
function so as to better fit user preferences and lead the search to
focus on the more relevant parts of the answer space [20]. However,
relevance feedback mechanisms require a good “starting point” to work
well3 and several refinement steps are usually needed before weights
converge to the “right” values, a fact which can severely degrade system
performance [5].4 Further, commonly used scoring function, such as
weighted average, are necessarily prone to miss some potential best
match, no matter how their weights are adjusted. To see why this is the
case, take as scoring function a weighted average:

si = avgW (pi) = avgq{wq × si,q} (1)

where W is a weight vector, and assume k = 1 and 2 sub-queries, i.e.,
m = 2 (see also Figure 1 (b)). Let object o0 be a potential best match,
with scores p0 = (s0,1, s0,2), where both s0,1 and s0,2 are less than 1,
and assume that collection C also includes 2 objects o1 and o2 such that
p1 = (s0,1 + δ, s0,2− ε) and p2 = (s0,1− ε, s0,2 + δ), with δ > ε > 0. It is
not difficult to see that any choice of the weight values in Equation (1)
will either yield avgW (p0) < avgW (p1) or avgW (p0) < avgW (p2), thus
always inhibiting object o0 to be retrieved.

2 As a simple example, if oi is a potential best match that has a single (very)
low partial score and the scoring function is min, then the overall score of oi will be
(very) low as well.

3 Clearly, this depends not only on the scoring function itself but also on the
actual content of the database, which might lead to a result set where the user
cannot find any relevant object at all.

4 Note that this is orthogonal to the problem of efficiently answering a single
query. Even when queries can be efficiently evaluated, answering many of them will
anyway become a performance bottleneck.

MTAP-MPO.tex; 3/06/2005; 12:11; p.6

7

This negative result, that can easily be extended to arbitrary k and
m values as well as to many other scoring functions [3], coupled with the
observations on the inherent complexity paid for effectively exploring
the space of potential best matches, suggests us to look for a more
general and efficient alternative to the integration problem.

3. Qualitative Preferences

As it is well-known from decision theory, preferences do not always
admit a numerical representation through a scoring function [17]. In
order to rank objects it is indeed sufficient that preferences are “qual-
itatively” defined through a preference relation, precisely defined as
follows.

Definition 2 (Preference Relation) Let X be a domain of values.
A preference relation over X is a binary relation � ⊆ X×X. If x1, x2 ∈
X and (x1, x2) ∈ �, we also write x1 � x2 and say that x1 is preferable
to x2 or, equivalently, that x1 dominates x2. If neither x1 � x2 nor
x2 � x1 hold, we say that x1 and x2 are incomparable, written x1 ∼ x2.

Coherently with the model introduced in Section 2, preferences are de-
fined over the answer space (thus A ≡ X in above definition); however,
slightly abusing notation, we will also write oi � oj whenever pi � pj

holds.
Although it is immediate to see that preference relations include

scoring functions as a special case, since for any S one can immediately
define a corresponding �S as oi �S oj ⇔ S(pi) > S(pj), Definition 2 is
far too general for our purposes. Indeed, it is still reasonable to demand
that qualitative preferences, even if not based on the comparison of
overall scores, still have some kind of monotonic behavior with respect
to partial scores, so as to ensure that “doing better” on sub-queries will
not worsen the overall goodness of an object.

Definition 3 (Monotonicity of preference relations) A preference
relation � over the answer space A = [0, 1]m is monotone if sj,q ≤ si,q

∀q implies pj
� pi, and strictly monotone if sj,q < si,q ∀q implies
pi � pj.

Finally, we also want to preserve the transitivity of �, that is, x1 � x2

and x2 � x3 imply x1 � x3. This, together with monotonicity, ensures
that � is also a strict partial order (PO for short), thus transitive (by
hypothesis) and irreflexive, that is, x
� x (by Definition 3).5

5 Note that a strict partial order is not necessarily monotone with respect to
partial scores and, going the other way, monotonicity is not enough to guarantee

MTAP-MPO.tex; 3/06/2005; 12:11; p.7

8

As to the difference between monotone and strictly monotone pref-
erence relations, we observe that the first ones have the pitfall of being
potentially insensitive to changes in partial scores, that is, being oi

better than oj on all sub-queries would not guarantee oi � oj . We find
this very counter-intuitive, the reason of why in the sequel we will only
consider strictly monotone PO preference relations.

The first example of a strictly monotone PO preference relation are
the so-called Skyline preferences [8].

Definition 4 (Skyline preferences) The Skyline preference relation
�SL over A = [0, 1]m is defined as:

oi �SL oj ⇔ (∀q : sj,q ≤ si,q) ∧ (∃q : sj,q < si,q) (2)

Thus, oi is preferred to oj iff it is at least as good as oj on all sub-queries
and there is at least one sub-query for which oi performs better than
oj . The set of objects of C for which there is no object that dominates
them according to �SL is called the Skyline of C.

Skyline preferences coincide with the notion of Pareto optimality
from decision theory, where the Skyline is known as the Pareto set. Its
importance is that, if an object is a potential best match (as defined in
Section 2.1) then it will be an element of the Pareto set and, conversely,
each Pareto-optimal point is a potential best match. Intuitively, the
Skyline provides us with an “overall view” of the potential best objects
for a given query, a fact that highly simplifies the task of focusing on
the part of the search space containing more relevant objects.

Figure 2 shows the results of a sample query over an image database
when Skyline preferences are used to integrate the results of two sub-
queries, over color and texture features, respectively. The figure shows
the target “eagle” image Q and its potential best matches. Note that
most of them belong to the same semantic class, “Birds”, of Q (more
details on this point are given in Section 5) and that they are quite
spread over the answer space.

Clearly, Skylines are not the whole story about qualitative prefer-
ences. Without distracting the reader with too many details on the
engineering of complex preferences (see, e.g., [18]), in the following we
concentrate on a kind of preferences based on the concept of priority
among regions of the answer space.

To start with, consider the case where obad is an object with scores,
say, pbad = (0.8, 0.01, . . . , 0.01), and assume that 0.8 is the best score
for sub-query Q1, with no other object obtaining such score. Regardless

the transitivity of a preference relation (the same is true for strict monotonicity).
This is why both hypotheses need to be independently stated.

MTAP-MPO.tex; 3/06/2005; 12:11; p.8

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

color

te
xt

ur
e

Figure 2. The Skyline of the “eagle“ image

of the poor partial scores sbad,q = 0.01 (q = 2, . . . , m), this alone is
sufficient to guarantee, according to Definition 4, that obad will be part
of the Skyline of Q. This could be questionable to the user, especially
if the database contains (possibly many) other objects with somewhat
“more balanced” score values. On the other hand, the same user could
be interested in seeing obad if no such alternative solutions are currently
available. Imposing hard constraint on partial scores clearly does not
work here, since the problem is to return to the user the “best” results
compatible with the actual contents of the database. But this is ex-
actly the behavior that can be easily achieved working with qualitative
preferences!

Let Y = {A1, . . . , AP } be a partition of the answer space and define
a strictly monotone PO preference relation, �Y , among regions of Y .

Definition 5 (RS preferences) Let Reg : A → Y be a function
that maps each point of A into its (unique) region of Y . The Region-
prioritized Skyline (RS) preference relation �RS over A = [0, 1]m is
defined as:

oi �RS oj ⇔ (Reg(pi) �Y Reg(pj)) ∨ ((Reg(pi) = Reg(pj)) ∧ (pi �SL pj))

Thus, within a same region the Skyline logic applies, whereas priority
among regions prevails if two points belong to different regions. As a
simple example (see also Figure 3 (a)), let m = 2 and Y = {A1, A2},
with A1 = [0, 1] × [0.7, 1], A2 = [0, 1] × [0, 0.7), and A1 �Y A2. Any
point in the “upper rectangle” A1 will dominate points in the “lower

MTAP-MPO.tex; 3/06/2005; 12:11; p.9

10

rectangle” A2. Intuitively, this will favor objects with a good partial
score for sub-query Q2. Among such objects (if any), the best matches
will be determined using Skyline preferences. If region A1 is empty,
then the best matches will be found in region A2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A1

1

A2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A1

1

A2

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A1

1

A2

A3

A4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A1

1

A2

A3

A4

(b)
Figure 3. (a) A simple example of RS preferences, where the arrow means that region
A1 is preferred to region A2; (b) An illustration of Lemma 1, Y = {A1, A2, A3, A4}

In order to guarantee the strict monotonicity of �RS we need to
ensure that priority among regions does not contrast with Skyline
preferences.

Lemma 1 The preference relation �RS is strictly monotone iff when-
ever Reg(pi)
= Reg(pj) and sj,q < si,q ∀q, then it is Reg(pi) �Y

Reg(pj).

Proof.
(only if) Immediate from Definitions 3 and 5.
(if) We consider two cases: (a) if Reg(pi) = Reg(pj) then the result
follows from the strict monotonicity of �SL; (b) if Reg(pi)
= Reg(pj)
and sj,q < si,q for all q, by hypothesis Reg(pi) �Y Reg(pj), thus oi �RS

oj , as required. �
Figure 3 (b) provides a graphical intuition on above Lemma, where

arrows denote preferences among regions. Note also that A1 �Y A4

follows by transitivity.
Although, for the sake of definiteness, we have combined region

prioritization with Skyline preferences, in Equation 3 one could use
within each region any strictly monotone PO preference relation to
compare objects, and still obtain a valid strictly monotone PO region-
prioritized preference relation. For instance, one could define Y =
{A1, A2, A3, A4}, and within each region use a, possibly different (!),
preference relation, say �SL in A1, �min in A2, and so on.

MTAP-MPO.tex; 3/06/2005; 12:11; p.10

11

4. Query Evaluation

Efficient evaluation of complex multimedia queries is a challenging task
which requires to combine advanced indexing techniques, for picking
the best objects for each sub-query, with smart integration algorithms,
in order to avoid unnecessarily picking too many objects to correctly
determine the final result. Although methods exist that try to process
complex queries as a whole, i.e., without splitting them into sub-queries
and then using a single centralized index, they have a limited applica-
bility and/or are bound to specific access methods for the evaluation
of sub-queries. For instance, the method in [12] applies only to multi-
object queries on a given metric space, thus it is unsuitable if one
specifies on-the-fly which are the objects’ features to be used for query-
ing purposes. On the other hand, the method described in [7], that can
easily support queries on arbitrary subsets of the objects’ features, only
works if all sub-queries are on a vector space and objects are indexed by
a VA-file, thus making restrictive hypotheses on objects’ representation
and on the underlying structures used for sub-queries evaluation.

In order to stay as general as possible, we base our approach on a
well-accepted access model that, since the seminal paper by Fagin [14],
has become a standard for the design of integration algorithms (see,
e.g., [16, 15, 2, 1]). According to such model, evaluating each sub-query
Qq (q = 1, . . . , m) yields a ranked list Lq of pairs (oi, si,q), containing all
objects in the collection C ordered by descending score values. Relevant
information can be retrieved through one of two distinct modalities: A
sorted access retrieves from a list Lq the next unseen object on that list,
say oi, together with its partial score, si,q; a random access, on the other
hand, given an object oi seen via sorted access on some list Lq, retrieves
from the database the needed features and, consequently, evaluates the
missing partial scores for oi. The cost of an integration algorithm is then
taken to be the (possibly weighted) sum of the number of sorted and
random accesses performed by the algorithm for delivering the query
result set.

4.1. The MPO Algorithm

Our first algorithm, called MPO and described in Figure 4, is based on
the semantics of the Best operator [22] that, given an input collection
C and a preference relation �, returns all the potential best matches
in C:

β�(C) = {o ∈ C | �o′ ∈ C, o′ � o} (3)

The logic of algorithm MPO can be explained as follows. At each
step MPO retrieves via sorted access (step 4) the best “unseen” object

MTAP-MPO.tex; 3/06/2005; 12:11; p.11

12

Algorithm MPO (Input: query Q, collection C, preference relation �)

(1) Set Result = ∅; Set p = (1, . . . , 1); /* p is the threshold point */

(2) While (�(oi,pi) ∈ Result such that pi � p):

(3) For each sub-query Qq (q = 1, . . . , m) do:
(4) Retrieve the next unseen object oi from Lq ; /* sorted access */
(5) Retrieve missing scores for the other sub-queries and obtain pi;

/* random accesses */
(6) Set Dominated = false;
(7) While (not(Dominated) ∧ ∃ (oj ,pj) ∈ Result unmatched with pi):

(8) Compare pi with pj:

⎧⎨
⎩

pi � pj remove (oj ,pj) from Result,

pi ∼ pj do nothing,

pj � pi set Dominated = true;

(9) End While;
(10) If not(Dominated) insert (oi,pi) in Result;
(11) Let sq be the lowest score seen by sorted access on list Lq ;

Set p = (s1, . . . , sm);

(12) End For;
(13) End While;
(14) Return Result.

Figure 4. The MPO algorithm

oi from one of the m sorted lists, and then obtains missing partial scores
for such object via random access (step 5). The so-obtained represen-
tative point pi is then compared with the current objects in β�(C)
(steps 7 and 8). If no objects oj dominates oi, oi is inserted in β�(C)
(possibly also removing objects dominated by oi itself), otherwise oi is
discarded. At each point MPO maintains a “threshold point” p, whose
q-th component, sq, is the lowest partial score seen so far under sorted
access on list Lq. As soon as an object oi is found such that pi dominates
the threshold point p the algorithm terminates.

Theorem 1 The MPO algorithm correctly computes β�(C) for any
strictly monotone PO preference relation � that is Pareto-consistent,
that is, � satisfies the implication:
(x1 � x2) ∧ (x2 �SL x3) ⇒ (x1 � x3).

Proof.
(β�(C) ⊆ Result). If an object oj ∈ β�(C) has been retrieved via
sorted access before the algorithm stops, then it is guaranteed that
it will also belong to the final result. Thus, assume by contradiction
oj ∈ β�(C), yet oj has not been seen by the algorithm. Let oi be
the object that is found at step 2 to dominate the threshold point.
Unless pj is coincident with the threshold point, in which case we are
obviously done, at least one partial score of oj is strictly less than the
corresponding threshold value. It follows that p �SL pj. Since � is

MTAP-MPO.tex; 3/06/2005; 12:11; p.12

13

assumed to be Pareto-consistent, we also have pi � pj (since pi � p),
thus oj
∈ β�(C).
(Result ⊆ β�(C)). We prove that if oj
∈ β�(C) then oj
∈ Result. If
oj has not been seen by the algorithm then it cannot be part of the
final result. Thus, assume oj has been seen. Since oj
∈ β�(C) and � is
a strict partial order there is at least one object oi ∈ β�(C) such that
oi � oj . Since we have already proved that β�(C) ⊆ Result, such oi

has been seen, and steps 7 and 8 of the algorithm guarantee that oi

and oj have been compared. Therefore, oj cannot belong to Result. �
The hypothesis of “Pareto-consistency” has a really negligible im-

pact on the general applicability of the MPO algorithm. Indeed, any
“reasonable” strictly monotone PO preference relation is also Pareto-
consistent. For instance, this is easily shown to be the case if � rep-
resents a strictly monotone scoring function S (i.e., � ≡ �S). Also,
Skyline (SL) and Region-prioritized Skyline (RS) preferences are both
Pareto-consistent (for SL the result is obvious and for RS can also
be easily derived). A preference relation that is not Pareto-consistent
would have indeed a rather strange behavior: A point pi is preferred
to point pk but is not preferred to another point pj whose partial
scores are all less than or equal to those of pk (with at least one strict
inequality)!6

4.2. The Incremental MPO Algorithm

If one wants to explicitly control the cardinality of the result of a query
the Best operator (thus, algorithm MPO) is not the right choice, since
it returns all and only the potential best matches, regardless of how
many they are. For instance, it is known that the size of the Skyline
can become quite large, and grows fast with the number of dimensions
when partial scores have a negative correlation [8]. On the other hand,
when the size of β�(C) becomes too small it would be advisable to
allow the user to retrieve also further “good” objects, even if they are
not in β�(C).

To achieve both goals we start by introducing a new operator, called
BesTop, that combines the semantics of Best and Top-k operators. For
its definition it is first useful to remind the “layered” version of the

6 However, extending algorithm MPO so as to process also non Pareto-consistent
preferences is easy: Just perform, after pi � p has been verified, some further sorted
accesses on all lists, so as to see on all of them a partial score strictly less than
that of the threshold point (which now stays fixed). At this point, since � is strictly
monotone, all unseen objects pj are guaranteed to be dominated by p.

MTAP-MPO.tex; 3/06/2005; 12:11; p.13

14

Best operator [22]:7

β1
�(C) = β�(C) (4)

β�+1
� (C) = β�(C − ∪�

i=1β
i
�(C)) (5)

Thus, β��(C) retrieves the �-th “layer” of (the partial order induced by
� on) C. Figure 5 provides an intuition of “what is below” the Skyline of
the “eagle” query image shown in Figure 2, with dotted lines separating
the layers of the partial order induced by SL preferences.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

color

te
xt

ur
e

…

…

Figure 5. Some layers of the partial order induced by SL preferences for the “eagle”
query image

Definition 6 (BesTop operator) Let �(k) ≥ 1 be the smallest in-
teger that satisfies the inequality

∑�(k)
i=1 | βi�(C) |≥ k. The BesTop

operator β
[k]
� (C) retrieves k objects from C such that:

− β
[k]
� (C) includes all the objects in the first �(k) − 1 layers of C;

− it further includes other k − ∑�(k)−1
i=1 | βi�(C) | objects from the

�(k)-th layer of C.

A näıve approach to compute β
[k]
� (C) would be to extend algorithm

MPO so that it can return all the first �(k) layers (rather than only the
first one), and then to select all the objects in the first �(k) − 1 layers
plus others from layer �(k), so as to reach the desired result cardinality

7 An analogous extension has been proposed for the Winnow operator [11].

MTAP-MPO.tex; 3/06/2005; 12:11; p.14

15

k.8 The major drawback of this approach is made evident through a
simple example. Let k = 1, thus �(1) = 1 (the first layer is obviously
enough). If we run MPO and wait until its completion we would miss
the opportunity to stop as soon as we can conclude that a single object
belongs to β1�(C). In general, we see that no object of a layer � can be
returned by MPO before it is discovered that no further objects belong
to layer �, which might severely affect performance.

Algorithm iMPO (incremental MPO), summarized in Figure 6, ele-
gantly solves the above problem. To understand the logic of iMPO the
following observation is useful.

Observation 1 Let � be a strictly monotone PO preference relation
that is Pareto-consistent. If p
� pi and p �SL pj then pj
� pi.

Indeed, if pj � pi then from the hypothesis of Pareto consistency it
would follow that p � pi, thus contradicting the hypothesis.

Algorithm iMPO (Input: query Q, collection C, pref. relation �, integer k)

(1) Set NoOfResults = 0; Set ThisLayer = NextLayer = ∅; Set p = (1, . . . , 1);

(2) While (NoOfResults < k):
(3) While (�(oi,pi) ∈ ThisLayer such that pi � p ∧ NoOfResults < k):

(4) For each sub-query Qq (q = 1, . . . , m) do:
(5) Retrieve the next unseen object oi from Lq ;
(6) Retrieve missing scores for the other sub-queries and obtain pi;
(7) Set Dominated = false;
(8) While (not(Dominated) ∧ ∃ (oj ,pj) ∈ ThisLayer unmatched with pi):

(9) Compare pi with pj:

⎧⎨
⎩

pi � pj move (oj ,pj) from ThisLayer to NextLayer,

pi ∼ pj do nothing,

pj � pi set Dominated = true; insert (oi,pi) in NextLayer;

(10) End While;
(11) If not(Dominated) insert (oi,pi) in ThisLayer;
(12) Let sq be the lowest score seen by sorted access on list Lq ; Set p = (s1, . . . , sm);

(13) Output all objects (oi,pi) ∈ ThisLayer s.t. p 	� pi and update NoOfResults;

(14) End For;
(15) End While;
(16) If (NoOfResults < k) then: /* starts to process the next layer */
(17) Set ThisLayer = NextLayer; Set NextLayer = ∅;
(18) For all oi, oj ∈ ThisLayer s.t. pi � pj: move (oj ,pj) from ThisLayer to

NextLayer;
(19) Output all objects (oi,pi) ∈ ThisLayer s.t. p 	� pi and update NoOfResults;

(20) End If;
(21) End While.

Figure 6. The incremental MPO algorithm

iMPO exploits the above observation as follows. Each time the thresh-
old point p changes, iMPO checks if some object oi that has already

8 Note that at layer �(k) ties are arbitrarily broken, as it is customary for top k
queries.

MTAP-MPO.tex; 3/06/2005; 12:11; p.15

16

been retrieved is not dominated by p (step 13), in which case oi can be
immediately returned to the user. For this reason we call p
� pi the
delivery condition of iMPO for object oi.

The second major feature that distinguishes iMPO from MPO is the
management of multiple layers of the partially ordered collection C.
Rather than simply removing objects that are found to be dominated
by some other object (as MPO does), iMPO keeps them in a NextLayer
structure. Objects in such a structure are processed again upon com-
pletion of a layer, and before restarting to retrieve other objects via
sorted access (steps 17 and 18).

It is a fact that iMPO will always return an object oi before MPO
does so. This stems from the following basic result, in which we con-
sider MPO extended so as to deal with multiple layers (rather than
just the first one) of C. Having already introduced iMPO, this exten-
sion is straightforward, since it essentially amounts to dropping the
incremental delivery condition from the logic of iMPO.

Lemma 2 Let oj be an object at layer � of C, and let oi be the object
in the same layer that allows MPO to terminate the elaboration of the
�-th layer (thus, pi � p). Let #SA(MPO) be the number of sorted
accesses that MPO has executed up to this point, and #SA(iMPO)
those executed by iMPO when it delivers object oj. It is #SA(iMPO) ≤
#SA(MPO).

Proof.
We have pi � p and, from the hypothesis that oi and j belong to the
same layer, pi ∼ pj. From these we can conclude that p
� pj, which
proves the result. �

5. Experimental Analysis

In this section we first quantify the advantages obtained by using al-
gorithm iMPO in place of MPO, after that we compare qualitative
preferences (namely, Skyline (SL) and Region-prioritized Skyline (RS)
preferences) with scoring functions (namely, min and avg) in terms of
both effectiveness and efficiency. Finally, we compare qualitative pref-
erences with the median rank criterion, which is an original integration
rule recently proposed in [15].

The results we present are obtained using a real-world image col-
lection consisting of about 10,000 color images. Although this data
set is not particularly large, we chose it for two reasons: Since each
image comes with a manually assigned semantic classification into one

MTAP-MPO.tex; 3/06/2005; 12:11; p.16

17

of 7 classes, this allows us to evaluate effectiveness (quality) of results,
which would not be possible without an objective “ground truth”. To
this end, given a query image, any image in the same class of the
query is considered relevant, whereas all other images are considered
not relevant, regardless of their actual low-level feature contents. Note
that classes are just used for evaluation purposes and not during the
retrieval phase (i.e., algorithms know nothing about the class of an
image). This leads to hard-to-solve conceptual queries, since within a
same class feature values may wildly vary. Further, since in this paper
we are not dealing with issues related to the evaluation of sub-queries,
the actual size of the data set is not particularly relevant in assessing
performance. Indeed, although our system uses indexes to efficiently
evaluate sub-queries, relative figures are not shown here (any method
able to return ranked lists would serve the purpose).

We implemented algorithms MPO (extended so as to answer “first �
layers” queries) and iMPO algorithms in C++ on top of Windsurf [4].
Windsurf is an advanced region-based image retrieval system that, us-
ing wavelet transform, automatically segments each image into a set
of homogeneous regions, based on the proximity of wavelet coefficients,
which convey information about color and texture features. Each region
corresponds to a cluster of pixels and is represented through a 37-
dimensional feature vector.9 On average, 4 regions were obtained from
each image in our collection. The same procedure is adopted when an
image query Q is submitted. If m is the number of regions extracted
from Q, each of the m regions becomes a sub-query. Partial scores for a
given query region Qq are obtained by using a distance function based
on the Bhattacharyya metric [6], which is commonly used to compare
ellipsoids.

All the results we present are averaged over a sample of 100 randomly-
chosen query images. The specific metrics we use to evaluate perfor-
mance of algorithms and/or preferences are as follows.

Efficiency. We measure the number of sorted accesses, #SA, and
the number of random accesses, #RA, executed to return the result
of a query. This ensures a fair, system-independent, comparison. Note
that actual execution times are indeed expected to vary in a significant
way depending on the relative cost of sorted and random accesses,
the nature of the underlying system(s) evaluating sub-queries (e.g.,
Web-based or not), the available access methods, etc. To avoid distract-
ing the reader with too many parameters and variables which would

9 In detail: 12 dimensions are used for the cluster centroid (3 color channels × 4
frequency sub-bands), 24 coefficients store the 3×3 (symmetric) covariance matrices
of the 4 sub-bands, and 1 coefficient represents the cluster size.

MTAP-MPO.tex; 3/06/2005; 12:11; p.17

18

consequently come into play we opted for clean, easy to understand,
metrics.

Effectiveness. As possible measures of how good the results of
using a specific integration rule are, we consider the classical precision
metric (i.e., the percentage of relevant images found by a query) and
the extent to which relevant images are representative of the query
class, that is, how well they fit the actual distribution of all images in
the query class. This allows a finer assessment of the quality of results
that precision alone cannot provide.

In order to generate RS preferences we proceed as follows (see also
Definition 5 in Section 3). On each of the m coordinates of the answer
space A, we set a “soft threshold” θq (0 < θq < 1) and assign a 0
bit to the “below-threshold” interval [0, θq) and a 1 bit to the “above-
threshold” interval [θq, 1]. This leads to a partition Y of 2m regions,
each univocally represented by an m-bit binary code. Given regions Ai

and Aj , the preference relation for such regions is

Ai �Y Aj ⇔ code(Ai) ∧ code(Aj) = code(Aj)

where bitwise AND is used and code(Ai) is the binary code of region
Ai. For instance, when m = 4, this says that the region with code
1011 dominates the region with code 1000, whereas it is indifferent
to region 0100. Since �Y defines a Boolean lattice over regions (with
region 11 . . . 1 being the best region and 00 . . . 0 the worst one) it is easy
to show that Lemma 1 is satisfied, thus �RS is a strictly monotone PO.

Although we experimented with several combinations of soft thresh-
old values, here we just report results for the case θq = 0.4 ∀q.

5.1. Experimental Results

Experiment 1: The aim of our first experiment is to measure the
relative efficiency of iMPO versus MPO, when both algorithms are
using a same preference relation. This guarantees that MPO and iMPO
return the same set of objects, although at different times.

Our results confirm that iMPO consistently outperforms MPO. In
Figure 7 we show the number of sorted accesses executed to answers a
specific query. Results for other queries and for the number of random
accesses follow a similar behavior. MPO, by its nature, delivers objects
in bursts, each burst corresponding to the termination of one layer. For
instance, in Figure 7 (a) MPO needs 628 sorted accesses to return all
the 27 images in the 1st layer of the Skyline, 956 to complete the 2nd
layer, and so on. A somewhat bursty behavior is also observed with
iMPO, starting from the 2nd layer. To explain this, consider that even
if all objects in the current layer have been output, iMPO still needs

MTAP-MPO.tex; 3/06/2005; 12:11; p.18

19

0

500

1000

1500

2000

2500

0 50 100 150 200

k

#
S
A

iMPO(SL)

MPO(SL)

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200

k

#
S
A

iMPO(RS)

MPO(RS)

(b)

0%

20%

40%

60%

80%

100%

0 50 100 150 200

k

%
g
a
in
 o
f
iM
P
O

SL

RS

(c)

Figure 7. Sorted accesses of MPO and iMPO algorithms for a specific query: (a)
Skyline (SL) preferences; (b) Region-prioritized Skyline (RS) preferences. In (c)
the percentage gain of iMPO over MPO is shown. The abscissa reports the no. of
retrieved objects k

to wait that the test pi � p succeeds before moving to the next layer.
This “waiting time” leads to accumulate objects in the NextLayer,
most of which are subsequently delivered as soon as the test succeeds.
Nonetheless, Figure 7 (c) shows that the gain in efficiency of iMPO over
MPO is remarkable; therefore in the sequel we do not consider MPO
anymore and always use iMPO.

Experiment 2: In this second series of experiments our goal is to
compare qualitative preferences (i.e., SL and RS) and scoring functions
(i.e., min and avg) in terms of quality of results. Figure 8 (a) shows pre-
cision values versus the number of retrieved object k. It can be seen that
SL, and RS in particular, preferences attain precision levels comparable
to that of avg, whereas min has a definitely poor behavior. Figure 8
(b) shows similar results for different recall values, as measured by the
number of relevant objects retrieved, krel.

MTAP-MPO.tex; 3/06/2005; 12:11; p.19

20

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 20 40 60 80 100

k

P
r
e
c
is
io
n

SL

RS

avg

min

(a)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 20 40 60 80 100

k_rel

P
r
e
c
is
io
n

SL

RS

avg

min

(b)
Figure 8. Precision vs no. of retrieved objects (a) and no. of relevant retrieved
objects (b)

Clearly, similar precision values do not imply similar results. Indeed,
the sets of relevant objects retrieved by means of qualitative preferences
and scoring functions share, on the average and for any value of k,
less than 50% common elements. This observation motivates a more
detailed investigation on which is the difference, in terms of relevant
objects retrieved, of using qualitative preferences in place of scoring
functions since, at least in principle, SL and RS preferences should be
able to provide a better “overall view” of the objects relevant to a
query. In order to quantify this concept, we consider the distribution of
relevant objects over the answer space. By comparing the distributions
of the relevant objects returned by the different integration rules, it is
possible to establish which one better fits the distribution of all relevant
images in the query class (thus, which one better represents the actual
class contents).

To properly compare the distributions of relevant results, we use an
information-theoretic measure, related to the cross-entropy of two dis-
tributions, known as the Kullback-Leibler (KL) divergence [13]. Given
a reference distribution f and a test one g, the KL divergence of g with
respect to f is defined as

KL(g; f) =
∫

x
f(x)ln

(
f(x)
g(x)

)
dx.

Note that KL(g; f) ≥ 0, with 0 attained only if g = f . Thus, KL(g1; f) <
KL(g2; f) denotes that g1 fits f better than g2.

In our case, we take f to be the distance distribution of all the
relevant objects for a query Q, and the gi’s be the (approximate) dis-
tance distributions of the relevant objects returned in the first k = 100
results. All distances are measured over the answer space, by computing

MTAP-MPO.tex; 3/06/2005; 12:11; p.20

21

the Euclidean distance between the representative points of relevant
images.

Figure 9 (a) shows the (averaged over all query images) actual dis-
tribution of the whole data set (label dataset in the figure) and those of
min, avg, SL, and RS. Figure 9 (b) does the same but just for queries
of a specific class (“TreeLeaves”).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 0.2 0.4 0.6 0.8 1

normalized distance

n
o
rm
a
li
z
e
d
 f
re
q
u
e
n
c
y

SL

RS

avg

min

dataset

(a)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 0.2 0.4 0.6 0.8 1

normalized distance

n
o
rm
a
li
z
e
d
 f
re
q
u
e
n
c
y

SL

RS

avg

min

dataset

(b)
Figure 9. Global (a) and relative to the “TreeLeaves” class (b) distance distributions
of relevant objects

Table II synthesizes everything using KL divergence values.

Table II. Kullback-Leibler (KL) divergence val-
ues for the distributions in Figure 9

SL RS avg min

Global 0.032 0.006 0.297 0.550

TreeLeaves 0.050 0.031 0.312 0.680

It is evident that RS preferences, besides leading to precision values
comparable to those of avg, have a remarkably better capability to
reflect the actual distribution of relevant objects. Skyline preferences
are, to this end, slightly worse, even if divergence values are still one
order of magnitude better than those of avg and min.

An important advantage derived from having a small value of KL
is related to the implementation of effective relevance feedback mech-
anisms. Since all these methods share the idea of exploiting the user
feedback (given on the query outcome) in order to refine the initial
query, giving to the user a more accurate “overall view” of the content
of the query class it makes possible to cut down the number of user-

MTAP-MPO.tex; 3/06/2005; 12:11; p.21

22

system interactions needed to lead to acceptable results. We plan to
thoroughly investigate this issue in the prosecution of our research.

Experiment 3: In the third experiment our objective is to analyze
the efficiency of iMPO in answering top k queries. Figure 10 shows
how many sorted and random accesses are needed by iMPO to deliver
k objects, depending on the specific preferences used. In this case SL
is undoubtedly the winner, saving up to about 70% and 80% database
accesses against avg and min, respectively. Efficiency of RS is slightly
poorer, however reaching a performance level that is always better than
that of both avg and min (35% and 60% speed-up, respectively).

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

k

#
S
A

SL

RS

avg

min

(a)

0

200

400

600

800

1000

1200

0 20 40 60 80 100

k

#
R
A

SL

RS

avg

min

(b)
Figure 10. Sorted accesses (a) and random accesses (b) vs no. of retrieved objects
(k)

The reason why SL performs faster than RS is in the different deliv-
ery conditions used by the two methods. Indeed, considering how RS
preferences are defined, it can be shown that (p
�RS pi) ⇒ (p
�SL pi),
thus the delivery condition of RS is always more restrictive than that
of SL.

Finally we present graphs where efficiency and quality of results can
be observed together. Figure 11 shows how much we have to pay (in
terms of sorted and random accesses, respectively) for each relevant
object we retrieve. The graphs confirm previous results, in particular
the superior performance of qualitative preferences, and also show that,
starting with krel ≥ 50, the reduced efficiency of RS with respect to
SL is compensated by its superior effectiveness, which leads to a “per
relevant object” cost of RS almost equal to that of SL.

Experiment 4: The aim of this final experiment is to compare
iMPO (equipped with either SL or RS preferences) with the median
rank criterion proposed in [15]. For an object oi and m sub-queries, the

MTAP-MPO.tex; 3/06/2005; 12:11; p.22

23

0

20

40

60

80

100

120

140

0 20 40 60 80 100

k_rel

#
S
A
/
k
_
r
e
l

SL

RS

avg

min

(a)

0

10

20

30

40

50

60

0 20 40 60 80 100

k_rel

#
R
A
/
k
_
r
e
l

SL

RS

avg

min

(b)
Figure 11. Sorted accesses (a) and random accesses (b) vs no. of relevant retrieved
objects (krel)

median rank of oi is defined as:

medrank(oi) = median(rank(oi, L1), . . . , rank(oi, Lm)) (6)

Although in [15] this criterion was proposed as part of an (approximate)
alternative to Euclidean high-dimensional nearest neighbor search, which
also requires feature vectors to be projected onto m randomly-chosen
lines, we consider it here since it represents an original integration rule.

In order to determine the best k objects according to medrank,
we slightly modify iMPO, along the lines of the MEDRANK algo-
rithm in [15]. In particular, the object that has the minimum value
of medrank is the first one that is retrieved via sorted access on at
least �m/2 + 1� ranked lists, the second best object is the second one
seen on more than half of the lists, and so on [15]. Note that this way
random accesses are not required at all.

Figure 12 (a) indeed shows that medrank results are competitive
with those of SL and RS, at least when the number of retrieved objects
is not too large. In spite of this, it has however to be observed that,
since medrank definitely does not fit Definition 2, with this method the
relative order of any two objects does not depend only on the objects
themselves, but also on other objects in the database. More precisely,
it is not possible to tell if, say, medrank(oi) < medrank(oj) without
also knowing which other objects are present. This is evident from
Equation 6, since the rank of object oi in list Lq, rank(oi, Lq), does not
depend only on “how well” oi matches sub-query Qq but also on how
other objects perform on the same sub-query. Intuitively, this might
affect the “stability” of medrank results in front of database changes.

As to costs, Figure 13 shows the total number of accesses (i.e., sorted
plus random) of the three alternatives. Again, the “per relevant object”

MTAP-MPO.tex; 3/06/2005; 12:11; p.23

24

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 20 40 60 80 100

k

P
r
e
c
is
io
n

SL

RS

median

(a)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 20 40 60 80 100

k_rel

P
r
e
c
is
io
n

SL

RS

median

(b)
Figure 12. Precision of SL, RS and median vs no. of retrieved objects (a) and no.
of relevant retrieved objects (b)

costs of RS and SL (Figure 13 (b)) confirm the overall best behavior
of qualitative preferences.

0

500

1000

1500

2000

2500

0 20 40 60 80 100

k

#
S
A
+
#
R
A

SL

RS

median

(a)

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

k_rel

(
#
S
A
+
#
R
A
)
/
k
_
r
e
l

SL

RS

median

(b)
Figure 13. Access costs of SL, RS, and median vs no. of retrieved objects (a) and
no. of relevant retrieved objects (b)

Visual Example: We conclude this section by showing some actual
results of the analyzed methods. The aim is to provide visual evidence
of how changing the integration rule can indeed strongly influence what
the user actually sees, even if evaluation of the underlying sub-queries
always remains the same. In particular, in the example of Figure 14,
which just shows the top 8 objects for a query in the semantic class
“birds”, SL and RS preferences return the same result set, with a 50%
precision (4 relevant images out of 8), whereas avg and median only
return 2 and 1 relevant images, respectively. Concerning access costs,
for this specific query SL just requires to retrieve the top 4 objects from

MTAP-MPO.tex; 3/06/2005; 12:11; p.24

25

each of the 4 lists (the query is split into 4 regions) to deliver the images
shown. This grows to 21 × 4 sorted accesses for the RS preferences,
which is however still much less than both the 436 accesses executed
when avg is used and the 441 of medrank.

Figure 14. Visual results for a “bird” query image. Images in the same semantic
class of the query are adorned with an asterisk (*)

As a final analysis, we measure how much the visual results in Figure
14, as well as those of other queries, are significantly different from
those obtainable from a purely “random” ranking process. To this end
we use the well-known Wilcoxon signed rank test [10] that consists in
comparing the differences between a series of n paired observations,
in order to determine whether the two series originate from a same
underlying distribution. In our case we compare the precision values
obtainable from RS preferences to those of a random sample of images,
for n = 20 queries and k = 50 retrieved images. The result of the test
is that the probability that the ranking induced by RS preferences is
random is less than 10−5, that is, impossible from a practical point
of view. The same is true even for Skyline preferences, as well as
for the avg and median rank integration criteria. This demonstrates
the statistical significance of our results and dissipates any doubt that
the precision values observed in our experiments are just an effect of
causality.

6. Related Work

As far as we know, no other works has attempted to analyze the effects
of using qualitative preferences for multimedia complex queries. Thus,
in this section we limit to survey works that are related to ours for what
concerns the query processing aspects, that is, integration algorithms.

MTAP-MPO.tex; 3/06/2005; 12:11; p.25

26

Starting with the seminal paper by Fagin [14], several works have
addressed the problem of how to efficiently compute the result of a
complex query that is split into m sub-queries. Apart from those fo-
cused on answering top k queries using monotone scoring functions (see,
e.g., [16, 9]), closer to our work are those algorithms that have been
developed to deal with more complex types of user preferences. Along
this direction [2] has proposed an algorithm for integrating results of
sub-queries based on Skyline (i.e., Pareto) preferences. This has been
generalized in [1] to scenarios in which several scoring functions are
applied to sub-queries results, and then the values of such scoring
functions are integrated using Pareto preferences. Although MPO and
iMPO share with such algorithms a similar logic (all being based on
a common access model, i.e., sorted and random accesses), there are
indeed some important differences. First, the algorithms in [2] and [1]
both return all and only the best matches of a query. As argued in
Section 4.2 this is not always desirable, since too many or too few
results may be returned to the user. A second major difference con-
cerns the type of qualitative preferences supported by the algorithms.
While iMPO (and MPO as well) can deal with any strictly monotone
partially ordered preference relation, algorithms in [2] and [1] are of less
general use. In particular, they are not designed to deal with prioritized
preferences, such as RS.

7. Conclusions

In this paper we have analyzed the potentialities of using qualitative
(rather than quantitative) preferences for the integration of the results
of multiple multimedia sub-queries. In particular, we have focused on
Skyline (Pareto) preferences and on their generalization to the case
where one wants to set some priorities on the regions of the answer
space (RS preferences). The latter have indeed shown to provide the
best characterization of the distribution of the relevant objects of a
query, as compared to Skyline preferences and to numerical scoring
functions (namely, min and average).

For the purpose of efficient evaluation we have introduced two al-
gorithms that generalize previous integration algorithms and analyzed
their performance on a real-world image database. In particular, the
iMPO algorithm can incrementally deliver its results and is suitable
to answer top k queries. Using iMPO we have been able to show that
with qualitative preferences one can considerably reduce the costs to
be paid for obtaining a fixed number of relevant objects.

MTAP-MPO.tex; 3/06/2005; 12:11; p.26

27

Our work opens new interesting lines of research. First, it would be
interesting to apply qualitative preferences to other challenging tasks,
such as classification of multimedia objects, for which scoring functions
have been considered the only viable alternative. Second, qualitative
preferences could also be profitably used for the evaluation of sub-
queries, thus generalizing the common approach requiring a distance
metrics to compare objects’ features.

References

[1] Wolf-Tilo Balke and Ulrich Güntzer. Multi-Objective Query Processing
for Database Systems. In Proceedings of the 30th International Conference
on Very Large Data Bases (VLDB’04), pages 936–947, Toronto, Canada,
September 2004.

[2] Wolf-Tilo Balke, Ulrich Güntzer, and Jason Xin Zheng. Efficient Distributed
Skylining for Web Information Systems. In Proceedings of the 6th Inter-
national Conference on Extending Database Technology (EDBT’04), pages
256–273, Heraklion, Crete, March 2004.

[3] Ilaria Bartolini, Paolo Ciaccia, Vincent Oria, and M. Tamer Özsu. Integrating
the Result of Multimedia Queries Using Qualitative Preferences. Technical
Report IEIIT-BO-06-04, IEIIT, April 2004.

[4] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. A Sound Algorithm
for Region-Based Image Retrieval Using an Index. In Proceedings of the
4th International Workshop on Query Processing and Multimedia Issue in
Distributed Systems (QPMIDS’00), pages 930–934, Greenwich, London, UK,
September 2000.

[5] Ilaria Bartolini, Paolo Ciaccia, and Florian Waas. FeedbackBypass: A New
Approach to Interactive Similarity Query Processing. In Proceedings of the
27th International Conference on Very Large Data Bases (VLDB’01), pages
201–210, Rome, Italy, September 2001.

[6] Michèle Basseville. Distance Measures for Signal Processing and Pattern
Recognition. European Journal of Signal Processing, 18(4):349–369, 1989.

[7] Klemens Böhm, Michael Mlivoncic, Hans-Jörg Schek, and Roger Weber. Fast
Evaluation Techniques for Complex Similarity Queries. In Proceedings of the
27th International Conference on Very Large Data Bases (VLDB’01), pages
211–220, Rome, Italy, September 2001.

[8] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator.
In Proceedings of the 17th International Conference on Data Engineering
(ICDE’01), pages 421–430, Heidelberg, Germany, April 2001.

[9] Nicolas Bruno, Luis Gravano, and Amélie Marian. Evaluating Top-k Queries
over Web-Accessible Databases. In Proceedings of the 18th International Con-
ference on Data Engineering (ICDE’02), pages 369–382, San Jose, California,
USA, February 2002.

[10] George C. Canavos. Applied Probability and Statistical Methods. Little,
Brown & Co., Toronto, Canada, 1984.

[11] Jan Chomicki. Querying with Intrinsic Preferences. In Proceedings of the
8th International Conference on Extending Database Technology (EDBT’02),
pages 34–51, Prague, Czech Republic, March 2002.

MTAP-MPO.tex; 3/06/2005; 12:11; p.27

28

[12] Paolo Ciaccia, Marco Patella, and Pavel Zezula. Processing Complex Sim-
ilarity Queries with Distance-based Access Methods. In Proceedings of the
6th International Conference on Extending Database Technology (EDBT’98),
pages 9–23, Valencia, Spain, March 1998.

[13] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley, 1991.

[14] Ronald Fagin. Combining Fuzzy Information from Multiple Systems.
In Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS’96), pages 216–226, Montreal,
Canada, June 1996.

[15] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Efficient Similarity Search
and Classification via Rank Aggregation. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data (SIGMOD’03),
pages 301–312, San Diego, California, USA, June 2003.

[16] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Aggregation Algo-
rithms for Middleware. In Proceedings of the 20th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS’01), pages
216–226, Santa Barbara, California, USA, May 2001.

[17] Peter C. Fishburn. Preference Structures and Their Numerical Representa-
tions. Theoretical Computer Science, 217(2):359–383, 1999.

[18] Werner Kießling. Foundations of Preferences in Database Systems. In
Proceedings of the 28th International Conference on Very Large Data Bases
(VLDB’02), pages 311–322, Hong Kong, China, August 2002.

[19] Michael Ortega, Yong Rui, Kaushik Chakrabarti, Kriengkrai Porkaew,
Sharad Mehrotra, and Thomas S. Huang. Supporting Ranked Boolean
Similarity Queries in MARS. IEEE Transactions on Knowledge and Data
Engineering, 10(6):905–925, 1998.

[20] Kriengkrai Porkaew, Sharad Mehrotra, and Michael Ortega. Query Refor-
mulation for Content Based Multimedia Retrieval in MARS. In Proceedings
of the International Conference on Multimedia Computing and Systems
(ICMCS’99), volume 2, pages 747–751, Florence, Italy, June 1999.

[21] Yong Rui, Thomas S. Huang, Michael Ortega, and Sharad Mehrotra.
Relevance Feedback: A Power Tool for Interactive Content-Based Image
Retrieval. IEEE Transactions on Circuits and Systems for Video Technology,
8(5):644–655, 1998.

[22] Riccardo Torlone and Paolo Ciaccia. Which Are My Preferred Items? In
AH2002 Workshop on Recommendation and Personalization in eCommerce
(RPeC02), pages 1–9, Malaga, Spain, May 2002.

MTAP-MPO.tex; 3/06/2005; 12:11; p.28

