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Abstract 

This paper presents a flexible mixture model 
(FMM) for collaborative filtering. FMM extends 
existing partitioning/clustering algorithms for 
collaborative filtering by clustering both users 
and items together simultaneously without 
assuming that each user and item should only 
belong to a single cluster. Furthermore, with the 
introduction of ‘preference’  nodes, the proposed 
framework is able to explicitly model how users 
rate items, which can vary dramatically, even 
among the users with similar tastes on items. 
Empirical study over two datasets of movie 
ratings has shown that our new algorithm 
outperforms five other collaborative filtering 
algorithms substantially. 

1.  Introduction 

The rapid growth of the information on the Internet 
demands intelligent information agent that can sift 
through all the available information and find out the 
most valuable to us. These intelligent systems can be 
categorized into two classes: collaborative filtering 
(Breese, Heckerman & Kadie, 1998) and content-based 
recommending (Basu & Hirsh, 1998). The difference 
between collaborative filtering and content-based 
recommending is that: collaborative filtering only utilizes 
the ratings of training users in order to predict ratings for 
test users while content-based recommendation systems 
rely on the contents of items for predictions. Therefore, 
collaborative filtering systems have advantages in the 
environments where the contents of items are not 
available due to privacy issues or where that contents are 
difficult for a computer to analyze. In this paper, we only 
focus on the collaborative filtering problems.  

Most collaborative filtering methods fall into two 
categories: memory-based algorithms and model-based 
algorithms. Memory-based algorithms usually do not 
have a training phase. Instead, they simply store rating 
examples of users into a training database. In the 
predicting phase, the memory-based approaches first find 

users in the training database similar to the test user and 
then, predict the test user’s ratings based on the 
corresponding ratings of these similar users. On the 
contrary, model-based algorithms build models that are 
able to explain the training examples well and predict the 
ratings of test users using the estimated models. Both of 
the memory-based algorithms and the model-based 
algorithms have their advantages and disadvantages. 
Memory-based algorithms have much less off-line 
computation costs while the model-based algorithms may 
have less on-line computation costs.  

Though memory-based and model-based approaches 
differ from each other in many aspects, both of them 
assume that users with similar tastes should rate items 
similarly and therefore the idea of clustering is used in 
both approaches either explicitly or implicitly. For 
memory-based approaches, training users similar to the 
test user are grouped together and their ratings are 
combined to predict ratings for the test user. Meanwhile, 
model-based approaches cluster items and/or training 
users into classes explicitly and predict ratings of a test 
user by simply using the ratings of classes that fit in best 
with the test user and/or items to be rated. Thus, how to 
cluster users and items appropriately is a key issue in 
designing collaborative filtering systems, which can affect 
the scalability, robustness and performance.  

While theoretically interesting, model-based approaches 
have achieved mixed results in previous studies (Breese et 
al., 1998; O’Connor & Herlocker, 2001). We suspect that 
this may be due to the inappropriate clustering algorithms 
used in their studies. More specifically, three issues of 
clustering algorithms are important for collaborative 
filtering: First, both users and items need to be clustered 
and more importantly, users and items are coupled with 
each other through the rating information. Therefore, a 
good clustering algorithm should be able to explicitly 
model both classes of users and items and be able to 
leverage their correlation. Secondly, many clustering 
techniques assume that each user or item belongs to a 
single class. However, since a user may have diverse 
interests and an item may have multiple aspects, it is 
desirable to allow both items and users to be in multiple 



 

 

classes simultaneously. In this paper, a flexible mixture 
model (FMM) is proposed in order to capture this idea. 
Thirdly, the assumption that users with similar tastes 
would have similar ratings may not necessarily be true 
because some users may tend to give a higher rating to all 
items than some others. In order to account for the 
variance in the rating patterns among the users with 
similar interests, we extend the flexible mixture model by 
introducing an additional new hidden ‘preference’  node. 
Such an extension allows us to infer the preference values 
underlying the surface ratings, which can then be used as 
(presumably more reliable) evidence for clustering. For 
the simplicity of computation, we compute the preference 
information for each user using ‘decoupled models’  
(DM), and then apply the proposed flexible mixture 
model to cluster over the estimated preference values 
instead of the original rating values. 

The rest of the paper is arranged as follows: Section 2 
discusses previous work. The proposed flexible mixture 
model for collaborative filtering is presented in Section 3. 
The extended version of flexible mixture model with the 
decoupling of rating and preference is discussed in 
Section 4. Section 5 presents experiments results. 
Conclusions and future work are discussed in Section 6. 

2.  Existing Approaches 

Let us first introduce the annotations that will be used for 
the rest of this paper. Let },......,{ 1 MxxX = be a set of 
items, },......,{ 1 NyyY =  be a set of users, and },...,1{ R  be 
a set of ratings. Let )},,(),.....,,,{ ( )()()()1()1()1( LLL ryxryx  be 
the ratings information in the training database, )(yX be 
the set of items rated by user y, )(xRy  be the rating of 
item x by user y, and yR

_
be the average rating by user y. 

2.1  Memory-Based Algorithms 

Two commonly used memory-based algorithms are 
Pearson Correlation Coefficient algorithm (PCC) 
(Resnick et al., 1994) and Vector Space Similarity (VS) 
(Breese, Heckerman & Kadie, 1998) algorithm. The main 
idea of these two algorithms is to calculate the similarities 
of the training users to the test user and the prediction of 
ratings is computed by performing a weighted average of 
deviations from the training users’  mean. The difference 
between them is on how to compute the similarities 
between users, where a Pearson correlation coefficient is 
used for measuring the user similarity in the PCC 
algorithm and a cosine similarity is computed in the VS 
algorithm. More details can be found in (Resnick et al., 
1994; Breese, Heckerman & Kadie, 1998). 

2.2  Model-Based Algorithms 

Three model-based algorithms are discussed here: the 
aspect model (AM) (Hofmann & Puzicha, 1999), two-
sided clustering model (Hofmann & Puzicha, 1999) and 

the Personality Diagnosis model (PD) (Pennock et al., 
2000). 

Aspect Model (AM) 

The aspect model (Hofmann & Puzicha, 1999) is a 
probabilistic latent space model, which models individual 
preferences as a convex combination of preference 
factors. The latent class variable },.....,,{ 21 KzzzZz =∈  is 
associated with each observation pair of a user and an 
item. The aspect model assumes that users and items are 
independent from each other given the latent class 
variable. Thus, the probability for each observed pair 
(x,y) is calculated as follows: 
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where P(z) stands for class prior probability, P(x|z) and 
P(y|z) stand for class dependent distributions for items 
and users respectively. Essentially, the preference pattern 
of a user is modeled by a combination of typical 
preference patterns, which are represented by the 
distributions of P(z), P(x|z) and P(y|z).  

Note that the aspect model only introduces one set of 
latent variables ‘Z’  for the purpose of clustering and there 
is no explicitly grouping of either users or items. In the 
proposed model, we intentionally introduce two sets of 
latent variables in order to model the clusters of users and 
the clusters of items separately. 

Two of the choices (Hofmann & Puzicha, 1999) to 
incorporate the ratings ‘r’  into the aspect model are 
expressed in Equation (2) and (3), respectively. 
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The corresponding graphical models for Equation (2) and 
(3) are shown in Figure 1 as model (a) and (b) 
respectively. According to the graphic models, the 
difference between these two methods is that, in the 
graphic model (a) (or Equation. (2)), the rating r(l) is 
conditioned only on the latent class variable ‘Z’ , while the 
second model let the rating r(l) be conditioned on both the 
latent class variable ‘Z’  and the item x(l). The second 
model is a refined version of the first model, but the 
number of parameters is much larger than the first model 
with the same number of aspects. 

Two-Sided Clustering Model 

A two-sided clustering model is proposed for 
collaborative filtering in (Hofmann & Puzicha, 1999). 
This model assumes that each user should belong to 
exactly one group of users and the same is true for each 
item. Let },.....,{ 1 IccC =  be the classes of users and 

},.....,{ 1 JddD =  be the classes of items. Indicator 



 

 

variables ivI  and juJ }1,0{∈  indicates whether the ith 
user belongs to the vth user class and the jth item belongs 

 to the uth item class respectively. Then, the joint 
probability P(x,y,r) is defined as: 
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vuC is the cluster association parameter. In order to be 
consistent with the above assumption, a global 
normalization constraint has to be made as  
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(Hofmann & Puzicha, 1999) pointed out that this model 
has a different spirit from the aspect model and is less 
flexible in modeling the preferences relationship between 
the users and items, and we believe the key reason is its 
strong assumption. However, this model does try to model 
the clustering of users and items separately, which 
appears to be a better modeling approach. Since previous 
experiments have shown that the performance of aspect 
model is substantially better than the two-sided clustering 
model, we will not compare our model with the two-sided 
clustering model.  

Personality Diagnosis Model (PD) 

In the personality diagnosis model (Pennock et al., 2000), 
the observed rating for the test user yt on an item x is 
assumed to be drawn from an independent normal 
distribution with the mean as the true rating as )(xRTrue

yt : 
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where the standard deviation σ is set to constant 1 in our 
experiments. Then, the probability of generating the 
observed rating values of the test user by any user y in the 
training database can be written as: 
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The likelihood for the test user yt to rate an unseen item x 
as category r can be computed as: 
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The final predicted rating for item ‘x’  by the test user will 
be the rating category ‘r’  with the highest likelihood 

))(( rxRP True
y t = . Empirical studies have shown that the PD 

method is able to outperform several other approaches for 
collaborative filtering (Pennock et al., 2000). 

3.  The Flexible Mixture Model  (FMM) 

In this section, we introduce the flexible mixture model 
(FMM) and show how it can be applied to the 
collaborative filtering task. 

3.1  Model Description 

The FMM for collaborative filtering is motivated by the 
following observations on the two-sided clustering model 
and the aspect model. Compared with the two-side 
clustering model, the aspect model has the flexibility of 
letting each user and item belong to multiple groups 
simultaneously while the two-sided clustering model 
restricts each user and item to be in exactly one cluster. 
This issue can be quite important for the collaborative 
filtering task because there may not be a set of underlying 
clusters for users and items that are exclusive from each 
other. Most likely, we will see overlapping clusters, 
which lead to multiple memberships for users and items. 
For example, the film “Tora! Tora! Tora!”  may be 
deemed as a ‘war movie’  by a young man due to its 
intensive war scenes while a veteran may treat it as a 
‘historical film’  because of the historical events described 
in the movie. Clearly, the non-exclusive nature between 
the category ‘historical movie’  and ‘war movie’  leads to 
the multiple membership for this movie. On the other 
hand, the two-sided clustering model is able to explicitly 
model the clusters of users and items, which appears to 
make sense. Based on these observations, we propose the 
flexible mixture model (FMM) for collaborative filtering, 
which tries to address the two issues, namely allowing 
each user and item to be in multiple clusters and modeling 
the clusters of users and items separately.  

Let },.....,{ 1 IccC =  be the classes of users and 
},.....,{ 1 JddD =  be the classes of items; Latent variable 

yZ indicates the class membership for user ‘y’  and 
)1()( IZZP yy ≤≤  is a multinomial distribution on the 

user classes; Latent variable xZ indicates the class 
membership for item ‘x’  and )1()( JZZP xx ≤≤  is a 
multinomial distribution on the item classes; )|( yZYP  

 

 

 

 

 

 

  

 

 

 

Figure 1. Graphical models for the two extensions of aspect 
model in order to capture rating values. 
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,1( NY ≤≤ )1 IZ y ≤≤  is a multinomial distribution 
describing the conditional probability of users Y given a 
specific user class yZ ; )|( xZXP  ,1( MX ≤≤  )1 JZx ≤≤  
is a multinomial distribution describing the conditional 

probability of items X given a specific item class xZ ; 
),|( yx ZZrP  ,1( Rr ≤≤ ,1 IZ y ≤≤ )1 JZx ≤≤  is a 

multinomial distribution for the ratings ‘r’  given a 
specific user class yZ  and a specific item class xZ . 

With above annotation, the joint generation probability 
P(x,y,r) for FMM can be written as: 
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The corresponding graphical model is shown in Figure 2. 
According to the model, the FMM differs from the aspect 
model in that it explicitly models the user classes and the 
items classes with two sets of latent variables { yZ }  and 
{ xZ } . The FMM model is different from the two-sided 
clustering model by the fact that it does not have the 
global normalization restriction in Equation (5). 

The graphical model most similar to the proposed FMM 
model is the product space mixture model (PSMM) 
(Hofmann & Puzicha, 1998), which was proposed for 
information retrieval. But the PSMM model only extends 
the aspect model by enforcing a decomposition of aspects 
that sum up to 1, while our FMM has two sets of latent 
variables ‘Zx’  and ‘Zy’ , which normalized separately.  

3.2  The Training Procedure 

The Expectation and Maximization (EM) (Dempster & 
Rubin, 1977) algorithm is a well-known optimization 
algorithm, which alternates between two steps: In the 
expectation step, the joint posterior probabilities of the 
latent variables { Zx, Zy}  are computed; in the 
maximization step, the model parameters are updated 
given the posterior probabilities estimated in the 

expectation step. More specifically, in the expectation 
step, the joint posterior probabilities are computed as: 
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Then, the model parameters are updated in the 
maximization step as: 
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In order to avoid the unfavorable local maximum 
problems, we use a general form of the EM algorithm 
named annealed EM algorithm (AEM) (Hofmann & 
Puzicha, 1998), which is an EM algorithm with 
regularization. In this algorithm, the training database is 
divided into two parts: the training data and the held-out 
data. In the expectation step, a variable ‘b’  is introduced 
to control the training process as: 
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When variable ‘b’  goes to positive infinity, the posterior 
probability becomes a delta function and the clustering 
process becomes the hard case (each user and item belong 
to a single class). When variable ‘b’  is set to 1, the AEM 
returns back to the original EM algorithm in Equation 
(10). Therefore, by varying the variable ‘b’ , we can adjust 
the clustering process. In our procedure, b is initially set 
to 1. We perform EM algorithm with early stopping if the 
performance on hold-out data deteriorates. Then the 
variable b is decreased ( b=0.9*b) and the EM is applied 
again until b is smaller than a lower bound (0.5). Finally a 
new model is trained over the whole training data 
(including the held-out dataset) with the current b value 
for several steps. A similar training procedure is applied 
to train the aspect models as described in Section 2.2. 

3.3 The Prediction Procedure 

The ultimate goal of the collaborative filtering is to 
predict ratings for the test user ty on unseen items given a 
set of observed ratings of the test user ty : )( tyX  = 

Figure 2. Graphical model representation for the flexible 
mixture model (FMM). 
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ttt ryxryx  where N_G stands for 

the number of given ratings of the test user ty . 

A “ fold-in”  process can be used to make the prediction. 
The main idea of this process is to estimate the joint 
probability of the rating, item and the test user 

as ),,( ryxP t  and to predict the rating with the expectation 

as )(
^

xR ty . The joint probability is calculated as: 

�=
yx ZZ

yxy
t

xyx

t

ZZrPZyPZxPZPZP

ryxP

,
),|()|()|()()(

),,(
 (17) 

We have all the variables on the right hand side of 
Equation (17) from the training process except )|( y

t ZyP , 
which can be computed by simply treating the test user 

ty  as another user in the training database and run the 
EM algorithm as described above with all the parameters 
fixed except )|( y

t ZyP . 

With the estimated joint probability ),,( ryxP t , the 
prediction of rating on item ‘x’  can be computed as: 

�
�=

'

'

^

),,(

),,(
)(

r

t

t

r
y ryxP

ryxP
rxR t  (18) 

4.  The Combination of FMM and the Decoupled 
Models of Preferences and Ratings 

The other key issue with the collaborative filtering is that 
users with similar or even identical taste (preference) on 
the items may give very different surface ratings. For 
example, two movie viewers A and B may have exactly 
the same taste on the films, which means they both like 
the same set of films and disfavor another same set of 
films. But the viewer A can be quite strict on his rating 
standard and may rate most of his favorite films only as 
rating ‘3’  and rate all of his disfavored films with rating 
‘1’ . On the hand, the viewer B is a quite tolerating person 
and may rate most of his favorite films with highest rating 
‘5’  and even rate his disfavored films with rating ‘3’ .  

In order to account for the variance in the rating behavior 
among the users with similar interests, we extend the 
graphical model in Figure 2 by introducing a new latent 
node ‘V’ , which accounts for the ‘ true’  preference values 
,and node ‘Zr’ , which accounts for different rating 
behaviors. First, according to Figure 3, the user node ‘Y’  
is determined jointly by nodes ‘Zy’  and ‘Zr’ , namely 
users are distinguished from each other both by their 
interests encode in ‘Zy’  and by their rating patterns 
encoded in ‘Zr’ . Secondly, the preference node ‘V’  is 
determined jointly by the node ‘Zx’  and node ‘Zy’ , e.g. 
P(v|Zx, Zy). Thirdly, the rating is generated by the 
preference node and the node ‘Zr’ . Therefore, it is not 
necessary that an item with a high rating be truly favored 

by the user due to the dependency of node ‘Zx’  and ‘Zy’ . 

Finally, in the extended version of FMM model, two 
latent variables ‘Zx’  and ‘Zy’  are not coupled through the 
rating information ‘R’  as in Figure 2. Instead, they are 
connected directly through the preference node ‘V’  and 
the rating information ‘R’  can influence the correlation 
between nodes ‘Zx’  and ‘Zy’  indirectly through the 
preference node ‘V’ .  

Let the preference variable ‘V’  be a continuous random 
variable ranging from 0 to 1(e.g. 10 ≤≤ v ). With the new 
graphic model, the joint probability can be calculated as: 
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where )( rZP and ),|( vZrP r are multinomial 
distributions, and ),|( yx ZZvP is normal distribution.  

Unfortunately, due to the introduction of the preference 
node ‘V’  and the latent rating node ‘Zr’ , the inference and 
prediction processes are rather complex and time-
consuming. Considering that the collaborative filtering 
task usually demands high efficiency, instead of using the 
above complex graphical model directly, we explore a 
simple model that is able to compute the preference 
values for a user given a set of rated items of that user. 
With this simple model, we are able to obtain the 
preference value ‘v’  directly instead of having to infer it 
from the graphic model in Figure 3. Then, a FMM model 
similar to Figure 2 can be used for computing the ratings 
for the test user by simply replacing the rating node ‘R’  
with the preference node ‘V’ . 

4.1  The Decoupled Models of Preferences and Ratings 

So we need to calculate the preference value on an item 
with specific rating ‘ r’  for a user who gives a set of rated 
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Figure 3. Graphical model representation of the extension 
of flexible mixture model to group rating patterns.  
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items. Two factors can influence this value: 1) the 
percentage of items that have been rated no more than ‘r’ . 
The larger the number of items rated no more than ‘r’ , the 
more likely that the user prefers the item. 2) The 
percentage of items that have been rated as ‘r’ . The larger 
the number of items rated as ‘r’ , the less likely that the 
item is preferred by the user. Based on this intuition, we 
let )(_ rRP y  1)(_0( ≤≤ rRP y } ),..,1{, Rr ∈  be the 
likelihood function for user y on an item, which he rates 
with rating ‘ r’ ; the vector )}(),....,1({ RccC yyy = stand for 
the rating count vector, which counts how many times the 
user y has rated items with specific ratings. )(_ rRP y is 
computed as: 
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This procedure can be seen in another way as somehow 
normalizing the user ratings into user preference. When 
there are very few given ratings from the user, Equation 
(20) may become unreliable. A better solution is a 
smoothed version of the )|( yrRatingP =  function, which 
utilizes the rating patterns of similar users. The similarity 
coefficient between the user y and y’  is defined as the 
probability of mistaking user y’  given the rating patterns 
of user y: 
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The last step is derived by assuming a uniform 
distribution on P(y). And )'|( yCP y  is computed as: 
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The smoothed version of )|( yrRatingP =  is as follows: 
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Plugging Equation (23) into Equation (20), we can 
convert a rating ‘r’  given by a user ‘y’  into the likelihood 
of being preferred. Now, let us consider the opposite, 
namely how to convert an estimated likelihood of being 
preferred )(xVy  into an appropriate rating ‘r’ . We simply 

find the rank that leads to the preference probability 

)(_ rRP y  closest to the estimated preference value )(
^

xVy : 

|)()(_|minarg)(
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r
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4.2 The Combination of the FMM and the DM 

The basic idea of combining FMM with the decoupled 
models (DM) is to, first convert the ratings in the training 
database into their corresponding preference values using 
the DM model. Then similar to the graphic model in 
Figure 2, a FMM is built over preference values instead of 
the ratings (e.g. replacing the rating node ‘R’  with the 
preference node ‘V’  in Figure 2). More specifically, the 
joint probability P(x,y,v) for a user ‘y’ , an item ‘x’ , and a 
preference value ‘v’ , is computed as: 
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where v(l) is the preference value computed from Equation 
(20). Compared with Equation (10), Equation (25) 
contains term ),|( )( yxl ZZvP  instead of ),|( )( yxl ZZrP . 
For simplicity, we assume ),|( )( yxl ZZvP  to be a normal 
distribution, i.e. 
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The updating equations for the means and standard 
deviations are derived by AEM algorithm in Section 3.2. 

With this modified FMM model using preference value, 
we will be able to compute the estimated preference value 
‘v’  for an item x given the user y, e.g. )(

^
xVy . The final 

rating is computed by converting the estimated preference 
value )(

^
xVy  into rating )(

^
xRy  using Equation (24). 

5.  Experiments 

In this section, we will present experiment results in order 
to address two issues. 1) Is the FMM more effective than 
other collaborative filtering algorithms? In the 
experiment, we will compare the proposed FMM model 
to other popular algorithms. 2) Can the FMM be further 
improved by combining it with the decoupled models 
(DM) as discussed in Section 4? In the experiment, we 
will compare the performance of FMM with and without 
the decoupled models (DM). 

Two datasets of movie ratings are used in our 
experiments. The first one is the ‘MovieRating’  testbed1. 
The second testbed comes from the ‘EachMovie’ 2, where 
a subset of 2000 users with more than 40 ratings was 
extracted. The details of these two datasets are listed in 
Table 1. To compare different algorithms in a large 
spectrum, we tried several different configurations. For 
the MovieRating testbed, we set the first 100 or 200 users 
to be the training users. For the EachMovie testbed, the 
first 200 or 400 users were used. Furthermore, 5, 10 or 20 

————— 
1 http://www.cs.usyd.edu.au/~irena/movie_data.zip 

2 http://research.compaq.com/SRC/eachmovie 



 

 

items were provided as exposed items for a test user on 
both these two testbeds. As we believe that it is had for 

collaborative filtering system to collect huge amount of 
training data before it can provide recommendation 
service to the customers (so it is more important to 
evaluate the system performance with a limit number of 
training users), a relatively small number of training users 
were used in our experiments. But other experiments with 
more training users (300 and 400 for MovieRating, 800 
and 1000 EachMovie) were conducted. As the limit of 
space, the results are not reported here but they are 
consistent with the results reported (the proposed FMM 
model got the best performance in all cases). 

The evaluation metric used in our experiments was the 
commonly used mean absolute error (MAE), which is the 
average absolute deviation of the predicted ratings from 
the actual ratings on items the test users have voted.  
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1 ^

)()( ly
l

l
Test

xRr
L

MAE t−= �  (27) 

where TestL is the number of the test ratings. 

5.1  Experiment Results 

The first set of experiments is shown in Table 2 and Table 
3. In addition to the proposed FMM model, two memory-
based and three model-based approaches are evaluated. 
They are: the Pearson Correlation Coefficient method 
(PCC), the Vector Similarity method (VS), the aspect 
model using extension Equation (2) (AM_a), the aspect 
model with extension Equation (3) (AM_b), and the 
Personality Diagnosis model (PD). The two-sided 
clustering model is not included because previous studies 
have shown that its performance is substantially inferior 
to the aspect models. The number of user classes and the 
number of item classes in the FMM were set to 10 and 20 
for users and items separately without much tuning. 
(Varying the number of classes from 5*10 to 20*40 gives 
us similar results to those reported in Table 2 and 3). 

According to Table 2 and 3, the proposed new FMM 
performs better than all the other algorithms on all 
different configurations in terms of the MAE. 
Furthermore, consistent with (Pennock et al., 2000), the 
PD method achieves the second best performance, and is 
generally better than the other four methods (except 
AM_b on Each Movie with 400 training users). The 
number of aspects in the AM_a and AM_b were turned 
for the best performance (shown in italic in Table 2 and 
3). As for the same number of aspects, AM_b has much 
more parameters than AM_a, thus it can be seen that the 
optimal number of aspects in AM_b model is smaller than 
AM_a. Since the proposed FMM model is similar to the 
aspect model except for the explicitly modeling of user 
and item clusters, we attribute the good performance of 
FMM to its ability of modeling the classes of users and 
items separately. Furthermore, the difference between the 
proposed model and the two-sided clustering model 
suggests that it is beneficial not to assume that each user 
(item) belongs to a single class.  

Table 1. Characteristics of the MovieRating Testbed and the 
EachMovie Testbed. 

 MovieRating EachMovie 
Number of Users 500 2000 
Number of Items 1000 1682 

Average Number of Rated 
Items Per User 

87.7 129.6 

Number of Ratings 5 6 

Table 2. Experiment Results (MAE) on the MovieRaing Testbed. 
A smaller value means a better performance. 

Training 
Users Size 

Algorithms 
5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

PCC 0.881 0.832 0.809 
VS 0.859 0.834 0.823 

PD 0.839 0.826 0.818 

AM_a  (5)  0.882 0.856 0.836 

AM_b (2) 0.869 0.857 0.850 

100 

FMM 0.829 0.822 0.807 

PCC 0.878 0.828 0.801 

VS 0.862 0.950 0.854 

PD 0.835 0.816 0.806 

AM_a  (5) 0.891 0.850 0.818 

AM_b (4) 0.837 0.833 0.825 

200 

FMM 0.800 0.787 0.768 

Table 3. Experiment Results (MAE) on the EachMovie Testbed. 
A smaller value means a better performance. 

Training 
Users Size 

Algorithms 
5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

PCC 1.22 1.16 1.13 

VS 1.25 1.24 1.26 

PD 1.19 1.16 1.15 

AM_a (20) 1.27 1.18 1.14 

AM_b (10) 1.18 1.17 1.16 

200 

FMM 1.07 1.04 1.02 

PCC 1.22 1.16 1.13 

VS 1.32 1.33 1.37 

PD 1.18 1.16 1.15 

AM_a (20) 1.28 1.19 1.16 

AM_b (10) 1.15 1.14 1.13 

400 

FMM 1.05 1.03 1.01 

 



 

 

The second set of experiments is shown in Table 4 and 
Table 5, where we compare the performance of FMM 
with and without the decoupled models (DM). It is clear 
that the combination of FMM model with DM model 
outperforms the basic FMM in all configurations. 
Therefore, it is important to cluster users with similar 
preference patterns instead of rating patterns. It is 
interesting to further explore efficient inference and 
prediction algorithms for the graphical model in Figure 3, 
which is able to simultaneously group users with similar 
preference patterns, rating patterns and items with similar 
characteristics and therefore may result in even more 
improvement in the prediction accuracy. 

6.  Conclusion and Future Work 

Partition or clustering techniques have been studied 
intensively in the previous work for collaborative 
filtering. In this work, we proposed a formal graphical 
model for collaborative filtering, named flexible mixture 
model (FMM). The new model tries to address three 
issues in collaborative filtering: 1) explicitly modeling 
both classes of users and items by taking into account 
their correlations; 2) allowing each user and item to 
belong to multiple clusters simultaneously; 3) clustering 
users with similar preference patterns instead of rating 
patterns. Experiments on two common testbeds with 
several different configurations indicated that the 
proposed model is able to outperform five other 
algorithms for collaborative filtering task substantially. 

The combination method of the flexible mixture model 
and the decoupled models is rather preliminary. As future 
work, we plan to explore better efficient approximation 
algorithms for inference and prediction with the complex 
graphical model, which can simultaneously group users 
with similar preference patterns, rating patterns and items 
with similar characteristics. Finally, the proposed FMM 
model is only applied and evaluated on the problem of 
predicting item rating for new users; we hope to extend 
this model for other tasks such as recommending new 
items to known users in the further work. 

Acknowledgements 

We thank ChengXiang Zhai for his helpful discussion, 
Paul Ogilvie and Jamie Callan for their useful comments 
and help to improve the English in this paper. 

References 

Basu, C., & Hirsh, H. (1998). Recommendation as 
classification: Using social and content-based 
information in recommendation. In the Proceedings of 
Fifteenth National Conference on Artificial Intelligence. 

Breese J. S., Heckerman D., Kadie C. (1998). Empirical 
Analysis of Predictive Algorthms for Collaborative 

Filtering. In the Proceeding of the Fourteenth 
Conference on Uncertainty in Artificial Intelligence. 

O’Connor, M. & Herlocker, Jon. (2001). Clustering Items 
for Collaborative Filtering. In the Proceedings of 
SIGIR-2001 Workshop on Recommender Systems, New 
Orleans, LA. 

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). 
Maximum likelihood from incomplete data via the EM 
algorithm. Journal of the Royal Statistical Society, B39: 
1-38. 

Hofmann, T., & Puzicha, J. (1999). Latent Class Models 
for Collaborative Filtering. In the Proceedings of 
International Joint Conference on Artificial 
Intelligence. 

Hofmann, T., & Puzicha, J. (1998). Statistical models for 
co-occurrence data (Technical report). Artificial 
Intelligence Laboratory Memo 1625, M.I.T. 

Pennock, D. M.,  Horvitz, E.,  Lawrence, S., & Giles, C. 
L. (2000). Collaborative Filtering by Personality 
Diagosis:  A Hybrid Memory- and Model-Based 
Approach. In the Proceeding of the Sixteenth 
Conference on Uncertainty in Artificial Intelligence. 

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & 
Riedl, J. (1994). Grouplens: An Open Architecture for 
Collaborative Filtering of Netnews. In Proceeding of the 
ACM 1994 Conference on Computer Supported 
Cooperative Work. 

Table 4. Experiment Results (MAE) on the MovieRaing Testbed 
for FMM and FMM plus Decoupled models (DM). A smaller 
value means a better performance. 

Training 
Users Size 

Algorithms 
5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

FMM 0.829 0.822 0.807 
100 

FMM+DM 0.791 0774 0.751 

FMM 0.800 0.787 0.768 
200 

FMM+DM 0.770 0.753 0.730 

Table 5. Experiment Results (MAE) on the EachMovie Testbed 
for FMM and FMM plus Decoupled models. A smaller value 
means a better performance. 

Training 
Users Size 

Algorithms 
5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

FMM 1.07 1.04 1.02 
200 

FMM+DM 1.06 1.02 1.00 

FMM 1.05 1.03 1.01 
400 

FMM+DM 1.04 1.01 0.99 

 


