
 A. Aagesen et al. (Eds.): INTELLCOMM 2004, LNCS 3283, pp. 281–292, 2004.
© IFIP International Federation for Information Processing 2004

Flexible Middleware Support for Future Mobile Services
and Their Context-Aware Adaptation

Marcin Solarski1, Linda Strick1, Kiminori Motonaga2, Chie Noda3, and
 Wolfgang Kellerer3

1 Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31a,
10589 Berlin, Germany

{solarski, strick}@fokus.fraunhofer.de
2 NTT DATA, Kayabacho Tower Bldg, 21-1 Shinkawa 1-chome Chuo-ku, Tokyo

motonagak@nttdata.co.jp
3 DoCoMo Communications Laboratories Europe GmbH, Landsberger Strasse 312,80687

Munich, Germany
{noda, kellerer}@docomolab-euro.com

Abstract. This paper presents a flexible peer-to-peer-based middleware for fu-
ture user-centric mobile telecommunication services, which supports key func-
tionalities needed to address personalization, adaptation and coordination of
services running on top of it. The underlying communication pattern is based
on dynamic negotiation that enables interworking of autonomous decentralized
entities in a rapidly changing and open environment. This paper focuses on the
middleware’s support for context-aware adaptation of a multimedia service for
mobile users. Service adaptation takes into account both user preferences and
contextual changes to modify the service behavior and contents. The middle-
ware implementation is based on JXTA extended by a mobile agent platform
and is deployable on a range of mobile devices including mobile phones and
PDAs.

1 Introduction

With the recent developments in 4G mobile environments (heterogeneous access
networks, 4G radio access, ad-hoc sensor networks) and the large availability of any
kind of mobile computing devices such as Personal Digital Assistants, mobile smart
phones, we are experiencing the availability of an increasingly powerful mobile
computing environment, which is exposed to high dynamicity.

In a future mobile environment, the emergence of ubiquitous computing is envi-
sioned [1]. Heterogeneous devices, ranging from low-end devices (e.g., tiny sensor
devices) to high-end devices (e.g., a 3D video streaming terminal), are surrounding
humans. Heterogeneity of radio access networks (e.g., 3G/4G radio access and ad-
hoc sensor network) is another attribute of future mobile services [2]. Thus particu-
lar users’ environments, including devices, networks and, services have to be
adapted and configured according to user’s changing environment, context, status,
and preferences, i.e. context awareness. To enable access to services from hetero-

282 M. Solarski et al.

geneous devices through heterogeneous access networks, context-aware adaptation
is one of the fundamental requirements of a middleware for future mobile services.

Furthermore, there is no centralized gateway to that all available services are reg-
istered or that acts as an intermediary component to support their adaptation to the
environmental contexts such as network bandwidth and terminal capabilities. These
requirements lead us to design a novel middleware platform, called Mercury which
is an acronym for MiddlEware aRChitecture for User centRic sYstem, which sup-
ports context-aware adaptation of mobile services and is based on a peer-to-peer
and asynchronous interaction paradigm.

The structure of this paper is as follows; Section 1 gives a short introduction to
future mobile services and the Mercury architecture. In Section 2, the overview of
the Mercury middleware is given and the communication pattern called Dynamic
Service Delivery Pattern in presented briefly. Related work and the advantages of
our approach are described in Section 3. In Section 4, we discuss our design of
context-aware adaptation and related subsystems realized in the Mercury middle-
ware. Section 5 discusses an application scenario, along a video-on demand service,
to show how context-aware adaptation works by utilizing the middleware subsys-
tems. Section 6 summarizes the approach towards a flexible middleware support for
context-aware service adaptation.

2 Mercury Overview

Mercury is a service middleware for user-centric service provisioning in mobile envi-
ronments driven by the demands and the behavior of users. There are two fundamental
requirements for a middleware platform for mobile services.

One is to support asynchronous communication, since wireless access can be dis-
connected when mobile devices are out of the coverage area, or due to data rate varia-
tion, since the downlink data transmission rate is usually much faster than uplink.
Another requirement is the distribution of middleware components to resource-
constrained devices, in terms of low performance, limited memory, and low power
consumption. These requirements heavily influence the decision on the selection of
enabling technologies to build our middleware platform.

A dynamic service delivery pattern, which enables to publish/subscribe advertise-
ment of services, to negotiate interactively between peers, and aggregate for service
execution, is introduced in Section 2.2.

2.1 Design Overview

In the Mercury middleware, the complex functionality needed to match the above
requirements on future mobile services is divided into a number of subsystems, which
are then grouped into three layers for the sake of modularity and reusability[7,8]. In
this way we introduce an additional user support layer on top of a service support and

Flexible Middleware Support for Future Mobile Services 283

traditional network layer. The user support layer includes subsystems for Adaptation,
Community, and Coordination. The introduction of this layer reduces unnecessary
user interactions with the system and enables the provision of user-centric services.
Furthermore, the user support layer allows the establishment and maintenance of vir-
tual ad-hoc communities, and their coordination toward a common guidance for ser-
vice usage.

The service support layer contains most functionality of traditional middleware,
such as Discovery & Advertisement for getting establishing entity communication,
Authentication & Authorization for secure communication and Contract Notary used
for managing service agreements. These subsystems are used by the Dynamic Service
Delivery Pattern, which is the basic interaction paradigm between the Mercury enti-
ties (see Section 2.2). This paper focuses on the other subsystems in this layer, namely
Transformation, Context Management and Profiling, used for context-aware adapta-
tion (i.e. used by Adaptation subsystem); these are presented in more detail in Section
4. Finally, the network support layer provides connectivity in IP-based networks,
including Mobility management, Call & Session management, and QoS management
subsystems.

The above-mentioned requirements of asynchronous communications and resource-
constrained devices support lead us to build our middleware on a mobile agent plat-
form, enago Mobile [9] in our current prototype. Mobile agents support asynchronous
communications and can autonomously work temporarily disconnected from other
facilities. Connectivity is only required for the period for migration, but not for service
execution. They also solve the problem of resource-constrained devices by allowing
on-demand and flexible deploying code to both mobile devices and the infrastructure.

2.2 Dynamic Service Delivery – Underlying Interaction Pattern

The Dynamic Service Delivery Pattern describes the process of (1) agreeing on entity
interaction behavior, called negotiation scheme, leading to a service agreement, (2)
establishing the concrete service agreement itself, which determines the conditions of

1. Introduction 2. Negotiation

Entity1 Participant

Entity2 Participant

Entity3
Coordinator

Service Provider

User

Service Session Mgr

Service Agreement

3. Service Delivery

Role name

Fig. 1. Example entities participating in the Dynamic Service Delivery Pattern

284 M. Solarski et al.

the service delivery and, finally, (3) managing the service delivery phase using the
notion of a service session. A Mercury entity is any piece of software which can play
one or more roles, including the predefined ones: Participant, Coordinator (negotia-
tion-related roles), User and Service Provider (service delivery-related roles). Option-
ally authentication and authorization mechanisms can be used, which are defined in
separate middleware subsystems. The dynamic service delivery pattern is used for
every communication between any Mercury entity, including the middleware subsys-
tems.
 The dynamic service delivery pattern contains three subsequent phases:

1. Introduction Phase – entities are introduced to each other by using the pub-
lish/subscribe interface for service discovery and advertisement.

2. Negotiation Phase – entities interact in a negotiation dialog, playing the role of
Participant or Coordinator. The negotiation handles negotiation schemes, creden-
tials, proposals and agreements in order to reach a service agreement.

3. Service Delivery Phase - entities, in the role of Service Provider and User, interact
to fulfill the terms of the negotiated contract. The service delivery phase is organ-
ized as service session, which is managed by an entity playing role Service Session
Manager.

 Figure 1 depicts example entities participating in the negotiation phase of the Dy-
namic Service Delivery Pattern. It is assumed that Entity1 and Entity2 have
been introduced to each other using the Discovery and Advertisement system and that
there is an entity which they both trust so that it can coordinate the negotiation process.
The negotiation is then started by agreeing on the negotiation scheme, followed by the
actual negotiation interaction, which is coordinated by Entity3, playing the role of
the coordinator. As a result of the negotiation process, a service agreement is estab-
lished which is then distributed to all the participants before the service delivery phase
starts, i.e. the service session is started by the Service Session Manager (in the exam-
ple Entity3). A more detailed description of the Dynamic Service Delivery Pattern
can be found in [7].

3 Related Works

There have been quite a lot of research efforts for adaptation of services and context-
aware adaptation. [3] proposes a framework for multimedia applications adaptation, by
utilizing differentiation within IP session(s) based on proprietary of packets indicated by
QoS-aware applications. [4], a middleware platform for context aware services is built
on active networks and mobile agent technologies, where active networks is used as
communication channels for mobile agents, i.e. mobile agents migrate to other nodes are
realized by an active packet containing data and program in active networks. In [5], the
tasks for adaptation of multimedia applications are divided into two: selection of the
most applicable adapted output format in accordance with the information form the
Composite Capability/Preference Profiles (CC/PP) [6], and adaptation execution by
using different adaptation agents. Context-aware adaptation of web-line service content
has been a hot topic in the literature [10,11]. In [10], the author present a proxy-based

Flexible Middleware Support for Future Mobile Services 285

(centralized) content adaptation architecture and an adaptation mechanism based on
content semantics analysis and a device-independent model for content description. In
their implementation, they apply CC/PP-based Universal Profiling Schema to define both
different type of user context, including device profiles and XQuery for extracting con-
textual information relevant to the content adaptation process. The approach presented in
[11] presents an adaptation engine which automates selection of content transcoding
mechanisms considering user preferences, device capabilities, networking parameters as
well as content metadata so that the content presentation quality is optimal. The selection
is determined user-given weighted quantification of content quality along various quality
axes. Previous work [12], focused on application-aware adaptation, which proposes
building underlying systems to discover the context and notify the application to take the
adaptive actions. Such applications become complex as they have to handle the adapta-
tion by themselves. Mercury follows systems which advise hiding the adaptation com-
plexity into the underlying system layers.

In our approach, we design a flexible middleware for context-aware adaptation by in-
troducing a dynamic service delivery pattern as a generic negotiation framework between
peers, which can be applications, devices, or even subsystems in the middleware. The
negotiation scheme defines the negotiation protocols [13], which are used to automati-
cally exchange and align contracts. Compared to other approaches to context aware
service adaptation, Mercury has the following advantages:

a) Adaptation as an aggregated service. The adaptation subsystem is designed so that
it combines a number of adaptation strategies specialized for different services to adapt.
A most suitable strategy is automatically chosen at the moment of negotiation the usage
of the adaptation; the selection is done by evaluating the meta information of the service
to adapt as well as the auxiliary resources and services that may be used.

b) Adaptation dynamics. On one hand, adaptation offers adapted version of some ex-
isting services, on the other, it uses other services, including context providers, profile
managers and transformers when needed. Like other Mercury entities, the adaptation
subsystem follows the Dynamic Service Delivery Pattern both to provide its functionality
and to use other services and resources it needs. Thus, the actual adaptation functionality
is created dynamically and may include interactions to spontaneously discovered services
needed to achieve the adaptation objective.

c) Functionality decoupling and modularization. The Mercury middleware defines
two key subsystems needed for service adaptation: adaptation and transformation subsys-
tems. Whereas the first defines so called adaptation strategies, which realize the autono-
mous functionality and logic determining the conditions when some and what adaptive
actions are to be taken, the transformation subsystem maintains concrete adaptation
mechanisms, called transformers, which are used by the adaptation strategies. Addition-
ally, the context-related and profile-related functionality is defined in separate middle-
ware subsystems.

4 Service Adaptation Support in the Mercury Middleware

The complex tasks needed to perform user-centric service adaptation is divided into
four subsystems in the Mercury middleware, as mentioned in section 2. These are the

286 M. Solarski et al.

two key subsystems, adaptation and transformation, and two supplementary subsys-
tems, context management and profiling. The Adaptation subsystem implements the
adaptation logic specifying how to change the target service and the related resources
under certain conditions on the service context, the Context Management and Profil-
ing subsystems are used by the adaptation to (1) acquire needed information on the
service context and relevant preferences, and the Transformation subsystem to (2)
carry out the service adaptation and other resource usage adjustment.

The interrelations of the subsystems are shown in a UML class diagram in Figure 2.

Adaptation
Specification Elements

AdaptationStrategy
AdaptationStrategyRepository

AdaptationEngineImpl

Context Management
Specification Elements

ContextProvider ContextManagement

Transformation
Specification Elements

Transfomer TransformerRegistry

Profile Management
Specification Elements

ProfileManagement

ServiceAgreement

Service Support Layer

User Support Layer

0..*

Fig. 2. An design overview of the interrelationships between Adaptation subsystem and other
Mercury middleware subsystems involved in service adaptation

 The application of each subsystem is illustrated with an example used in our appli-
cation scenario described in Section 5.

4.1 Adaptation

The Adaptation subsystem is designed to support any type of service adaptation by (1)
personalization the service to user profiles (e.g., preferences) and (2) modifying the
service considering the user contexts (e.g., user environmental capabilities and avail-
able resources). The adaptation subsystem is implemented as a Mercury service. Its
adaptation strategies handle adaptation specialized with regard to the service type and
available resources are maintained in a repository. In this sense, the adaptation subsys-
tem can be seen as an aggregation of specialized adaptation services. Whenever ser-
vice adaptation is requested, the requestor has to provide some information on the
service itself and the resources, including other services, which have to be used. The
adaptation service checks the availability of adaptation strategies suitable to handle
the given service during the negotiation process. If a matching strategy is registered
within the subsystem, the service adaptation is possible and a service agreement may
be established only if the negotiating parties agree on the non-technical factors as well.
This behavior is facilitated by implementing a specialized negotiation template which
allows for checking the demands on the registered adaptation strategies.

Flexible Middleware Support for Future Mobile Services 287

The framework for defining concrete adaptation strategies allows for flexible adap-
tation to specific services. Strategies compliant to that framework may be inserted into
the system on demand and are provided by the adaptation service. An adaptation strat-
egy in the model represents a process of service adaptation which is expressed by
transforming the service to the required quality, as specified in the service agreement.
The service agreement includes information on the constraints on the quality of ser-
vice as well as on available resources and auxiliary services to use for adaptation of
the given service. Each concrete adaptation strategy defines the relevant context in-
formation needed to react to and retrieves it in a preferred way by using one or many
context providers, or context managers, from the management system.

An example adaptation strategy has been implemented for the use in the Video
Service scenario described in Section 5.

4.2 Context Management

Context-aware services are those that make use of the context information for their
purposes. In particular, adaptation strategies in the adaptation subsystem belong to this
class of services.

Context is a set of environmental states that either determines an application’s be-
haviour or in which an application event occurs. Contexts can be classified in the
following four categories: user context (e.g., the user’s location, and the current social
situation), time context, physical context (e.g., lighting, traffic condition, temperature),
and computing context (e.g. communication bandwidth, available memory and proc-
essing power, and battery status). The Context Management subsystem offers a means
to provide context information in either a push or pull mode. Moreover, the context
information can be pushed either if the required context matched the given criteria or
at regular time intervals. The subsystem has also a mechanism to manage access to the
so called Context Providers, which are the entities that actually sense and retrieve
some specific context, e.g., via sensors. Figure 3 presents the relation between context
provider, context management subsystem and context-aware services. Even though
ContextProviders may also be directly used by context-aware services, The Context
management system provides additional functionality to aggregate and filter context of
several context providers.

4.3 Profiling

Profiles are collections of data that may be used to adapt services to a user’s specific
environment and preferences. Profiles can be classified to the following categories:
user profile, service profile, terminal profile, and network profile. This subsystem
supports management of profiles, by offering a means to select, retrieve, store and
update profiles to users. A user may have more than one profile and select the most
appropriate one, or it may be chosen automatically upon other criteria. Additionally,
each profile include access right information: two access rights are distinguished,
profile read and write, which can be granted to different entities or entity groups. The
profile manager is the component responsible for giving access to the managed pro-
files according to the access rights. As profiles may include references to other pro-

288 M. Solarski et al.

files, possibly managed by other profile managers, the profile manager may optionally
access other profile managers.

[CCPP:component]

– RDF:ResourceDescription ->
 mercury:ReadACL -> [“All”]

mercury:WriteACL -> [“ResourceOwnerID”]
mercury:ProviderUuid -> “uuid1”
mercury:ResourceUuid -> “uuid2”
mercury:ResourceType -> “VideoDisplay”

- RDF:TerminalPlatform ->
 mercury:ReadACL -> [“All”]

mercury:WriteACL -> [“ResourceOwnerID”]
[CCPP:HardwarePlatform] - CCPP:BitsPerPixel- > 16
[CCPP:HardwarePlatform] – CCPP:ScreenResolutionX ->240
[CCPP:HardwarePlatform] – CCPP:ScreenResolutionY ->320
[CCPP:HardwarePlatform] – CCPP:NetworkAdapter ->802.1b

Fig. 4. An example of a CC/PP –based device profile in the graphical notation

 In the Mercury prototype, the profiles are represented as XML documents com-
pliant to the W3C CC/PP standard [6]. Each profile includes a part on the resource
description and additional resource-specific parts called CC/PP components which
correspond to different aspects of the resource the profile describes. An example
profile, presented in Figure 4 in a semi-graphical notation proposed in the W3C
documents on CC/PP, of a graphical display device contains an additional compo-
nent describing the hardware-specific parameters of the terminal (Termi-
nalPlatform in the example), which includes another component Hardware-
Platform with its ScreenResolutionX and ScreenResolutionY. The
example also contains some statements determining access rights to the associated
components: the part on resource description can be accessed by all, whereas it can
be modified only by the resource owner having the ResourceOwnerID identi-
fier.

4.4 Transformation

The transformation system defines a framework for handling software components,
called transformers, processing some service data, typically stream-oriented con-
tents, for the purpose of service adaptation. Transformers are defined as compo-
nents implementing a process of changing the input data to some other data pro-
duced at the transformer output. It is assumed that the data to transform come from
a number of sources that the Transformer may retrieve by itself or it is notified of
the data availability. The transformed data at the transformer’s output may be
propagated to a number of sinks, which may be possibly other transformers. Thus,
transformers may be chained to perform data in a more advanced or to reuse the
existing transformers performing parts of the needed transformations. There are
several aspects of the service contents that can be transformed: format and encod-

Flexible Middleware Support for Future Mobile Services 289

ing (e.g. H.263 or MPEG1 streaming formats in case of the video contents), type
(e.g. video, audio and text), and structure (e.g. XML and HTML).

The transformation framework is extendable so that it allows for inserting new
transformers that perform some specific data transformation. An example trans-
former that was developed for the purposes of the application presented in Section
5 is concerned with processing video streams. This transformer is responsible for
(1) on-the-fly redirecting the video contents ordered by the user to a given display
and (2) modifying the stream quality of service parameters. The redirection of the
video stream is done out-of-bound so that the transformer does not have to be de-
ployed on one of the intermediate nodes between the video server and video player;
instead the transformer uses a control protocol to make the server send the video to
the given receiver. The display is assumed to be capable of receiving video streams
and playing them back so that the play back can be remotely controlled. With re-
gard to the other transformer functionality, the video stream QoS is modified so that
the video stream can be optimized to match the hardware constraints of the target
display, like the maximum screen resolution or supported number of colors in bits
per pixel, and the video processing capabilities of the software controlling the dis-
play.

5 Example Application Scenario

The text below describes the application scenario developed using the Mercury
middleware. The core of the application is a video-on-demand service that is lever-
aged by the context-aware adaptation supported by the underlying middleware.

A passenger enters an airport lounge before boarding a flight. Attracted by per-
sonal video booths in the lounge, she decides to watch her favorite movie in one of
them. Unfortunately, all of booths are occupied and she decides to start watching
the movie on her mobile device until a booth is available to her. After accessing the
video streaming service in the lounge service menu and choosing the movies she
likes, the system offers to reserve a booth for her to watch the movie in a more
comfortable environment. A video player appears on the display of her mobile
device and she starts watching the video. A notification about an available booth
draws her attention while watching the video, and so she suspends the video and
gets into the booth. After she makes herself comfortable in the booth, she resumes
the video on her mobile device. Now the video is projected onto the big display in
the booth and the movie sound comes out of the hi-fi sound boxes that are auto-
matically selected by the context-aware system according to her preferences. The
passenger may continue watching the movie until a notification pops up to remind
her that boarding gate closes soon. She suspends the video again and proceeds to a
boarding gate.

5.1 Events Occurring in Application Scenario

Figure 5 shows an overview of major events occurring in the middleware. Re-
sources and services are detected considering user’s context or preferences. The
detected services are negotiated between the user and their providers through the

290 M. Solarski et al.

intermediation of a coordinator agent. After reaching agreement, resources are
adapted or personalized according to the service agreement, user’s context or pref-
erences.

Fig. 5. An overview of the events occurring in the application scenario

5.1.1 Negotiation for Services
In the scenario presented above, a passenger wants to watch some video content. In
order to watch the movie, user and provider need to negotiate about the usage of the
content service according to the Dynamic Service Delivery Pattern as introduced in
Section 2.2.

1. A video content provider issues an advertisement of the video contents, i.e. the
movies, he offers. The advertisement includes the video content description, the
proposed video cost as well as some information on how to contact the provider for
further negotiation. On the other hand, the software acting on behalf the passenger,
the user agent, looks for video with some characteristics determined by the user
preferences (e.g. movie genre, favorite actor) and possibly discovers a matching
advertisement sent by one of the video content providers. If there are many differ-
ent contents available and matching the user criteria, the passenger chooses one and
a negotiation with corresponding video providers may start.

2. The user agent and the video providers, in the role of participants, interact in a
negotiation dialog, exchanging negotiation schemes, credentials, proposals accord-
ing to the agreed negotiation scheme until the negotiation is complete (the partici-
pant agree on proposals of others) and a service agreements can be established.
Compared to the information in the initial advertisement, the proposals add some
details on the quality of the contents to provide (in this case the maximal video size,
language variant) or just modify the initial values of the data, e.g. the final price for
the movie. The resulting service agreement includes some information needed to
start and use the service, like the access data to the movie.

Flexible Middleware Support for Future Mobile Services 291

3. When the service delivery starts (here requested by the passenger), all the partici-
pants are requested to be ready. In case of the video provider, it means that the con-
tent in question has to be made accessible to the user according to the terms in the
service agreement.

5.1.2 Adaptation to User Context
In the application, the user wants to watch the movie at the best possible quality,
which means here using the best available display and with best quality supported by
this display. The adaptation subsystem includes a strategy which allows to detect
available displays around the user and to redirect the video stream so that it is dis-
played at the currently best display with a video quality optimized to that display. This
strategy is used in this scenario so that it subscribes for the availability information of
device nearby (context information) and it installs the specialized video transformer
on the PDA used by the user. To perform the latter, the user has to provide some exe-
cution resources on the PDA so that the transformer code can be deployed there; this
resource is one of the requirements of the adaptation strategy announced in the nego-
tiation process. The transformer allows for controlling the local display on the PDA or
any other intelligent display that can be controlled remotely using an RTSP-like pro-
tocol. It is deployed on the user’s PDA to efficiently intercept the control commands
for the player coming from the GUI operated by the user on the PDA. Whenever the
adaptation detects a better device, the transformer is reconfigured to redirect the video
stream and modify the quality of video.

6 Conclusions

In future, mobile service provisioning will include not only services that are offered by a
central server system but also services that have to work in the current users’ environ-
ment, independent from the facilities available in the infrastructure. Furthermore, future
mobile environments will be characterized by co-existence of heterogeneity of devices
and networks, including also resource constrained and intermittently connected devices
and by rapidly changing context. To deal with such ubiquitous services, designing of a
flexible and smart support for service adaptation is a major challenge.

The Mercury middleware proposes some solutions to this challenge. Its design bene-
fits from the peer-to-peer communication paradigm and autonomously interacting soft-
ware agents, which address the issues of decentralization, loose-coupling and making use
of intermittent connectivity. These features are complemented with a flexible interaction
paradigm, called Dynamic Service Delivery Pattern, which allows for secure and dy-
namic interworking of 3rd party software components. The Mercury prototype has been
implemented on top of a mobile agent platform extended by peer-to-peer communication
mechanisms of JXTA.

Furthermore, the Mercury middleware provides strong user support for personalized,
context aware service provisioning. In a heterogeneous mobile environment adaptability
is a key feature for the success of such system. A flexible service adaptation is achieved
by using specialized subsystems dealing with adaptation logic, context management, user
profiling, and transformation mechanisms as illustrated in this paper.

292 M. Solarski et al.

We believe that the Mercury middleware system is an essential contribution to next
generation mobile service provisioning, since it addresses the needs for advanced per-
sonalization and the identified requirements on service provisioning in a ubiquitous
mobile environment.

References

1. M. Weiser: The Computer for the 21st Century. Scientific American, September 1991, pp.
94-104

2. H. Yumiba, K.Imai, M.Yabusaki: IP-Based IMT Network Platform. IEEE Personal Com-
munications Magazine, October, 2001

3. H. Shao, W. Zhu, Y. Zhang: A New Framework for Adaptive Multimedia over the Next
Generation Internet

4. I. Sygkouna, S. Vrontis, M. Chantzara, M. Anagnostou, E. Sylas: Context-Aware Service
Provisioning on Top of Active Technologies. Mobile Agents for Telecommunication Ap-
plications (MATA), Marakech, Morocco, October 2003

5. M. Metso, J. Sauvola: The Media Wrapper in the Adaptation of Multimedia Content for
Mobile Environments. Proceedings SPIE Vol. 4209, Multimedia Systems and Applications
III, 132-139, Boston, MA

6. W3C: Composite Capabilities/Preference Profiles: Structure and Vocabularies 1.0.
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/

7. C. Noda, A. Tarlano, L. Strick, M. Solarski, S. Rehfeldt, H. Honjo, K. Motonaga and
I.Tanaka: Distributed Middleware for User Centric System. WWRF#9 conference, Zurich,
July 2003

8. WWRF, Wireless World Research Forum WG2, Service Infrastructure of the Wireless
World. http://www.wireless-world-research.org/

9. IKV++ Technologies AG: enago Mobile Agent Platform.
http://www.ikv.de/content/Produkte/enago_mobile.htm

10. T. Lemlouma, N.Layaïda: Context-Aware Adaptation for Mobile Devices, IEEE Interna-
tional Conference on Mobile Data Management, Berkeley, CA, USA, January 2004, pp.
106-111

11. Wai Yip Lum and Francis C.M. Lau: A Context-Aware Decision Engine for Content Adap-
tation, IEEE Pervasive Computing, July-Sept. 2002, p.41-49.

12. Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton, Jason Flinn,
Kevin R. Walker: Agile Application-Aware Adaptation for Mobility, Sixteen ACM Sympo-
sium on Operating Systems Principles, 1997

13. C. Bartolini, C. Preist, N.Jennings: A Genric Softwrae Framework for Automated Negotia-
tion, AAMAS’02, Bologna, Italy, July 2002

	Introduction
	Mercury Overview
	Design Overview
	Dynamic Service Delivery – Underlying Interaction Pattern

	Related Works
	Service Adaptation Support in the Mercury Middleware
	Adaptation
	Context Management
	Profiling
	Transformation

	Example Application Scenario
	Events Occurring in Application Scenario

	Conclusions

