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Flexible Margin Selection for
Reranking with Full Pairwise Samples

Libin Shen and Aravind K. Joshi

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104, U.S.A.
{libin,joshi}@linc.cis.upenn.edu

Abstract. Perceptron like large margin algorithms are introduced for the ex-
periments with various margin selections. Compared to the previous perceptron
reranking algorithms, the new algorithms use full pairwise samples and allow us
to search for margins in a larger space. Our experimental results on the data set
of [1] show that a perceptron like ordinal regression algorithm with uneven mar-
gins can achieve Recall/Precision of 89.5/90.0 on section 23 of Penn Treebank.
Our result on margin selection can be employed in other large margin machine
learning algorithms as well as in other NLP tasks.

1 Introduction

In recent years, the so-called reranking techniques [1] have been successfully used in
parameter estimation in many applications which were previously modeled as genera-
tive models. A baseline generative model generates N-best candidates, and then these
candidates are reranked by using a rich set of local and global features. Various machine
learning algorithms have been adapted to the reranking tasks.

In the field of machine learning, a class of tasks, which are called ranking or ordi-
nal regression, are similar to the reranking tasks in NLP. A primary motivation of the
present paper is to apply ranking or ordinal regression algorithms to the reranking tasks
in NLP, especially because we observe that there is no direct way to apply these ranking
algorithms to reranking. More specifically, we will compare the existing reranking and
ranking algorithms in the framework of margin selection. The goal then is to search for
a desirable margin for the reranking tasks in NLP.

In order to experiment with various margins, we will introduce variants of the tra-
ditional perceptron algorithm [2, 3] for reranking, which allows the use of various mar-
gins; The training is also very fast. The basic idea of these perceptron like algorithms is
that we dynamically search for pairs of inconsistent objects and use them to update the
weight vector. Since the ranks are ordered, the dynamical search can be implemented
efficiently.

Compared to previous work on perceptron for parse reranking [4], our new algo-
rithms use full pairwise samples instead of partial pairwise samples. This allows us to
search for margins desirable for reranking tasks in a larger space, which is unavailable
in the previous work.



In this paper, we focus on the parse reranking task. However, the methods can,
of course, be applied to other NLP reranking tasks. Our experimental results on the
data set in [1] show that a perceptron like ordinal regression algorithm with uneven
margins can achieve Recall/Precision of 89.5/90.0 on section 23 of WSJ PTB, which
is comparable to 89.6/89.9 with the boosting algorithm in [1], although boosting is
believed to have more generalization capability. Our results also show that the new
margins introduced in this paper are superior to the margins used in the previous works
on reranking. The results on margin selection can be employed in reranking systems
based on other machine learning algorithms, such as Winnow, Boosting and SVMs, as
well as other NLP tasks, e.g. machine translation reranking.

2 Previous Works

2.1 Reranking

In recent years, reranking has been successfully applied to some NLP problems, espe-
cially to the problem of parse reranking. Ratnaparkhi [5] noticed that by ranking the
20-best parsing results generated by his maximal entropy parser, the F-measure went to
93% from 87%, if the oracle parse was successfully detected. Charniak [6] reranked the
N-best parses by reestimating a language model on a large number of features.

Collins [1] first used machine learning algorithms for parse reranking. Two ap-
proaches were proposed in that paper; one used Boosting Loss and the other used Log-
Likelihood Loss. Boosting Loss achieved better results. The Boosting Loss model is as
follows. Let xi,j be the feature vector of the jth parse of the ith sentence. Let x̃i be the
feature vector of the best parse for the ith sentence. Let Fα be a score function

Fα(xi,j) ≡ α′ · xi,j ,

where α is a weight vector. The margin Mα,i,j on sample xi,j is defined as

Mα,i,j ≡ Fα(x̃i)− Fα(xi,j)

Finally the Boost Loss function is defined as

BoostLoss(α) ≡
∑

i

∑

j

e−(Fα(x̃i)−Fα(xi,j)) =
∑

i

∑

j

e−Mα,i,j

The Boosting algorithm was used to search the weight vector α to minimize the Boost
Loss.

We may rewrite the definition of the margin Mα,i,j by using pairwise samples as
follows.

si,j ≡ x̃i − xi,j , then

Mα,i,j = Fα(x̃i)− Fα(xi,j) = Fα(x̃i − xi,j) = Fα(si,j)

So the Boosting Loss approach in [1] is similar to maximizing the margin [7] between
0 and Fα(si,j), where si,j are pairwise samples as we have described above.



In [4], the voted perceptron and the Tree kernel were applied to parse reranking.
Similar to [1], pairwise samples were used as training samples. The perceptron updating
step was defined as

w
t+1 = w

t + x̃i − xi,j ,

where w
t is the weight vector at the t th updating. This is equivalent to using pairwise

sample si,j as we have defined above.

w
t+1 = w

t + si,j

In our previous work [8], we applied Support Vector Machines (SVMs) and Tree
kernels to parse reranking. In that paper, pairwise samples were used explicitly through
the Preference kernel. u

+
i,j and u

−

i,j defined as follows were used as positive samples
and negative samples respectively.

u
+
i,j ≡ (x̃i,xi,j), u

−

i,j ≡ (xi,j , x̃i)

SVM is used to maximize the margin between positive samples and negative samples,
which in turn is proportional to the margin between the best parse of each sentence and
the rest of the N-best parses.

In the works on reranking, the margin is defined as the distance between the best
candidate and the rest. The reranking problem is reduced to a classification problem by
using pairwise samples implicitly or explicitly.

2.2 Ranking

In the previous works on ranking or ordinal regression, the margin is defined as the dis-
tance between two consecutive ranks. Two approaches have been used. One is PRanking
that extends the perceptron algorithm by using multiple biases to represent the bound-
aries between every two consecutive ranks [9]. However, due to the introduction of a
set of biases it is impossible to use PRanking in other ranking-like problems. The other
approach is to reduce the ranking problem to a classification problem by using the trick
of pairwise samples [10].

2.3 Large Margin Classifiers

There are quite a few linear classifiers1 that can separate samples with large margin,
such as SVMs [11], Boosting [7], Winnow [12] and Perceptron [13]. The performance
of SVMs is superior to other linear classifiers because of their ability to maximize the
margin, but SVMs are slow in training.

For margin selection, we do need an algorithm that runs fast for training, so that
we can test various margins. Then the result of the margin selection can be employed
in other linear classifiers. For the purpose of margin selection we proposes perceptron
like algorithms for the following two reasons. First, perceptron is fast in training which
allows us to do experiments with various margin selections on real-world data. Further-
more, perceptron algorithms are simple in principle, which makes it easy to implement
modification.

1 Here we do not consider kernels of infinite dimension



3 Ranks and Margins for Reranking

In the previous works on ranking, ranks are defined on the whole training and test data.
Thus we can define boundaries between consecutive ranks on the whole data. In the
reranking problem, ranks are local. They are defined over a sub set of the samples
in the data set. For example, in the parse reranking problem, the rank of a parse is
only defined as the rank among all the parses for the same sentence. The training data
includes 36,000 sentence, with an average of about 27 parses per sentence [1].

As a result, we cannot use the PRank algorithm in the reranking task, since there
are no global ranks or boundaries in reranking, as the PRank algorithm is designed
to estimate the global rank boundaries over all the samples during the training. If we
introduce auxiliary variables for the boundaries for each cluster, the number of the pa-
rameters will be as large as the number of samples. Obviously this is not a good idea.
However, the approach of using pairwise samples works. By pairing up two samples,
we actually compute the relative distance between these two samples in the scoring
metric.

Let ri be the candidate parse that ranks as the ith best for a sentence. The parses of
the same sentence are ranked with respect to their f-scores, which measure the similarity
to the gold standard parse. A parse with a large f-score is assigned a high rank. In
reranking tasks, the margins between the best candidate and the rest are more useful. A
hyperplane successfully separating r1 and r2...rN is more predictive than a hyperplane
successfully separating r1...r10 and r11...rN , if we are only interested in the topmost
result in test. This is also how the existing reranking systems are designed. However
there are some problems with this approach.

There is a practical problem for the definition of the best parse in a sentence. In
parse reranking, we may find several best parses for each training sentence instead of
one. In order to break the tie, usually one selects just one of them arbitrarily as the top
ranked parse and discard all others.

Furthermore, if we only look for the hyperplane to separate the best one from the
rest, we, in fact, discard the order information of r2...rN . For example, we did not
employ the information that r10 is better than r11 in the training. Knowing r10 is better
than r11 may be useless for training to some extent, but knowing r2 is better than r11 is
useful.

On the other the hand, the resulting weight vector w is supposed to assign the high-
est score to r1. Should it not assign the second highest score to r2? Although we cannot
give an affirmative answer at this time, it is at least reasonable to use more pairwise sam-
ples. This approach was avoided in the previous works on reranking, due to the problem
of complexity of both the data size and the execution time. Thus we have provided a
strong motivation for investigating some new reranking algorithms such that

– They utilize all the ordinal relations encoded in the ranked lists.
– The size of training data is the same as the original size of the ranked lists.
– The training time increases only moderately, although more information is used in

training.



4 Perceptron for Ordinal Regression

4.1 Ordinal Regression

Let xi,j ,xi,l be the feature vectors of two parses for sentence i and yi,j , yi,l be their
ranks respectively, where yi,j + ε < yi,l, and ε is a non-negative real number. It means
that the rank of xi,j of ε higher than the rank of xi,l. In this case, we say xi,j is signifi-
cantly better than xi,l. We are interested in finding a weight vector w, such that

w · xi,j > w · xi,l + τ , if yi,j + ε < yi,l

We ignore any pair of parses in which the difference in the ranks is ≤ ε. Hence, this
problem is called ε-insensitive ordinal regression.

Let the training samples be

S = {(xi,j , yi,j) | 1 ≤ i ≤ m, 1 ≤ j ≤ k},

where m is the number of sentences and k is the size of the N-best list. Let f(x) = w·x.
We say the training data is ε-distinguishable by f if

w · xi,j > w · xi,l, if yi,j + ε < yi,l,

for 1 ≤ i ≤ m, 1 ≤ j, l ≤ k.

4.2 Dynamic Pairing

A straightforward method of using pairwise samples is to define positive and negative
samples on the differences of vectors as in [10]. For each sentence i, xi,j − xi,l is a
positive sample if yi,j < yi,l, where yi,j is the rank of parse xi,j . Similarly, xi,j − xi,l

is a negative sample if yi,l < yi,j .
However, for real tasks, this greatly increases the data complexity from O(mk) to

O(mk2), where m is the number of training sentences, and k is the size of n-best list.
For parse reranking k is about 27, and for machine translation reranking k is about
1000. Due to the limit of memory space we cannot define pairwise samples explicitly
in this way.

The method to avoid this problem is to look up pairwise samples dynamically, as
shown in Algorithm 1, a perceptron like algorithm. The basic idea is that, for each pair
of parses for the same sentence, if

– the rank of xi,j is significantly higher than the rank of xi,l, yi,j + ε < yi,l

– the weight vector w can not successfully separate (xi,j and xi,l) with a learning
margin τ , w · xi,j < w · xi,l + τ ,

then we need to update w with the addition of xi,j − xi,l. It is not difficult to show
Algorithm 1 is equivalent to using pairwise samples in training.



Algorithm 1 ordinal regression
Require: a positive learning margin τ .
1: t← 0, initialize w

0;
2: repeat
3: for (sentence i = 1, ..., m) do
4: for (1 ≤ j < l ≤ k) do
5: if (yi,l − yi,j > ε and w

t · xi,j < w
t · xi,l + τ ) then

6: w
t+1 ← w

t + xi,j − xi,l; t← t + 1;
7: else if (yi,j − yi,l > ε and w

t · xi,l < w
t · xi,j + τ ) then

8: w
t+1 ← w

t + xi,l − xi,j ; t← t + 1;
9: end if

10: end for
11: end for
12: until no updates made in the outer for loop

Algorithm 2 ordinal regression, sentence updating
Require: a positive learning margin τ .
1: t← 0, initialize w

0;
2: repeat
3: for (sentence i = 1, ..., m) do
4: compute w

t · xi,j and uj ← 0 for all j;
5: for (1 ≤ j < l ≤ k) do
6: if (yi,l − yi,j > ε and w

t · xi,j < w
t · xi,l + τ ) then

7: uj ← uj + 1; ul ← ul − 1;
8: else if (yi,j − yi,l > ε and w

t · xi,l < w
t · xi,j + τ ) then

9: uj ← uj − 1; ul ← ul + 1;
10: end if
11: end for
12: w

t+1 ← w
t +

∑
j
ujxi,j ; t← t + 1;

13: end for
14: until no updates made in the outer for loop

4.3 Sentence-Level Updating

In Algorithm 1, for each repeat iteration, the complexity is O(mk2d), where m and
k are defined as above, and d is the average number of active features in a sample.
We notice that the score of a parse xi,j will be computed for k times in each repeat
iteration. However, in many cases this is not necessary. In this section, we will revise
Algorithm 1 to speed up the training phase.

Algorithm 2 is similar to Algorithm 1 except that the updating is not executed until
all the inconsistent pairs for the same sentence are found. Therefore we only need to
compute w · xi,j for only once in each repeat iteration. So the complexity of each
repeat iteration is O(mk2 + mkd).



4.4 Uneven Margins

For ε-insensitive ordinal regression, suppose ε = 10 and our ordinal regression algo-
rithm made two errors. One is on (r1, r11), and the other is on (r21, r31). The algorithm
cannot recognize that the former is more serious than the latter. On the other hand, the
algorithm does not try to distinguish r1 and r10, which is even worse.

Our solution is to apply uneven margins to the ε-insensitive ordinal regression. For
example, we want to find a hyperplane for each sentence such that there is larger margin
between r1 and r10, but a smaller margin between r1 and r2, where rj is the parse that
ranks j for a sentence. Similarly, we want a larger margin between r1 and r2, but a
smaller margin between r10 and r11. Thus

margin(r1, r10) > margin(r1, r2) > margin(r10, r11) (1)

So the solution is to search for a hyperplane such that

score(rp)− score(rq) > g(p, q)τ

where g(1, 10) > g(1, 2) > g(10, 11). Specifically, we replace one of the updating
conditions

w · xi,j < w · xi,l + τ

in line 6 of Algorithm 2 with

w · xi,j −w · xi,l

g(yi,j , yi,l)
< τ, (2)

and replace the updating condition

yi,l − yi,j > ε with g(yi,j , yi,l) > ε, (3)

which means that we ignore irrelevant inconsistent pairs with respect to g. We also
replace the updating operation in line 7 with

uj ← uj + g(yi,j , yi,l), ul ← ul − g(yi,j , yi,l) (4)

A similar modification is made in line 8 and 9.
It can be shown that modifying Algorithm 2 in this way is equivalent to using (xi,j−

xi,l)/g(yi,j , yi,l) as pairwise samples, so it is well defined. Due to the space limitation,
we omit the proof of the equivalence in this paper.

There are many candidates for the function g. The following function is one of the
simplest solutions.

g(p, q) ≡
1

p
−

1

q

We will use this function in our experiments on parse reranking.



5 Experimental Results

In this section, we will report the experimental results for parse reranking task. We
use the same data set as described in [1]. Section 2-21 of the WSJ Penn Treebank
(PTB)[14] are used as training data, and section 23 is used for test. The training data
contains around 40,000 sentences, each of which has 27 distinct parses on average.
Of the 40,000 training sentences, the first 36,000 are used to train perceptrons. The
remaining 4,000 sentences are used as development data for parameter estimation, such
as the number of rounds of iteration in training. The 36,000 training sentences contain
1,065,620 parses totally. We use the feature set generated by Collins [1].

In all of our experiments, we have employed the voted perceptron as in [15, 4]. The
voted version makes the result on the test set more stable.

In the first set of experiments, Algorithm 2 and its uneven margin variants are used.
In addition, we evaluate the performance of separating only the best parse from the
rest in training by modifying the updating condition in Algorithm 2. Figure 1 shows
the learning curves of different models on the test data, section 23 of Penn Treebank.
Ordinal regression with uneven margins shows great advantage over the same algorithm
using even margins. Its performance is also better than perceptron that is trained to
separate the best parse from the rest.

By estimating the number of rounds of iterations on the development data, we get
the results for the test data as shown in Table 1. Our ordinal regression algorithm with
uneven margins achieves the best result in f-score. It verifies that using more pairs in
training is helpful for the reranking problem. In addition, uneven margins are crucial to
using ordinal regression to the reranking task.

In Algorithm 2, we update the weight vector on the sentence level so as to speed up
the training, while in Algorithm 1 we update the weight vector for each pair of parses.
Figure 3.a shows the comparison of the learning curves of the ordinal regression using
parse level updating and the ordinal regression using sentence level updating. Algorithm
2 converges about 40% faster. The performance of Algorithm 2 is very good even within
the first few rounds of iterations. Furthermore, the f-score on the test data remains at
a high level although it is over-trained. Algorithm 1 easily leads to overfitting for the
training data, while Algorithm 2 does not suffer from overfitting. This can be explained
by an analog to the gradient methods. For Algorithm 1, we move in one direction at a
time, so the result depends on the order of parses of a sentences, and it is easy to jump
into a sub-optimum. For Algorithm 2, we move in multiple-directions at a time, so the
result is more stable.

Our last set of experiments are about using all and partial pairwise samples. In
order to theoretically justify Algorithm 2, we only use k − 1 pairwise parses for each
sentence, e.g. pairs of parses with consecutive ranks. In Figure 3.b, we compare the
results of using all pairs with the results when we use pairs of parses with consecutive
ranks. Using only partial pairs makes the algorithm converge much slower.

6 Conclusions

In this paper, we have proposed a general framework for reranking. In this framework,
we have proposed two new variants of perceptron. Compared to the previous percep-



section 23, ≤100 words (2416 sentences)
model recall% prec% f-score%

baseline 88.1 88.3 88.2
best-rest 89.2 89.8 89.5
ordinal 88.1 87.8 88.0
uneven ordinal 89.5 90.0 89.8

Table 1. Experimental Results

tron reranking algorithms, the new algorithms use full pairwise samples and allow us
to search for margins in a larger space, which are unavailable in the previous works on
reranking. We also keep the data complexity unchanged and make the training efficient
for these algorithms. Using the new perceptron like algorithms, we investigated the mar-
gin selection problem for the parse reranking task. By using uneven margin on ordinal
regression, we achieves an f-score of 89.8% on sentences with ≤ 100 words in section
23 of Penn Treebank. The results on margin selection can be employed in reranking
systems based on other machine learning algorithms, such as Winnow, Boosting and
SVMs.
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