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Summary. Given multiple prediction problems such as regression and classi-
fication, we are interested in a joint inference framework which can effectively
borrow information among tasks to improve the prediction accuracy, espe-
cially when the number of training examples per problem is small. In this
paper we propose a probabilistic framework which can support a set of latent
variable models for different multi-task learning scenarios. We show that the
framework is a generalization of standard learning methods for single pre-
diction problems and it can effectively model the shared structure among
different prediction tasks. Furthermore, we present efficient algorithms for the
empirical Bayes method as well as point estimation. Our experiments on both
simulated datasets and real world classification datasets show the effective-
ness of the proposed models in two evaluation settings: standard multi-task
learning setting and transfer learning setting.

Key words: multi-task learning, latent variable models, hierarchical Bayesian
models, model selection, transfer learning

1 Introduction

An important problem in machine learning is how to generalize between mul-
tiple related prediction tasks. This problem has been called “multi-task learn-
ing”, “learning to learn”, “transfer learning”, and in some cases “predicting
multivariate responses”. Multi-task learning has many potential applications.
For example, given a newswire story, predicting its subject categories as well
as the regional categories of reported events based on the same text is such a
problem. Given the mass tandem spectra of a sample protein mixture, iden-
tifying the individual proteins as well as the contained peptides is another
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example. Besides, multi-task learning has been applied to many other prob-
lems such as collaborative filtering, conjoint analysis, etc.

When applied appropriately, multi-task learning has several advantages
over the conventional single-task learning. First, it can achieve better predic-
tion accuracy due to the fact that information is borrowed or shared among
tasks, especially when the number of examples per task is small and the num-
ber of tasks is large. Second, by conducting multi-task learning we are able to
obtain certain knowledge about many tasks which are not accessible in single-
task learning. The obtained knowledge is helpful in both future knowledge
transfer and further data analysis.

Much attention in machine learning research has been placed on how to
effectively learn multiple tasks, and many approaches have been proposed
[22, 23]. Existing approaches share the basic assumption that tasks are re-
lated to each other. Under this general assumption, it would be beneficial to
learn all tasks jointly and borrow information from each other rather than
learn each task independently. A key question in multi-task learning is the
definition of task relatedness and how to effectively take that into consider-
ation. Most existing work either explicitly or implicitly assumes some kind
of task relatedness and incorporates that into the statistical or mathemati-
cal modeling. However, it still lacks a unified framework which can provide a
mechanism to support different types of task relatedness.

In this paper we propose a unified probabilistic framework for multi-task
learning. In our framework task relatedness is explained by the fact that task
parameters share a common structure through latent variables. As will be
illustrated, the underlying statistical assumptions of latent variables natu-
rally reflects different task scenarios - how multiple tasks are related to each
other. Furthermore, the shared structure can be estimated more reliably by
using information from all tasks. Our framework not only generalizes standard
single-task learning methods but also supports a set of flexible latent variable
models.

The rest of the paper is organized as follows. Section 2 describes the basic
setting; Section 3 introduces the probabilistic framework; Section 4 describes
detailed latent variable models which can support different multi-task learning
scenarios; Section 5 presents efficient learning and inference algorithms for em-
pirical Bayes method and point estimation; Section 6 explores the application
of cross-validation in the multi-task learning setting; Section 7 presents the
experimental results; Section 8 reviews the related work; Section 9 concludes
the paper.

2 Setting

Given K tasks where each one is associated with its own training set

D(k) = {(x
(k)
1 , y

(k)
1 ), . . . , (x(k)

nk
, y(k)

nk
)} (k = 1, . . . , K)
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where x
(k)
i ∈ X (k) and y

(k)
i ∈ Y(k), we aim to estimate K prediction func-

tions f̂ (k) (k = 1, . . . , K) in a joint manner such that information can be
borrowed among tasks. For simplicity we also use the compact notation
D(k) = {X(k),y(k)} where
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







x
(k)
1
...

x
(k)
nk









∈ R
nk×F , y(k) =









y
(k)
1
...

y
(k)
nk









∈ R
nk×1.

We also use DX and Dy to denote the union of all input X(1) ∪ . . . ∪ X(K)

and output y(1) ∪ . . . ∪ y(K), respectively.
As in standard learning, we assume that data points within each dataset

are independently and identically distributed (i.i.d.). Furthermore, we often
assume that tasks are also i.i.d., although this can be relaxed in a certain
degree as shown in Section 3.

We assume that the input spaces of K tasks are the same, i.e. X (1) =

. . . = X (K) △
= X , and furthermore for the k-th prediction task we consider

the parametric model f (k)(x|θ(k)) with its index parameter θ(k). In this paper
we focus on parametric models such as generalized linear models (GLM) [15].
As a result, the estimation of f (k)’s is reduced to the problem of estimating
parameters θ(k)’s from the training data D(1), . . . ,D(K).

3 The Probabilistic Framework

Consider the k-th task and its parameter θ(k). Given the parameter θ(k), we
use the following likelihood models for regression and classification, which
correspond to linear regression and logistic regression, respectively:

regression : y
(k)
i ∼ Normal(〈θ(k),x

(k)
i 〉, σ2) (1)

classification : y
(k)
i ∼ Bernoulli(g(〈θ(k),x

(k)
i 〉)) (2)

where g(t) = (1 + exp(−t))−1 is used to denote the standard logistic function
and 〈x,y〉 is used to denote the inner product between x and y.

In traditional learning, each θ̂
(k)

is estimated using {X(k),y(k)} alone, i.e.
no information is shared among those tasks, even if they are related. When
tasks are related, it is beneficial to pull information together and let data
speak for themselves. To be more specific, we use the following hierarchical
Bayesian model for the generation of θ(k)’s:

θ(k) = Λs(k) + e(k) (3)

s(1), . . . , s(K) ∼ p(s(1), . . . , s(K)|Φ) (4)

e(k) ∼ Normal(0, Ψ) (5)
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Fig. 1. Graphical model of the framework: Circle nodes denote random vari-
ables, square nodes denote parameters, shaded nodes denote observed vari-
ables, and plates are used to indicate replication.

where Λ ∈ R
F×H is a linear mixing matrix, s(k) ∈ R

H is the latent variable for
the k-th task which follows a parametric distribution p(.|Φ) with parameter
Φ, and e(k) ∈ R

F follows a multivariate normal distribution with mean 0 and
covariance matrix Ψ .

The parameter θ(k) contains the information for the k-th prediction task.
In the above generative model it is composed of two additive components:
Λs(k) and e(k). The second component e(k) captures task-specific information
and it becomes more important as we gather more data for the k-th task. In
particular, as nk → ∞, θ(k) should be asymptotically as good as maximum
likelihood or Bayes estimators for single-task learning. The first component

Λs(k) =
∑H

h=1 s
(k)
h λh is a linear combination of the columns λh of Λ. Note

that all columns of Λ are shared by all K tasks and thus can be estimated
accurately when K is large, and each column λh can be thought as a basis clas-
sifier which will be assigned with different weights for different tasks through

the latent variables s
(1)
h , . . . , s

(K)
h . As a result, the model has the advantage of

being able to capture task-specific information, as well as being able to infer
hidden information which can contribute significantly to both prediction and
understanding of the data. The graphical model corresponding to equations
(1)-(5) is shown in Figure 1 for reference.

Another way to look at the model is the following: If those θ(k)’s are known
and we assume that p(.|Φ) is the standard multivariate normal distribution,
then the above model tries to solve a high-dimensional density estimation
problem, where a parsimonious multivariate normal distribution will be esti-
mated by restricting its covariance matrix to be a sum of Ψ and a low rank
matrix ΛΛT . Consequently, the above model can be seen as a natural combi-
nation of supervised and unsupervised learning.

Furthermore, when estimating parameters Λ and Ψ , certain structural
regularizations (such as favoring sparsity of Λ and diagonality of Ψ ) can be
applied. This can be equivalently seen as the Bayesian Maximum A Posteriori
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(MAP) estimation of Λ and Ψ by assuming that they follow certain priors

Λ ∼ qΛ(Λ|α) (6)

Ψ ∼ qΨ (Ψ |β). (7)

We will see some concrete examples of their usage in Section 4.

4 Latent Variable Models

In this section we show how the parametric form of p(.|Φ) can support flexi-
ble latent variable models for different multi-task learning scenarios. Here by
“scenario” we mean how tasks are related to each other. In other words, it
can be thought as the choice of parametric form in density estimation. This
is well-justified as certain assumptions are needed in order to capture the
interesting structure shared among prediction tasks. In the following we ana-
lyze a series of important and interesting scenarios, which are variants of the
framework presented in equations (1)-(7). For simplicity we only describe the
additional or different components with respect to the generic framework. As
we will see, the generality and flexibility mainly come from how to model the
latent variables s(k)’s, as well as whether special regularizations are imposed
on the parameters Λ and Ψ .

4.1 Independent Tasks

Our learning framework is clearly a generalization of standard single-task
learning methods. By setting the parameters Λ = 0F×H (which can be
achieved by putting a strong structural restriction through its prior qΛ(Λ|α),

for example), dependencies among θ(k)’s are ignored and we have

θ(k) = e(k) ∼ Normal(0, Ψ ). (8)

As a result we totally ignore the relations among θ(1), . . . , θ(K) in the learning
framework and it simply degenerates to learning K individual tasks separately.

For example, if we use logistic regression as the classification model, then
by doing a point estimation on θ(k) we will obtain the standard MAP estima-
tion, and similarly we get a Bayesian logistic regression model by inferring the
posterior distribution of θ(k) given the observed data. This simple degeneral-
ization is very illuminating and it shows the important roles of e(k) in modeling
θ(k): While Λs(k) is supposed to capture the shared information among tasks,
e(k) contributes to the remaining task-specific part and makes the model flex-
ible. From this perspective our framework accommodates a full-spectrum of
models while standard statistical methods for single-task prediction are lo-
cated at one extreme point.
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4.2 Noisy Tasks

Suppose our K tasks are all some noisy representations or versions of a single
underlying task θ0 ∈ R

F×1. Our generic framework can accommodate this
situation by restricting Λ = µ ∈ R

F×1 (i.e. H = 1) and p(s(k) = 1) = 1. This
particular model is useful for applications such as modeling data annotators
or measurements of multiple equipments where there exists a true model but
we only observe data resulting from some noisy models. In other words we
have

θ(k) = µ + e(k) ∼ Normal(µ, Ψ ) (9)

where the covariance Ψ of e(k) reflects our knowledge about how noisy those
tasks are with respect to the centroid µ.

4.3 Clusters of Tasks

This scenario is a generalization of the “noisy tasks” case, where the domain
knowledge indicates that tasks are divided into several clusters. One can sim-
ply use our framework to subsume this as a special case by specifying

s(k) ∼ Multinomial(1; p1, p2, . . . , pH) (10)

where Multinomial(1; p1, . . . , pH) stands for the Multinomial distribution with
index parameter n = 1 and proportional parameters p1, . . . , pH satisfying
ph ≥ 0 and

∑H
h=1 ph = 1. It is easy to check that this prior over θ(k)’s is

equivalent to a mixture of normal prior where the mixture components have
different means λh’s but the same covariance Ψ . As a result s(k) will take the
form [0, . . . , 0, 1, 0, . . . , 0]T where only one element is 1 and the rest are 0’s.

Geometrically, each θ(k) randomly picks up one column of the matrix Λ and
the generated θ(k)’s will be clustered around those columns λh’s.

4.4 Tasks Sharing a Linear Subspace

In this scenario tasks are assumed to be generated from a linear subspace for
which each column of Λ is a basis and s(k) stores the corresponding coordi-
nates. By assuming the latent variable

s(k) ∼ Normal(0, I) (11)

to be the standard multivariate normal distribution, this generative model
for θ(k)’s becomes the standard factor analysis model. In other words, those
K tasks share a linear subspace whose bases are the columns of the mixing

matrix Λ, since we have θ(k) =
∑H

h=1 s
(k)
h λh where s

(k)
h is the h-th element

of s(k). This model can be thought as a latent factor analysis model where
θ(k)’s, unlike in standard factor analysis, are generally unknown.
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4.5 Tasks Having Sparse Representation

Sparsity has become one of the most important concepts in modern statistical
learning theory, and many methods are successful partially due to this prop-
erty, including lasso, Support Vector Machines (SVM), wavelet -based meth-
ods, etc. Sparsity usually means that only a small portion of the solution
components are non-zero. Sparsity is a nice property since theoretically it can
lead to better generalization when the assumption holds, and practically it
has certain computational advantages especially for high-dimension problems
such as text. There are at least two types of sparsities our framework can
accommodate:

1. The first type of sparsity can be specified by putting a super Gaussian
distribution such as the Laplace distribution over the latent variable s(k),
which essentially means that we assume the target prediction functions of
those K tasks are sparse linear combinations of basis prediction functions.
The generative model corresponds to this scenario can be written as:

s(k) ∼

H
∏

h=1

Laplace(0, 1) (12)

Moreover, this model is of particular interest if we have an over-complete
basis, since in that case sparsity is crucial in order to obtain a reliable
estimation.

2. Alternatively the matrix Λ can be sparse, and this leads to a natural
sparse solution of θ(k)’s since each of them is a linear combination of
columns of Λ. This type of sparsity can be induced by imposing a l1-
type regularization on Λ similar to the lasso algorithm, or equivalently,
assuming a product of Laplace priors over each column λh of Λ and
perform the MAP estimation:

λh ∼
F
∏

f=1

Laplace(0, η). (13)

4.6 Duplicated Tasks

In reality the same task (up to some transformation) may appear several
times. Formally, we want to consider the situation where it is likely that
we have θ(k) identical to one of the previous tasks {θ(1), θ(2), . . . , θ(k−1)}.
In other words, the probability that previously seen tasks will appear again
in the future is positive and bounded away from zero (as opposed to the
probability that a continuous variable takes a particular value, which equals
zero). Nonparametric Bayesian technique like the Dirichlet Process (DP) [8]

can be used to model the generation process of the θ(k)’s as: θ(k) ∼ G, G ∼
DP(α, G0), where α and G0 are the precision parameter and base distribution
of DP, respectively.
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Alternatively DP can be used to model the generation of s(k) instead of
θ(k) directly. The latter approach is advantageous since (1) it is more general

(Λ 6= I) and θ(k)’s can duplicate each other up to some transformation and
additive noise; (2) s(k)’s lie in a low dimensional space. Our framework can
capture this scenario by assuming

G ∼ DP(α, G0)

s(k) ∼ G (14)

where any appropriate distribution over s(k) could be the candidate of the
base distribution G0. Due to DP’s properties, given s(k), . . . , s(k−1), the prob-
ability that s(k) equals one of them is strictly greater than zero. Consequently
θ(k) may be identical to one previous model subject to some transformation,
and this generative model is able to capture the scenario of duplicated tasks.
Although this model could be approximated by a finite mixture model as in
the “clusters of tasks” scenario, DP provides a natural way to handle the
increasing number of clusters as the number of tasks grows.

4.7 Evolving Tasks

In previous scenarios prediction tasks are assumed to be exchangeable, which
means that the order of θ(k)’s does not matter. However, there are situations
where tasks are evolving one after another, such as in the modeling of concept
drift. For this scenario, the model should be able to capture the fact that θ(k)’s
are evolving. One of the simplest choices is to assume a first-order Markov
chain over θ(k)’s, θ(k−1) → θ(k), which can be fully specified by the starting
probability p(θ(1)) and transition probability p(θ(k)|θ(k−1)). Similar to the
scenario of “duplicated tasks”, a better choice is to put a Markov chain over
s(k)’s instead of θ(k)’s:

s(k−1) → s(k) (15)

with the advantage that we have a Markov chain over a low dimensional space
with dimensionality H instead F . As a result, the number of parameters (in
specifying p(s(k)|s(k−1)) ) to be estimated is greatly reduced and can thus be
more reliably estimated. This model is closely related to the widely used linear
state space model in the literature.

5 Learning and Inference

In this section we present an algorithm for the empirical Bayes method based
on the model defined in equations (1)-(5). We will also discuss efficient algo-
rithms for point estimation.

From Figure 1 we can see that the shared parameters Φ, Λ and Ψ cap-
ture the relations among tasks, while the tasks decouple conditioned on those
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shared parameters. This observation indicates that parameters can be easily
estimated in an iterative manner, as confirmed by the following Expectation
Maximization (EM) algorithm [6].

To simplify the notation, we use Ω = {Φ, Λ, Ψ} 4 to denote the (hyper-

)parameters and Z = {(θ(k), s(k))K
k=1} to denote the set of hidden variables.

One thing to notice is that Λ and s(k) are coupled together as a single term
Λs(k) in our model. As a result, Λ and s(k)’s parameter Φ cannot be uniquely
identified [13]. This is of less an issue in our case, as we are primarily interested

in estimating the posterior distribution of θ(k). To alleviate the unidentifia-
bility problem, we could assume the prior p(s(k)|Φ) to be of standard form
(e.g., with zero mean and unit variance) and thus remove Φ from Ω. Another
possibility is to put a constraint on Λ such as ΛT Λ = I.

For the empirical Bayes method, the objective is to learn the hyper-
parameters Ω from the data by maximizing the observed data likelihood,
which can be obtained by integrating out hidden variables Z. The integra-
tion over s(k) will be easy if p(s(k)|Φ) is normal since p(θ(k)|Λ, Ψ , s(k)) is also
assumed to be normal; otherwise approximation is often needed in order to
efficiently compute the integral. Furthermore, for classification tasks the likeli-
hood function p(y|x, θ) is typically non-exponential and thus exact calculation
becomes intractable.

However, we can approximate the solution by applying the EM algorithm
to decouple the maximization process into a series of simpler E-steps and M-
steps. In the EM formulation, instead of directly maximizing the log-likelihood
of the observed data p(Dy|DX, Ω), we attempt to maximize the expectation
of the joint log-likelihood of both the observed data and hidden variables
E[log p(Dy,Z|DX, Ω)]. The goal is to estimate the parameters Ω as well as to

obtain posterior distributions over hidden variables θ(k)’s and s(k)’s given the
training data.

Formally, the incomplete data log-likelihood L = log p(Dy|DX, Ω) can be
computed by integrating out hidden variables as

K
∑

k=1

log

{

∫

p(s(k)|Φ)

(

∫

p(θ(k)|Λ, Ψ , s(k))

Nk
∏

ik=1

p(y
(k)
ik

| x
(k)
ik

, θ(k))dθ(k)

)

ds(k)

}

.

(16)
And the parameters can be estimated by maximizing L, which involves two
integrals over hidden variables θ(k) and s(k), respectively. The EM algorithm
can be summarized as follows:

• E-step: Given parameters obtained in previous M-step, compute the dis-
tribution

p(Z|Ωt−1,DX,Dy).

• M-step: Maximize the expected complete data log-likelihood (Z,Dy) with
respect to Ω, where the expectation is taken over the distribution of hidden

4 We also need to estimate the noise variance parameter σ
2 for regression tasks.
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variables obtained in the E-step:

Ωt = argmax
Ω

EZ|Ωt−1,DX,Dy
[log p(Dy,Z|DX, Ω)].

5.1 An EM Algorithm for Empirical Bayes Method

In the following we present the learning and inference algorithms for the
generic multi-task learning framework.

Given the model definition in equations (1)-(5), we need to estimate the
parameters Λ and Ψ . Here we take the empirical Bayes approach by integrat-
ing out the random variables s(k)’s and θ(k)’s. Thus, the log-likelihood of the
parameters Ω for the observed data {X(k),y(k)}K

k=1 can be written as

log p
(

y(1), . . . ,y(K) | Ω,X(1), . . . ,X(K)
)

=

K
∑

k=1

log

∫

p(s(k)|Φ)

(

∫

p(θ(k)|Λ, Ψ , s(k))

nk
∏

i=1

p(y
(k)
i |θ(k),x

(k)
i )dθ(k)

)

ds(k),

where p(s(k)|Φ) is the distribution of the latent variable s(k), p(θ(k)|Λ, Ψ , s(k))
is a normal distribution with mean Λs(k) and covariance matrix Ψ , and

p(y
(k)
i |θ(k),x

(k)
i ) corresponds to the likelihood function of regression in equa-

tion (1) or that of classification in equation (2).
Such an estimation problem can be solved by an EM algorithm. To be more

specific, the goal of learning is to estimate the parameters Ω by maximizing
the log-likelihood over all K tasks. Since the log-likelihood function involves
two sets of hidden variables, i.e., s(k)’s and θ(k)’s, we apply the EM algorithm
to iteratively solve a series of simpler problems.

E-step

Given the parameters Ω all tasks are decoupled, the E-step can be conducted
for each task separately. Thus we only need to consider one task per time
and we can omit the superscript (k) for simplicity. Because it is generally
intractable to do an exact inference for our prior choice of p(s|Φ) and clas-
sification likelihood functions 5, we apply variational methods as one type of
approximate inference techniques to optimize the objective function.

The basic idea of variational methods is to use a tractable family of dis-
tributions q(θ, s) to approximate the true posterior distribution. Specifically
we assume an auxiliary distribution q(θ, s) = q1(s)q2(θ), i.e. the mean field
approximation, as a surrogate to approximate the true posterior distribution
p(θ, s|Ω,X,y).

5 Variational approximation is not necessary when p(s|Φ) is normal for regression
tasks, for example. However, we present the variational method for its generality.
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Furthermore, we assume that q1(s) = q1(s|γ) has the same parametric
form of the prior distribution p(s|Φ) but with variational parameter γ. Simi-
larly, q2(θ) = q2(θ|m,V) is assumed to have the form of a multivariate normal
with mean m and covariance matrix V. Now the goal is to find the best set
of variational parameters γ, m and V such that the KL divergence between
q1(s)q2(θ) and p(θ, s|Ω,X,y) is minimized. It is easy to see that minimizing
KL(q1(s)q2(θ)||p(θ, s|Ω,X,y)) is equivalent to minimize the following quan-
tity:

E[log p(s|Φ)] + E[log p(θ|Λ, Ψ , s)] + E[log p(y|θ,X)] + H(s) + H(θ) (17)

where the expectation is taken w.r.t. q(s, θ), H(θ) = −
∫

q2(θ) log q2(θ)dθ

and H(s) = −
∫

q1(s) log q1(s)ds are the entropies of θ and s, respectively.
The first term E[log p(s|Φ)] can be easily computed once we assume some

parametric form of the distribution s; the second term can also be easily
computed since p(θ|Λ, Ψ , s) is assumed to be normal:

E[log p(θ|Λ, Ψ , s)]

= c −
1

2
Tr
(

Ψ−1
E[θθT ] + ΛT Ψ−1ΛE[ssT ] − 2ΛT Ψ−1

E[θsT ]
)

where c is some constant that does not depend on the variational parameters
γ, m and V.

The third term E[log p(y|θ,X)] is straightforward to compute for regres-
sion tasks. However, we do not have a closed-form representation for classifi-
cation tasks since p(y|θ,X) =

∏

i p(yi|θ,xi) is a product of logistic likelihood
functions. So we resort to another variational technique proposed in [11] to
compute its lower bound as a function of m and V by introducing a new set
of variational parameters ξi’s, one for each example of the given task. The
lower bound can be computed as:

E[log p(y|θ,X)]

≥
n
∑

i=1

(

log g(ξi) +
yim

Txi − ξi

2
+ h(ξi)

(

xT
i (V + mmT )xi − ξ2

i

)

)

where h(t) = (1/2−g(t))/(2t), g(t) is the logistic function and n is the number
of training examples for the task.

Now equation (17) can be maximized with respect to the variational
parameters to complete the E-step. For example, when the choice of p(s)
is the Multinomial distribution (and thus the variational form of q1(s) =
Multinomial(s|γ1, ..., γH)), we can obtain the following update formulas for
multiple classification tasks (details are given in Appendix):

ξi = [xT
i (V + mmT )xi]

1/2

V =

(

Ψ−1 − 2

n
∑

i=1

h(ξi)xix
T
i

)−1
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m = V

(

1

2

n
∑

i=1

yixi + Ψ−1
H
∑

h=1

γhλh

)

γh ∝ exp

(

log φh −
1

2
(m − λh)T Ψ−1(m − λh)

)

where λh is the h-th column of Λ. These fixed equations should be repeated
over ξi’s, m, V and γh’s until the lower bound is maximized. Upon conver-
gence, we can use the resulting q1(s|γ)q2(θ|m,V) as a surrogate to the true
posterior probability p(s, θ|Ω,X,y).

M-step

Given the sufficient statistics obtained in the E-step, the M-step can be derived
similarly by maximizing the following quantity (which is a lower bound of
log-likelihood after throwing away some constants) with respect to the model
parameters Ω:

K
∑

k=1

(

E

[

log p(s(k)|Φ)
]

+ E

[

log p(θ(k)|Λ, Ψ , s(k)
]

+ E

[

log p(y(k)|θ(k),X(k))
])

.

(18)
where the last term in the parenthesis is only needed for regression tasks to
compute the parameter σ2.

For example, in case when p(s|Φ) is assumed to be the Multinomial distri-
bution with parameters φ1, . . . , φH , we have the following update formulas:

φh =
1

K

K
∑

k=1

γ
(k)
h

Λ =

[

∑K
k=1 γ

(k)
1 m(k)

∑K
k=1 γ

(k)
1

, . . . ,

∑K
k=1 γ

(k)
H m(k)

∑K
k=1 γ

(k)
H

]

Ψ =
1

K

K
∑

k=1

(

V(k) +

H
∑

h=1

γ
(k)
h (m(k) − λh)(m(k) − λh)T

)

In case we want to reduce the number of parameters we can assume that Ψ

is diagonal with isotropic variance, e.g. Ψ = τ2I, and we have τ̂2 = Tr(Ψ̂ )/F .
The EM algorithm is summarized in Algorithm 1.

5.2 Point Estimation

For certain high-dimensional problems it may be computationally expensive
to compute the distribution over θ(k) and to store its sufficient statistics.
Alternatively we can ignore the uncertainty contained in the distribution and
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Algorithm 1 An EM Algorithm for Empirical Bayes Method

1. Initialize parameters Φ, Λ and Ψ (and σ2 if applicable).
2. E-step: For the k-th task (k = 1, . . . , K):

a) Obtain γ(k), V(k) and m(k) (as well as ξi’s if applicable) by maximizing
equation (17).

3. M-step: Update parameters by maximizing equation (18).
4. Continue steps 2 and 3 until convergence.

just compute point estimations of θ(k) and s(k). In that case, we may consider
the following decomposition of the parameters

θ(k) = Λs(k) + e(k)

where we treat θ(k) and s(k) (and thus e(k)) as non-random parameters. Cer-
tain structural regularizations are needed in order to compute those estima-
tions. For example, we may put a l2-type penalty over e(k) and Λ, as well as
some normalization requirement over s(k). The resulting estimation method
can be thought as a special case of the previous empirical Bayes method where
the distributions over θ(k) and s(k) become point mass functions. The solu-
tion, as a result, can be computed by iteratively solving a set of optimizations
problems given the parameter Λ for each task. In particular, we have

θ(k) = argmin
θ

{

−

nk
∑

i=1

log p(y
(k)
i |θ,x

(k)
i ) + ρθ||θ − Λs(k)||2

}

.

The update of s(k) depends on the parametric choice of p(s|Φ). For example,
when p(s|Φ) has the form of normal or Laplace distribution we have

s(k) = argmin
s

{

sT ΛT Λs− 2sΛT θ(k) + ρsΞ(s)
}

where Ξ(s) takes the form of ||s||22 or ||s||1, respectively. Both ρθ and ρs are
parameters which control the model complexity and can be tuned empirically.

5.3 Prediction

There are two types of prediction situations we would like to consider here.

1. Multi-Task Learning Prediction: This is the typical multi-task learning
setting, where we aim to make predictions for testing data of existing
tasks. For a new data x of the k-th task, its prediction can be written as

p(y|x) =

∫

p(θ(k)|m(k),V(k))p(y|x, θ(k))dθ(k)

where m(k) and V(k) are the mean and covariance variational parameters
obtained in the last E-step of the k-th task.
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2. Transfer Learning Prediction: Another interesting prediction scenario is
to transfer the parameters of the learned models to a new task with a
limited number of training data or even no training data. This scenario
is sometimes called transfer learning [20]. We are interested in investigat-
ing whether the learning of a new task can benefit from generalizing the
previous task parameters and whether the task features can be helpful to
provide more accurate predictions. In this case, it is a key to the devel-
opment of a generative model, i.e. we have to make explicit assumptions
about how tasks are related. From our generative model, we can observe
that given the learned parameters Φ, Λ and Ψ from the previous K tasks,
we can naturally extend the generation process for the (K +1)-th task to
be

s(K+1) ∼ p(s|Φ)

θ(K+1) ∼ Normal(Λs(K+1), Ψ ),

and for a given input data vector x, its prediction is given by

p(y|x) =

∫

p(s(k)|Φ)

(
∫

p(θ(K+1)|Λ, Ψ , s(k))p(y|x, θ(K+1))dθ(K+1)

)

ds(k).

Finally, if we want to reduce the computational complexity in the pre-
diction step, an alternative is to use the MAP estimation of θ to avoid the
computation of the integral with respect to θ.

5.4 Discussions

We could, in general, conduct a full Bayesian analysis on the model by assign-
ing uninformative priors over the parameters Ω. Posterior distributions over
Ω as well as θ(k) and s(k) can be inferred using sampling techniques. How-
ever, the computational burden forbids such choices in most applications we
consider here. Similarly, we could apply Monte Carlo methods to implement
the E-step [18] where the posterior distribution is approximated by random
samples from p(Z|Ω,DX,Dy). This choice may lead to better approximation
when the dimensionality of the hidden variables is relatively small.

6 Model Selection

Model selection is an important step in standard supervised and unsupervised
learning in order to control model complexity and to achieve good generaliza-
tion performance on future test data. In multi-task learning it also plays an
important role, since we not only want to generalize well on future data of a
particular task, but also want to achieve good performance on future similar
tasks.
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Correspondingly there are two types of model complexity involved in our
multi-task learning framework: the model complexity of each predictive func-
tion f (k) (through the task specific component e(k)) and the model complexity
of the joint modeling over all f (k)’s. Since the former type of model complexity
has been extensively studied in the literature [9], we focus on the investigation
of the latter.

We use cross-validation for model selection in the multi-task learning set-
ting, due to its simplicity and theoretical soundness. Given K tasks with their
associated training datasets, we split the tasks into Kcv folds randomly such
that: T1 ∪ T2 ∪ . . . ∪ TKcv

= {1, 2, . . . , K}. Similar to the conventional setting
[17], we can have two choices for the CV loss function:

• cross-validation by likelihood : The c-th iteration of this type of cross-
validation consists of the following steps: (1) a generative model p̂\c(θ)
is fitted using the (Kcv-1) folds’ tasks T1, . . . , Tc−1, Tc+1, . . . , TKcv

by the
multi-task learning method; (2) for each task in the validation fold Tc, a

single-task learning method is applied to obtain point estimations θ̂
(k)

’s;

(3) the negative log-likelihood − log p̂\c(θ̂
(k)

) will be computed for k ∈ Tc.
The final score can be summarized as:

CV =

Kcv
∑

c=1

∑

k∈Tc

− log p̂\c(θ̂
(k)

). (19)

• cross-validation by prediction error : The c-th iteration for this type of
cross-validation consists of the following steps: (1) a generative model
p̂\c(θ) is fitted using the (Kcv-1) folds’ tasks (T1, . . . , Tc−1, Tc+1, . . . , TKcv

);
(2) for each task in the validation fold Tc, the prior p̂\c(θ) is evaluated us-
ing another error-based cross-validation at the data instance level. The
final score can be summarized as:

CV =

Kcv
∑

c=1

∑

k∈Tc

CVk(p̂\c(θ)) (20)

where CVk(p̂\c(θ)) is the error-based cross-validation score obtained by
using p̂\c(θ) as the prior of θ for the k-th task. That is, the obtained
distribution p̂\c(θ) is used as the prior distribution for θ to fit a single-
task Bayesian model for the k-th task. The goodness of fit is computed
using the cross-validated prediction error by splitting the training set D(k)

into multiple folds.

We can see that in order to conduct cross-validation at the task level, we
need a model 6 to measure the closeness of the tasks (often in terms of their

parameters θ(k)’s). Also the latter method is computationally more expensive

6 Although the model need not be probabilistic, having a probabilistic model over
θ is a natural choice.
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since another inner loop of cross-validation needs to be carried out to obtain
the final score.

The above procedure is a straightforward extension of standard cross-
validation to the multi-task learning setting, where all the tasks are split into
Kcv folds instead of the training set. We can use it to either select H , the
dimensionality of the latent variable s(k), or the choice of the parametric form
for the latent variables s(k)’s. In some sense, the choice of p(s|Φ) is very much
like the choice of parametric family in density estimation, and in many cases
it can be determined by the domain knowledge. When there is not enough
knowledge to decide p(s|Φ), we can apply it to find a reasonable choice that
can capture the shared structure among prediction functions. For example, if
we expect to have tasks clustered together we may prefer to use a Multinomial
distribution as the parametric form; or if we expect the tasks to have sparse
representations we may choose one of the sparse representations introduced
earlier. When prediction accuracy is the ultimate goal, we can easily apply
the cross-validation technique to decide which form to use.

Alternatively we can use the following two-step procedure to do model
checking:

1. Conduct point estimation for each individual task to obtain θ̂
(k)

’s;
2. Given a parametric form p(s|Φ), measure the goodness-of-fit for those

θ̂
(k)

’s using the model p(θ|Λ, Ψ ) =
∫

p(s|Φ)p(θ|Λ, Ψ , s)ds.

We argue that having such capabilities makes the framework an integrity
toolbox for multi-task learning.

7 Experiments

7.1 Simulation: Model Selection

We conduct simulations to illustrate the use of the previously described cross-
validation methods. Although we focus on the mixture model in equation (10),
the technique can be used to select the number of hidden variables H or even
the parametric assumption about s(k)’s.

We use mixture of normals to generate the parameters θ’s of prediction
functions, and the true number of clusters varies from 1 to 8. For each mixture
model we generate 100 tasks θ(1), . . . , θ(100) from the prior distribution

θ(k) ∼

H
∑

h=1

πhNormal(mh,Vh). (21)

The parameters πh, mh and Vh of the mixture model are randomly generated
as follows:
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πh ∝ 0.3 + Uniform(0, 1)

mh ∼ Uniform

([

−6
−6

]

,

[

6
6

])

(22)

Vh ∼
1

19
Wishart(I, 20).

Finally, for each task we generate 10 training examples and 100 test ex-
amples using

x
(k)
i ∼ Normal(0, I)

y
(k)
i ∼ Normal(〈θ(k),x

(k)
i 〉, σ2) (23)

where the variance of the observation noise is set to σ2 = 1.0.
In our experiments we create 6 generative models for θ(k)’s with the num-

ber of clusters H taken to be 1, 2, 3, 4, 6 and 8, respectively. Figure 2 shows
one sample of the generative models we used for the 6 cases. We repeat the
simulation process 20 times, which results in 20×6 = 120 runs of our mixture
model algorithm.

Several experiments are conducted and the results are evaluated using
the Mean Square Error (MSE) measure. In particular, we use the following
notations:

• MSE(f̂Ĥ): MSE for the mixture model where the number of clusters Ĥ is
chosen by cross-validation;

• MSE(f̂H): MSE for the mixture model where the true number of clusters
H is given;

• MSE(f̂p(θ)): MSE for the mixture model where the true prior p(θ) (which

is a mixture of normal) is given7;

• MSE(f̂STL): MSE obtained by using single-task learning algorithms;

We are interested in several comparisons from the experiments. First of
all, we would like to know how good is our fitted model compared to the
one obtained by knowing H , the true number of clusters. Second, we want to
measure the relative goodness of the fitted model with respect to the “golden
model” where we are given the true prior distribution of θ(k)’s. Finally, we
want to see how good is the model obtained by using single-task learning
algorithm which does not consider the relations among tasks.

Table 1 and 2 show the results of cross-validation by likelihood and cross-
validation by prediction error, respectively. Several conclusions can be drawn
based on the results. First, the model f̂Ĥ (with the number of clusters identi-
fied by cross-validation) is almost identical to the one fitted by given the true
number of clusters. Furthermore, it is slightly inferior to the “golden model”
which is using the true prior distribution p(θ(k)). Second, the performance ob-

tained by single-task learning (i.e. without learning a joint prior over θ(k)’s)

7 This is the upper bound of the performance we can possibly achieve.
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Fig. 2. Contours of sampled densities using the generative model specified
by equations (21)-(23) for θ(k)’s. H equals 1, 2, 3, 4, 6, 8 from top to bottom,
left to right, respectively.
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H MSE(f̂Ĥ)/MSE(f̂H) MSE(f̂Ĥ)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))

1 1.0011± 0.0033 1.0028± 0.0029 1.0400± 0.0253
2 1.0000± 0.0064 1.0099± 0.0105 1.0357± 0.0215
3 0.9984± 0.0105 1.0084± 0.0079 1.0327± 0.0133
4 1.0025± 0.0080 1.0120± 0.0095 1.0321± 0.0188
6 1.0007± 0.0054 1.0186± 0.0155 1.0347± 0.0132
8 0.9984± 0.0067 1.0128± 0.0136 1.0255± 0.0191

Table 1. Results for cross-validation by likelihood (K = 100)

H MSE(f̂Ĥ)/MSE(f̂H) MSE(f̂Ĥ)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))

1 1.0000± 0.0019 1.0016± 0.0055 1.0474± 0.0275
2 0.9993± 0.0081 1.0041± 0.0091 1.0408± 0.0236
3 0.9993± 0.0086 1.0091± 0.0088 1.0394± 0.0203
4 0.9985± 0.0101 1.0102± 0.0146 1.0359± 0.0169
6 1.0005± 0.0054 1.0113± 0.0100 1.0284± 0.0158
8 1.0050± 0.0144 1.0190± 0.0209 1.0256± 0.0259

Table 2. Results for cross-validation by prediction error (K = 100)

can be significantly worse, as shown in the last column of both tables. Third,
we observed that both the likelihood-based CV and error-based CV methods
work well and perform very similarly.

To further illustrate the influence of the number of tasks, we repeat the
experiments with K = 50 and K = 200 while keeping the other settings
fixed. Results are shown in Table 3, 4, 5 and 6. By comparing the results to
the results in Table 1 and Table 2 we can see that as the number of tasks
increases (from 50, 100 to 200), the accuracy of the mixture model improves
gradually and approaches that of the “golden model”. We also noticed that
if those clusters are well-separated then they can be easily identified by our
algorithm; otherwise (i.e. when clusters are overlapping with each other) it is
very difficult to identify the correct number of clusters. In either case, however,
the identified model works well in terms of the prediction accuracy.

7.2 Multi-label Text Classification

In this experiment we apply the sparsity model in equation (12) to multi-label
text classification problems, which exist in many text collections including the
most popular ones such as the Reuters-21578 and the new RCV1 corpus. Here
each individual task is to classify a given document to a particular category,
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H MSE(f̂Ĥ)/MSE(f̂H) MSE(f̂Ĥ)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))

1 1.002± 0.0074 1.0066± 0.0110 1.0434± 0.0297
2 1.000± 0.0080 1.0097± 0.0128 1.0369± 0.0307
3 0.998± 0.0169 1.0164± 0.0149 1.0480± 0.0303
4 1.007± 0.0169 1.0270± 0.0241 1.0378± 0.0262
6 1.006± 0.0116 1.0229± 0.0163 1.0437± 0.0340
8 0.997± 0.0165 1.0195± 0.0159 1.0226± 0.0158

Table 3. Results for cross-validation by likelihood (K = 50)

H MSE(f̂Ĥ)/MSE(f̂H) MSE(f̂Ĥ)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))

1 1.001± 0.0042 1.0043± 0.0093 1.0535± 0.0406
2 1.002± 0.0112 1.0129± 0.0125 1.0371± 0.0265
3 1.002± 0.0124 1.0141± 0.0148 1.0393± 0.0245
4 0.998± 0.0192 1.0152± 0.0130 1.0311± 0.0302
6 1.001± 0.0161 1.0191± 0.0146 1.0215± 0.0226
8 0.995± 0.0130 1.0178± 0.0189 1.0291± 0.0260

Table 4. Results for cross-validation by prediction error (K = 50)

H MSE(f̂Ĥ)/MSE(f̂H) MSE(f̂Ĥ)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))

1 1.000± 0.0006 1.0016± 0.0026 1.0455± 0.0147
2 0.995± 0.0099 1.0060± 0.0072 1.0427± 0.0179
3 0.997± 0.0052 1.0037± 0.0044 1.0317± 0.0125
4 0.999± 0.0082 1.0064± 0.0072 1.0325± 0.0108
6 0.999± 0.0031 1.0092± 0.0071 1.0305± 0.0146
8 0.999± 0.0038 1.0107± 0.0072 1.0263± 0.0098

Table 5. Results for cross-validation by likelihood (K = 200)

and it is assumed that the multi-label property implies that some of the tasks
are related through some semantic topics.

For Reuters-21578 we choose nine categories out of ninety categories, which
is based on fact that those categories are often correlated by previous studies
[12]. After some pre-processing 8 we get 3,358 unique features/words, and
empirical Bayes method is used to solve this problem. We also apply the model
to the RCV1 dataset. However, if we include all the 116 TOPIC categories

8 We do stemming, remove stopwords and words that occur less than three times.
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H MSE(f̂Ĥ)/MSE(f̂H) MSE(f̂Ĥ)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))

1 1.000± 0.0011 1.0006± 0.0015 1.0379± 0.0121
2 0.996± 0.0087 1.0046± 0.0056 1.0377± 0.0139
3 0.998± 0.0051 1.0045± 0.0045 1.0308± 0.0148
4 1.000± 0.0096 1.0076± 0.0066 1.0314± 0.0136
6 0.999± 0.0037 1.0080± 0.0063 1.0351± 0.0185
8 1.000± 0.0043 1.0101± 0.0091 1.0238± 0.0128

Table 6. Results for cross-validation by prediction error (K = 200)
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Fig. 3. Multi-label Text Classification Results on Reuters-21578 and RCV1

(including 12 internal nodes in the topic hierarchy) in RCV1 corpus we get
a much larger vocabulary size: 47,236 unique features. Bayesian inference is
intractable for this high-dimensional case since memory requirement itself is
O(F 2) to store the full covariance matrix V[θ]. As a result we take the point
estimation approach which reduces the memory requirement to O(F ). For
Reuters-21578 we use the standard training/test split, and for RCV1 since
the test part of corpus is huge (around 800k documents) we only randomly
sample 10k as our test set. Since the effectiveness of learning multiple related
tasks jointly should be best demonstrated when we have limited resources, we
evaluate our model by varying the size of training set. Each setting is repeated
10 times and the results are summarized in Figure 3.

In Figure 3 the STL result is obtained by using regularized logistic regres-
sion for each category individually. The number of tasks K is equal to 9 and
116 for the Reuters-21578 and the RCV1 respectively, and in this set of exper-
iments we set H (the dimension of hidden source) to be the same as K in our
experiments. We use the F1 measure (which is preferred to error rate in text
classification due to the very unbalanced positive/negative document ratio) to
evaluate the classification results. For the Reuters-21578 collection we report
the Macro-F1 results because this corpus is easier and thus Micro-F1 are al-
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most the same for both methods. For the RCV1 collection we only report the
Micro-F1 result and we observed similar trend in Macro-F1 although values
are much lower due to the large number of rare categories. From the results
we can see that our multi-task learning model is able to improve the classi-
fication performance for both cases, especially when the number of training
documents per task is small. Furthermore, we are able to achieve a sparse
solution for the point estimation method. In particular, when nk = 100 we

only obtained around 5 non-zero s
(k)
h ’s out of H = 116 for most of the tasks

in the RCV1 collection.

7.3 Conjoint Analysis

We also evaluate our models using a conjoint analysis dataset [14] about per-
sonal computer survey among colleague students. There are 190 students in
total (we only count those who completed the survey), and each rated the
likelihood of purchasing one of 20 different personal computer models. Each
computer model is described by 13 binary features including: (1) telephone
service hot line; (2) amount of RAM; (3) screen size; (4) CPU speed; (5)
hard disk size; (6) CD-ROM/multimedia; (7) cache; (8) color of unit; (9)
availability; (10) warranty; (11) bundled productivity software; (12) money
back guarantee; (13) price. User’s rating is an integer between 0 and 10. The
objective is to predict user’s rating of a computer model based on features.

In the first experiment, we follow a similar setting as in [14, 2]. For each
task/user we randomly pick up 8 examples as training and use the rest as the
test set. We let the number of tasks K ∈ {10, 20, 30, 60, 90, 120, 150, 180} and
apply our “cluster of tasks” scenario where s(k) ∼ Normal(0, I). We repeat
each setting 20 times and evaluate the model using the average Mean Square
Error (MSE) and average Mean Absolute Error (MAE). In our experiment the
number of clusters H is chosen by using leave one task out cross-validation,
and it turns out that for this dataset H = 1 gives the best fit most of the time
while H = 2 occasionally does a better job when K is large. Results are shown
in Figure 4. From the results we can see that as K increases, our model is able
to capture the shared information and make better predictions. Furthermore,
our results are comparable to previous results using a different multi-task
learning model [2]. Also notice that the performance of single-task learning
in the same setting are much worse, with MSE = 17.06 and MAE = 3.31
respectively.

In the second experiment we will evaluate our method under the transfer
learning setting. That is, we would like to investigate how well the learned
model can transfer the knowledge to a new task. We vary the number of old
tasks K ∈ {30, 60, 90, 120, 150} and test over the rest (190 − K) new tasks.
For each old task we use all 20 examples to train the model, and then apply
the learned model to those new tasks, for which we assume that we only have
m = 0, 2, 4, 8 randomly sampled training examples. Each setting is repeated
100 times and results are summarized in Table 7. From the results we can
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Fig. 4. Results on Personal Computer Purchase Survey

m = 0 m = 2 m = 4 m = 8
MSE/MAE MSE/MAE MSE/MAE MSE/MAE

K = 30 6.20/2.02 5.04/1.78 4.49/1.66 3.91/1.53
K = 60 6.10/2.01 4.91/1.75 4.40/1.63 3.83/1.51
K = 90 6.08/2.01 4.84/1.74 4.35/1.62 3.80/1.49
K = 120 6.07/2.01 4.85/1.75 4.33/1.63 3.78/1.48
K = 150 6.04/2.00 4.83/1.74 4.33/1.63 3.75/1.47

Table 7. Results for Transfer Learning

see that our model successfully transfers the learned knowledge (in terms of
the shared parameters) to the new tasks. In particular, we are able to achieve
relatively good performance even with very few training examples for each
new task, as long as we are also provided with many old similar tasks.

8 Related Work

Many methods have been proposed for multi-task learning (aka transfer learn-
ing, learning to learn, etc) in the literature. Earlier work [21, 5, 20, 16] on
multi-task learning focused on using neural networks to learn multiple tasks
where the hidden layer is typically shared by all tasks to achieve the infor-
mation sharing. Breiman and Friedman [4] applied the shrinkage method to
multivariate response regression in their Curds and Whey method, where the
intuition is to apply shrinkage in a transformed basis instead of the original
basis so that information can be borrowed among tasks.

By treating tasks as i.i.d. generated from some probability space, empirical
process theory [3] has been applied to study the bounds and asymptotics
of multiple task learning, similar to the case of standard learning. On the
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other hand, from the general Bayesian perspective [3, 10] we could treat the
problem of learning multiple tasks as learning a Bayesian prior over the task
space. Despite the generality of above two principles, it is often necessary to
assume some specific structure or parametric form of the task space since the
functional space is usually of higher or infinite dimension compared to the
input space.

Regularized learning methods have also been applied to multi-task learn-
ing problems. In particular, Ando and Zhang [1] proposed a method which
can learn a structure from multiple tasks. Evgeniou et al. [7] applied the Sup-
port Vector Machines method to multi-task learning problems where all task
parameters are assumed to share a central component.

Our framework is a special case of Hierarchical Bayesian model which
generalizes and extends our previous work [23]. Teh et al [19] propsoed a
semiparametric latent factor model which uses Gaussian processes to model
regression through a latent factor analysis. Yu et al. [22] applies a Gaussian
processes prior over task functions so that the shared mean and covariance
function can be learned from all tasks. Although the above approaches all
assume some kind of task relatedness, none of them investigate how to han-
dle different task relatedness nor its connection to the underlying statistical
assumptions.

9 Conclusion

In this paper we present a probabilistic framework for multi-task learning,
where task relatedness is explained by the fact that task parameters share a
common structure through a set of latent variables. By making statistical as-
sumptions about the latent variables, our framework can be used to support
a set of important latent variable models for different multi-task scenarios.
By learning those related tasks jointly, we are able to get a better estimation
of the shared components and thus achieve a better generalization capabil-
ity compared to conventional approaches where the learning of each task is
carried out independently. We also present efficient algorithms for learning
and inference for the proposed models. Results on simulated datasets and
real-world datasets show that the proposed models are effective.

From another viewpoint, our multi-task learning framework can also be
thought as conducting unsupervised learning at the higher function level and
meanwhile conducting supervised learning at the lower level for each pre-
diction task. Viewed from this angle, the distributional assumption of latent
variables are essentially used for estimating the density of task parameters
and gives a statistical explanation of what is task relatedness.
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Appendix

Here we give a detailed derivation of the E-step in Section 5.1 when p(s) is
assumed to be the Multinomial distribution. In this case, our choice of the
parametric form of q1(s) is taken to be Multinomial(s|γ1, . . . , γH) and our
choice of q2(θ) is taken to be Normal(θ|m,V).

Define the quantity of equation (17) to be O then we have

O = E[log p(s|Φ)] + E[log p(θ|Λ, Ψ , s)] + E[log p(y|θ,X)] + H(s) + H(θ),

where

E[log p(s|Φ)] =

H
∑

h=1

γh log(φh),

E[log p(θ|Λ, Ψ , s)] = c −
1

2
Tr
(

Ψ−1
E[θθT ] + ΛT Ψ−1ΛE[ssT ] − 2ΛT Ψ−1

E[θsT ]
)

= c −
1

2
Tr
(

Ψ−1V
)

−
1

2

H
∑

h=1

γh(m − λh)T Ψ−1(m − λh),

E[log p(y|θ,X)] ≥

n
∑

i=1

(

log g(ξi) +
yim

Txi − ξi

2
+ h(ξi)

(

xT
i (V + mmT )xi − ξ2

i

)

)

,

H(s) = −

H
∑

h=1

γh log(γh),

and

H(θ) = c′ +
1

2
log |V|.

In the above equations c and c′ are constants, and h(t) = (1/2−g(t))/(2t)
where g(t) is the logistic function (1+ exp(−t))−1. Plugging them into O and
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taking derivatives with respect to the variational parameters ξi, V, m and γh

we obtain

ξi = [xT
i (V + mmT )xi]

1/2

V =

(

Ψ−1 − 2

n
∑

i=1

h(ξi)xix
T
i

)−1

m = V

(

1

2

n
∑

i=1

yixi + Ψ−1
H
∑

h=1

γhλh

)

γh ∝ exp

(

log φh −
1

2
(m − λh)T Ψ−1(m − λh)

)

.

Derivations for other choices of p(s) can be obtained in a similar fashion by
assuming q1(s) to have the same parametric form as p(s).


