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The advent of counterfactual-based mediation analysis has triggered enormous progress on how, and under
what assumptions, one may disentangle path-specific effects upon combining arbitrary (possibly nonlinear) mod-
els for mediator and outcome. However, current developments have largely focused on single mediators because
required identification assumptions prohibit simple extensions to settings with multiple mediators that may depend
on one another. In this article, we propose a procedure for obtaining fine-grained decompositions that may still be
recovered from observed data in such complex settings. We first show that existing analytical approaches target spe-
cific instances of a more general set of decompositions and may therefore fail to provide a comprehensive assess-
ment of the processes that underpin cause-effect relationships between exposure and outcome. We then outline
conditions for obtaining the remaining set of decompositions. Because the number of targeted decompositions in-
creases rapidly with the number of mediators, we introduce natural effects models along with estimation methods
that allow for flexible and parsimonious modeling. Our procedure can easily be implemented using off-the-shelf soft-
ware and is illustrated using a reanalysis of theWorld Health Organization’s Large Analysis and Review of European
Housing and Health Status (WHO-LARES) study on the effect of mold exposure onmental health (2002–2003).

causal inference; decomposition; dichotomous outcome; epidemiologic methods; flexible modeling; mediation
analysis; multiple mediators

Abbreviations: DAG, directed acyclic graph; SEM, structural equation model; WHO-LARES, World Health Organization’s Large
Analysis and Review of European Housing and Health Status.

Mediation analysis is widely conducted to deepen under-
standing of the mechanisms behind established cause-effect
relationships. It does so by separating the indirect effect that
operates through a given intermediate (or mediator) from the
remaining direct effect and by quantifying their respective
contributions to the overall exposure effect. Epidemiologists
often focus on multiple mediators, either because interest lies
in multiple mechanisms or because the association between
the mediator of interest and the outcome is confounded by an
earlier intermediate. However, as the number of definable
causal pathways from exposure to outcome grows exponen-
tially with an increasing number of mediators being con-
sidered, so does the complexity related to their identification
and estimation (1).

Although analyses with multiple mediators have a long
tradition in the structural equation model (SEM) literature,
complications related to effect decomposition have long

been obscured because SEM-based definitions of path-
specific effects rely on stringent parametric constraints (2).
Recent contributions building on the counterfactual frame-
work have helped to reveal intricacies related to nonparamet-
ric identification of path-specific effects (3). Accordingly,
counterfactual-based approaches to effect decomposition in
the presence of causally ordered mediators have been put for-
ward. These approaches have mainly illustrated that progress
can be made either by incorporating sensitivity analyses to
obtain the finest possible decomposition (1, 4) or by focusing
on coarser decompositions that require weaker assumptions
(5, 6).

In the current article, we extend this second line of research
by proposing a simple estimation procedure for effect decompo-
sition in the presence of causally ordered mediators. Such set-
tings give rise to a large number of possible decompositions (1).
For instance, applications with only 3 sequential mediators
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already yield 24 possible ways of partitioning the total causal
effect into path-specific effects that can be identified, under
certain conditions, without imposing parametric restrictions.
Existing approaches (5) are limited because they recover
only a subset of all such targeted decompositions. They may
therefore give an incomplete assessment of the processes
that underlie cause-effect relationships, especially in the
presence of interaction. The multitude of possible decomposi-
tions, however, calls for parsimonious modeling strategies.
We therefore extend so-called natural effects models (7, 8), a
class ofmarginal structural models for mediation analysis, along
with accompanying fitting strategies. Besides parsimony, our
procedure offers greater modeling flexibility than prevailing
Monte Carlo approaches (1, 4). For didactic purposes, we pres-
ent our approach for 2 sequential mediators, although it easily
extends tomoremediators (see Web Appendix 1, available
at https://academic.oup.com/aje).

EFFECTDECOMPOSITION INTOPATH-SPECIFIC
EFFECTS

Decomposition in a single-mediator setting

Notation, definitions, and identification. Within the coun-
terfactual framework, causal effects are defined by comparing
counterfactual outcomes under different exposure regimes.
The total effect of a binary exposure (A= 1 for exposed, A= 0
for unexposed) on an outcome Y is obtained by contrasting
Y(1) and Y(0), with Y(a) the counterfactual outcome that would
be observed if A were set, possibly contrary to the fact, to a.
The population-average exposure effect (i.e., the exposure
effect for the target population; also referred to as the average
treatment effect) can then be expressed in terms of mean differ-
ences E{Y(1) − Y(0)}, relative risks P{Y(1) = 1}/P{Y(0) = 1},
etc.

Expressions for direct and mediated effects can similarly
be obtained by invoking nested counterfactuals Y(a,M(a′)).
For instance, one can isolate part of the effect that is transmit-
ted by M by leaving the exposure unchanged at A = 1 but
changing the mediator fromM(1)—the natural value it would
have taken under exposure—toM(0), the value it would have
taken under no exposure. Comparison of nested counterfac-
tuals Y(1,M(1)) and Y(1,M(0)) is central to the definition of
natural indirect effects (9, 10). Definitions of natural direct
effects can similarly be obtained by comparing Y(1,M(0)) and
Y(0,M(0)). This contrast captures the intuitive notion of block-
ing the exposure’s effect on the mediator by keeping the lat-
ter fixed at the level it would have taken in the absence of
exposure.

Natural effects combine to produce the total effect, irre-
spective of the scale of interest or the presence of interactions
or nonlinearities. For instance, on the additive scale, the total
causal effect decomposes into the sum of the natural direct
and indirect effect

{ ( ) − ( )} = { ( ( )) − ( ( ))}
+ { ( ( )) − ( ( ))}

E Y Y E Y M Y M
E Y M Y M

1 0 1, 0 0, 0
1, 1 1, 0 ,

given the composition assumption that Y(a,M(a))= Y(a).

Nonparametric identification of natural effects can be ob-
tained under a set of sufficient conditions (11), which state
that for any value of a, a′, andm

( ) ╨ | ( )Y a m A C, 1

( ) ╨ | = ( )Y a m M A a C, , 2

( ) ╨ | ( )M a A C 3

( ) ╨ ( ′) | ( )Y a m M a C, , 4

where ╨ |U V W denotes that U and V are independent con-
ditional onW.

These conditions require a set of measured baseline covar-
iates C that suffices to deconfound not only (i) the effect of
exposure A on outcome Y and (ii) the effect of mediatorM on
outcome Y conditional on exposure A, as dictated in the SEM
literature (12), but also (iii) the effect of exposure A on medi-
ator M. Assumption 4 is a strong assumption, commonly
referred to as Pearl’s (9) “cross-world” independence assump-
tion. If the data are assumed to be generated from a nonparamet-
ric SEM with independent errors (13), assumptions 1–4 can be
shown to hold if, in addition to conditions i–iii, (iv) none of the
mediator-outcome confounders are affected by exposure. In this
article, we will further discuss identification conditions, such as
i–iv, as represented in causal directed acyclic graphs (DAGs)
(such as Figure 1) interpreted as nonparametric SEMs with inde-
pendent errors.

Natural effects models. Natural direct and indirect effects
can be parameterized by so-called natural effects models (7, 8,
14). These express the mean of nested counterfactuals in terms
of hypothetical exposure levels a and a′ and therefore naturally
extend marginal structural models to allow for effect decompo-
sition. For instance, in the following saturated model for a
binary exposure A

{ ( ( ′))} = β + β + β ′ + β ′ ( )E Y a M a a a aa, , 50 1 2 3

for a, a′ equal to 0 or 1, β1 and β2 + β3 respectively capture
the natural direct and indirect effect as expressed above, that
is,

{ ( ( )) − ( ( ))} = βE Y M Y M1, 0 0, 0  ,1

{ ( ( )) − ( ( ))} = β + βE Y M Y M1, 1 1, 0  .2 3

This 2-way decomposition of the total effect (β1 + β2 + β3)
into the so-called pure direct and total indirect effect is not
unique (10). A different decomposition into the so-called total
direct and pure indirect effect arises from differently apportion-
ing the interaction term β3 as follows:

{ ( ( )) − ( ( ))} = β + βE Y M Y M1, 1 0, 1  ,1 3

{ ( ( )) − ( ( ))} = βE Y M Y M0, 1 0, 0  .2

Model 5 is a special case of the wider class of generalized
linear natural effects models

Am J Epidemiol. 2017;186(2):184–193

Flexible Mediation AnalysisWith Multiple Mediators 185

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/186/2/184/3791460 by U

.S. D
epartm

ent of Justice user on 16 August 2022

http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwx051/-/DC1
https://academic.oup.com/aje


{ ( ( ′)) | *} = {β ( ′ *)}− ⊤E Y a M a C g W a a C, , , ,1

with W(a,a′,C*) a known vector with components that may
depend on a, a′, and (possibly) a set of baseline covariates
C* (with C* ⊆ C), β an unknown parameter vector and link
function g(⋅). In model 5, which encodes population-average
rather than stratum-specific natural effects (i.e. conditional aver-
age natural effects within strata defined by specific levels of
baseline covariates), C* is the empty set, β = (β β β β )⊤, , ,0 1 2 3 ,

( ′ *) = ( ′ ′)⊤W a a C a a aa, , 1, , , , and g(⋅) is the identity link.
The inclusion of a nonempty set C* additionally enables
parameterizing effect modification by baseline covariates.

Decomposition in a setting with 2 sequential mediators

In most mediation analyses, even when interest lies in a
single mediator, one cannot ignore the possible presence of
multiple mediators, as illustrated in the following motivating
example.

Motivating example. For illustrative purposes, we revisit
previous analyses (8, 15) on survey data from 5,882 adult
respondents from a World Health Organization project, the
Large Analysis and Review of European Housing and Health
Status (WHO-LARES) project (16). These analyses focused
on the effect of living in damp and moldy conditions (binary
exposure A) on the risk of depression (binary outcome Y) and
put forward perceived control over one’s home as a putative
mediating mechanism (M). Corresponding natural direct and
indirect effects (via perceived control) were estimated under
the assumption that available individual and housing charac-
teristics (C) were sufficient to control for confounding so that
conditions i–iii weremet (as reflected by theDAG in Figure 1).
Kaufman (17), however, indicated that mold exposure is likely
to also cause physical illness, which may, in turn, compromise
both one’s sense of control and mental health. This hypotheti-
cal scenario (as reflected by the DAG in Figure 2) therefore
violates assumption iv and thus hinders identification of the
targeted natural effects discussed earlier. It moreover implies
that both physical illness (M1) and perceived control (M2)
act as sequential mediators, giving rise to a finest possible

decomposition that involves 4 distinct pathways from exposure
to outcome (i.e., pathways A→ Y, A→M1 → Y, A→M2 → Y
andA→M1→M2→ Y).

In the remainder of this section, we first outline a sequen-
tial approach that bears close resemblance to that of Vander-
Weele and Vansteelandt (5), starting from a coarse 2-way
decomposition that is next refined into a 3-way decomposi-
tion. We then demonstrate how natural effects models can be
extended to parameterize component effects of the resulting
and alternative decompositions, and we articulate required
identification conditions.

A sequential approach. Let Y(a,M1(a′),M2(a′,M1(a′)))
be the counterfactual outcome that would be observed if A
were set to a and M1 and M2 were set to the natural value
they would have taken if A had been a′. The first stage then
corresponds to a 2-way decomposition with respect to the
joint mediator {M1,M2}, separating pathway A→ Y from the
remaining pathways as follows:

{ ( ) − ( )}E Y Y1 0

= { ( ( ) ( ( ))) − ( ( ) ( ( )))}
( )

E Y M M M Y M M M1, 1 , 1, 1 1, 0 , 0, 0
6

1 2 1 1 2 1

+ { ( ( ) ( ( ))) − ( ( ) ( ( )))}
( )

E Y M M M Y M M M1, 0 , 0, 0 0, 0 , 0, 0 .
7

1 2 1 1 2 1

That is, the effect transmitted along either one or both med-
iators, or so-called joint natural indirect effect (expression 6),
is separated from the remaining effect through neither of the
mediators, or the joint natural direct effect (expression 7), de-
noted EA→Y(0,0) (see Appendix Table 1).

In a second stage, a more fine-grained, 3-way decomposi-
tion can be obtained by further partitioning expression 6 into
the entire effect transmitted alongM1 and the effect transmit-
ted along M2 only, respectively denoted ( )→E 1,1A M Y1

and
( )→ →E 1,0A M Y2

(see Appendix Table 1):

A

M

Y

C

Figure 1. Causal directed acyclic graph (DAG) with exposure A,
outcome Y, a single mediator M, and baseline confounders C. This
DAG visually encodes causal assumptions that allow identification of
natural direct and indirect effects (mediated throughM) from observed
data. These assumptions include no unmeasured confounding of
exposure-outcome, mediator-outcome, and exposure-mediator rela-
tionships (encoded by the absence of unmeasured confounders U),
and no exposure-induced confounding of the mediator-outcome
relationship.

A

M1

M2

Y

C

Figure 2. Causal directed acyclic graph (DAG) with exposure A,
outcome Y, 2 sequential mediatorsM1 andM2, and baseline confoun-
ders C. Considering M2 to be the mediator of interest, this DAG en-
codes a weaker set of causal assumptions than those encoded in the
DAG in Figure 1. Because the assumption of no exposure-induced
confounding of the mediator-outcome relationship is relaxed (allowing
M2 and Y to be confounded by an earlier mediator M1), natural direct
and indirect effects with respect to M2 are no longer identifiable from
observed data. In contrast, because M1 (or the joint mediator {M1,
M2}) is assumed not to be subject to exposure-induced confounding,
natural direct and indirect effects with respect toM1 ({M1,M2}) are still
identifiable.
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{ ( ( ) ( ( ))) − ( ( ) ( ( )))}E Y M M M Y M M M1, 1 , 1, 1 1, 0 , 0, 01 2 1 1 2 1

= { ( ( ) ( ( ))) − ( ( ) ( ( )))}
( )

E Y M M M Y M M M1, 1 , 1, 1 1, 0 , 1, 0
8

1 2 1 1 2 1

+ { ( ( ) ( ( ))) − ( ( ) ( ( )))
( )

E Y M M M Y M M M1, 0 , 1, 0 1, 0 , 0, 0
9

1 2 1 1 2 1

The first contrast (expression 8) captures the notion of
activating all paths along M1 that feed into Y, either directly
or indirectly via M2, while blocking all other pathways. It
corresponds to the natural indirect effect as defined with
respect toM1 (i.e., along the combined pathways A→M1→ Y
and A → M1 → M2 → Y), under the composition assumption
that Y(a,M1(a′),M2(a,M1(a′))) = Y(a,M1(a′)). The second con-
trast (expression 9) expresses the so-called seminatural indi-
rect effect (18) or partial indirect effect (19) with respect toM2

(i.e., A → M2 → Y), in that it captures only part of the effect
mediated byM2 that bypassesM1.

Further decomposition will generally fail without imposing
strong parametric constraints, as in the linear SEM framework
(3) (although see Daniel et al. (1) for a sensitivity analysis
approach). Likewise, alternative decompositions of expres-
sion 6 that involve the natural indirect effect with respect
to M2 (instead of M1—i.e., along the combined pathways
A → M2 → Y and A → M1 → M2 → Y) cannot be recovered
without making certain no-interaction assumptions (19–23).
These decompositions are beyond the scope of this paper (see
Web Appendix 1 for a detailed overview and comparison of
targeted decompositions).

Natural effects models. Natural effects models can be
extended to characterize the 3-way decomposition of the pre-
vious section. For instance, in the following saturated natural
effects model for a binary exposure A,

{ ( ( ′) ( ″ ( ′)))}
= θ + θ + θ ′ + θ ″+ θ ′ + θ ″

+ θ ′ ″ + θ ′ ″ ( )

E Y a M a M a M a
a a a aa aa

a a aa a

, , ,

, 10

1 2 1

0 1 2 3 4 5

6 7

for a, a′, and a″ equal to 0 or 1, the total effect, ∑ θ=i i1
7 , can

be partitioned into the joint natural direct effect

( ) = θ→E 0,0  ,A Y 1

and the joint natural indirect effect

∑( ) + ( ) = θ→ → →
=

E E1,1 1,0  .A M Y A M Y

i

i

2

7

1 2

The latter can be further partitioned into the natural indi-
rect effect with respect toM1

( ) = θ + θ + θ + θ→E 1,1  ,A M Y 2 4 6 71

and the partial indirect effect with respect toM2 (see Appen-
dix Table 1)

( ) = θ + θ→ →E 1,0  .A M Y 3 52

Model 10 is a special case of the wider class of generalized
linear natural effects models for 3-way decomposition

{ ( ( ′) ( ″ ( ′))) | *}
= {θ ( ′ ″ *)}− ⊤

E Y a M a M a M a C

g W a a a C

, , ,

, , , ,
1 2 1

1

with W(a,a′,a″,C*) a known vector with components that
may depend on a, a′, a″, and (possibly) covariates C*.

Different ways of accounting for the interaction terms θ4
to θ7 yield another 5 possible decompositions, listed in
Appendix Table 2. For instance, θ4 can be apportioned to
either EA→Y or →EA M Y1

. Similarly, θ5 can be apportioned to
EA→Y or → →EA M Y2

, θ6 to →EA M Y1
, or → →EA M Y2

and θ7 to any
of the 3 components. VanderWeele and Vansteelandt (5)
focus only on the first 2 decompositions shown in Appendix
Table 2 as their sequential approach builds on identification
of EA→Y(0,0) and ( )→E 1,1A M Y1

, as outlined in the previous
section. The remaining 4 decompositions involve instances
of EA→Y(a′,a″) with a′ ≠ a″ and instances of ( ″)→E a a,A M Y1

with a ≠ a″, which require slightly stronger identification as-
sumptions, as discussed next.

Identification. Two-way decomposition into joint natural
direct and indirect effects can be obtained if assumptions
(1)–(4) hold with respect to the joint mediator {M1,M2}. We
refer to the corresponding conditions in nonparametric
SEMs with independent errors as i′–iv′.

Such first-stage decomposition can be obtained for the
DAG in Figure 2, but also for the DAGs in Figure 3A and
3B. This may come as a surprise because the effect ofM1 on
M2 is confounded either by an unmeasured confounder U
(Figure 3A) or (measured) intermediate confounder L
(Figure 3B). However, this does not hinder identification of
the joint natural direct and indirect effect because conditions
i′–iv′ do not impose restrictions on the structural relationship
between the mediators. The other DAGs, however, do not
enable such 2-way decomposition. In Figures 3C and 3D, ii′
and iv′ are violated because of unmeasured confounding by
U and intermediate confounding by L, respectively.

All 6 of the 3-way decompositions in Appendix Table 2
can be recovered under nonparametric SEMs with inde-
pendent errors if, in addition to i′–iv′, (v′) the effect of M1

on M2 is unconfounded within strata of {A,C}, and (vi′)
none of the M1−M2 confounders are affected by exposure.
In contrast to assumptions i′–iv′, v′ and vi′ do not allow
for unmeasured or intermediate confounding of the effect
of M1 on M2. Consequently, these assumptions are violated
in all DAGs in Figure 3 but not the one in Figure 2. How-
ever, decomposition with respect to the 3 sequential media-
tors L, M1, and M2 becomes possible under more general
identification conditions for multiple mediators (see Web
Appendix 1).

Finally, consistent with VanderWeele and Vansteelandt
(5), we show in Web Appendix 1 that the first 2 decompo-
sitions in Appendix Table 2 necessitate slightly weaker
assumptions than i′–vi′. In Web Appendix 1, we also pro-
vide a more detailed and formal discussion of identifica-
tion assumptions, as well as extensions to more than 2
mediators.
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ESTIMATIONAPPROACH

Vansteelandt et al. (8) proposed an imputation procedure
for fitting natural effects models for single mediators (see
also Steen et al. (14) and Loeys et al. (24)). Below we describe
how this procedure can be extended to recover all possible
3-way decompositions in Appendix Table 2 in settings with a
binary exposure (coded 0/1) and 2 sequential mediators. We
first focus on estimation of component effects as defined
within strata of C, a covariate set assumed to be sufficient for
conditions i′–vi′ to be met, and next describe how population-
average analogs can be obtained. In Web Appendix 1 we pro-
vide some intuition as to why this procedure works and how it
relates to Monte Carlo procedures based on generalizations of
Pearl’s (9, 25) mediation formula (1, 4).

1. Fit a suitable model for the probability (density) of either
a. the first mediator conditional on exposure and covariate set

C; for instance, a logistic regressionmodel for binaryM1

( = | ) = β + β + β ( )⊤P M A C A Clogit  1 , 111 0 1 2

b. or the second mediator conditional on exposure, the
first mediator and covariate set C; for instance, a linear
regression model for normally distributed M2 with
constant variance σ2

( | ) = (γ + γ + γ
+ γ + γ σ )

( )⊤

f M A M C N A M

AM C

, ,

, .
12

2 1 0 1 2 1

3 1 4
2

2. Fit a suitable model for the outcome mean conditional on
exposure, both mediators and covariate set C; for instance,
a logistic regression model for binary outcome Y

( = | ) = δ + δ + δ + δ
+ δ + δ + δ + δ
+ δ

( )

⊤

P Y A M M C A M M
AM AM M M AM M

C

logit  1 , , ,

.
13

1 2 0 1 2 1 3 2

4 1 5 2 6 1 2 7 1 2

8

3. Construct an extended data set by replicating the ob-
served data set 4 times. A similar step has previously been
described by Lange et al. (26) and is best understood in
terms of sequential duplication. For the first duplication,
add 3 auxiliary variables a, a′, and a″. Let a take on the
value of the observed exposure Ai for the first replication
and of the counterfactual exposure 1 – Ai for the second
replication (for each individual i). Let both a′ and a″ take
on the observed exposure level for both replications.
Next, duplicate the resulting extended data once again,
now letting a′ (a″) take on counterfactual exposure level
1 – Ai if model 11 (or 12) is selected as the working model
(as illustrated in Web Appendix 2).

4. If model 11 is selected, compute weights

=
ˆ ( = | = ′ )
ˆ ( = | = ″ )

=
ˆ ( = | = ′ )
ˆ ( = | = )

′W
P M M A a C

P M M A a C

P M M A a C

P M M A A C

,

,

,

,
,

i a
i i

i i

i i

i i i

1 ,
1 1

1 1

1 1

1 1

or, if model 12 is selected, compute weights

=
ˆ ( = | = ″ )
ˆ ( = | = ′ )

=
ˆ ( = | = ″ )
ˆ ( = | = )

″W
f M M A a M C

f M M A a M C

f M M A a M C

f M M A A M C

, ,

, ,

, ,

, ,

i a
i i i

i i i

i i i

i i i i

2 ,
2 2 1

2 2 1

2 2 1

2 2 1

for each row in the extended data set.
5. Impute nested counterfactuals Yi(a,M1i(a′),M2i(a″,M1i(a′)))

as fitted values ˆ ( | = )E Y A a M M C, , ,i i i i1 2 from outcome
model 13 in step 2, for each row in the extended data set.

6. Fit a natural effects model of interest for E{Y(a,M1i(a′),
M2i(a″,M1i(a′)))|C} to the extended data by regressing the
imputed outcomes on a, a′, a″, and C, weighting by the
weights obtained in step 4.

This weighted imputation procedure is schematically dis-
played inWeb Appendix 2. In contrast to direct application of

A)

A

M1

M1

M1

M1

M2

M2

M2

M2

Y

C

U
B)

A Y

C

U
C)

A Y

C

L

D)

A Y

C

L

Figure 3. Variations of the causal directed acyclic graph (DAG) in Fig-
ure 2 that encode further weakening of causal assumptions (with respect
to those encoded in the DAG in Figure 2). As assumptions are weak-
ened, certain component path-specific effects may or may not be identifi-
able from observed data. Unobserved (A) or exposure-induced (B)
confounding of the relationship between the mediators renders natural
direct and indirect effect with respect to M1 nonidentifiable but does not
hinder identification of the natural direct and indirect effect with respect to
the joint mediator {M1, M2}. Unobserved (C) or exposure-induced (D)
confounding of the relationship between M1 and Y, on the other hand,
also renders natural direct and indirect effect with respect to the joint
mediator {M1,M2} nonidentifiable.
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the generalized mediation formula (1, 4), which relies on a
model for the distribution of each of the mediators, our proce-
dure requires only one of these models. This allows investiga-
tors to weigh by the ratio of densities of the mediator whose
corresponding model they believe is less prone to misspecifi-
cation. If, for instance, M1 is binary and M2 continuous, as in
the examples given for models 11 and 12, weighting for M1

would be most appropriate, because it allows analysts to
refrain from modeling the (conditional) relationship between
the mediators andmaking distributional assumptions.

The natural effects model from step 6 can be fitted to the
weighted imputations to obtain estimates for stratum-specific
component effects. If both exposure A and confounders C are
discrete, saturated models can be fitted as long as C is not high-
dimensional. In all other cases, our approach demands model re-
strictions. This improves interpretability of the results but also
increases the risk of misspecification of the natural effects
model, whichmay, in turn, lead to biased estimation of the com-
ponent effects. However, as long as the structure of the imputa-
tion model chosen is sufficiently rich to minimize the risk of it
being misspecified, results from an overly restrictive natural ef-
fects model may still be viewed as a useful summary (8).

Component effects within strata of C*, a subset of C,
can be obtained by fitting a natural effects model for E{Y(a,
M1(a′),M2(a″,M1(a′)))|C*} conditional on a, a′, a″, and C*
upon multiplying the weights from step 4 by ˆ ( = | )⁎P A A C /i iˆ ( = | )P A A C .i i If C* is empty, the corresponding natural ef-
fects model encodes population-average rather than stratum-
specific effects, and the numerator can possibly be replaced by
1. Inverse weighting then enables transporting results to the
entire target population as it accounts for the possibly selective
nature of subjects with observed exposure A= Ai.

Finally, standard errors and confidence intervals for this
imputation estimator can be obtained using a bootstrap

procedure (including steps 1–6). Bootstrapping is pre-
ferred over use of default standard errors for parameter es-
timates of natural effects models returned by statistical
software, because the latter fail to account for uncertainty
due to estimation of the working models.

Web Appendix 1 provides a detailed description of how to
adapt the above procedure to continuous exposures (building
on (8)), and to settings without interactions between compo-
nent effects (building on an estimation procedure similar to
the one described in (6)). It also explains how to implement
our procedure and obtain bootstrap-based standard errors
and confidence intervals in R.

In the next section, we reassess the mediating mechanisms
from the empirical example introduced earlier by applying
our suggested procedure to obtain a 3-way decomposition of
the total effect of dampness or mold exposure (A) on the
presence of depressive symptoms (Y).

MOTIVATING EXAMPLEREVISITED

Following Kaufman (17), we allow for the possibility that
mold-related illness (M1 = 1 in the presence of at least 1
physical condition known to be related to mold exposure or 0
otherwise) affects perceived control (M2), as measured on a
5-point Likert scale (reverse coded), but not vice versa. The
available set of covariates (C) was assumed sufficient for
conditions i′–vi′ to be met. A logistic natural effects model

{ ( ( ′) ( ″ ( ′))) = | }
= η + η + η ′ + η ″ + η ′ + η ″

+ η ′ ″ + η ′ ″ + η
( )

⊤

P Y a M a M a M a C
a a a aa aa

a a aa a C

logit , , ,   1
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Figure 4. Odds ratio estimates and corresponding 95% confidence intervals for each of the conditional analogs of the component effects dis-
played in Appendix Table 2 (on the log odds ratio scale), using data from the World Health Organization’s Large Analysis and Review of European
Housing and Health Status, 2002–2003. Components are grouped per decomposition and displayed in the same order as in Appendix Table 2.
Estimates are based on natural effects model 14, fitted upon weighting by ′W i a1 , (black diamond) or ″W i a2 , (white diamond).
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was fitted to decompose the total effect odds ratio of damp-
ness or mold exposure A on the presence of depressive symp-
toms Y (conditional on baseline covariates C), which was
estimated to be 1.38 (95% confidence interval: 1.09, 1.73).
This was done following steps 1–6 of the previous section.
First, mediator models 11 (for the probability of mold-
related illness M1) and 12 (for the density of perceived con-
trolM2) and an extended version of outcome model 13 were
fitted to the original data. The latter was used to impute
nested counterfactuals in the data set that was extended ac-
cording to whether model 11 or 12 was chosen to calculate
regression weights for natural effects model 14. Each of the
working models was specified to include all possible 2- and
3-way interactions between exposure and mediators to ensure
that different decompositions resulting from model 14 appro-
priately reflected differences dictated by the data. For simplic-
ity of exposition, we excluded interaction or polynomial terms
involving baseline covariates. A more elaborate model focus-
ing on effect modification by covariates, as well as a marginal
natural effects model, is described in further detail in Web
Appendix 1, which provides a more detailed report of the
analyses of this section. A total of 1,000 bootstrap samples
were drawn to calculate 95% (standard normal) bootstrap
confidence intervals.

Results for all possible 3-way decompositions are displayed
in Figure 4. Because different choices of working models
yielded similar estimates, we report only estimates obtained
upon weighting by the ratio of probabilities of M1. The odds
ratio for the joint natural direct effect, exp(EA→Y(0,0|C)),
was 1.25 (95% confidence interval: 0.99, 1.57). The odds
of depression within a population (with specific individual
and housing characteristics as defined within strata of C)
would thus increase by 25% if all individuals were to be
moved from a dry dwelling to a damp and moldy residence
with neither their physical condition nor their sense of control
over their living environment being affected by it. Its comple-
ment, the joint natural indirect effect odds ratio, was 1.10 (95%
confidence interval: 1.03, 1.19). That is, if all individuals were
exposed to residential dampness and mold, then the effect of
changing both their physical condition and perceived con-
trol to what it would be if they were not living under such
poor housing conditions would be to reduce the odds of
depression by 9%. A reduction of 5% would be attributed to
changing their physical condition; ( ˆ ( | )) =→E Cexp 1,1A M Y1

( )1.05 95% CI: 1.02,1.09 . Another reduction of about 4%
would be attributed to additionally changing their perceived
control, in as far as earlier changes in their physical condi-
tion would not yet have done so; ( ˆ ( | )) =→ →E Cexp 1,0A M Y2

( )1.05 95% CI: 0.98,1.12 .
Natural effects model 14 not only permits estimation of

the component effects but also enables probing potential
interactions between causal mechanisms. For instance, a
multivariate Wald test based on the bootstrap normal
approximation indicated the mediating mechanisms cap-
tured by →EA M Y1

and → →EA M Y2
did not interact in their

effect on the outcome—that is, the null that η6 = η7 = 0 could
not be rejected at the 5% level (χ2 = 1.35; P = 0.51). In addi-
tion, there were no substantial differences between decompo-
sitions in Figure 4—that is, the null that η4 = η5 = η6 = η7 = 0
could not be rejected at the 5% level (χ2 = 3.43; P = 0.49).

The absence of such interactions not only facilitates interpreta-
tion of the component effects, it may also lead to more precise
estimates when fitting a natural effects model that excludes
these interaction terms. However, as the estimates and their
95% confidence intervals in Table 1 suggest, this did not result
in the anticipated efficiency gain. Interestingly, in the absence
of interactions, one may refrain from modeling mediator den-
sities altogether by adopting a fully imputation-based estima-
tion procedure (seeWeb Appendix 1).

Finally, note that this illustrative analysis is likely over-
simplistic because the assumptions encoded in the DAG in
Figure 2 may well be violated. For instance, possible at-
tempts to control mold growth, such as cleaning or ventilat-
ing the house, are possibly affected by the level of mold
exposure and may, in turn, influence both mold-related ill-
ness and perceived control over one’s home. The level of ex-
posure may therefore be inherently time-varying, adding
another level of complexity.

DISCUSSION

In this paper, we focused on the finest decomposition that
can be obtained in settings with multiple, causally ordered
mediators without introducing sensitivity parameters (1, 4,
20) or parametric assumptions, as in the SEM tradition (see
De Stavola et al. (27) for a review). We pointed out that pre-
vious approaches with a similar focus yield only a subset of
all possible decompositions (5). Moreover, we proposed a
flexible approach for estimating component effects and derived
sufficient conditions for their identification.

Our estimation approach combines imputation- andweighting-
based methods to fit a novel class of natural effects models
(7, 8, 14, 24) for multiple mediators. As opposed to Monte
Carlo approaches (1, 4), which dictate modeling the joint den-
sity of the mediators, our approach necessitates modeling the
density of only one of the mediators, enabling practitioners to

Table 1. Estimates and of the Component Effects Odds Ratiosa,
Using Data From theWorld Health Organization’s Large Analysis
and Review of European Housing and Health Status, 2002–2003

Component
Weighted by ′,W i a1 Weighted by ″,W i a2

Estimate 95%CI Estimate 95%CI

→Eexp( )A Y
b 1.260 1.000, 1.573 1.259 1.000, 1.571

→Eexp( )A M Y1
c 1.042 1.015, 1.069 1.041 0.995, 1.089

→ →Eexp( )A M Y2
c 1.052 1.008, 1.098 1.048 1.016, 1.079

Abbreviation: CI, confidence interval.
a Component effects as parameterized in the following natural ef-

fects model: ′ ″ ′ ζ ζP Y a M a M a M a C alogit { ( , ( ), ( , ( ))) = 1| } = + +1 2 1 0 1
ζ ′ ζ ″ ζ⊤a a C+ +2 3 4 .

b The natural direct effect odds ratio of exposure to damp and mol-
dy conditions (A) on risk of depression (Y) through neither physical
condition (M1) nor perceived control (M2).

c The natural indirect effect odds ratio mediated by exposure-
induced changes in physical condition (M1).

d The partial indirect effect odds ratio mediated solely by exposure-
induced changes in perceived control over one’s home (M2).
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select the mediator they feel most confident about modeling
correctly. In the absence of interactions between component
effects, one may even avoid modeling mediator densities alto-
gether, at the expense of an additional model for the outcome,
as discussed in Web Appendix 1. This may be particularly
attractive in settings with large numbers of mediators because
it dramatically reduces modeling demands. Nonetheless,
when the joint density is correctly specified, fully parametric
Monte Carlo approaches yield more efficient estimators for
the component effects. Alternatively, one could refrain from
modeling the outcome and, instead, opt for an approach that
exclusively relies on weighting. However, this then requires
correct specification of the joint density of the mediators, as in
Lange et al. (26) and Taguri et al. (28) for settings with multiple
causally unrelated mediators (see also VanderWeele et al. (6)
for a similar approach in settings with intermediate con-
founding). Unless there are major concerns for model extrap-
olation due to inadequate modeling of the outcome (8), we
generally discourage such approaches, especially when
dealing with continuous mediators, because typical issues
of instability, characteristic for weighting methods, tend to be
exacerbated when combining density weights for each of the
mediators.

In addition to added flexibility in choice of working mod-
els, natural effects modeling owes much of its attractiveness
to its parsimonious parameterization. It enables testing certain
hypotheses of interest (especially those concerning effect
modification by baseline covariates) that, in particular settings,
cannot be tested by direct application of the mediation formula
(8, 24). In our illustration, we have demonstrated that differ-
ences between decompositions listed in Appendix Table 2,
captured by the interaction terms of the natural effects mod-
els, can be formally tested in a straightforward manner.

Although we have restricted our presentation to applica-
tions with only 2 sequential mediators, results can straight-
forwardly be extended to settings with more mediators. In
Web Appendix 1, we illustrate that, in such complex settings,
our set of assumptions leads to a manageable and piecemeal
identification procedure. Moreover, in settings where the
structural dependence between certain subsequent mediators
is unclear, these groups of mediators can simply be treated as
joint mediators in order to render identification assumptions
of the corresponding component effects more plausible (5, 28).
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APPENDIX

Appendix Table 1. Shorthand Notation for the Component Effects From a 3-WayDecomposition in the Presence of
2 Causally OrderedMediatorsM1 andM2 and Their Parameterization in Model 10a,b

′ ″ ′ ″ ′ − ′ ″ ′ θ θ ′ θ ″ θ ′ ″→E a a g E Y M a M a M a g E Y M a M a M a a a a a( , ) = ( { (1, ( ), ( , ( )))}) ( { (0, ( ), ( , ( )))}) = + + +A Y 1 2 1 1 2 1 1 4 5 7

″ ″ − ″ θ θ θ ″ θ ″→E a a g E Y a M M a M g E Y a M M a M a a aa( , ) = ( { ( , (1), ( , (1)))}) ( { ( , (0), ( , (0)))}) = + + +A M Y 1 2 1 1 2 1 2 4 6 71

′ ′ ′ − ′ ′ θ θ θ ′ θ ′→ →E a a g E Y a M a M M a g E Y a M a M M a a a aa( , ) = ( { ( , ( ), (1, ( )))}) ( { ( , ( ), (0, ( )))}) = + + +A M Y 1 2 1 1 2 1 3 5 6 72

a Model 10: ′ ″ ′ θ θ θ ′ θ ″ θ ′ θ ″ θ ′ ″ θ ′ ″E Y a M a M a M a a a a aa aa a a aa a{ ( , ( ), ( , ( )))} = + + + + + + + .1 2 1 0 1 2 3 4 5 6 7 In this
model the link function g(·) is the identity link.

b In the motivating example, we wish to decompose the effect of living in damp and moldy conditions (binary expo-
sure A) on the risk of depression (binary outcome Y) into EA→M1Y, the part of the effect that is mediated by exposure-
induced changes in physical condition (M1), EA→M2→Y, the part that is mediated solely by exposure-induced changes
in perceived control over one’s home (M2), and EA→Y, the remaining direct effect through neither of the putativemedia-
tors. For a binary exposure A, each of these components has 4 different instances, depending on hypothetical expo-
sure levels a, a′, and a″ (see also Appendix Table 2).

Appendix Table 2. All 6 Possible 3-Way Decompositions and Their Parameterization in Model 10a–c

1. θ θ θ θ θ θ θ→ → → →E E E(0,0) + (1,1) + (1,0) = ( ) + ( + + + ) + ( + )A Y A M Y A M Y 1 2 4 6 7 3 51 2

2. θ θ θ θ θ θ θ→ → → →E E E(1,1) + (0,0) + (0,1) = ( + + + ) + ( ) + ( + )A Y A M Y A M Y 1 4 5 7 2 3 61 2

3. θ θ θ θ θ θ θ→ → → →E E E(0,0) + (1,0) + (1,1) = ( ) + ( + ) + ( + + + )A Y A M Y A M Y 1 2 4 3 5 6 71 2

4. θ θ θ θ θ θ θ→ → → →E E E(1,1) + (0,1) + (0,0) = ( + + + ) + ( + ) + ( )A Y A M Y A M Y 1 4 5 7 2 6 31 2

5. θ θ θ θ θ θ θ→ → → →E E E(0,1) + (1,1) + (0,0) = ( + ) + ( + + + ) + ( )A Y A M Y A M Y 1 5 2 4 6 7 31 2

6. θ θ θ θ θ θ θ→ → → →E E E(1,0) + (0,0) + (1,1) = ( + ) + ( ) + ( + + + )A Y A M Y A M Y 1 4 2 3 5 6 71 2

a Each component on the left side of the equation is represented by a linear combination of parameters on the right
side (grouped in parentheses).

b Model 10: ′ ″ ′ θ θ θ ′ θ ″ θ ′ θ ″ θ ′ ″ θ ′ ″E Y a M a M a M a a a a aa aa a a aa a{ ( , ( ), ( , ( )))} = + + + + + + + .1 2 1 0 1 2 3 4 5 6 7
c In the motivating example, we wish to decompose the effect of living in damp and moldy conditions (binary expo-

sure A) on the risk of depression (binary outcome Y) into EA→ M1Y, the part of the effect that is mediated by exposure-
induced changes in physical condition (M1), EA→M2→Y, the part that is mediated solely by exposure-induced changes
in perceived control over one’s home (M2), and EA→Y, the remaining direct effect through neither of the putativemediators.
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