

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

 Flexible Mixture Model for Collaborative Filtering

Luo Si LSI@CS.CMU.EDU
Rong Jin RONG@CS.CMU.EDU
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15232 USA

Abstract

This paper presents a flexible mixture model
(FMM) for collaborative filtering. FMM extends
existing partitioning/clustering algorithms for
collaborative filtering by clustering both users
and items together simultaneously without
assuming that each user and item should only
belong to a single cluster. Furthermore, with the
introduction of ‘preference’ nodes, the proposed
framework is able to explicitly model how users
rate items, which can vary dramatically, even
among the users with similar tastes on items.
Empirical study over two datasets of movie
ratings has shown that our new algorithm
outperforms five other collaborative filtering
algorithms substantially.

1. Introduction

The rapid growth of the information on the Internet
demands intelligent information agent that can sift
through all the available information and find out the
most valuable to us. These intelligent systems can be
categorized into two classes: collaborative filtering
(Breese, Heckerman & Kadie, 1998) and content-based
recommending (Basu & Hirsh, 1998). The difference
between collaborative filtering and content-based
recommending is that: collaborative filtering only utilizes
the ratings of training users in order to predict ratings for
test users while content-based recommendation systems
rely on the contents of items for predictions. Therefore,
collaborative filtering systems have advantages in the
environments where the contents of items are not
available due to privacy issues or where that contents are
difficult for a computer to analyze. In this paper, we only
focus on the collaborative filtering problems.

Most collaborative filtering methods fall into two
categories: memory-based algorithms and model-based
algorithms. Memory-based algorithms usually do not
have a training phase. Instead, they simply store rating
examples of users into a training database. In the
predicting phase, the memory-based approaches first find

users in the training database similar to the test user and
then, predict the test user’s ratings based on the
corresponding ratings of these similar users. On the
contrary, model-based algorithms build models that are
able to explain the training examples well and predict the
ratings of test users using the estimated models. Both of
the memory-based algorithms and the model-based
algorithms have their advantages and disadvantages.
Memory-based algorithms have much less off-line
computation costs while the model-based algorithms may
have less on-line computation costs.

Though memory-based and model-based approaches
differ from each other in many aspects, both of them
assume that users with similar tastes should rate items
similarly and therefore the idea of clustering is used in
both approaches either explicitly or implicitly. For
memory-based approaches, training users similar to the
test user are grouped together and their ratings are
combined to predict ratings for the test user. Meanwhile,
model-based approaches cluster items and/or training
users into classes explicitly and predict ratings of a test
user by simply using the ratings of classes that fit in best
with the test user and/or items to be rated. Thus, how to
cluster users and items appropriately is a key issue in
designing collaborative filtering systems, which can affect
the scalability, robustness and performance.

While theoretically interesting, model-based approaches
have achieved mixed results in previous studies (Breese et
al., 1998; O’Connor & Herlocker, 2001). We suspect that
this may be due to the inappropriate clustering algorithms
used in their studies. More specifically, three issues of
clustering algorithms are important for collaborative
filtering: First, both users and items need to be clustered
and more importantly, users and items are coupled with
each other through the rating information. Therefore, a
good clustering algorithm should be able to explicitly
model both classes of users and items and be able to
leverage their correlation. Secondly, many clustering
techniques assume that each user or item belongs to a
single class. However, since a user may have diverse
interests and an item may have multiple aspects, it is
desirable to allow both items and users to be in multiple

classes simultaneously. In this paper, a flexible mixture
model (FMM) is proposed in order to capture this idea.
Thirdly, the assumption that users with similar tastes
would have similar ratings may not necessarily be true
because some users may tend to give a higher rating to all
items than some others. In order to account for the
variance in the rating patterns among the users with
similar interests, we extend the flexible mixture model by
introducing an additional new hidden ‘preference’ node.
Such an extension allows us to infer the preference values
underlying the surface ratings, which can then be used as
(presumably more reliable) evidence for clustering. For
the simplicity of computation, we compute the preference
information for each user using ‘decoupled models’
(DM), and then apply the proposed flexible mixture
model to cluster over the estimated preference values
instead of the original rating values.

The rest of the paper is arranged as follows: Section 2
discusses previous work. The proposed flexible mixture
model for collaborative filtering is presented in Section 3.
The extended version of flexible mixture model with the
decoupling of rating and preference is discussed in
Section 4. Section 5 presents experiments results.
Conclusions and future work are discussed in Section 6.

2. Existing Approaches

Let us first introduce the annotations that will be used for
the rest of this paper. Let },......,{ 1 MxxX = be a set of
items, },......,{ 1 NyyY = be a set of users, and },...,1{ R be
a set of ratings. Let)},,(),.....,,,{ ()()()()1()1()1(LLL ryxryx be
the ratings information in the training database,)(yX be
the set of items rated by user y,)(xRy be the rating of
item x by user y, and yR

_
be the average rating by user y.

2.1 Memory-Based Algorithms

Two commonly used memory-based algorithms are
Pearson Correlation Coefficient algorithm (PCC)
(Resnick et al., 1994) and Vector Space Similarity (VS)
(Breese, Heckerman & Kadie, 1998) algorithm. The main
idea of these two algorithms is to calculate the similarities
of the training users to the test user and the prediction of
ratings is computed by performing a weighted average of
deviations from the training users’ mean. The difference
between them is on how to compute the similarities
between users, where a Pearson correlation coefficient is
used for measuring the user similarity in the PCC
algorithm and a cosine similarity is computed in the VS
algorithm. More details can be found in (Resnick et al.,
1994; Breese, Heckerman & Kadie, 1998).

2.2 Model-Based Algorithms

Three model-based algorithms are discussed here: the
aspect model (AM) (Hofmann & Puzicha, 1999), two-
sided clustering model (Hofmann & Puzicha, 1999) and

the Personality Diagnosis model (PD) (Pennock et al.,
2000).

Aspect Model (AM)

The aspect model (Hofmann & Puzicha, 1999) is a
probabilistic latent space model, which models individual
preferences as a convex combination of preference
factors. The latent class variable },.....,,{ 21 KzzzZz =∈ is
associated with each observation pair of a user and an
item. The aspect model assumes that users and items are
independent from each other given the latent class
variable. Thus, the probability for each observed pair
(x,y) is calculated as follows:

�
∈

=
Zz

zyPzxPzPyxP)|()|()(),((1)

where P(z) stands for class prior probability, P(x|z) and
P(y|z) stand for class dependent distributions for items
and users respectively. Essentially, the preference pattern
of a user is modeled by a combination of typical
preference patterns, which are represented by the
distributions of P(z), P(x|z) and P(y|z).

Note that the aspect model only introduces one set of
latent variables ‘Z’ for the purpose of clustering and there
is no explicitly grouping of either users or items. In the
proposed model, we intentionally introduce two sets of
latent variables in order to model the clusters of users and
the clusters of items separately.

Two of the choices (Hofmann & Puzicha, 1999) to
incorporate the ratings ‘r’ into the aspect model are
expressed in Equation (2) and (3), respectively.

�
∈

=
Zz

llllll zrPzyPzxPzPryxP)|()|()|()(),,()()()()()()((2)

�
∈

=
Zz

lllllll xzrPzyPzxPzPryxP),|()|()|()(),,()()()()()()()((3)

The corresponding graphical models for Equation (2) and
(3) are shown in Figure 1 as model (a) and (b)
respectively. According to the graphic models, the
difference between these two methods is that, in the
graphic model (a) (or Equation. (2)), the rating r(l) is
conditioned only on the latent class variable ‘Z’ , while the
second model let the rating r(l) be conditioned on both the
latent class variable ‘Z’ and the item x(l). The second
model is a refined version of the first model, but the
number of parameters is much larger than the first model
with the same number of aspects.

Two-Sided Clustering Model

A two-sided clustering model is proposed for
collaborative filtering in (Hofmann & Puzicha, 1999).
This model assumes that each user should belong to
exactly one group of users and the same is true for each
item. Let },.....,{ 1 IccC = be the classes of users and

},.....,{ 1 JddD = be the classes of items. Indicator

variables ivI and juJ }1,0{∈ indicates whether the ith
user belongs to the vth user class and the jth item belongs

 to the uth item class respectively. Then, the joint
probability P(x,y,r) is defined as:

vuuy

uv

vxlllll CJIyPxPryxP
ll)()(

,

)()()()()()()(),,(�= (4)

vuC is the cluster association parameter. In order to be
consistent with the above assumption, a global
normalization constraint has to be made as

1)()(
, ,

=� �
yx

vuyu

uv

xv CJIyPxP (5)

(Hofmann & Puzicha, 1999) pointed out that this model
has a different spirit from the aspect model and is less
flexible in modeling the preferences relationship between
the users and items, and we believe the key reason is its
strong assumption. However, this model does try to model
the clustering of users and items separately, which
appears to be a better modeling approach. Since previous
experiments have shown that the performance of aspect
model is substantially better than the two-sided clustering
model, we will not compare our model with the two-sided
clustering model.

Personality Diagnosis Model (PD)

In the personality diagnosis model (Pennock et al., 2000),
the observed rating for the test user yt on an item x is
assumed to be drawn from an independent normal
distribution with the mean as the true rating as)(xRTrue

yt :

22 2))()((
))(|)((

σxRxRTrue
yy

True
tyty

tt exRxRP
−−

∝ (6)

where the standard deviation σ is set to constant 1 in our
experiments. Then, the probability of generating the
observed rating values of the test user by any user y in the
training database can be written as:

∏
∈

−−
∝

)(

2))()((22

)|(
t

ty
y

t

yXx

xRxR

yy
eRRP

σ
 (7)

The likelihood for the test user yt to rate an unseen item x
as category r can be computed as:

22 2))((
)|())((

σrxR
y

y
y

True
y

y
tt eRRPrxRP

−−�∝= (8)

The final predicted rating for item ‘x’ by the test user will
be the rating category ‘r’ with the highest likelihood

))((rxRP True
y t = . Empirical studies have shown that the PD

method is able to outperform several other approaches for
collaborative filtering (Pennock et al., 2000).

3. The Flexible Mixture Model (FMM)

In this section, we introduce the flexible mixture model
(FMM) and show how it can be applied to the
collaborative filtering task.

3.1 Model Description

The FMM for collaborative filtering is motivated by the
following observations on the two-sided clustering model
and the aspect model. Compared with the two-side
clustering model, the aspect model has the flexibility of
letting each user and item belong to multiple groups
simultaneously while the two-sided clustering model
restricts each user and item to be in exactly one cluster.
This issue can be quite important for the collaborative
filtering task because there may not be a set of underlying
clusters for users and items that are exclusive from each
other. Most likely, we will see overlapping clusters,
which lead to multiple memberships for users and items.
For example, the film “Tora! Tora! Tora!” may be
deemed as a ‘war movie’ by a young man due to its
intensive war scenes while a veteran may treat it as a
‘historical film’ because of the historical events described
in the movie. Clearly, the non-exclusive nature between
the category ‘historical movie’ and ‘war movie’ leads to
the multiple membership for this movie. On the other
hand, the two-sided clustering model is able to explicitly
model the clusters of users and items, which appears to
make sense. Based on these observations, we propose the
flexible mixture model (FMM) for collaborative filtering,
which tries to address the two issues, namely allowing
each user and item to be in multiple clusters and modeling
the clusters of users and items separately.

Let },.....,{ 1 IccC = be the classes of users and
},.....,{ 1 JddD = be the classes of items; Latent variable

yZ indicates the class membership for user ‘y’ and
)1()(IZZP yy ≤≤ is a multinomial distribution on the

user classes; Latent variable xZ indicates the class
membership for item ‘x’ and)1()(JZZP xx ≤≤ is a
multinomial distribution on the item classes;)|(yZYP

Figure 1. Graphical models for the two extensions of aspect
model in order to capture rating values.

 Z

 X Y

 R

P(x|Z) P(Z) P(y|Z)

P(r|Z)

(a)

P(r|Z,x)

 Z

 X Y

 R

P(x|Z) P(Z) P(y|Z)

(b)

,1(NY ≤≤)1 IZ y ≤≤ is a multinomial distribution
describing the conditional probability of users Y given a
specific user class yZ ;)|(xZXP ,1(MX ≤≤)1 JZx ≤≤
is a multinomial distribution describing the conditional

probability of items X given a specific item class xZ ;
),|(yx ZZrP ,1(Rr ≤≤ ,1 IZ y ≤≤)1 JZx ≤≤ is a

multinomial distribution for the ratings ‘r’ given a
specific user class yZ and a specific item class xZ .

With above annotation, the joint generation probability
P(x,y,r) for FMM can be written as:

�=
yx ZZ

yxlylxlyx

lll

ZZrPZyPZxPZPZP

ryxP

,
)()()(

)()()(

),|()|()|()()(

),,(
 (9)

The corresponding graphical model is shown in Figure 2.
According to the model, the FMM differs from the aspect
model in that it explicitly models the user classes and the
items classes with two sets of latent variables { yZ } and
{ xZ } . The FMM model is different from the two-sided
clustering model by the fact that it does not have the
global normalization restriction in Equation (5).

The graphical model most similar to the proposed FMM
model is the product space mixture model (PSMM)
(Hofmann & Puzicha, 1998), which was proposed for
information retrieval. But the PSMM model only extends
the aspect model by enforcing a decomposition of aspects
that sum up to 1, while our FMM has two sets of latent
variables ‘Zx’ and ‘Zy’ , which normalized separately.

3.2 The Training Procedure

The Expectation and Maximization (EM) (Dempster &
Rubin, 1977) algorithm is a well-known optimization
algorithm, which alternates between two steps: In the
expectation step, the joint posterior probabilities of the
latent variables { Zx, Zy} are computed; in the
maximization step, the model parameters are updated
given the posterior probabilities estimated in the

expectation step. More specifically, in the expectation
step, the joint posterior probabilities are computed as:

�
=

yx ZZ
yxlylxlyx

yxlylxlyx

lllyx

ZZrPZyPZxPZPZP

ZZrPZyPZxPZPZP

ryxzzP

,
)()()(

)()()(

)()()(

),|()|()|()()(

),|()|()|()()(

),,|,(

(10)

Then, the model parameters are updated in the
maximization step as:

L

ryxzzP

zP
l z

lllyx

x
y

��

=
),,|,(

)(
)()()(

(11)

L

ryxzzP

zP
l z

lllyx

y
x

��
=

),,|,(

)(
)()()(

 (12)

)(

),,|,(

)|()(:
)()()(

x

xxl z
lllyx

x zPL

ryxzzP

zxP l y

×
=

� �
= (13)

)(

),,|,(

)|()(:
)()()(

y

yyl z
lllyx

y zPL

ryxzzP

zyP l x

×
=

� �
= (14)

�

�
=

=

l
lllyx

rrl
lllyx

yx ryxzzP

ryxzzP

zzrP l

),,|,(

),,|,(

),|(
)()()(

:
)()()(

)((15)

In order to avoid the unfavorable local maximum
problems, we use a general form of the EM algorithm
named annealed EM algorithm (AEM) (Hofmann &
Puzicha, 1998), which is an EM algorithm with
regularization. In this algorithm, the training database is
divided into two parts: the training data and the held-out
data. In the expectation step, a variable ‘b’ is introduced
to control the training process as:

�
=

yx ZZ

b
yxlylxlyx

b
yxlylxlyx

lllyx

ZZrPZyPZxPZPZP

ZZrPZyPZxPZPZP

ryxzzP

,
)()()(

)()()(

)()()(

)),|()|()|()()((

)),|()|()|()()((

),,|,(

 (16)

When variable ‘b’ goes to positive infinity, the posterior
probability becomes a delta function and the clustering
process becomes the hard case (each user and item belong
to a single class). When variable ‘b’ is set to 1, the AEM
returns back to the original EM algorithm in Equation
(10). Therefore, by varying the variable ‘b’ , we can adjust
the clustering process. In our procedure, b is initially set
to 1. We perform EM algorithm with early stopping if the
performance on hold-out data deteriorates. Then the
variable b is decreased (b=0.9*b) and the EM is applied
again until b is smaller than a lower bound (0.5). Finally a
new model is trained over the whole training data
(including the held-out dataset) with the current b value
for several steps. A similar training procedure is applied
to train the aspect models as described in Section 2.2.

3.3 The Prediction Procedure

The ultimate goal of the collaborative filtering is to
predict ratings for the test user ty on unseen items given a
set of observed ratings of the test user ty :)(tyX =

Figure 2. Graphical model representation for the flexible
mixture model (FMM).

P(x|Zx) P(y|Zy)

 P(Zx) P(Zy)

 Zx Zy

 X Y

 R

 P(r|Zx,Zy)

)},,(),..,,,{ ()_()_()1()1(
t

GN
tt

GN
ttt ryxryx where N_G stands for

the number of given ratings of the test user ty .

A “ fold-in” process can be used to make the prediction.
The main idea of this process is to estimate the joint
probability of the rating, item and the test user

as),,(ryxP t and to predict the rating with the expectation

as)(
^

xR ty . The joint probability is calculated as:

�=
yx ZZ

yxy
t

xyx

t

ZZrPZyPZxPZPZP

ryxP

,
),|()|()|()()(

),,(
 (17)

We have all the variables on the right hand side of
Equation (17) from the training process except)|(y

t ZyP ,
which can be computed by simply treating the test user

ty as another user in the training database and run the
EM algorithm as described above with all the parameters
fixed except)|(y

t ZyP .

With the estimated joint probability),,(ryxP t , the
prediction of rating on item ‘x’ can be computed as:

�
�=

'

'

^

),,(

),,(
)(

r

t

t

r
y ryxP

ryxP
rxR t (18)

4. The Combination of FMM and the Decoupled
Models of Preferences and Ratings

The other key issue with the collaborative filtering is that
users with similar or even identical taste (preference) on
the items may give very different surface ratings. For
example, two movie viewers A and B may have exactly
the same taste on the films, which means they both like
the same set of films and disfavor another same set of
films. But the viewer A can be quite strict on his rating
standard and may rate most of his favorite films only as
rating ‘3’ and rate all of his disfavored films with rating
‘1’ . On the hand, the viewer B is a quite tolerating person
and may rate most of his favorite films with highest rating
‘5’ and even rate his disfavored films with rating ‘3’ .

In order to account for the variance in the rating behavior
among the users with similar interests, we extend the
graphical model in Figure 2 by introducing a new latent
node ‘V’ , which accounts for the ‘ true’ preference values
,and node ‘Zr’ , which accounts for different rating
behaviors. First, according to Figure 3, the user node ‘Y’
is determined jointly by nodes ‘Zy’ and ‘Zr’ , namely
users are distinguished from each other both by their
interests encode in ‘Zy’ and by their rating patterns
encoded in ‘Zr’ . Secondly, the preference node ‘V’ is
determined jointly by the node ‘Zx’ and node ‘Zy’ , e.g.
P(v|Zx, Zy). Thirdly, the rating is generated by the
preference node and the node ‘Zr’ . Therefore, it is not
necessary that an item with a high rating be truly favored

by the user due to the dependency of node ‘Zx’ and ‘Zy’ .

Finally, in the extended version of FMM model, two
latent variables ‘Zx’ and ‘Zy’ are not coupled through the
rating information ‘R’ as in Figure 2. Instead, they are
connected directly through the preference node ‘V’ and
the rating information ‘R’ can influence the correlation
between nodes ‘Zx’ and ‘Zy’ indirectly through the
preference node ‘V’ .

Let the preference variable ‘V’ be a continuous random
variable ranging from 0 to 1(e.g. 10 ≤≤ v). With the new
graphic model, the joint probability can be calculated as:

� �=
ryx ZZZ

r

v

yxry
t

xryx

t

vZrPZZvPZZyPZxPZPZPZP

ryxP

,,

),|(),|(),|()|()()()(

),,(

(19)

where)(rZP and),|(vZrP r are multinomial
distributions, and),|(yx ZZvP is normal distribution.

Unfortunately, due to the introduction of the preference
node ‘V’ and the latent rating node ‘Zr’ , the inference and
prediction processes are rather complex and time-
consuming. Considering that the collaborative filtering
task usually demands high efficiency, instead of using the
above complex graphical model directly, we explore a
simple model that is able to compute the preference
values for a user given a set of rated items of that user.
With this simple model, we are able to obtain the
preference value ‘v’ directly instead of having to infer it
from the graphic model in Figure 3. Then, a FMM model
similar to Figure 2 can be used for computing the ratings
for the test user by simply replacing the rating node ‘R’
with the preference node ‘V’ .

4.1 The Decoupled Models of Preferences and Ratings

So we need to calculate the preference value on an item
with specific rating ‘ r’ for a user who gives a set of rated

P(r|Zr,v)
 P(v|Zx,Zy)

 P(Zr)

 Zr

P(y|Zy,Zr)

 Y

Figure 3. Graphical model representation of the extension
of flexible mixture model to group rating patterns.

 V

P(x|Zx)

 P(Zx) P(Zy)

 Zx Zy

 X

 R

items. Two factors can influence this value: 1) the
percentage of items that have been rated no more than ‘r’ .
The larger the number of items rated no more than ‘r’ , the
more likely that the user prefers the item. 2) The
percentage of items that have been rated as ‘r’ . The larger
the number of items rated as ‘r’ , the less likely that the
item is preferred by the user. Based on this intuition, we
let)(_ rRP y 1)(_0(≤≤ rRP y }),..,1{, Rr ∈ be the
likelihood function for user y on an item, which he rates
with rating ‘ r’ ; the vector)}(),....,1({ RccC yyy = stand for
the rating count vector, which counts how many times the
user y has rated items with specific ratings.)(_ rRP y is
computed as:

�
�
�

=

≤

=

−=

=−≤=

R

r

y

y

rr
R

r

y

y

y

rc

rc

rc

rc

yrRatingPyrRatingPrRP

1''

'

1''

)''(*2

)(

)''(

)'(

2/)|()|()(_

 (20)

This procedure can be seen in another way as somehow
normalizing the user ratings into user preference. When
there are very few given ratings from the user, Equation
(20) may become unreliable. A better solution is a
smoothed version of the)|(yrRatingP = function, which
utilizes the rating patterns of similar users. The similarity
coefficient between the user y and y’ is defined as the
probability of mistaking user y’ given the rating patterns
of user y:

��
===

''''

',
)''|(

)'|(

)''()''|(

)'()'|(
)|'(

y

y

y

y

y

y
y

R
yy

yCP

yCP

yPyCP

yPyCP
CyPw (21)

The last step is derived by assuming a uniform
distribution on P(y). And)'|(yCP y is computed as:

∏
�=

=

=
R

r

rC

R

r

y

y
y

y

rc

rc
yCP

1

)(

1'

'

'

)'(

)(
)'|(

(22)

The smoothed version of)|(yrRatingP = is as follows:

�

�

∈

∈

+

=+=

=

=

Yy

R
yy

R
yy

Yy

R
yy

R
yy

ww

yrRatingPwyrRatingPw

yrRatingP

'

',,

'

',,

'

)'|()|(

)|(

 (23)

Plugging Equation (23) into Equation (20), we can
convert a rating ‘r’ given by a user ‘y’ into the likelihood
of being preferred. Now, let us consider the opposite,
namely how to convert an estimated likelihood of being
preferred)(xVy into an appropriate rating ‘r’ . We simply

find the rank that leads to the preference probability

)(_ rRP y closest to the estimated preference value)(
^

xVy :

|)()(_|minarg)(
^^

xVrRPxR yy
r

y −= (24)

4.2 The Combination of the FMM and the DM

The basic idea of combining FMM with the decoupled
models (DM) is to, first convert the ratings in the training
database into their corresponding preference values using
the DM model. Then similar to the graphic model in
Figure 2, a FMM is built over preference values instead of
the ratings (e.g. replacing the rating node ‘R’ with the
preference node ‘V’ in Figure 2). More specifically, the
joint probability P(x,y,v) for a user ‘y’ , an item ‘x’ , and a
preference value ‘v’ , is computed as:

�=
yx ZZ

yxlylxlyx

lll

ZZvPZyPZxPZPZP

vyxP

,
)()()(

)()()(

),|()|()|()()(

),,(

(25)

where v(l) is the preference value computed from Equation
(20). Compared with Equation (10), Equation (25)
contains term),|()(yxl ZZvP instead of),|()(yxl ZZrP .
For simplicity, we assume),|()(yxl ZZvP to be a normal
distribution, i.e.

))(
2

1
exp(

2

1
),|(2

,)(2
,,

)(ZyZxl
ZyZxZyZx

yxl uvZZvP −−=
σσπ

 (26)

The updating equations for the means and standard
deviations are derived by AEM algorithm in Section 3.2.

With this modified FMM model using preference value,
we will be able to compute the estimated preference value
‘v’ for an item x given the user y, e.g.)(

^
xVy . The final

rating is computed by converting the estimated preference
value)(

^
xVy into rating)(

^
xRy using Equation (24).

5. Experiments

In this section, we will present experiment results in order
to address two issues. 1) Is the FMM more effective than
other collaborative filtering algorithms? In the
experiment, we will compare the proposed FMM model
to other popular algorithms. 2) Can the FMM be further
improved by combining it with the decoupled models
(DM) as discussed in Section 4? In the experiment, we
will compare the performance of FMM with and without
the decoupled models (DM).

Two datasets of movie ratings are used in our
experiments. The first one is the ‘MovieRating’ testbed1.
The second testbed comes from the ‘EachMovie’ 2, where
a subset of 2000 users with more than 40 ratings was
extracted. The details of these two datasets are listed in
Table 1. To compare different algorithms in a large
spectrum, we tried several different configurations. For
the MovieRating testbed, we set the first 100 or 200 users
to be the training users. For the EachMovie testbed, the
first 200 or 400 users were used. Furthermore, 5, 10 or 20

—————
1 http://www.cs.usyd.edu.au/~irena/movie_data.zip

2 http://research.compaq.com/SRC/eachmovie

items were provided as exposed items for a test user on
both these two testbeds. As we believe that it is had for

collaborative filtering system to collect huge amount of
training data before it can provide recommendation
service to the customers (so it is more important to
evaluate the system performance with a limit number of
training users), a relatively small number of training users
were used in our experiments. But other experiments with
more training users (300 and 400 for MovieRating, 800
and 1000 EachMovie) were conducted. As the limit of
space, the results are not reported here but they are
consistent with the results reported (the proposed FMM
model got the best performance in all cases).

The evaluation metric used in our experiments was the
commonly used mean absolute error (MAE), which is the
average absolute deviation of the predicted ratings from
the actual ratings on items the test users have voted.

|)(|
1 ^

)()(ly
l

l
Test

xRr
L

MAE t−= � (27)

where TestL is the number of the test ratings.

5.1 Experiment Results

The first set of experiments is shown in Table 2 and Table
3. In addition to the proposed FMM model, two memory-
based and three model-based approaches are evaluated.
They are: the Pearson Correlation Coefficient method
(PCC), the Vector Similarity method (VS), the aspect
model using extension Equation (2) (AM_a), the aspect
model with extension Equation (3) (AM_b), and the
Personality Diagnosis model (PD). The two-sided
clustering model is not included because previous studies
have shown that its performance is substantially inferior
to the aspect models. The number of user classes and the
number of item classes in the FMM were set to 10 and 20
for users and items separately without much tuning.
(Varying the number of classes from 5*10 to 20*40 gives
us similar results to those reported in Table 2 and 3).

According to Table 2 and 3, the proposed new FMM
performs better than all the other algorithms on all
different configurations in terms of the MAE.
Furthermore, consistent with (Pennock et al., 2000), the
PD method achieves the second best performance, and is
generally better than the other four methods (except
AM_b on Each Movie with 400 training users). The
number of aspects in the AM_a and AM_b were turned
for the best performance (shown in italic in Table 2 and
3). As for the same number of aspects, AM_b has much
more parameters than AM_a, thus it can be seen that the
optimal number of aspects in AM_b model is smaller than
AM_a. Since the proposed FMM model is similar to the
aspect model except for the explicitly modeling of user
and item clusters, we attribute the good performance of
FMM to its ability of modeling the classes of users and
items separately. Furthermore, the difference between the
proposed model and the two-sided clustering model
suggests that it is beneficial not to assume that each user
(item) belongs to a single class.

Table 1. Characteristics of the MovieRating Testbed and the
EachMovie Testbed.

 MovieRating EachMovie
Number of Users 500 2000
Number of Items 1000 1682

Average Number of Rated
Items Per User

87.7 129.6

Number of Ratings 5 6

Table 2. Experiment Results (MAE) on the MovieRaing Testbed.
A smaller value means a better performance.

Training
Users Size

Algorithms
5 Items
Given

10 Items
Given

20 Items
Given

PCC 0.881 0.832 0.809
VS 0.859 0.834 0.823

PD 0.839 0.826 0.818

AM_a (5) 0.882 0.856 0.836

AM_b (2) 0.869 0.857 0.850

100

FMM 0.829 0.822 0.807

PCC 0.878 0.828 0.801

VS 0.862 0.950 0.854

PD 0.835 0.816 0.806

AM_a (5) 0.891 0.850 0.818

AM_b (4) 0.837 0.833 0.825

200

FMM 0.800 0.787 0.768

Table 3. Experiment Results (MAE) on the EachMovie Testbed.
A smaller value means a better performance.

Training
Users Size

Algorithms
5 Items
Given

10 Items
Given

20 Items
Given

PCC 1.22 1.16 1.13

VS 1.25 1.24 1.26

PD 1.19 1.16 1.15

AM_a (20) 1.27 1.18 1.14

AM_b (10) 1.18 1.17 1.16

200

FMM 1.07 1.04 1.02

PCC 1.22 1.16 1.13

VS 1.32 1.33 1.37

PD 1.18 1.16 1.15

AM_a (20) 1.28 1.19 1.16

AM_b (10) 1.15 1.14 1.13

400

FMM 1.05 1.03 1.01

The second set of experiments is shown in Table 4 and
Table 5, where we compare the performance of FMM
with and without the decoupled models (DM). It is clear
that the combination of FMM model with DM model
outperforms the basic FMM in all configurations.
Therefore, it is important to cluster users with similar
preference patterns instead of rating patterns. It is
interesting to further explore efficient inference and
prediction algorithms for the graphical model in Figure 3,
which is able to simultaneously group users with similar
preference patterns, rating patterns and items with similar
characteristics and therefore may result in even more
improvement in the prediction accuracy.

6. Conclusion and Future Work

Partition or clustering techniques have been studied
intensively in the previous work for collaborative
filtering. In this work, we proposed a formal graphical
model for collaborative filtering, named flexible mixture
model (FMM). The new model tries to address three
issues in collaborative filtering: 1) explicitly modeling
both classes of users and items by taking into account
their correlations; 2) allowing each user and item to
belong to multiple clusters simultaneously; 3) clustering
users with similar preference patterns instead of rating
patterns. Experiments on two common testbeds with
several different configurations indicated that the
proposed model is able to outperform five other
algorithms for collaborative filtering task substantially.

The combination method of the flexible mixture model
and the decoupled models is rather preliminary. As future
work, we plan to explore better efficient approximation
algorithms for inference and prediction with the complex
graphical model, which can simultaneously group users
with similar preference patterns, rating patterns and items
with similar characteristics. Finally, the proposed FMM
model is only applied and evaluated on the problem of
predicting item rating for new users; we hope to extend
this model for other tasks such as recommending new
items to known users in the further work.

Acknowledgements

We thank ChengXiang Zhai for his helpful discussion,
Paul Ogilvie and Jamie Callan for their useful comments
and help to improve the English in this paper.

References

Basu, C., & Hirsh, H. (1998). Recommendation as
classification: Using social and content-based
information in recommendation. In the Proceedings of
Fifteenth National Conference on Artificial Intelligence.

Breese J. S., Heckerman D., Kadie C. (1998). Empirical
Analysis of Predictive Algorthms for Collaborative

Filtering. In the Proceeding of the Fourteenth
Conference on Uncertainty in Artificial Intelligence.

O’Connor, M. & Herlocker, Jon. (2001). Clustering Items
for Collaborative Filtering. In the Proceedings of
SIGIR-2001 Workshop on Recommender Systems, New
Orleans, LA.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, B39:
1-38.

Hofmann, T., & Puzicha, J. (1999). Latent Class Models
for Collaborative Filtering. In the Proceedings of
International Joint Conference on Artificial
Intelligence.

Hofmann, T., & Puzicha, J. (1998). Statistical models for
co-occurrence data (Technical report). Artificial
Intelligence Laboratory Memo 1625, M.I.T.

Pennock, D. M., Horvitz, E., Lawrence, S., & Giles, C.
L. (2000). Collaborative Filtering by Personality
Diagosis: A Hybrid Memory- and Model-Based
Approach. In the Proceeding of the Sixteenth
Conference on Uncertainty in Artificial Intelligence.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., &
Riedl, J. (1994). Grouplens: An Open Architecture for
Collaborative Filtering of Netnews. In Proceeding of the
ACM 1994 Conference on Computer Supported
Cooperative Work.

Table 4. Experiment Results (MAE) on the MovieRaing Testbed
for FMM and FMM plus Decoupled models (DM). A smaller
value means a better performance.

Training
Users Size

Algorithms
5 Items
Given

10 Items
Given

20 Items
Given

FMM 0.829 0.822 0.807
100

FMM+DM 0.791 0774 0.751

FMM 0.800 0.787 0.768
200

FMM+DM 0.770 0.753 0.730

Table 5. Experiment Results (MAE) on the EachMovie Testbed
for FMM and FMM plus Decoupled models. A smaller value
means a better performance.

Training
Users Size

Algorithms
5 Items
Given

10 Items
Given

20 Items
Given

FMM 1.07 1.04 1.02
200

FMM+DM 1.06 1.02 1.00

FMM 1.05 1.03 1.01
400

FMM+DM 1.04 1.01 0.99

