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Abstract

Cluster analysis is the automated search for groups of homogeneous observations in a data set. A
popular modeling approach for clustering is based on finite normal mixture models, which assume
that each cluster is modeled as a multivariate normal distribution. However, the normality
assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture
models are not robust against outliers; they often require extra components for modeling outliers
and/or give a poor representation of the data. To address these issues, we propose a new class of
distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling.
This class of distributions generalizes the normal distribution with the more heavy-tailed t
distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a
unified framework to simultaneously handle outlier identification and data transformation, two
interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation
along with transformation selection. We demonstrate the proposed methodology with three real
data sets and simulation studies. Compared with a wealth of approaches including the skew-t
mixture model, the proposed t mixture model with the Box-Cox transformation performs
favorably in terms of accuracy in the assignment of observations, robustness against model
misspecification, and selection of the number of components.
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1 Introduction

In statistics, model-based clustering (McLachlan 1982; Titterington et al. 1985; McLachlan
and Basford 1988; Banfield and Raftery 1993; Celeux and Govaert 1995; McLachlan and
Peel 2000; Fraley and Raftery 2002; McLachlan et al. 2003; Bouveyron et al. 2007;
McNicholas and Murphy 2008; Scrucca 2010; Andrews and McNicholas 2010) is a popular
unsupervised approach to look for homogeneous groups of observations. The most
commonly used model-based clustering approach is based on finite normal mixture models,
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which has been shown to give good results in various applied fields, for example, gene
expression (Yeung et al. 2001; McLachlan et al. 2002; Pan et al. 2002), image analysis
(Wehrens et al. 2004; Fraley et al. 2005; Li et al. 2005), medical diagnosis (Schroeter et al.
1998; Forbes et al. 2006) and astronomy (Kriessler and Beers 1997; Mukherjee et al. 1998).

However, normal mixture models rely on the assumption that each component follows a
normal distribution, which is often unrealistic for data with groups asymmetric in shape (Lin
et al. 2007b; Lo et al. 2008; Lin 2009a, 2010). A common remedy for the asymmetry issue is
to look for transformations of the data that make the normality assumption more realistic.
Box and Cox (1964) discussed the power transformation in the context of linear regression,
which has also been applied to normal mixture models (Schork and Schork 1988; Gutierrez
et al. 1995).

Another line of attempts to resolve the asymmetry observed in data is to enhance the
flexibility of the normal distribution by introducing skewness. Azzalini (1985) developed a
class of univariate skew-normal distributions with the introduction of a shape parameter to
account for skewness, which had been put to use in a mixture modeling context by Lin et al.
(2007b). A multivariate version of the skew-normal distributions was first proposed by
Azzalini and Dalla Valle (1996), with various generalizations or modifications ensuing. One
such modification was found in Sahu et al. (2003), who developed a new class of
multivariate skew elliptically symmetric distributions with applications to Bayesian
regression models, and included the multivariate skew-normal distribution as a special case.
As opposed to Azzalini and Dalla Valle’s (1996) formulation of the skew-normal
distribution, the correlation structure in that of Sahu et al. (2003) is not affected by the
introduction of skewness in the sense that independence between elements of a random
vector is preserved irrespective of changes in the skewness parameters. The latter
formulation was adopted by Lin (2009a), who introduced the multivariate skew-normal
mixture model, and described a variant of the Expectation-Maximization (EM) algorithm
(Dempster et al. 1977), called the Expectation-Constrained-Maximization (ECM) algorithm
(Meng and Rubin 1993), for maximum likelihood estimation. However, the implementation
of this methodology is fairly computationally intensive. A simplified version of Sahu et al.’s
(2003) formulation has recently been suggested by Pyne et al. (2009), who parameterized
skewness in the form of a vector in place of a matrix. As a result of this simplification, the
computational complexity of parameter estimation has been reduced considerably.

In addition to non-normality, there is also the problem of outlier identification in mixture
modeling. Outliers can have a significant effect on the resulting clustering. For example,
they will usually lead to overestimating the number of components in order to provide a
good representation of the data (Fraley and Raftery 2002). If a more robust model is used,
fewer clusters may suffice. Outliers can be handled in the model-based clustering
framework, by either replacing the normal distribution with a more robust one (e.g., t; see
Peel and McLachlan 2000; McLachlan and Peel 2000) or adding an extra component to
accommodate the outliers (e.g., uniform; see Schroeter et al. 1998).

Transformation selection and outlier identification are two issues which can have heavy
mutual influence (Carroll 1982; Atkinson 1988). While a stepwise approach in which
transformation is preselected ahead of outlier detection (or vice versa) may be considered, it
is unlikely to address the problem well, as the preselected transformation may be influenced
by the presence of outliers. One possible means of handling the two issues simultaneously is
through the application of skew-t distributions (Azzalini and Capitanio 2003; Sahu et al.
2003) in mixture modeling. Such an attempt was given by Lin et al. (2007a), who proposed
a skew-t mixture model based on the formulation of Azzalini and Capitanio (2003), but it is
confined to the univariate case. Not until recently has a multivariate version of the skew-t
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mixture model come to light. Lin (2010) and (Pyne et al. 2009) adopted a similar approach
to the case of skew-normal in defining the multivariate skew-t distribution, thereby
simplifying Sahu et al.’s (2003) formulation with a vector in place of a skewness matrix.

In view of the aforementioned issues, we propose a unified framework based on mixture
models using a new class of skewed distributions, namely, multivariate t distributions with
the Box-Cox transformation, to handle transformation selection and outlier identification
simultaneously. The t distribution provides a robust mechanism against outliers with its
heavier tails relative to the normal distribution (Lange et al. 1989). The Box-Cox
transformation is a type of power transformation, which can bring skewed data back to
symmetry, a property of both the normal and t distributions. Along with the introduction of
the mixture model using this new class of distributions, we also describe a convenient means
of parameter estimation via the EM algorithm. Whilst the proposed framework is
computationally much simpler than mixture modeling using skew-t distributions, it performs
well in various scenarios compared to a wealth of competing approaches, as shown in
subsequent sections of this article. A simplified form of our proposed framework has been
applied to flow cytometry, which shows a favorable performance in identifying cell
populations (Lo et al. 2008). This article presents a comprehensive framework that
substantially enriches that previous simplified version, including the selection of
component-specific transformations, and the provision of a level of robustness adaptive to
the data. In addition, the emphasis is laid upon computational development of the proposed
methodology. We have also included a large-scale comparison with competing approaches
such as those using the skew-normal or skew-t mixture distributions.

The structure of this article is as follows. In Sect. 2 we first introduce the new class of
skewed distributions, multivariate t distributions with the Box-Cox transformation. Then we
introduce the mixture model using the proposed distributions, and present details including
outlier identification, density estimation and the selection of the number of components. In
addition, we describe an EM algorithm to simultaneously handle parameter estimation and
transformation selection for our proposed mixture model. In Sect. 3, the performance of the
proposed framework is examined on real data sets and compared to a wealth of commonly
used approaches. Section 4 presents extensive simulation studies to further evaluate our
proposed framework relative to the other approaches. Finally, in Sect. 5 we summarize and
discuss our findings.

2 Methodology

2.1 Preliminaries

2.1.1 The multivariate t distribution—The multivariate t distribution has found its use
as a robust modeling tool in various fields of applied statistics like linear and non-linear
regression, time series, and pedigree analysis; see Lange et al. (1989) and Kotz and
Nadarajah (2004) for examples. The t distribution is applied in place of the normal
distribution when the latter fails to offer long enough tails for the error distribution.
Formally, a random vector y of length p is said to follow a p-dimensional multivariate t
distribution with mean μ (ν > 1), covariance matrix ν (ν − 2)−1 Σ (ν > 2) and ν degrees of
freedom if its density function is given by

(1)
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The degrees of freedom ν may be viewed as a robustness tuning parameter, as it controls the
fatness of the tails of the distribution. When ν → ∞, the t distribution approaches a p-
dimensional multivariate normal distribution with mean μ, covariance matrix Σ, and density
function

(2)

An account of the development of the maximum likelihood estimation of the multivariate t
distribution can be found in Liu and Rubin (1995), Liu (1997) and Peel and McLachlan
(2000). The estimation involves the use of the EM algorithm or its variants including the
ECM and ECME (Liu and Rubin 1994) algorithms. The crux of these algorithms constitutes
the fact that we can parameterize a t distribution using a normal-gamma compound
distribution. The degrees of freedom ν may be jointly estimated along with other unknown
parameters, or fixed a priori when the sample size is small. In the latter case, setting ν = 4
has been found to provide good protection against outliers and work well in many
applications (see, for example, Lange et al. 1989; Stephens 2000).

2.1.2 Box-Cox transformation—The power transformation proposed by Box and Cox
(1964) was originally introduced to make asymmetric data fulfill the normality assumption
in a regression model. The Box-Cox transformation of an observation y is defined as
follows:

(3)

where λ is referred to as the transformation parameter. Note that this function is defined for
positive values of y only. In view of the need to handle negative-valued data in some
applications, we adopt a modified version (Bickel and Doksum 1981) of the Box-Cox
transformation which is also defined for negative values:

(4)

When all data values are positive, this modified Box-Cox transformation reduces to the
original version.

2.2 The multivariate t distribution with the Box-Cox transformation

In this article, we propose a new class of distributions, namely, multivariate t distributions
with the Box-Cox transformation (t BC), to handle transformation and to accommodate
outliers simultaneously. Explicitly, a random vector y of length p following such a
distribution has a density function specified by

(5)
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where  is the Jacobian induced by the Box-Cox transformation.
Equivalently, the random vector y follows a multivariate t distribution after being Box-Cox
transformed. It is difficult to derive the exact mean and variance of the distribution in closed
form. However, using first-order Taylor series expansion, approximations for the mean and
covariance matrix can be derived. The mean can be approximated by a vector of length p
with the j -th element being sgn (λμj + 1)|λμj + 1|1/λ, and the variance by ν/(ν − 2)Dp (μ;
λ)ΣDp (μ; λ), where Dp(μ; λ) is a diagonal matrix of order p with the j -th diagonal element
being |λμj + 1|1/λ−1. The various shapes that can be represented by the t BC are shown in Fig.
1.

Analogous to the case of the t distribution without transformation, the t BC approaches a
multivariate normal distribution with the Box-Cox transformation (NBC) when ν → ∞. In
addition, this class of distributions also includes the untransformed version of the
multivariate t or normal distribution. The untransformed t or normal distribution is recovered
by setting λ in (5) to one, although there is a translation of one unit to the left in each
direction on the original scale (due to the term −1/λ in (4)).

The flexible class of t BC offers robustness against both outliers and asymmetry observed in
data. Comparatively, the t distribution alone is deemed robust in the sense that it offers a
mechanism to accommodate outliers. As noted by Lange et al. (1989), however, the t
distribution is not robust against asymmetric error distributions. When asymmetry is
observed, data transformation is desired for the sake of restoring symmetry, and
subsequently drawing proper inferences. The introduction of the t BC is therefore in line
with the notion of Lange et al. (1989).

2.3 The mixture model of t distributions with the Box-Cox transformation

2.3.1 The model—Making use of the t BC introduced in the last subsection, we now
define a G-component mixture model in which each component is described by a t BC.
Given data y, with independent p-dimensional observation vectors yi, i = 1, …, n, the
likelihood for the t BC mixture model is given as follows:

(6)

The mixing proportion πg is the probability that an observation belongs to the g-th
component. Estimates of the unknown parameters Ψ = (Ψ1, …, ΨG) where Ψg = (πg, μg, Σg,
νg, λg) can be obtained conveniently using the EM algorithm described in the next
subsection. Analogous to the case of t BC, the mixture distribution approaches that of an
NBC mixture model with ϕp(· |μg, Σg, νg) being replaced by φp(· |μg, Σg) when νg → ∞ for
all g. Also, the class of t BC mixture models includes the conventional, untransformed t or
normal mixture model, obtained by fixing λg = 1 for all g. Note that a restricted form of (6)
has been previously applied in Lo et al. (2008) to identify cell populations in flow cytometry
data, on setting a global transformation parameter λ = λg and fixing νg = 4 for all g.

2.3.2 Maximum likelihood estimation—In this subsection we illustrate how
transformation selection can be handled along with parameter estimation simultaneously via
an EM algorithm. We first define two types of missing data, same as the ones used in the
maximum likelihood estimation for the t mixture model described in Peel and McLachlan
(2000). One is the unobserved component membership zi = (zi1, …, ziG) with
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associated with each observation yi. Each vector Zi follows independently a multinomial
distribution with one trial and event properties π = (π1, …, πG), denoted as Zi ~ (1, π).
Another type of missing data is the weight ui, coming from the normal-gamma compound
parameterization for the t distribution, such that

(7)

independently for i = 1, …, n, and Ui ~ Ga(νg/2, νg/2). The advantage of writing the model
in this way is that, conditional upon the Ui ’s, the sampling errors are again normal but with
different precisions, and estimation becomes a weighted least squares problem. The
complete-data log-likelihood becomes

(8)

where Ga(·| ·) is the density function of ui. The E-step of the EM algorithm involves the
computation of the conditional expectation of the complete-data log-likelihood EΨ (lc|y). To
facilitate this, we need to compute z̃ig ≡ EΨ (Zig |yi), ũig ≡ EΨ (Ui |yi, zig = 1) and s̃ig ≡
EΨ(log Ui |yi, zig = 1):

(9)

(10)

and

(11)
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where ψ(·) is the digamma function. Note that, if we assume a global transformation
parameter λ, (9) used to compute z̃ig is slightly simplified as

(12)

As can be seen in the following, s̃ig only appears in (18) or (19) for the update of the degrees
of freedom νg. If we fix νg to some predetermined value, then s̃ig is not needed and so the
quantity in (11) does not need to be computed. Upon plugging z̃ig, ũig and s̃ig into (8) for zig,
ui and log ui respectively, we obtain the conditional expectation of the complete-data log-
likelihood.

In the M-step, we update the parameter estimates with values which maximize the
conditional expectation of the complete-data log-likelihood. The mixing proportions are
updated with the following formula:

(13)

where ng ≡ Σi z̃ig. The estimation of μg and Σg needs to be considered along with the
transformation parameter λg of the Box-Cox transformation. Closed-form solutions for μg

and Σg are available conditional on λg as follows,

(14)

(15)

No closed-form solution is available for λg, but on substituting μ ̂g = h1(λg) and Σ̂g = h2(λg)
into the conditional expectation of the complete-data log-likelihood for μg and Σg

respectively, the problem reduces to a one-dimensional search of λg. Explicitly, the
optimization is recast as a one-dimensional root-finding problem of the equation ∂EΨ (lc|y)/
∂λg = 0, in which

(16)

where  is a vector of length p whose j -th element is

, and μg and Σg are replaced with μ ̂g = h1(λg) and Σ̂g =

Lo and Gottardo Page 7

Stat Comput. Author manuscript; available in PMC 2013 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



h2(λg) respectively. The equation may be solved numerically using, for example, Brent’s
(1973) algorithm. If we assume a global transformation parameter λ instead, the left hand
side of the equation to consider is slightly modified from (16) as

(17)

Once a numerical estimate of λg has been obtained, we substitute it back into (14–15) to
update μg and Σg respectively.

To complete the M-step, we need to update the estimate of the degrees of freedom νg, unless
it is fixed a priori. From (8), we see that there are no overlaps between terms involving (μg,
Σg, λg) and those involving νg. Hence, the incorporation of the Box-Cox transformation does
not complicate the estimation of νg. Again, since there is no closed-form solution available
for νg, we turn it into a one-dimensional root-finding problem by considering the equation
∂EΨ (lc | y)/∂νg = 0, in which

(18)

If we assume a global degrees of freedom ν = νg for all g, the derivative ∂EΨ (lc | y)/∂ν is
given by

(19)

Alternatively, to improve the convergence, we may exploit the advantage of the ECME
algorithm and switch to update ν by optimizing the constrained actual log-likelihood
function:

(20)

Apart from an intuitive sense that a faster convergence is expected on disregarding the
information of the parameter estimates obtained from the previous iteration (which is carried
over by the conditional expectation of the complete-data log-likelihood otherwise) as well as
considering the actual likelihood instead of its approximation, it also saves a little
computational burden by circumventing the computation of s̃ig.

The EM algorithm alternates between the E and M-steps until convergence. The quantity z̃ig

may be interpreted as the posterior probability that observation yi belongs to the g-th
component. The maximum a posteriori configuration results from assigning each
observation to the component associated with the largest z̃ig value. The uncertainty
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corresponding to each assignment may be conveniently quantified as 1 − maxg z̃ig (Bensmail
et al. 1997).

2.3.3 Outlier identification—Just like the case of z̃ig, the introduction of ũig does not
only facilitate the implementation of the EM algorithm, but also aids in the interpretation of
the final estimated model. As seen from (14–15), ũig serves as the weight in the weighted
least squares estimation of μg and Σg. It holds a negative relationship with the Mahalanobis

distance  between yi and μg on the transformed scale, as given
by (10). Hence, a small value of ũig would suggest that the corresponding observation is an
outlier, and diminish its influence on the estimation of the parameters. In contrast, in the
absence of such a mechanism, a normal mixture model is not robust against outliers, as the
constraint Σg z̃ig = 1 for all i restricts all observations to make equal contributions overall
towards parameter estimation.

Exploiting such a mechanism, we may conveniently set up a rule of calling an observation
with the associated ũig value smaller than a threshold, say, 0.5, an outlier. Such a threshold
may be selected on a theoretical basis by considering the one-to-one correspondence
between ũig and the Mahalanobis distance which follows some standard, known distribution.
On noting that

(21)

where  follows a p-dimensional t distribution with parameters (μg, Σg, νg) and F(·)
denotes an F distribution, a threshold c for ũig may be determined by considering the desired
threshold quantile level α of the distribution stated in (21):

(22)

where F1−α(·) denotes the α quantile of the F distribution such that Pr(F ≥ F1−α) = 1 − α.
For instance, if νg = 4, p = 5, and the desired threshold quantile level is α = 0.9, then the
corresponding threshold for ũig is c = 0.37 given the 0.9 quantile F0.1(5, 4) = 4.051. Any
observation with the associated ũig < 0.37 will be deemed an outlier.

From (10), we can also see how the degrees of freedom νg contributes to the robustness of
the parameter estimation process. A smaller value of νg tends to downweight outliers to a
greater extent, while a large enough value tends to regress all weights to one, approaching
the case of the NBC model.

2.3.4 Density estimation—One advantage of mixture modeling based on the normal
distribution is that the marginal distribution for any subset of the dimensions is also
normally distributed with the mean and covariance matrix extracted from the conformable
dimensions (Johnson and Wichern 2002). This favorable property is also observed in the
multivariate t distribution (Liu and Rubin 1995; Kotz and Nadarajah 2004), making the
estimation of the marginal density for any dimensions available at a very low computational
cost. Consider the partition Y = (Y1, Y2) as an example. If Y comes from a multivariate t
distribution with degrees of freedom and with mean and covariance matrix conformably
partitioned as
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respectively, then its subset Y1 will follow a t distribution with mean μ1, covariance matrix
ν/(ν − 2)Σ11 and the same ν degrees of freedom. This nice property is easily extended to a t
mixture model with more than one component, and, in addition, preserved in our proposed t
BC mixture model. One can easily derive the marginal density by extracting the
conformable partitions from the means, covariance matrices and the Jacobian. The 90th
percentile region of the mixture components shown in Supplementary Fig. 1 (Online
Resource 1) is produced by these means.

2.3.5 Selecting the number of components—When the number of mixture
components is unknown, we apply the Bayesian Information Criterion (BIC) (Schwarz
1978) to guide the selection. The BIC provides a convenient approximation to the integrated
likelihood of a model and, in the context of mixture models, is defined as

(23)

where L ̃G is the likelihood value of (6) evaluated at the maximum likelihood estimates of Ψ,
and KG is the number of independent parameters for a G-component mixture model. The
BIC would then be computed for a range of possible values for G and the one with the
largest BIC (or relatively close to it) would be selected. Although the asymptotic
approximation of the integrated likelihood leading to the BIC depends on regularity
conditions that are not satisfied in the context of mixture models, theoretical and practical
justifications can be found in favor of the application of the BIC on model selection for
mixture models. Leroux (1992) shows that the BIC will not underestimate the number of
components asymptotically. Keribin (2000) shows that the BIC gives a consistent estimate
of the number of components. Empirical evidence justifying the use of the BIC in the
context of mixture models can be found in a wealth of literature; see, for example, Fraley
and Raftery (1998, 2002), and more recently, McNicholas and Murphy (2008), Wang et al.
(2009) and Andrews and McNicholas (2010).

Often, the BIC is applied in line with the principle of parsimony, by which we favor a
simpler model if it does not incur a downgrade of the modeling performance. Suppose there
are two t BC mixture models with G1 and G2 components respectively such that G1 < G2.
Under the notion of this principle, we would prefer the simpler model, i.e., the one with G1

components, unless a very strong evidence of improved performance signified by an
increase of >10 (Kass and Raftery 1995; Fraley and Raftery 2002) is observed from BICG1
over BIC G1.

3 Application to real data

3.1 Data description

To illustrate our methodology we use the following real data sets.

3.1.1 The bankruptcy data set—This data set was obtained from a study which
conducted financial ratio analysis to predict corporate bankruptcy (Altman 1968). The
sample consists of 66 manufacturing firms in the United States, of which 33 are bankrupt
and the other 33 solvent. The data collected include the ratio of retained earnings (RE) to
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total assets, and the ratio of earnings before interest and taxes (EBIT) to total assets. They
were derived from financial statements released two years prior to bankruptcy, and
statements from the solvent firms during the same period.

3.1.2 The crabs data set—Measurements in this data set were collected from a study of
rock crabs of genus Leptograpsus (Campbell and Mahon 1974). The sample is composed of
50 crabs for each combination of species (blue and orange color forms) and sex (male and
female), resulting in a total of 200 observations. There are five morphological
measurements, namely, the frontal lobe size, the width of the rear region of the carapace, the
length of the carapace along the midline, the maximum width of the carapace, and the depth
of the body, for each crab.

3.1.3 The wine data set—To identify the discriminating factors from a set of chemical
and physical characteristics to classify wines by type and origin, a study with a sample of
178 red wines grown in Piedmont, Italy was conducted (Forina et al. 1986). Three cultivars
were represented in the sample: Barolo (59), Grignolino (71) and Barbera (48). For each
wine 28 measurements were made. Here, we consider a 13-variable data subset available in
the gclusR package (Hurley 2004); the 13 continuous measurements include alcohol, malic
acid, ash, alkalinity of ash, magnesium, total phenols, flavanoids, non-flavanoid phenols,
proanthocyanins, color intensity, hue, OD280/OD315 of diluted wines and proline.

3.2 Implementation

We compare the performance of six mixture modeling approaches using different mixture
distributions, namely, t with the Box-Cox transformation (t BC), t, normal with the Box-Cox
transformation (NBC), normal, skew-t, and skew-normal. Since all observations in the data
sets come with known labels, we can assess and compare the models based on
misclassification rates. For the bankruptcy and crabs data sets, we also take the number of
components selected by the BIC as an assessment criterion. In the analysis of the wine data
set, we examine an interesting problem that how dimension reduction refines the
classification performance.

We first fit the data sets using the six aforementioned models in turn, on fixing the number
of mixture components at the known values, i.e., two for the bankruptcy data set, four for the
crabs data set, and three for the wine data set. The same initialization strategy is applied to
the EM algorithm for all the models. Each time, 10 random partitions are generated.
Following each partition formed, z̃ig will be assigned one or zero accordingly, and the model
parameters are initialized using the formulae in the M-step. A few EM runs ensue,
terminated at a premature tolerance level of 10−3 for the relative change in the likelihood
values between two successive iterations. Out of the 10 random partitions, the one delivering
the highest likelihood value after a few EM runs will be taken as the initial configuration for
the eventual EM algorithm. Convergence of the EM algorithm is detected at a tolerance
level of 10−6. At convergence, misclassification rates, i.e., the proportions of observations
assigned to the incorrect group, are computed. Each misclassification rate is determined as
the minimum considering all permutations of the labels of the components.

To facilitate the comparison of their capability to select the correct number of components,
when we apply the aforementioned models, we fit the data and compute the BIC once for
each choice of the number of mixture components G = 1, 2, …, M, where M = 6 for the
bankruptcy data set and M = 8 for the crabs data set. These values are chosen for M because
they are well above the true number of groups (two for the bankruptcy data set and four for
the crabs data set) such that little change in the result is expected when we further increase
M; numerical problems may arise when M is too large, moreover.

Lo and Gottardo Page 11

Stat Comput. Author manuscript; available in PMC 2013 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



All results presented here were obtained with our software implementation of clustering for
flow cytometry, flow-Clust (Lo et al. 2009), except for the skew-normal and skew-t mixture
modeling that were obtained with the FLAME software
(http://www.broadinstitute.org/cancer/software/genepattern/modules/FLAME/) developed
by Pyne et al. (2009).

3.3 Results

3.3.1 Classification—Table 1 shows the misclassification rates for the different models.
As can be seen, for the bankruptcy data set, the t BC and NBC mixture models deliver
misclassification rates (15.2% and 16.7% respectively) lower than the other methods by a
wide margin. By taking a graphical inspection of the results, we find that the poor
classification performance of the other four methods is due to the inability to resolve the
shape of the two groups of observations properly (Fig. 2(b, d–f)). The challenge likely arises
from the scattered group of bankrupt firms, with its most concentrated region located at the
upper right corner and in close proximity to the dense group of solvent firms. The sensitivity
of normal mixture models to outliers is clearly demonstrated in this example: the obvious
outlier at the bottom of the scatter-plot leads to an excessively sparse component
representing the bankrupt group. Consequently, most observations in the bankrupt group
have been absorbed by the compact component representing the solvent group. The shapes
of the components in the t, skew-t and skew-normal mixture models are not all the same, but
it appears that for all of them the scattered group of bankrupt firms are split into two
components with one absorbing a concentration extending to the left and the other to the
bottom. In contrast, both the t BC and NBC mixture models provide a nice representation of
both groups of observations (Fig. 2(a, c)). The group of bankrupt firms is resolved quite
successfully upon a proper transformation (λ ̂≈ 0.5 for both models) of the observations.

As another means of performance assessment, we look into the location of the misclassified
observations in a plot of the ordered uncertainties (Fig. 3). On observing that the
misclassified observations have spread over the entire range of the uncertainties, it suggests
that the t, skew-t and skew-normal mixture models simply provide an incorrect
representation of the two groups (Fig. 3(b, e, f)). The quality of the fit using the t BC and
NBC mixture models respectively is confirmed by the corresponding uncertainty plots (Fig.
3(a, c)). The observations associated with high uncertainties are also the ones most likely to
be misclassified.

The results on the crabs data set once again show that the t BC mixture model delivers the
best performance in terms of misclassification rate (7%). It is followed closely by the t
(7.5%) and skew-t (8.5%) mixture models. The crabs data set has also been recently
analyzed by Raftery and Dean (2006), Bouveyron et al. (2007) and Scrucca (2010), who
employed dimension reduction techniques or subspace clustering to improve Gaussian
mixture modeling on high-dimensional data by seeking a more informative subspace. Their
reported misclassification rates range between 5–7.5%. Achieving competitive performance
against these approaches, the t BC model certainly appears favorable facilitated by allowing
for more flexible shapes of the components on the original data space.

Supplementary Fig. 1 (Online Resource 1) shows a scatterplot of the crabs data set projected
onto the first two dimensions, namely, the frontal lobe size and the width of the rear region
of the carapace. However, unlike the case for the bankruptcy data set with only two
dimensions, a visually clear discrimination of the four groups in the crabs data set cannot be
achieved by projecting the observations onto any two out of the five dimensions. Therefore,
we opt for displaying the crabs data set on its second versus third principal components
which provides a good visually discriminating effect. Figure 4(a, b) suggest that those few
misclassified observations in the t BC and t mixture models are all likely in the overlapping
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region of neighboring groups, justifying that these models provide a good representation of
all the four groups in the data set. This is further confirmed by a check on the uncertainty
plots, in which the misclassified observations are also among the ones with the highest
uncertainties (Fig. 5(a, b)). Meanwhile, from Fig. 4(c, d, f) we find that, for the poorly
performed NBC, normal and skew-normal mixture models, misclassified cases are
concentrated on one or two of the groups. Supplementary Fig. 1(c, d, f) (Online Resource 1)
reveal that these models incorrectly split the assignment of the observations from those
groups into other components. As expected, these three poorly performing normal-based
models have misclassified observations spreading over the entire range in the uncertainty
plots (Fig. 5(c, d, f)).

In the following, we examine whether a pleasant classification performance persists when
we apply the t BC mixture modeling methodology to the wine data set with a higher
dimension (p = 13). From Table 2, we see that the t BC mixture model delivers a
misclassification rate (10.7%) drastically lower than the other models (28.1%–38.2%). The
high misclassification rates observed likely arise from the fact that the number of free
parameters to estimate increases in the order of p2, while the sample size is not very large (n
= 178) relative to the data dimension. We therefore attempt to reduce the data dimension via
principal component analysis and proceed with the major principal components that account
for the majority of the total variance in the data. A turning point at four is observed from the
scree plot (Supplementary Fig. 2 (Online Resource 2)), suggesting that the first four
principal components are the major contributors to the total variance; the cumulative
proportion of the total variance explained by these four principal components is about 80%.
We thereby extract the first four principal components, repeat the model-fitting procedure as
detailed in Sect. 3.2, and determine the misclassification rates. As reported in Table 2, a
significant improvement in classification has been observed for all the six approaches. With
the exception of the skew-normal mixture model, each of them succeeds in arriving at a
much lower misclassification rate of 5.1%–7.3%. The t BC mixture model still manages to
deliver marginally the best classification performance among the six approaches. Its count of
nine misclassified observations lags behind the result of Andrews and McNicholas (2010)
who correctly classified all but one of the observations, but levels the finding reported in
Scrucca (2010); both cited references integrated dimension reduction techniques into
Gaussian or t mixture modeling.

Figure 6 displays the wine data set projected onto its first and second principal components.
The five models represented in Fig. 6(a–e) accordingly by and large recover the group
structure of the data, while the skew-normal mixture model poorly identifies the separation
between Barolo and Grignolino wines. As in the analysis of the crabs data set, once again,
all the misclassified observations are found in the rightmost region of the plot of ordered
uncertainties for the t BC and t mixture models (Fig. 7(a–b)). On the contrary, from Fig. 7(f)
we see that five of the misclassified observations in the skew-normal mixture model fall in
the least-uncertainty region (left end of the plot). This empirically justifies its failure to
recover the shape of the groups of the wine data set.

3.3.2 Selecting the number of components—From the BIC curves shown in Fig. 8,
we observe that one single peak is observed for each modeling choice over the range of the
number of components attempted. The number of components at which a peak is observed is
deemed optimal by the BIC for the respective model. The BIC has selected the correct
number of components (two) for all the mixture models except normal when applied to the
bankruptcy data set (Table 3). As to the crabs data set in which the separation of the groups
is less clear-cut, it poses a challenge of selecting the right number of components to most
models. Only the t BC and t mixture models have recovered the correct number of
components (four) guided by the BIC. This result further confirms our observation stated in
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the last subsection that the four-component mixture model using the t BC or t mixture model
provides the best representation of the data out of all candidates.

4 Simulation studies

We have conducted a series of simulations to further evaluate the relative performance of
our proposed framework to the other approaches presented in Sect. 3.2. The different
approaches are evaluated for their sensitivity against model misspecification, using the
following two criteria: the accuracy in the assignment of observations, and the accuracy in
selecting the number of components.

4.1 Implementation

To facilitate the comparison, we generate data from the following mixture models: t BC,
skew-t, t and normal. To assess the accuracy in the assignment of observations, two settings
of parameter values have been adopted: one taken from the estimates obtained when
applying each of the aforementioned models to the bankruptcy data set, and the other one
from the crabs data set, with the number of components set as the respective known values.
As a result, each data set generated from the bankruptcy setting consists of two components
and two dimensions, while that from the crabs setting has four components and five
dimensions. For data sets generated under the bankruptcy setting we fix the number of
observations at 200, while it is set as 500 for the crabs setting. 100 data sets are generated
from each of the aforementioned models under each setting. To study the accuracy in
selecting the number of components, we focus at the crabs setting. Pertaining to this
criterion, the crabs setting offers a better platform to discriminate the relative performance
of the different approaches for its larger number of groups and higher dimensions. 1000
observations are generated from the crabs setting instead to avoid numerical problems that
may arise from small components formed when the number of components is significantly
larger than the true number.

We apply the six approaches presented in Sect. 3.2 in turn to each generated data set. The
same implementation details elucidated in Sect. 3.2 apply here, with the exceptions stated
below. In order to complete the simulation studies within a reasonable timeframe, whilst
guaranteeing a satisfactory level of convergence of the EM algorithm, the premature
tolerance level and the convergence tolerance level are changed to 10−2 and 10−5

respectively.

In the study of the accuracy in the assignment of observations, model fitting is done by
presuming that the number of components is known, i.e., two for the bankruptcy setting and
four for the crabs setting. Similar to the way we determined the misclassification rates in our
real data analysis, we consider all permutations of the labels of the components and take the
lowest one out of all misclassification rates computed. The performance of the different
models is compared via the average misclassification rates. To study the accuracy in
selecting the number of components, each time when we apply a model to a data set
generated under the crabs setting, we set the number of components from one up to eight in
turn. The number of components is then selected to be the one which delivers the highest
BIC.

On a sidetrack, as suggested by a reviewer of this article, we make a parallel run of the
entire simulation study of the accuracy in the assignment of observations by replacing
random partitioning with 10 partitions returned by K-means clustering (MacQueen 1967) in
initialization. All implementation settings are exactly the same as what have been stated
above, otherwise. The purpose of conducting such a parallel run is to see if K-means, a
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popular choice for initialization in clustering analysis, improves classification by providing
apparently more refined partitions than random partitioning.

4.2 Results

4.2.1 Classification—As shown clearly in Table 4 that summarizes the result using
random partitioning in initialization, our proposed t BC mixture model is the only model that
remains the best or close to the best in all the comparisons made. It delivers the lowest
misclassification rates under both settings (7.5% and 1.1% respectively) when data are
generated from the t BC mixture model. The flexibility of the t BC mixture model is
exhibited when we look into its performance in the scenario of model misspecification. It
remains close to the respective true model in those cases, and even delivers the lowest
misclassification rate when the true model is t under the bankruptcy setting (10.9%), or
normal under the crabs setting (2.7%). Contrariwise, when data are generated from the t BC
mixture model, with a lack of mechanisms to handle asymmetric components, both the t and
normal mixture models do not perform well. It is worth noting that even the skew-t mixture
model, which is intended for data departing from symmetry, also performs poorly; the
associated mis-classification rate is as high as 14.2% under the bankruptcy setting, while
that for t BC is only 7.5%. When data are generated from the skew-t mixture model, taking
advantage of the correct specification the skew-t mixture model performs well. The t BC
mixture model also shows a competent performance, however. Meanwhile, the skew-t
mixture model performs satisfactorily when the true mixture model is t or normal. The
normal mixture model cannot match the others at all when data are generated from any other
model included in this study, showing its vulnerability to outliers and asymmetric
components. In addition, it is interesting to notice that the normal mixture model gives a
rather high mis-classification rate (3.8%) relative to the levels attained by t BC, t and skew-t
(2.7%–2.9%) when it itself is the true model for data generation under the crabs setting.

The result of a parallel run of this part of study using K-means initialization is summarized
in Supplementary Table 1 (Online Resource 3). Compared with Table 4, whilst a slight
increase overall in the misclassification rates pertaining to the bankruptcy setting when
using K-means is observed, the increase as to the crabs setting is significant and consistent
across all the six approaches in comparison. We, however, do not deem this finding counter-
intuitive. As can be seen, there is considerable skewness underlying the groups in data sets
generated under the bankruptcy or crabs setting. K-means is equivalent to the classification
EM algorithm for a normal mixture model assuming a common covariance matrix spherical
in shape (Celeux and Govaert 1992; Celeux and Govaert 1995). These assumptions are
obviously violated by the asymmetric groups found in the generated data sets. Such a
violation of the assumptions incurs K-means to deliver misleading initial partitions, which
ultimately converge to sub-optimal local maxima. The result presented here is a mere
example revealing how an apparently more informative initialization scheme based upon an
incorrect assumption can compromise the result. As such, initialization other than random
partitioning that brings in additional assumptions should be used with caveat.

4.2.2 Selecting the number of components—Table 5 summarizes the result of this
part of study, giving 90% coverage intervals of the number of components, together with
numbers of times the correct number of components is selected for each model out of the
100 repetitions. The t BC mixture model selects the correct number of components (four) in
the majority of repetitions, even in case of model misspecification. It is the only model that
remains to contain only the true number of components in all the 90% coverage intervals.
On the other hand, both the skew-t and skew-normal mixture models fail to distinguish the
four groups properly in about 25% of the data sets generated from the t BC mixture model.
Besides, both the NBC and normal mixture models, when applied to data sets generated
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from the t or skew-t mixture model, tend to require an additional component to
accommodate the data in an excess of outliers.

5 Discussion

In this article, we have introduced a new class of distributions, the t distributions with the
Box-Cox transformation, for mixture modeling. The proposed methodology is in line with
Lange et al. (1989) notion that transformation selection and outlier identification are two
issues of mutual influence and therefore should be handled simultaneously. In our real data
applications and simulation studies, we have shown the flexibility of this methodology in
accommodating asymmetric components in the presence of outliers, and in coping with
model misspecification. The vulnerability of the normal-based models to outliers is exposed
in the analysis of the crabs data set, in which the presence of outliers prevents a clear
distinction of the four groups. A lack of mechanisms to downsize the influence of remote
observations undermines the ability of these approaches to properly locate the cores of the
four groups in the data set. On the other hand, the analysis of the bankruptcy data set
provides a very good example of demonstrating the importance of incorporating data
transformation in clustering. In the absence of a means to accommodate components
departing from symmetry, the t mixture model fails to provide a reasonable representation of
the data, while the number of groups is known in advance. Our simulation studies have
confirmed these findings.

As mentioned in the Introduction, although mixture modeling using our proposed t BC
distributions and that using the skew-t distributions follow two lines of development with
more or less the same aim, our approach has the appeal of being computationally much
simpler to implement. As noted in Lin (2010), difficulties have been encountered in
evaluating the conditional expectation of the complete-data log-likelihood in the E-step of
the EM algorithm for the skew-t mixture model. The objective function cannot be derived in
closed form due to the presence of analytically intractable quantities. Numerical techniques
for optimization as well as integration need to be employed extensively to update a vast
amount of quantities in both the E and M-steps of the algorithm, undermining the
computational stability therein. Besides, the parameterization that accounts for skewness in
our proposed model originates from the family of power transformations, which is
intuitively interpretable. It is less trivial to interpret the skewness vector parameterized in the
skew-t distribution, however. In addition, as presented in Sect. 2.3.3, the way to identify
outliers using our approach is straightforward and supported with a theoretical justification:
exploiting the relationship between ũig and the quantile of an F distribution through (22), it
is almost costless to proceed with outlier identification once the EM algorithm is completed.
On the contrary, when the skew-t mixture model is used, we cannot determine such a
threshold by recasting it as a known quantity obtained from a standard distribution.
Consequently, it demands extra computational effort to identify outliers, especially when the
dimension of the data is high. Finally, and perhaps most importantly, as demonstrated from
our real data applications and simulation studies, the simplicity of the computational
implementation of our proposed methodology is not achieved at the expense of the quality
of performance. The results have shown that our proposed approach performs as well as that
based on the skew-t mixture model, or even slightly better.

In this article, we present a flexible form of multivariate mixture modeling that
simultaneously incorporates outlier identification and data transformation. Nevertheless, we
are aware that the modeling performance may not be very satisfactory when we apply the
proposed methodology to data sets with a high dimension, say, p ≥ 10. As noted by Fraley
and Raftery (2002) and Bouveyron et al. (2007), mixture models in the Gaussian (or related)
family suffer from an excessive number of parameters to estimate when the data dimension
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is high: the number of free parameters increases in the order of p2. Incidentally, a high-
dimensional data set likely contains variables redundant in providing clustering information.
To resolve the aforementioned issues, we need to reduce the number of free parameters.
Constrained parameterization of the covariance matrices via eigenvalue decomposition first
proposed by Banfield and Raftery (1993) would be a potential direction to investigate at a
subsequent stage. Another, but not mutually exclusive, approach is to incorporate dimension
reduction techniques. In this article, the analysis of the wine data set has revealed the
potential benefit of dimension reduction with a simple application of principal component
analysis. More vigorous approaches (see, for example, McNicholas and Murphy 2008;
Scrucca 2010; Andrews and McNicholas 2010) that integrate dimension reduction into
mixture modeling would be desirable such that our proposed methodology can handle
feature selection along with data transformation and outlier identification concurrently.

An open-source software package that facilitates flow cytometry analysis with the
methodology proposed in this article has been developed and is available at Bioconductor
(Gentleman et al. 2004). It is released as an R package called flowClust (Lo et al. 2009) and
addresses the vast demand for software development from the flow cytometry community.
flowClust is dedicated to the automated identification of cell populations, and is well
integrated into other flow cytometry packages. Meanwhile, we recognize the potential of
applying the proposed methodology in other fields, and the importance of developing a
general-purpose tool like MCLUST (Fraley and Raftery 2002, 2006), the popular software
that performs clustering analysis based on normal mixture models. We are going to work on
such a general-purpose, stand-alone software that will serve as a contribution to the general
public.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Contour plots revealing the shape of bivariate t distributions with the Box-Cox
transformation for different values of the transformation parameter. Each distribution has a
mean of 10 and unit variance along each dimension. The degrees of freedom parameter is
fixed at eight. The values of the transformation parameter λ range from −5 (extremely right-
skewed) to 5 (extremely left-skewed)
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Fig. 2.

Scatterplots revealing the assignment of observations for different models applied to the
bankruptcy data set. The black solid lines represent the 90th percentile region of the
components in the mixture models. Misclassified observations are drawn in red
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Fig. 3.

Plots revealing the location of misclassified observations relative to the ordered uncertainties
of all observations for different models applied to the bankruptcy data set. Locations of the
misclassified observations are marked with red vertical lines
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Fig. 4.

Plots revealing the assignment of observations for different models applied to the crabs data
set, displayed via the second and third principal components. Misclassified observations are
drawn in red, overriding the original colors used to reveal their true group memberships
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Fig. 5.

Plots revealing the location of misclassified observations relative to the ordered uncertainties
of all observations for different models applied to the crabs data set. Locations of the
misclassified observations are marked with red vertical lines
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Fig. 6.

Plots revealing the assignment of observations for different models applied to the wine data
set, displayed via the first and second principal components. Misclassified observations are
drawn in red, overriding the original colors used to reveal their true group memberships
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Fig. 7.

Plots revealing the location of misclassified observations relative to the ordered uncertainties
of all observations for different models applied to the wine data set. Locations of the
misclassified observations are marked with red vertical lines
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Fig. 8.

Plots of BIC against the number of components for the different models applied to the
bankruptcy and crabs data sets
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Table 1

Misclassification rates for different models applied to the bankruptcy and crabs data sets

Model Bankruptcy Crabs

tBC 0.152 (10) 0.070 (14)

t 0.273 (18) 0.075 (15)

NBC 0.167 (11) 0.345 (69)

Normal 0.318 (21) 0.290 (58)

Skew-t 0.303 (20) 0.085 (17)

Skew-normal 0.394 (26) 0.175 (35)

The best results are shown in bold. The numbers of misclassified cases are given within parentheses
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Table 2

Misclassification rates for different models applied to the wine data set and its first four principal components

Model Wine Prin. Comp.

tBC 0.107 (19) 0.051 (9)

t 0.320 (57) 0.062 (11)

NBC 0.382 (68) 0.062 (11)

Normal 0.303 (54) 0.062 (11)

Skew-t 0.281 (50) 0.073 (13)

Skew-normal 0.354 (63) 0.124 (22)

The best results are shown in bold. The numbers of misclassified cases are given within parentheses
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Table 3

The number of components selected by the BIC for different models applied to the bankruptcy and crabs data
sets

Model Bankruptcy Crabs

tBC 2 4

t 2 4

NBC 2 3

Normal 3 3

Skew-t 2 2

Skew-normal 2 3

The best results are shown in bold
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