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As an extension of the classical job shop scheduling problem, the 
exible job shop scheduling problem (FJSP) plays an important
role in real production systems. In FJSP, an operation is allowed to be processed on more than one alternative machine. It has been
proven to be a strongly NP-hard problem. Ant colony optimization (ACO) has been proven to be an e�cient approach for dealing
with FJSP. However, the basic ACO has two main disadvantages including low computational e�ciency and local optimum. In
order to overcome these two disadvantages, an improved ant colony optimization (IACO) is proposed to optimize the makespan
for FJSP.	e following aspects are done on our improved ant colony optimization algorithm: selectmachine rule problems, initialize
uniform distributed mechanism for ants, change pheromone’s guiding mechanism, select node method, and update pheromone’s
mechanism. An actual production instance and two sets of well-known benchmark instances are tested and comparisons with
some other approaches verify the e�ectiveness of the proposed IACO. 	e results reveal that our proposed IACO can provide
better solution in a reasonable computational time.

1. Introduction

Scheduling problem plays a very important role in many
industrial systems [1]. 	erefore it has attracted considerable
researches for recent decades [2–7]. Job shop scheduling
problem (JSP) is a branch of production scheduling and
combinatorial optimization problems [8]. 	e 
exible job
shop scheduling problem (FJSP) is an extension of the job
shop scheduling problem (JSP) [9]. Di�erent from JSP, an
operation can be processed on more than one candidate
machines in FJSP. As a result, two subproblems facing FJSP
are machine assignment and operation sequencing. Machine
assignment is how to assign a machine for each operation
while operation sequencing is how to schedule all operations
on machines to optimize the given performance indicators
[10]. 	us, FJSP is more complicated than the classical JSP
and it has been proven to be a strongly NP-hard in 1993 [11].

	eFJSPwas �rst studied by Brucker and Schlie who used
a polynomial approach to deal with two jobs FJSP [12]. In
recent years, a large number of heuristics or metaheuristics
have been employed to deal with FJSP, speci�cally through
tabu search (TS) [13], simulated annealing (SA) [14], genetic

algorithm (GA) [15, 16], particle swarm optimization (PSO)
[17, 18], ant colony optimization (ACO) [19], arti�cial bee
colony (ABC) [20], and hybrid approaches based on di�erent
heuristics and metaheuristics.

Among these metaheuristics, ACO has been proved to be
an e�cient approach for dealing with JSPs [21–23]. However,
this approach still has some limitations in practice: (1) a lot of
computational time will be spent on obtaining the ideal solu-
tion. (2) 	e search usually falls into local optimal solution.
	erefore, in order to overcome these limitations, numerous
improved ACO algorithms or hybrid ACO algorithms have
been developed. A knowledge-based ACO approach for
solving 
exible job shop scheduling problems is proposed in
[19]. An improved ACO was proposed to deal with dynamic
hybrid 
ow shop scheduling in [24]. A modi�ed ACO
called two-pheromone ant colony optimizationwas proposed
for solving 
exible job shop scheduling problem with due
window in [25]. Ant colony optimization combinedwith tabu
searchwas employed to deal with JSP in [26]. Two-generation
Pareto ant colony algorithm was proposed by Zhao et al. for
solving multiobjective job shop scheduling problem [27]. A
two-stage ant colony optimizationwas presented tominimize
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the makespan in [28]. Leung et al. [29] proposed an agent-
based ant colony optimization for solving integrated process
planning and scheduling problem.

Great e�orts have been done for solving job shop schedul-
ing problems or 
exible job shop scheduling problems by
improving ACO algorithms; however, these improved ACO
algorithms are almost achieved by changing pheromone
update mechanism. Although this can improve the search
speed and solution e�ciency, excessively strengthening the
pheromone feedback of the best path may easily lead to
premature convergence. 	erefore, in order to solve these
problems that exist in the basic ACO or improved ACO
algorithms mentioned above, we propose an improved ant
colony optimization (IACO) to solve the FJSP in this paper
and the results are found to be closer or equal to the global
optimum.

	e remainder of this paper is organized as follows.
Section 2 describes the model formulation for FJSP. 	e
proposed IACO is introduced in Section 3. Experimental test,
comparison, and discussion are reported in Section 4. 	e
conclusions and future work are given in Section 5.

2. Description of FJSP

	e � × � FJSP can be depicted as follows [30]: there are
� jobs and � machines. Each job � comprises �� operations

{��1, ��2, ��3, . . . , ����}. Each operation ��� can be processed by
only one machine from the candidate machine set � ��. 	e
assumptions for FJSP are as follows:

(1) Each machine can be used at time zero.

(2) Each job can be processed at time zero.

(3) Each machine can process only one operation at a
time.

(4) Once an operation starts on a machine, it cannot be
interrupted.

(5) 	e sequences of operations for all jobs are prespeci-
�ed.

(6) Neither due dates nor release times are speci�ed.

(7) 	e transportation times among machines are not
considered.

(8) All machines are not always identical.

	e objective is to minimize the makespan and the
mathematical model of the FJSP is shown as follows [31]:

min � (�) = 	� = max
1≤�≤�

{����} , (1)

s.t. [(�ℎ� − ��� − �ℎ�	) ⋅ �ℎ�	 ≥ 0 ∨ (��� − �ℎ� − ���	) ⋅ ���	 ≥ 0] , ∀�, �, �.ℎ, (2)

���� − ��(�−1) ≥ ���	 ⋅ ���	, � = 2, . . . , ��, ∀�, �, (3)

∑

���∈���

���	 = 1, ∀�, �, �, (4)

���	 ∈ {0, 1} , ∀�, �, �, (5)

��� ≥ 0, ∀�, �, (6)

where �, ℎ is the job index, �, ℎ = 1, 2, . . . , �. � is the
machine index, � = 1, 2, . . . , �. �, � is the operation index,
�, � = 1, 2, . . . , ��. � represents total jobs. � represents total
machines. �� represents total operations of job �. ���	 represents
processing time of �th operation of job � on machine �. ��� is
the completed time of ���. ���	 = 1, if machine � is selected for
���; otherwise, ���	 = 0.

Equations (2) and (3) are the operation sequence con-
straint. Equation (4) indicates that each operation can only
be processed on one machine from machine set at a time.
Equations (5) and (6) are decision variables which are 0-1
binary variable and nonnegative, respectively.

3. Improved Ant Colony
Optimization for FJSP

3.1. Principles of Ant Colony Optimization. As social insects,
ants live in colonies and their behavior is governed by the goal
of colony survival rather than being focused on the survival
of individuals. 	e main idea of the ACO is inspired by the
behavior of real ants searching for food. 	e real ants can
communicate with each other about food sources through
pheromone. When the real ants move along, they release
pheromone on the path they have passed. Other ants are
attracted to follow them by observing the pheromone trail.
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Figure 1: Ants’ moving disjunctive graph.

	erefore, the path is enhanced and thus attracts more ants
[32, 33]. Compared with some other heuristics, the ACO
is characterized by distributed computation and positive
feedback [34].

If the operations are looked at as ants, it can be seen easily
that there exist lots of similarities between an ant colony’s
foraging process and FJSP. Operationsmust search for proper
machine to process them. Like ants, they want to search for
the shortest path. Ants’ nest and food source are similar with
start and end dummy operation, respectively. If we look at an
operation as an ant’s path for foraging food, then the relation
of any two operations can be looked at as an alternative path,
and di�erent processing time of all the operations on the
machine just like di�erent length of paths.

	e disjunctive graph of an FJSP example can be
described in Figure 1. 	ere are three jobs and each job has
three operations. J1-1, J1-2, and J1-3 represent three operations
of job 1. J2-1, J2-2, and J2-3 represent three operations of
job 2. J3-1, J3-2, and J3-3 represent three operations of
job 3. Each job must comply with the process sequence
constraints. According to the constraints of process sequence
and machine occupancy, ants travel total nine operations of
the three jobs and search for the operation order on each
machine and then gain the optimal or near-optimal solution
for the 
exible job shop scheduling problem. 	erefore it is
feasible to use ACO to solve the 
exible job shop scheduling
problems.

	e key steps of the basic ACO are the calculations
of transition probability, visibility, and pheromone amount.
	e nodes or goal point are chosen by ants according
to pheromone amount and visibility [35]. At time t, the
probability for ant � choosing the path from point � to � is
calculated as follows:

���	 (�) =
{{{
{{{
{

!�	 (�) "��	 (�)
∑�∈allowed� !�� (�) "��� (�)

, if � ∈ allowed�
0 otherwise,

(7)

where the allowed� is selectable machines group that ant �
can choose and $ and % are the pheromone and expectation
factor, respectively. "�	(�) is heuristic factor and it is computed
as "�	(�) = 1/�(�). 	e more pheromone value on the path
is and the higher visibility is and the bigger probability for
choosing this path is.

As time goes on, the pheromone of the path evaporates
gradually. An ant will modify the pheromone value on the
passed edges by applying the local updating rule, as follows:

!�	 (�) = (1 − ') ⋅ !�	 (�) + '!0, (8)

where ' is the evaporation coe�cient of pheromone and 0 <
' < 1. !0 is the initial value of pheromone on each path.

Once all ants have arrived at their destination, the value
of pheromone on the edge is modi�ed again by applying the
global updating rule, as follows:

!�	 (�) = (1 − ') ⋅ !�	 (�) + 'Δ!��	 (�) , (9)

where Δ!��	(�) is the quantity of pheromone on the path (�, �)
laid by ant �, and it can be de�ned as follows:

Δ!��	 (�)

= {{
{

3
�(�)� if ant � travel through arc (�, �)
0 otherwise.

(10)

In (10), 3 is a constant and it denotes the strength of

pheromone; �(�)� is evaluation value of the �th ant a�er
�nishing the search task.

As mentioned above, the basic ACO still has some
weaknesses in practice. For example, the search usually gets
trapped in local optimal solution. Meanwhile it needs a lot
of computational time to obtain the ideal solution.	erefore,
we propose an improved ant colony optimization to solve the
FJSP in this paper.

3.2. Improved Aspects on Ant Colony Optimization Algorithm.
	e following improvements are done for machine selection:
the machine which has the shortest processing time for
�nishing the jth operation of job � is selected by using 60%
probability; the machine which has the shortest time for
processing the jth operation of job � is selected by using
30% probability; the machine is randomly selected by using
10% probability, and the random selection can be achieved
by using roulette selection method. 	e range for selecting
machine can be expanded by using these three kinds of
selection method. Take Figure 2, for instance, 41 < 42 < 43;
therefore51 is selected with a 60% probability,52 is selected
with a 30% probability, and onemachine among51,52, and53 is randomly selected with a 10% probability.
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Figure 2: Gantt chart for machine selection.

	e main steps of the basic ACO are the initialization
position of ants, the calculation of transition probability,
visibility, and pheromone value, as mentioned in Section 3.1.

When some other control parameters remain unchange-
able, the initial position of the ants has a greater in
u-
ence on the ACO. 	e ants should be distributed uni-
formly on the set which contains the �rst operations of
all jobs, and the probability for searching for the global
ideal solution will become much greater. If a large number
of ants search for food from the same starting point, the
solution diversity may be lost. 	erefore, an initialization
mechanism is used to distribute uniformly the ants’ initial
positions.

In the initial search stage, some paths are passed by ants,
and some other paths are not passed. If an ant searches for
path according to the pheromone’s guiding mechanism, it
is easy to reduce the probability for selecting the path that
has not been passed yet, and therefore the chance for ants
to �nd the global ideal solution will be reduced. So when
the pheromone exceeds a certain value, the ants are allowed

to �nd the optimal path according to pheromone’s guiding
mechanism, as follows:

!�	 (�) ≥ 1.1 ∗ !0, (11)

where !0 is the initial value of pheromone on each path and
!�	(�) is pheromone value between node � and � (path � → �)
at time �.

In order to expand the search scope of the ants and
improve the search space of the basic ACO, initializing
pheromone needs to be done when the pheromone value on
a path is more than 90% of the total pheromone value on all
paths (shown in (12)) because the ACO has fallen into local
optimum in this case.

!�	 (�) ≥ 0.9 ∗ !Sum (�) , (12)

where !Sum(�) is the total pheromone value on all paths.
However, the next available path selected by employing

the transition probability does not always obtain the optimal
direction for the basic ACO, and the pheromone deviated
from the ideal solution has the potential to be enhanced,
which will easily lead to the local optimal solution.

A�er the transition probability for each candidate is
obtained, if the roulette selection method is adopted, not
only the path with a large transition probability is likely
to be selected, but also the path with a small transition
probability has the opportunity to be selected; thereby the
search space and solution quality can be expanded and
improved, respectively.

	erefore, a new node selection method, combining
prior knowledge, probability search, and random search, is
proposed in this paper. When the search is trapped in local
optimal solution, the solution space can be further searched
by adjusting the pheromone and increasing the random
selection probabilities.

� =

{{{{{{{{{{
{{{{{{{{{{
{

�1 = arg max
	∈allowed�

{[!�	 (�)] ⋅ ["�	 (�)]� ⋅ :�	 (�)} 0 ≤ ? ≤ ?0

�2 = ���	 (�) =
{{{
{{{
{

!�	 (�) "��	 (�) :�	 (�)
∑�∈allowed� !�� (�) "��� (�) :�	 (�)

, � ∈ allowed�
0 otherwise

?0 < ? ≤ ?1

�3 = random search ?1 < ? ≤ 1,

(13)

where ? is a random value and 0 ≤ ? < 1; ?0 is the degree
of prior knowledge; ?1 is the lower bound level of random
search; :�	(�) represents the appearing number of arc (�, �)
during previous iterations for searching good solution.

	emore the arc (i, j) appears, the more the role is played
for searching good solution by using positive feedback.

A good balance relation between “using the past infor-
mation to speed up the convergence” and “exploring new
paths” can be established by combining these three selection
methods. By this way, the search space can be enlarged
and the global good solution can be obtained with a larger
probability.

In addition, a concept of the invalid search number is
de�ned, which means the di�erence between the current
number of iterations@1 and the recent number of iterations
@2 for improving the solution, as shown in (14). When the
number of the invalid search exceeds a speci�ed value@0, the
algorithm is considered as a local optimum, as shown in (15).

@ = @1 − @2, (14)

@ ≥ @0. (15)

Meanwhile, themaximumorminimumpheromone trails
may lead to premature convergence for searching solution.
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	erefore, the maximal pheromone trail !max and the mini-
mal pheromone trail !min are given in our IACO in order to
make all pheromone trails !�	(�) satisfy !min ≤ !�	(�) ≤ !max.
	is idea is inspired by the Max–Min ant system [36].

When the number of the invalid searches exceeds a
speci�ed value @0, the pheromone on the path is forcedly
destroyed in order to avoid falling into the local optimum. In
this paper, the value is reduced to sixty percent of the original
pheromone !�	(�), as follows:

!�	 (� + �) =
{
{
{
60% ∗ !�	 (�) if @ ≥ @0
Eq. (9) otherwise. (16)

3.3. Steps of the IACO. 	e speci�c implementation steps of
the proposed IACO for solving FJSP are shown as follows.

Step 1. Initialize parameters $, %, ',3, ?0, ?1, and !0 and tabu
list.

Step 2. Initialize the ants’ initial positions by using uniform
distribution mechanism.

Step 3. Select machine by using our proposed machine
selection strategy.

Step 4. Establish three sets: one set B1 contains operations
that have been already visited by ants. One set B2 contains
operations for next candidates. Another set B3 contains
operations that are waiting to be added to the candidate set.
And add the �rst operation of each job to the set of next
candidate operation waiting to be selected.

Step 5. Judge whether the pheromone !�	(�) on the path is
greater or equal to 1.1 ∗ !0 or not. If not, then select next
operation in a random manner. If so, then select the next
path according to (13). A�er the transition probability for
each candidate is obtained, the roulette selection method is
adopted to select the next path or node.

Step 6. Add the just selected operation to set B1 and remove
the just selected operation from set B1. Meanwhile, add the
next operation to set B2 and remove the next operation from
set B3.
Step 7. Judge whether there are subsequent operations or
not. If there are subsequent operations, then go to Step 5.
Otherwise go to Step 8.

Step 8. Calculate the good solution of this iteration and save.

Step 9. Find the best ant and update its global pheromone.

Step 10. Calculate the pheromone value on each path and
limit the pheromone value on each path within the range of
two values !max and !min. Meanwhile, judge whether !�	(�) is
not less than 0.9∗!Sum(�). If so, initialize the pheromone value
of that path.

Step 11. Judge whether @ is more than @0 or not. If it is
satis�ed, then forcedly destroy the pheromone value of that
path according to (16).

Step 12. End the algorithm either when the optimal or near-
optimal solution is found or when a maximal iteration is
satis�ed and then output the global optimal or near-optimal
solution. Otherwise go to Step 2.

	e framework of our IACO is shown in Figure 3.

4. Experimental Results

To test the performance of the proposed IACO, two groups
of simulation experiments are executed. One group of
experiments comes from an actual production instance, and
the other group of experiments comes from benchmark
problems.

4.1. Test on the Actual Production Instance. Table 1 shows the
process information from an actual production instance.	e
value in Table 1 represents processing time on each machine
and “—” means the operation cannot be processed on that
machine.

	e parameters and their values, which are used for
running our IACO, are shown as follows: number of ants
� = 39, weight of pheromone trail $ = 1, weight of heuristic
information % = 2, pheromone evaporation parameter ' =
0.1, the initial value of pheromone value !0 = 0.1, constant for
pheromone updating 3 = 120, premature constant@0 = 20,!max = 10, !min = 0.01, the value of prior knowledge ?0 =0.3, the lower bound value of random search ?1 = 0.8, and
number of iterations E = 100.

	e Gantt charts obtained by our IACO, the basic ACO,
and Max–Min Ant System (MMAS) are shown in Figures 4,
5, and 6. In addition, Figure 7 depicts the convergence curves
of the best makespan by using our IACO, the basic ACO, and
MMAS. To such an instance, fromFigure 7, it can be seen that
our IACO obtains the ideal makespan (25) with 8 iterations.
	e basic ACO only obtains the ideal makespan (28) and it
needs 28 iterations. 	ough the MMAS can obtain the ideal
makespan (25), however, it needs as many as 61 iterations.
	erefore, our proposed IACO is very e�cient for solving
FJSP.

In order to prove the solving solution quality and solving
e�ciency of our IACO,Table 2 shows the experimental results
of the proposed IACO in comparison to the basic ACO and
MMAS by 10 independent experiments. 	e best solution,
the average solution, the worst solution, and the average
computing time of our proposed IACO are the best among
the compared methods. 	e results demonstrate that the
proposed IACO is e�ective and e�cient in solving FJSP.

4.2. Test on Kacem Benchmark Instances. FJSP was classi�ed
into two categories by Kacem et al. [37]: (1) Partial FJSP (P-
FJSP) whichmeans that each operation can be processed by a
subset of machines and (2) Total FJSP (T-FJSP) which means
that each operation can be processed by all machines.
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N ≥ N0

Figure 3: 	e 
owchart of the proposed IACO.

Firstly, one 8 × 8 P-FJSP and one 10 × 10 T-FJSP from
benchmark instances are applied to evaluate the performance
of our proposed IACO.

	e Gantt chart and the convergence curve for 8 ×
8 benchmark P-FJSP obtained by our IACO are shown
in Figures 8 and 9, respectively. 	e Gantt chart and the

convergence curve for 10 × 10 benchmark T-FJSP obtained by
our IACOare shown in Figures 10 and 11, respectively. To such
an instance, from Figure 8–11, it can be seen that our IACO
can easily obtain the best makespan with very few iterations.

In addition, we compare the performances of our pro-
posed IACOwith several methods including AL + CGA [37],
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Table 1: Process information.

Job Operation
Machine

51 52 53 54 55 56 57 58 59 510

F1
�1-1 2 — 4 — 10 3 — 8 — 5

�1-2 5 7 — 8 — 9 — — — 11

�1-3 — 6 5 — 10 9 — — 4 —

�1-4 — — — 7 — 5 — 8 — —

F2
�2-1 10 — 4 — 10 — — 8 — —

�2-2 9 — 8 — — 7 — 6 — —

�2-3 — 6 — 5 — 8 7 — — 4

F3
�3-1 — — 9 — 6 — 4 — — 5

�3-2 — — 6 — 8 — — 7 — —

�3-3 — 9 — — — 5 — 6 4 —

�3-4 — — 4 — 3 6 — — — —

F4

�4-1 — 8 — 5 — — 2 4 — —

�4-2 — — 6 — — — 8 — 5 —

�4-3 5 — — 8 — — 4 — — 9

�4-4 — 3 — — 11 6 — 8 — 10

�4-5 — — 2 — 5 8 — — 8 —

F5
�5-1 6 — — 4 — 3 — — 8 —

�5-2 3 — — 7 — 6 — 10 — 8/9

�5-3 — — 9 — — — 4 — — 11

�5-4 — 7 — — 6 — — 7 — 9

F6

�6-1 — — — — 10 8 — 5 — —

�6-2 — — — 3 — — 2 7 — 3

�6-3 — 3 — — 10 — — — 6 —

�6-4 10 — — 6 — 10 — — 9 8

�6-5 — — 7 — 8 9 — 10 — —

F7
�7-1 9 — 5 — 7 9 — — — 8

�7-2 2 — 6 — 8 — 3 7 — —

�7-3 — — — 5 6 2 — 9 3 —

�7-4 9 — 15 5 3 — — 6 — 5

F8

�8-1 — 3 — 6 — 8 5 — — —

�8-2 4 — 6 3 — — — 8 10 —

�8-3 — 5 8 — — 6 — — 5 —

�8-4 2 — 6 — — — 6 — 3 8

�8-5 3 — — 5 — 3 — 5 9 8

Table 2: Comparison of the algorithm performances for the actual
production instance.

Algorithm
	e best
solution

	e
worst

solution

	e
average
solution

	e average
computing time

(s)

	e basic ACO 28 36 32.4 9.327

MMAS 25 28 26.8 6.458

IACO 25 26 25.2 5.825

PSO + TS [17], PVNS [38], KBACO [19], and TSPCB [13].
Table 3 shows the best results of all these several methods,
where 	∗ is the best value found so far.

FromTable 3, it can be concluded that the proposed IACO
is not worse than other algorithms, even better than several
improved algorithms. Meanwhile, the proposed IACO can

almost obtain the best values for the �ve benchmark problems
for every independent test. In addition, the running time (RT)
of the proposed IACO is very short; for instance, it can �nd
the best solution for the 10 × 10 T-FJSP in the second iteration
within 5 s.

Table 4 illustrates the comparison of the best value and
the average value between IACO and those from literatures
(BEDA [39]; PBABC [40]; EA [41]; and EQEA [9]) on the
Kacem benchmark instances [37]. For each instance, all
algorithms are run for 10 times independently. From Table 4,
it can be seen easily that the best value can be obtained by
these algorithms with a 100% success rate. 	erefore, our
IACO is very e�ective and robust.

4.3. Test on the BRdata Instances. Next we do tests on the ten
BRdata instances [11]. Table 5 shows the comparison results
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Table 3: Results of the �ve Kacem benchmark instances.

Problem � × � 	∗ AL +
CGA [37]

PSO +
TS [17]

PVNS
[38]

KBACO
[19]

TSPCB
[13]

IACO

Best RT

Case 1 4 × 5 11 16 — — 11 11 11 0.51

Case 2 8 × 8 14 15 15 14 14 14 14 3.53

Case 3 10 × 7 11 15 — — 11 11 11 3.26

Case 4 10 × 10 7 7 7 7 7 7 7 4.45

Case 5 15 × 10 11 23 12 12 11 11 11 4.86

Table 4: Comparison result of the best value and the average value.

Problem � × � 	∗ BEDA [39] PBABC [40] Chiang and Lin [41] EQEA [9] IACO

Best AVG Best AVG Best AVG Best AVG Best AVG

Case 1 4 × 5 11 11 11 11 11 11 11 11 11 11 11

Case 2 8 × 8 14 14 14 14 14 14 14 14 14 14 14

Case 3 10 × 7 11 11 11 11 11 11 11 11 11 11 11

Case 4 10 × 10 7 7 7 7 7 7 7 7 7 7 7

Case 5 15 × 10 11 11 11 11 11 11 11 11 11 11 11
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Figure 4: Gantt chart for the actual production instance obtained
by IACO.
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Figure 5: Gantt chart for the actual production instance obtained
by the basic ACO.

1-1 1-2

8-1

7-1 2-1

2-3

8-47-2 5-2

3-2

6-3 4-4

4-5 6-5

8-2 6-4

7-4 5-4 3-4

5-1 7-3 1-4 8-5

4-1 3-1 6-2 4-3 5-3

6-1 2-2

4-2 8-31-3 3-3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time

M1

M2

M3

M4

M5

M6

M7

M8

M10

M9

Figure 6: Gantt chart for the actual production instance obtained
by MMAS.
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Figure 8: Gantt chart for 8 × 8 P-FJSP.
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Figure 9: Convergence process for 8 × 8 P-FJSP.

Table 5: Results of the ten Kacem benchmark instances.

LEGA
[42]

GA [43]
PVNS
[38]

KBACO
[19]

TSPCB
[13]

IACO

Mk01 40 40 40 39 40 40

Mk02 29 26 26 29 26 26

Mk03 — 204 204 204 204 204

Mk04 67 60 60 65 62 60

Mk05 176 173 173 173 172 173

Mk06 67 63 60 67 65 60

Mk07 147 139 141 144 140 140

Mk08 523 523 523 523 523 523

Mk09 320 311 307 311 310 307

Mk10 229 212 208 229 214 208

by using our proposed IACO and LEGA of Ho et al. [42], GA
of Pezzella et al. [43], PVNS [38], KBACO [19], and TSPCB
[13].

As for the bestmakespans, fromTable 5, it can be seen that
with the best results obtained our IACO is equal or smaller
than that of other algorithms for dealing with almost all ten
BRdata instances. Our IACO outperforms GA [40] in three
out of the ten BRdata instances, outperforms KBACO [19] in
six out of the ten BRdata instances, outperforms LEGA [39]
in seven out of the ten BRdata instances, outperforms TSPCB
[13] in four out of the ten BRdata instances, and is almost as
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Figure 10: Gantt chart for 10 × 10 T-FJSP.
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Figure 11: Convergence process for 10 × 10 T-FJSP.

good as PVNS [38] for the ten BRdata instances. 	erefore,
it is concluded that our IACO has more powerful optimizing
ability in dealing with 
exible job shop scheduling problem.

5. Conclusions

In this paper, an e�cient IACO is proposed for FJSP in
order to minimize makespan. Experimental results on an
actual production instance and two sets of well-known
benchmark FJSP Instances indicate that our proposed IACO
is competitive to other algorithms. 	e results demonstrate
that the proposed IACO is e�ective and e�cient in dealing
with FJSP.

Our future work still needs to be done from the follow-
ing aspects: (1) multiobjective 
exible job shop scheduling
problem especially related to the fuzzy due date and energy
consumption need to be considered. (2) Dynamic scheduling
for FJSP is another research direction, because in real man-
ufacturing systems, unpredictable events, such as machine
breakdown and new job arrivals and so on, o�en happen.

Competing Interests

	e authors declare that there is no con
ict of interests
regarding the publication of this paper.



10 Scienti�c Programming

Acknowledgments

	is paper is supported by the National Natural Science
Foundation of China (Grant no. 51305001), Key Support
Projects for Outstanding Young Talents of Anhui Province
Universities (Grant no. gxyqZD2016125), Anhui Provincial
Natural Science Foundation (Grant no. 1708085ME129), and
Anhui Key Laboratory Open Project of Advanced Numerical
Control and Servo Technology (Grant no. xjsk003).

References
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[36] T. Stützle and H. H. Hoos, “MAX-MIN ant system,” Future
Generation Computer Systems, vol. 16, no. 8, pp. 889–914, 2000.

[37] I. Kacem, S. Hammadi, and P. Borne, “Approach by localization
and multiobjective evolutionary optimization for 
exible job-
shop scheduling problems,” IEEE Transactions on Systems, Man
and Cybernetics Part C: Applications and Reviews, vol. 32, no. 1,
pp. 1–13, 2002.

[38] M. Yazdani, M. Amiri, and M. Zandieh, “Flexible job-shop
scheduling with parallel variable neighborhood search algo-
rithm,” Expert Systems with Applications, vol. 37, no. 1, pp. 678–
687, 2010.

[39] L.Wang, S. Wang, Y. Xu, G. Zhou, andM. Liu, “A bi-population
based estimation of distribution algorithm for the 
exible job-
shop scheduling problem,”Computers & Industrial Engineering,
vol. 62, no. 4, pp. 917–926, 2012.

[40] J.-Q. Li, Q.-K. Pan, and K.-Z. Gao, “Pareto-based discrete arti�-
cial bee colony algorithm for multi-objective 
exible job shop
scheduling problems,” �e International Journal of Advanced
Manufacturing Technology, vol. 55, no. 9, pp. 1159–1169, 2011.

[41] T.-C. Chiang andH.-J. Lin, “A simple and e�ective evolutionary
algorithm for multiobjective 
exible job shop scheduling,”
International Journal of Production Economics, vol. 141, no. 1, pp.
87–98, 2013.

[42] N. B. Ho, J. C. Tay, and E. M.-K. Lai, “An e�ective architecture
for learning and evolving 
exible job-shop schedules,”European
Journal of Operational Research, vol. 179, no. 2, pp. 316–333, 2007.

[43] F. Pezzella, G.Morganti, and G. Ciaschetti, “A genetic algorithm
for the 
exible job-shop scheduling problem,” Computers and
Operations Research, vol. 35, no. 10, pp. 3202–3212, 2008.



Submit your manuscripts at

https://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


